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Abstract

Given graphs G and H and a positive integer q, say that

G is q‐Ramsey for H , denoted →G H( )q, if every

q‐coloring of the edges of G contains a monochromatic

copy of H . The size‐Ramsey number r Hˆ ( ) of a graph H is

defined to be ∣ ∣ →r H E G G Hˆ ( ) = min{ ( ) : ( ) }2 . Answer-

ing a question of Conlon, we prove that, for every fixed

k, we have r P O nˆ ( ) = ( )n
k , where Pn

k is the kth power of

the n‐vertex path Pn (ie, the graph with vertex set V P( )n

and all edges u v{ , } such that the distance between u and

v in Pn is at most k). Our proof is probabilistic, but can
also be made constructive.
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1 | INTRODUCTION

Given graphsG and H and a positive integer q, say thatG is q‐Ramsey for H , denoted →G H( )q,
if every q‐coloring of the edges of G contains a monochromatic copy of H . When q = 2, we
simply write →G H . In its simplest form, the classical theorem of Ramsey [24] states that for
any H there exists an integer N such that →K HN . The Ramsey number r H( ) of a graph H is
defined to be the smallest such N . Ramsey problems have been well studied and many beautiful
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techniques have been developed to estimate Ramsey numbers. For a detailed summary of
developments in Ramsey theory, see the excellent survey of Conlon et al [7].

A number of variants of the classical Ramsey problem are also under active study. In
particular, Erdős et al [12] proposed the problem of determining the smallest number of edges
in a graph G such that →G H . Define the size‐Ramsey number r Hˆ ( ) of a graph H to be

≔ ∣ ∣ →r H E G G Hˆ ( ) min{ ( ) : }.

In this paper, we are concerned with finding bounds on r Hˆ ( ) in some specific cases.

For any graph H , it is not difficult to see that ≤ ( )r Hˆ ( ) r H( )
2

. A result due to Chvátal (see,
eg, [12]) shows that in fact this bound is tight for complete graphs. For the n‐vertex path Pn,
Erdős [11] asked the following question.

Question 1.1. Is it true that

∞
→∞ →∞

r P
n

r P
n

lim
ˆ ( ) = and lim

ˆ ( ) = 0?
n

n

n

n
2

Answering Erdős’ question, Beck [3] proved that the size‐Ramsey number of paths is linear,
that is, r P O nˆ ( ) = ( )n , by means of a probabilistic construction. Alon and Chung [2] provided an
explicit construction of a graph G with O n( ) edges such that →G Pn. Recently, Dudek and
Prałat [10] gave a simple alternative proof for this result [21]. More generally, Friedman and
Pippenger [14] proved that the size‐Ramsey number of bounded‐degree trees is linear [8,15,17]
and it is shown in [16] that cycles also have linear size‐Ramsey numbers.

A question posed by Beck [4] asked whether r Gˆ ( ) is linear for all graphs G with bounded
maximum degree. This was negatively answered by Rödl and Szemerédi, who showed that
there exists an n‐vertex graph H and maximum degree 3 such that ∕r H n nˆ ( ) = Ω( log )1 60 . The
current best upper bound for bounded‐degree graphs is proved in [19], where it is shown
that for every Δ there is a constant c such that for any graph H with n vertices and maximum
degree Δ,

≤ ∕ ∕r H cn nˆ ( ) log .2−1 Δ 1 Δ

For further results on size‐Ramsey numbers, the reader is referred to [5,18,25].
Given an n‐vertex graph H and an integer ≥k 2, the kth power Hk of H is the graph with

vertex set V H( ) and all edges u v{ , } such that the distance between u and v in H is at most k.
Answering a question of Conlon [6], we prove that all powers of paths have linear size‐Ramsey
numbers. The following theorem is our main result.

Theorem 1.2. For any integer ≥k 2,

r P O nˆ ( ) = ( ).n
k (1.1)

Since ⊆C Pn
k

n
k2 , the next corollary follows directly from Theorem 1.2.
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Corollary 1.4. For any integer ≥k 2,

r C O nˆ ( ) = ( ).n
k (1.2)

Throughout the paper, we use big O notation with respect to → ∞n , where the implicit
constants may depend on other parameters. For a path P, we write ∣ ∣P for the number of vertices
in P. For simplicity, we omit floor and ceiling signs when they are not essential.

The paper is structured as follows: in Section 2, we introduce some preliminary definitions
and give an outline of the proof; the proof of Theorem 1.2 is given in Section 3; in Section 4, we
mention some related open problems.

