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1 | INTRODUCTION

Given graphs G and H and a positive integer g, say that G is g-Ramsey for H, denoted G — (H),
if every g-coloring of the edges of G contains a monochromatic copy of H. When q = 2, we
simply write G — H. In its simplest form, the classical theorem of Ramsey [24] states that for
any H there exists an integer N such that Ky — H. The Ramsey number r (H) of a graph H is
defined to be the smallest such N. Ramsey problems have been well studied and many beautiful
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techniques have been developed to estimate Ramsey numbers. For a detailed summary of
developments in Ramsey theory, see the excellent survey of Conlon et al [7].

A number of variants of the classical Ramsey problem are also under active study. In
particular, Erd6s et al [12] proposed the problem of determining the smallest number of edges
in a graph G such that G — H. Define the size-Ramsey number #(H) of a graph H to be

7(H) := min{|E(G)|: G - H}.

In this paper, we are concerned with finding bounds on 7 (H) in some specific cases.

For any graph H, it is not difficult to see that #(H) < r(f)). A result due to Chvatal (see,
eg, [12]) shows that in fact this bound is tight for complete graphs. For the n-vertex path P,

Erdds [11] asked the following question.

Question 1.1. Is it true that

lim@ = o0 and limL}:”) =0?
n—-oco Nn n—-oo N

Answering Erdds’ question, Beck [3] proved that the size-Ramsey number of paths is linear,
that is, 7 (B,) = O(n), by means of a probabilistic construction. Alon and Chung [2] provided an
explicit construction of a graph G with O(n) edges such that G — PB,. Recently, Dudek and
Pratat [10] gave a simple alternative proof for this result [21]. More generally, Friedman and
Pippenger [14] proved that the size-Ramsey number of bounded-degree trees is linear [8,15,17]
and it is shown in [16] that cycles also have linear size-Ramsey numbers.

A question posed by Beck [4] asked whether 7(G) is linear for all graphs G with bounded
maximum degree. This was negatively answered by Rodl and Szemerédi, who showed that
there exists an n-vertex graph H and maximum degree 3 such that#(H) = Q(n log'/® n). The
current best upper bound for bounded-degree graphs is proved in [19], where it is shown
that for every A there is a constant ¢ such that for any graph H with n vertices and maximum
degree A,

F(H) < cn?~1/2]og!/An.
For further results on size-Ramsey numbers, the reader is referred to [5,18,25].
Given an n-vertex graph H and an integer k > 2, the kth power H* of H is the graph with
vertex set V (H) and all edges {u, v} such that the distance between u and v in H is at most k.
Answering a question of Conlon [6], we prove that all powers of paths have linear size-Ramsey

numbers. The following theorem is our main result.

Theorem 1.2. For any integer k > 2,
F(Py) = O(n). (1.1)

Since Cf C P, the next corollary follows directly from Theorem 1.2.



CLEMENS ET AL.

WILEY——

Corollary 1.4. For any integer k > 2,

#(CH =0oMm). (1.2)

Throughout the paper, we use big O notation with respect to n — co, where the implicit
constants may depend on other parameters. For a path P, we write |P| for the number of vertices
in P. For simplicity, we omit floor and ceiling signs when they are not essential.

The paper is structured as follows: in Section 2, we introduce some preliminary definitions
and give an outline of the proof; the proof of Theorem 1.2 is given in Section 3; in Section 4, we
mention some related open problems.

2 | OUTLINE OF THE PROOF

To prove Theorem 1.2, we will show that there exists a graph G with O(n) edges such
that G — Pk,

To construct G we begin by taking a pseudorandom graph H with bounded degree. The
existence of such an H will be proved in Lemma 3.1. Given H*, we then take a complete blow-
up, defined as follows.

Definition 2.1. Given a graph H and a positive integer t, the complete t blow-up of H,
denoted H, is the graph obtained by replacing each vertex v of H by a complete graph
with r(K,) vertices, the cluster C (v), and by adding, for every {u, v} € E(H), every edge
between C (1) and C (v).

Note that we replace each vertex with a clique on r(K;) vertices rather than ¢t vertices as
might have been expected.

The following immediate fact states that the complete blow-ups of powers of bounded-degree
graphs have a linear number of edges. This makes them valid candidates for showing #(P}) = O (n).

Fact 2.2. Letk, t, a, and b be positive constants. If H is a graph with |V (H)| = an and
A(H) < b, then |[E(HF)| = O(n).

The heart of the proof is to show that, given any 2-coloring of the edges of H}, we can find a
monochromatic copy of B,. To do this we will use the fact that H satisfies a particular property
(Lemma 3.2). We shall also make use of the following result.

Theorem 2.3 (Pokrovskiy [23, Theorem 1.7]). Let k > 1. Suppose that the edges of K, are
colored with red and blue. Then K, can be covered by k vertex-disjoint blue paths and a
vertex-disjoint red balanced complete (k + 1)-partite graph.

We remark that we do not need the full strength of this result, in the sense that we do not
need the complete (k + 1)-partite graph to be balanced; it suffices for us to know that the vertex
classes are of comparable cardinality. Such a result can be derived easily by iterating Lemma 1.5
in [23], for which Pokrovskiy gives a short and elegant proof (see also [22, Lemma 1.10]).

We shall also use the classical K6vari-T. S6s-Turdn theorem [20], in the following
simple form.
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Theorem 2.4. Let G be a balanced bipartite graph with t vertices in each vertex class. If G
contains no K, then G has at most 41271/5 edges.

Let us now give a brief outline of how we find our monochromatic copy of P in a 2-edge
colored Hf. Suppose the edges of H/ have been colored red and blue by an arbitrary coloring y.
Recall that Hf is obtained by blowing up H¥; in particular, the vertices v of H* become large
complete graphs C (v) in H¥. By the choice of parameters, Ramsey’s theorem tells us that each
such C(v) contains a monochromatic copy B(v) of K;. We may assume without loss of
generality that at least half of the B(v) are blue.

Let F be the subgraph of H induced by the vertices v such that B(v) is blue. We shall define
an auxiliary edge-coloring y’ of F¥. By using Theorem 2.3 we shall be able to find either (i) a
blue B, in F¥ under ' or (ii) a B, in F (not in F¥) with certain additional properties. The path in
(ii) will be found applying Lemma 3.2 with the sets A; being the vertex classes of a red complete
(k + 1)-partite subgraph of F*. This red complete (k + 1)-partite subgraph of F¥ will be found
using Theorem 2.3, applied to a suitable red/blue colored complete graph (we complete F¥ with
its auxiliary coloring y’ to a red/blue colored complete graph by considering nonedges of
F¥ red).

In case (i), where we find a blue B, in F¥ under the coloring ', we shall be able to find a blue
P¥in H}. In case (ii), the properties of the path P, found in F will ensure the existence of a red
PF in F*. It will then be easy to find a red P¥ in F* C Hf. The idea of defining an auxiliary graph
on monochromatic cliques as above was used in [1].

3 | PROOF OF THEOREM 1.2

Our first lemma guarantees the existence of bounded-degree graphs with the pseudorandom-
ness property we require.

Lemma 3.1. For every positive constants € and a, there is a constant b such that, for any
large enough n, there is a graph H with v(H) = an such that

(1) For every pair of disjoint sets S, T C V (H) with |S|, |T| > en, we have |Eg (S, T)| > 0.
(2) A(H) <b.

Proof. Fix positive constants ¢ and a. Let ¢ = 4a/¢?> and b = 4ac and consider a
sufficiently large n. Let G = G (2an, p) be the binomial random graph with p = ¢/n. By
Chernoff’s inequality, with high probability we have |E (G)| < (4a’c)n. Moreover, with
high probability G satisfies (1) (with H = G) by the following reason: let X; be the
number of pairs of disjoint subsets of V (G) of size en with no edges between them. Then,
from the choice of ¢ and using Markov’s inequality, we have

2 (en)?
P[X; > 1] < E[Xs] < (2‘”") (1 - i) < dan _ g=en — o(1),
en n

Thus, there is a graph G with |[E(G)| < (4ac)n and X; = 0.

Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum
degree until exactly an vertices remain. Then A(H) < b, as otherwise, from the choice of
b we would have deleted more than b - an > |E(G)| edges from G during the iteration,
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which contradicts property (1). Moreover, as H is an induced subgraph of G, (1) is
maintained. This completes the proof of the lemma. [l

We now show that any graph satisfying the hypothesis of Lemma 3.1 and property (1) also
satisfies an additional property.

Algorithm 1.

Input :a graph H with v(H) = an satisfying (1) and sets A; S V(H) (1<i<k+1)
with A; n Aj = @ for all i # j and |A;] > ean for all 7.
Output:a path P, = (z1,...,z,) in H with x; € A; for all 4, where j =i (mod k + 1).
1 foreach1 <i<k+1do
2 LU,Lw—Ai; D;—o
3 while |D;| < |4;|/2 for alli do
4 pick z1 € Uy and let P = (z1); T 1 Uy «— Uy ~ {21}
5 while 1 < |P| <n do
// P=(x1,...,2y) with r > 1
6 if Ju e Uy41 with {z,,u} € E(H) then

Trp1 < w3 Uppr < Uppr N {u}

8 P— (21, .., T, Tp41); T T+1
9 else

10 D, « D, v {z,}

11 LP@(ml,...,mr_l); re—r—1

12 if |P| = n then
13 t return P // path has been found

14 STOP with failure // this will not happen

Lemma 3.2. For every integer k > 1 and every € > 0, there exists ag > 0 such that the
following holds for any a > a,. Let H be a graph with an vertices such that for every pair of
disjoint sets S, T C V (H) with |S|, |T| > en we have |E4 (S, T)| > 0. Then, for every family
Ap,....;Aks1 € V(H) of pairwise disjoint sets each of size at least ean, there is a path
B = (X%,...,xn) in H with x; € Aj for all1 <i < n, where j =i (mod k + 1).