2 | OUTLINE OF THE PROOF

To prove Theorem 1.2, we will show that there exists a graph G with O n( ) edges such
that →G Pn

k.
To construct G we begin by taking a pseudorandom graph H with bounded degree. The

existence of such an H will be proved in Lemma 3.1. Given Hk, we then take a complete blow‐
up, defined as follows.

Definition 2.1. Given a graph H and a positive integer t , the complete t blow‐up of H ,
denoted Ht is the graph obtained by replacing each vertex v of H by a complete graph
with r K( )t vertices, the cluster C v( ), and by adding, for every ∈u v E H{ , } ( ), every edge
between C u( ) and C v( ).

Note that we replace each vertex with a clique on r K( )t vertices rather than t vertices as
might have been expected.

The following immediate fact states that the complete blow‐ups of powers of bounded‐degree
graphs have a linear number of edges. This makes them valid candidates for showing r P O nˆ ( ) = ( )n

k .

Fact 2.2. Let k t a, , , and b be positive constants. If H is a graph with ∣ ∣V H an( ) = and
≤H bΔ( ) , then ∣ ∣E H O n( ) = ( )t

k .

The heart of the proof is to show that, given any 2‐coloring of the edges of Ht
k, we can find a

monochromatic copy of Pn. To do this we will use the fact that H satisfies a particular property
(Lemma 3.2). We shall also make use of the following result.

Theorem 2.3 (Pokrovskiy [23, Theorem 1.7]). Let ≥k 1. Suppose that the edges of Kn are
colored with red and blue. Then Kn can be covered by k vertex‐disjoint blue paths and a
vertex‐disjoint red balanced complete k( + 1)‐partite graph.

We remark that we do not need the full strength of this result, in the sense that we do not
need the complete k( + 1)‐partite graph to be balanced; it suffices for us to know that the vertex
classes are of comparable cardinality. Such a result can be derived easily by iterating Lemma 1.5
in [23], for which Pokrovskiy gives a short and elegant proof (see also [22, Lemma 1.10]).

We shall also use the classical Kővári–T. Sós–Turán theorem [20], in the following
simple form.
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Theorem 2.4. Let G be a balanced bipartite graph with t vertices in each vertex class. If G
contains no Ks s, , then G has at most ∕t4 s2−1 edges.

Let us now give a brief outline of how we find our monochromatic copy of Pn
k in a 2‐edge

colored Ht
k. Suppose the edges of Ht

k have been colored red and blue by an arbitrary coloring χ .
Recall that Ht

k is obtained by blowing up Hk; in particular, the vertices v of Hk become large
complete graphs C v( ) in Ht

k. By the choice of parameters, Ramsey’s theorem tells us that each
such C v( ) contains a monochromatic copy B v( ) of Kt. We may assume without loss of
generality that at least half of the B v( ) are blue.

Let F be the subgraph of H induced by the vertices v such that B v( ) is blue. We shall define
an auxiliary edge‐coloring χ′ of Fk. By using Theorem 2.3 we shall be able to find either (i) a
blue Pn in Fk under χ′ or (ii) a Pn in F (not in Fk) with certain additional properties. The path in
(ii) will be found applying Lemma 3.2 with the sets Ai being the vertex classes of a red complete
k( + 1)‐partite subgraph of Fk. This red complete k( + 1)‐partite subgraph of Fk will be found
using Theorem 2.3, applied to a suitable red/blue colored complete graph (we complete Fk with
its auxiliary coloring χ′ to a red/blue colored complete graph by considering nonedges of
Fk red).

In case (i), where we find a blue Pn in Fk under the coloring χ′, we shall be able to find a blue
Pn

k in Ht
k. In case (ii), the properties of the path Pn found in F will ensure the existence of a red

Pn
k in Fk. It will then be easy to find a red Pn

k in ⊆F Ht
k

t
k. The idea of defining an auxiliary graph

on monochromatic cliques as above was used in [1].

3 | PROOF OF THEOREM 1.2

Our first lemma guarantees the existence of bounded‐degree graphs with the pseudorandom-
ness property we require.

Lemma 3.1. For every positive constants ε and a, there is a constant b such that, for any
large enough n, there is a graph H with v H an( ) = such that

(1) For every pair of disjoint sets ⊆S T V H, ( ) with ∣ ∣ ∣ ∣ ≥S T εn, , we have ∣ ∣E S T( , ) > 0H .
(2) ≤H bΔ( ) .