To prove Lemma 3.2, we analyze a depth-first search algorithm, adapting a proof idea in [5,
Lemma 4.4]. More specifically, we run an algorithm (stated formally as Algorithm 1). Our
algorithm receives as input a graph H with v(H) = an satisfying property (1), and a family of
pairwise disjoint sets A,...,Axy1 € V (H) with |A;| > ean for all i. The output of A is a path
B, = (%,...,x,) in H with x; € A; for all i, where j =i (mod k + 1).

As it runs, the algorithm builds a path P = (x,...,x,) with x; € A; for all i and j with
j=1i(mod k + 1). Furthermore, it maintains sets U; and D; C A; for all j, with the property
that Uj, D;, and V(P) N A; form a partition of A; for every j. The cardinality of the sets Uj
decreases as the algorithm runs, while the D; increases. As the algorithm runs, we have
r = |P| < n and it searches for an edge {x,, u} € E (H) where u belongs to the set U, of unused
vertices in A, ;. If such a vertexu € U,,; is found, then P is made one vertex longer by adding u
to it. If there is no such vertex u, then x, is declared a dead end and it is put into D,. Moreover,



6 CLEMENS ET AL.
* L wiLey
the path P is shortened by one vertex; it becomes P = (x,...,X,_1). Our algorithm iterates this
procedure. If we find a path P with n vertices this way, then we are done.

We now analyze Algorithm 1.

Proof of Lemma 3.2. We will prove that Algorithm 1 returns a path P on line 13 as
desired, instead of terminating with failure on line 14.
Fix an integer k > 1 and € > 0. Let

4

+ m, (3.1)

ap =2

fix a > aop, and let n be sufficiently large. Let H be a graph with an vertices satisfying
property (1), that is, for every pair of disjoint sets S, T C V (H) with |S|, |T| > en we have
|Eg (S, T)| > 0. Let Ay,...,Ars1 € V (H) be a family of pairwise disjoint sets each of size at
least ean.

First recall that U;, D;, and V (P) N A; form a partition of A; for every i. Since the path P
is always empty on line 4, at this point we have |Uj| > |A;| — |D;| > |4A;1]/2 > 0. Then, line
4 is always executed successfully.

Suppose now that A stops with failure on line 14. Then, for some i, say i = r, the set
D; = D, became larger than |A,|/2 > ean/2 > en. Furthermore, we have |P| < n and
|Dy11l < |Ay+1]/2 (indices modulo k + 1) and hence,

1 n 1
Uil 2 Mpia] = 1Dyl = IV (B) 0 Al = 1Ay - [ ] > Lean - 2% e,

k+1 2 k+1

Note that this is the only place where the exact value of a, is used. Applying property
(1) to the pair (D, U,+1), we see that there is an edge {x, u} € E(H) with x € D, and
u € U,,;. Consider the moment in which x was put into D,. This happened on line 10,
when P had x as its foremost vertex and A was trying to extend P further into U,,;. At
this point, because of the edge {x, u} € E(H), we must have had u ¢ U, (see line 6).
Since the set U,,; decreases as ‘A runs, this is a contradiction and hence A does not
terminate on line 14.

Since ), <i<ks1 (Dil = [U]) increases as Algorithm 1 runs, we know the algorithm
terminates. Therefore, we conclude that it returns a suitable path P as claimed. |

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Fixk > 1 and let e = 1/3(k + 1). Let a, be the constant given by
an application of Lemma 3.2 with parameters k and €. Set a = max{6k, a,} and let b be
given by Lemma 3.1 for this choice of a. Moreover, let H be a graph with |V (H)| = an
and A(H) < b be as in Lemma 3.1. Finally, put t = (64k)* and s = 2k.

Let HF be a complete-t-blow-up of HF, as in Definition 2.1, and let
x: E(HF) - {red, blue} be an edge-coloring of H¥. We shall show that H¥ contains a
monochromatic copy of PX under y. By the definition of H¥, any cluster C (v) contains a
monochromatic copy B(v) of K, Without loss of generality, the set
W= {v € V(H): B(v)isblue} has cardinality at least v(H)/2. Let F:= H[W] be the
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subgraph of H induced by W, and let F’ be the subgraph of FF ¢ HF induced
by Unew V (BW)).