Proof. Fix positive constants ε and a. Let ∕c a ε= 4 2 and b ac= 4 and consider a
sufficiently large n. Let G G an p= (2 , ) be the binomial random graph with ∕p c n= . By
Chernoff’s inequality, with high probability we have ∣ ∣E G a c n( ) < (4 )2 . Moreover, with
high probability G satisfies (1) (with H G= ) by the following reason: let XG be the
number of pairs of disjoint subsets of V G( ) of size εn with no edges between them. Then,
from the choice of c and using Markov’s inequality, we have

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠≥ ≤ ≤ ⋅X X an

εn
c
n

o[ 1] [ ] 2 1 − < 2 e = (1).G G

εn
an cε n

2 ( )
4 −

2
2 

Thus, there is a graph G with ∣ ∣E G a c n( ) < (4 )2 and X = 0G .
Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum

degree until exactly an vertices remain. Then ≤H bΔ( ) , as otherwise, from the choice of
b we would have deleted more than ⋅ ∣ ∣b an E G> ( ) edges from G during the iteration,
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which contradicts property (1). Moreover, as H is an induced subgraph of G, (1) is
maintained. This completes the proof of the lemma. □

We now show that any graph satisfying the hypothesis of Lemma 3.1 and property (1) also
satisfies an additional property.

Algorithm 1.

Lemma 3.2. For every integer ≥k 1 and every ε > 0, there exists a > 00 such that the
following holds for any ≥a a0. Let H be a graph with an vertices such that for every pair of
disjoint sets ⊆S T V H, ( ) with ∣ ∣ ∣ ∣ ≥S T εn, we have ∣ ∣E S T( , ) > 0H . Then, for every family

⊆A A V H,…, ( )k1 +1 of pairwise disjoint sets each of size at least εan, there is a path
P x x= ( , …, )n n1 in H with ∈x Ai j for all ≤ ≤i n1 , where ≡j i k(mod + 1).

To prove Lemma 3.2, we analyze a depth‐first search algorithm, adapting a proof idea in [5,
Lemma 4.4]. More specifically, we run an algorithm (stated formally as Algorithm 1). Our
algorithm receives as input a graph H with v H an( ) = satisfying property (1), and a family of
pairwise disjoint sets ⊆A A V H,…, ( )k1 +1 with ∣ ∣ ≥A εani for all i. The output of � is a path
P x x= ( ,…, )n n1 in H with ∈x Ai j for all i, where ≡j i k(mod + 1).

As it runs, the algorithm builds a path P x x= ( , …, )r1 with ∈x Ai j for all i and j with
≡j i k(mod + 1). Furthermore, it maintains sets Uj and ⊆D Aj j for all j, with the property

that U D,j j, and ∩V P A( ) j form a partition of Aj for every j. The cardinality of the sets Uj
decreases as the algorithm runs, while the Dj increases. As the algorithm runs, we have

∣ ∣r P n= < and it searches for an edge ∈x u E H{ , } ( )r where u belongs to the setUr+1 of unused
vertices in Ar+1. If such a vertex ∈u Ur+1 is found, then P is made one vertex longer by adding u
to it. If there is no such vertex u, then xr is declared a dead end and it is put into Dr . Moreover,
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the path P is shortened by one vertex; it becomes P x x= ( , …, )r1 −1 . Our algorithm iterates this
procedure. If we find a path P with n vertices this way, then we are done.

We now analyze Algorithm 1.

Proof of Lemma 3.2. We will prove that Algorithm 1 returns a path P on line 13 as
desired, instead of terminating with failure on line 14.

Fix an integer ≥k 1 and ε > 0. Let

a
ε k

= 2 + 4
( + 1)

,0 (3.1)

fix ≥a a0, and let n be sufficiently large. Let H be a graph with an vertices satisfying
property (1), that is, for every pair of disjoint sets ⊆S T V H, ( ) with ∣ ∣ ∣ ∣ ≥S T εn, we have
∣ ∣E S T( , ) > 0H . Let ⊆A A V H,…, ( )k1 +1 be a family of pairwise disjoint sets each of size at
least εan.
First recall thatU D,i i, and ∩V P A( ) i form a partition of Ai for every i. Since the path P

is always empty on line 4, at this point we have ∣ ∣ ≥ ∣ ∣ ∣ ∣ ≥ ∣ ∣∕U A D A− 2 > 01 1 1 1 . Then, line
4 is always executed successfully.
Suppose now that � stops with failure on line 14. Then, for some i, say i r= , the set

D D=i r became larger than ∣ ∣∕ ≥ ∕ ≥A εan εn2 2r . Furthermore, we have ∣ ∣P n< and
∣ ∣ ≤ ∣ ∣∕D A 2r r+1 +1 (indices modulo k + 1) and hence,

⎡
⎢⎢

⎤
⎥⎥∣ ∣ ≥ ∣ ∣ ∣ ∣ ∣ ∩ ∣ ≥ ∣ ∣ ≥U A D V P A A n

k
εan n

k
εn− − ( ) 1

2
−

+ 1
1
2

− 2
+ 1

> .r r r r r+1 +1 +1 +1 +1

Note that this is the only place where the exact value of a0 is used. Applying property
(1) to the pair D U( , )r r+1 , we see that there is an edge ∈x u E H{ , } ( ) with ∈x Dr and

∈u Ur+1. Consider the moment in which x was put into Dr. This happened on line 10,
when P had x as its foremost vertex and � was trying to extend P further into Ur+1. At
this point, because of the edge ∈x u E H{ , } ( ), we must have had ∉u Ur+1 (see line 6).
Since the set Ur+1 decreases as � runs, this is a contradiction and hence � does not
terminate on line 14.

Since ∑ ∣ ∣ ∣ ∣≤ ≤ D U( − )i k i i1 +1 increases as Algorithm 1 runs, we know the algorithm
terminates. Therefore, we conclude that it returns a suitable path P as claimed. □

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix ≥k 1 and let ∕ε k= 1 3( + 1). Let a0 be the constant given by
an application of Lemma 3.2 with parameters k and ε. Set a k a= max{6 , }0 and let b be
given by Lemma 3.1 for this choice of a. Moreover, let H be a graph with ∣ ∣V H an( ) =
and ≤H bΔ( ) be as in Lemma 3.1. Finally, put t k= (64 ) k2 and s k= 2 .
Let Ht

k be a complete‐t‐blow‐up of Hk, as in Definition 2.1, and let
→χ E H: ( ) {red, blue}t

k be an edge‐coloring of Ht
k. We shall show that Ht

k contains a
monochromatic copy of Pn

k under χ . By the definition of Ht
k, any cluster C v( ) contains a

monochromatic copy B v( ) of Kt. Without loss of generality, the set
≔ ∈W v V H B v{ ( ): ( )is blue} has cardinality at least ∕v H( ) 2. Let ≔F H W[ ] be the

6 | CLEMENS ET AL.



subgraph of H induced by W , and let F′ be the subgraph of ⊆F Ht
k

t
k induced

by ⋃ ∈ V B w( ( ))w W .
Given the above coloring χ , we define a coloring χ′ of Fk as follows. An edge

∈u v E F{ , } ( )k is colored blue if the bipartite subgraph F V B u V B v′[ ( ( )), ( ( ))] of F′
naturally induced by the sets V B u( ( )) and V B v( ( )) contains a blue Ks s, . Otherwise u v{ , }
is colored red. □

Claim 3.4. Any 2‐coloring of E F( )k has either a blue Pn or a red Pn
k.

Proof. We apply Theorem 2.3 to Fk, where if an edge is not present in Fk, then we
consider it to be in the red color class. If Fk contains a blue copy of Pn, then we are done.
Hence we may assume Fk contains a balanced, complete k( + 1)‐partite graph K with
parts A A,…, k1 +1 on at least ≥ ∕v F kn an kn( ) − 2 −k vertices, with no blue edges between
any two parts. As ≥a k6 , each one of these parts has size at least

⎜ ⎟
⎛
⎝

⎞
⎠ ≥

k
a k n εan1

+ 1
1
2

− . (3.2)

By Lemma 3.2 applied to the collection of sets of vertices A A,…, k1 +1 of ⊆F H
(specifically F and not Fk), we see that F V K[ ( )] contains a path with n vertices such that
any consecutive k + 1 vertices are in distinct parts of K . Therefore F V K[ ( )]k contains a
copy of Pn

k in which every pair of adjacent vertices are in distinct parts of K . By the
definition of K , such a copy is red. □

By Claim 3.4, Fk contains a blue copy of Pn or a red copy of Pn
k under the edge‐coloring χ′.

Thus, we can split our proof into these two cases.
Case 1. First suppose Fk contains a blue copy x x( , …, )n1 of Pn. Then, for every ≤ ≤i n1 − 1,

the bipartite graph F V B x V B x′[ ( ( )), ( ( ))]i i+1 contains a blue copy of Ks s, , with, say, vertex
classes ⊆X V B x( ( ))i i and ⊆Y V B x( ( ))i i+1 +1 . As ∣ ∣ ∣ ∣X Y s k= = = 2i i for all ≤ ≤i n2 − 1, we
can find sets ⊆X X′i i and ⊆Y Y′i i such that ∣ ∣ ∣ ∣X Y k′ = ′ =i i and ∩ ∅X Y′ ′ =i i for all

≤ ≤j n2 − 1. Let X X′ =1 1 and Y Y′ =n n.
We now show that the set ≔ ⋃ ∪ ⋃U X Y′ ′i

n
i i

n
i=1

−1
=2 provides us with a blue copy of P kn

k
2 in

⊆F H′ t
k. Note first that ∣ ∣U k k= 2 + 2 n( − 2) + k kn2 = 2 . Let u u,…, kn1 2 be an ordering of U

such that, for each i, every vertex in X ′i comes before any vertex in Y ′i+1 and after every vertex
in Y ′i. By the definition of the sets X ′i and Y ′i and the construction of ⊆ ⊆F F H′ t

k
t
k, each

vertex uj is adjacent in blue to ∈ ≤ ∣ ∣ ≤u U j j k{ : 1 − ′ }j′ . Thus, U contains a blue copy of P nk
k
2 ,

as claimed.
Case 2. Now suppose Fk contains a red copy P of Pn

k. That is, Fk contains a set of vertices
x x{ , …, }n1 such that xi is adjacent in red to all xj with ≤ ∣ ∣ ≤j i k1 − . We shall show that, for
each ≤ ≤i n1 , we can pick a vertex ∈y V B x( ( ))i i so that y y,…, n1 define a red copy of Pn

k in
⊆ ⊆F F H′ t

k
t
k. We do this by applying the local lemma [13] (a greedy strategy also works).

We have to show that it is possible to pick the yi ( ≤ ≤i n1 ) in such a way that y y{ , }i j is a red
edge in F′ for every i and j with ≤ ∣ ∣ ≤i j k1 − . Let us choose ∈y V B x( ( ))i i ( ≤ ≤i n1 )
uniformly and independently at random. Let e x x= { , }i j be an edge in ⊆P Fk. We know that e
is red. Let Ae be the event that y y{ , }i j is a blue edge in F′. Since the edge e is red, we know that
the bipartite graph F V B x V B x′[ ( ( )), ( ( ))]i j contains no blue Ks s, . Theorem 2.4 then tells us
that ≤ ∕A t[ ] 4e

s−1 .
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The events Ae are not independent, but we can define a dependency graph D for the
collection of events Ae ( ∈e E P( )) by adding an edge between Ae and Af if and only if

∩ ≠ ∅e f . Then ≤D kΔ( ) 4 . Given that

≤ ∕A kt4Δ [ ] 64 = 1,e
s−1 (3.3)

for all e, the local lemma tells us that ⋂ ∈ Ā[ ] > 0e E P e( ) , and hence a simultaneous choice of
the yi ( ≤ ≤i n1 ) as required is possible. This completes the proof of Theorem 1.2.

Throughout our proof we have used probabilistic methods to show the existence of G. We
now briefly discuss how our proof could be made constructive. For instance, it suffices to take
for H a suitable n d λ( , , )‐graph as in Alon and Chung [2], namely, it is enough to have
λ O d= ( ) and d large enough with respect to k and ∕ε1 .

4 | OPEN QUESTIONS

We make no attempts to optimize the constant given by our argument, so the following
question is of interest.

Question 4.1. For any integer ≥k 2, what is ∕→∞r P nlim sup ˆ ( )n n
k ?

It is also interesting to consider what happens when more than two colors are at play. For
∈q , let r Hˆ ( )q denote the q‐color size‐Ramsey number of H , that is, the smallest number of

edges in a graph that is q‐Ramsey for H .

Conjecture 4.2. For any ∈q k,  we have r P O nˆ ( ) = ( )q n
k .

It is conceivable that in hypergraphs the size‐Ramsey number (defined analogously as for
graphs) of tight paths may be linear. Let Hn

k( ) denote the tight path of uniformity k on n vertices;
that is, V H n( ) = [ ]n

k( ) and E H k k n k n( ) = {{1, …, }, {2, …, + 1}, …, { − + 1, …, }}n
k( ) . The following

question appears as Question 2.9 in [9].

Question 4.3. For any ∈k , do we have r H O nˆ ( ) = ( )n
k( ) ?

Finally, we note that for fixed k, our main result implies the linearity of the size‐Ramsey
number for the grid graphs Gk n, , the cartesian product of the paths Pk and Pn. Indeed our main
result implies the linearity of the size‐Ramsey number for any sequence of graphs with bounded
bandwidth. For the d‐dimensional grid graph Gn

d, obtained by taking the cartesian product of d
copies of Pn, we raise the following question.

Question 4.4. For any integer ≥d 2, is r G O nˆ ( ) = ( )n
d d ?
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