Given the above coloring y, we define a coloring y’' of F* as follows. An edge
{u, v} € E(F*) is colored blue if the bipartite subgraph F'[V (B(w)), V (B(v))] of F’
naturally induced by the sets V' (B(u)) and V (B(v)) contains a blue K; ;. Otherwise {u, v}
is colored red. O

Claim 3.4. Any 2-coloring of E (F¥) has either a blue P, or a red PY.

Proof. We apply Theorem 2.3 to F¥, where if an edge is not present in F¥, then we
consider it to be in the red color class. If F¥ contains a blue copy of B,, then we are done.
Hence we may assume F* contains a balanced, complete (k + 1)-partite graph K with
parts Ay,...,Ag41 on at least v(F¥) — kn > an/2 — kn vertices, with no blue edges between
any two parts. As a > 6k, each one of these parts has size at least

1 (la — k)n > ean. (3.2)
k+1\2

By Lemma 3.2 applied to the collection of sets of vertices A,...,Axs1 of FC H
(specifically F and not F¥), we see that F [V (K)] contains a path with n vertices such that
any consecutive k + 1 vertices are in distinct parts of K. Therefore F*[V (K)] contains a
copy of P¥ in which every pair of adjacent vertices are in distinct parts of K. By the
definition of K, such a copy is red. O

By Claim 3.4, F¥ contains a blue copy of B, or a red copy of P¥ under the edge-coloring x’.
Thus, we can split our proof into these two cases.

Case 1. First suppose F¥ contains a blue copy (i, ...,x,) of B,. Then, for everyl <i < n — 1,

the bipartite graph F'[V (B(x;)), V (B(x;+1))] contains a blue copy of K, with, say, vertex
classes X; CV(B(x)) and Vi ; CV(B(xi11)) As|X;| =Y =s=2kforall2<i<n-—1, we
can find sets X’; CX; and Y’; CY, such that | X;| =|Y;] =k and X', nY’; =@ for all
2<j<n-1lLtX1=XandY', =Y,.
We now show that the set U := | J')' X’; U |J,Y"; provides us with a blue copy of Pk, in
F' C Htk. Note first that |U| = 2k + 2k(n — 2) +2k = 2kn. Let u,...,Us, be an ordering of U
such that, for each i, every vertex in X’; comes before any vertex in Y’;,; and after every vertex
in Y’;. By the definition of the sets X’; and Y’; and the construction of F’ C Ff C HF, each
vertex u; is adjacent in blue to {uy € U: 1 < |j — j’| < k}. Thus, U contains a blue copy of Pt.,
as claimed.

Case 2. Now suppose F¥ contains a red copy P of P¥. That is, F* contains a set of vertices
{x1,...,x,} such that x; is adjacent in red to all x; with 1 < |j — i| < k. We shall show that, for
each 1 < i < n, we can pick a vertex y, € V (B(x;)) so that ,,...,, define a red copy of P} in
F’ C FF C HF. We do this by applying the local lemma [13] (a greedy strategy also works).

We have to show that it is possible to pick the y; (1 < i < n) in such a way that {y,, y;} is a red
edge in F’ for every i and j with 1 <|i —j| < k. Let us choose y, € V(B(x;)) A <i<n)
uniformly and independently at random. Let e = {x;, X;} be an edge in P C F¥. We know that e
is red. Let A, be the event that {y,, y;} is a blue edge in F’. Since the edge e is red, we know that
the bipartite graph F'[V (B(x;)), V (B(x;))] contains no blue K. Theorem 2.4 then tells us
that P[A4,] < 4t71/5.
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The events A, are not independent, but we can define a dependency graph D for the
collection of events A, (e € E(P)) by adding an edge between A, and Ay if and only if
e N f+# @. Then A(D) < 4k. Given that

4AP[A,] < 64kt™1/s =1, (3.3)

for all e, the local lemma tells us that P[().cg@)Ac] > 0, and hence a simultaneous choice of
the y; 1 < i < n) as required is possible. This completes the proof of Theorem 1.2.

Throughout our proof we have used probabilistic methods to show the existence of G. We
now briefly discuss how our proof could be made constructive. For instance, it suffices to take
for H a suitable (n, d, 1)-graph as in Alon and Chung [2], namely, it is enough to have
1 = 0(J/d) and d large enough with respect to k and 1/e.

4 | OPEN QUESTIONS

We make no attempts to optimize the constant given by our argument, so the following
question is of interest.

Question 4.1. For any integer k > 2, what is lim supn_)oof(P,'f) /n?

It is also interesting to consider what happens when more than two colors are at play. For
g € N, let 7;(H) denote the g-color size-Ramsey number of H, that is, the smallest number of
edges in a graph that is g-Ramsey for H.

Conjecture 4.2. For any q, k € N we have 7, PH = o(n).

It is conceivable that in hypergraphs the size-Ramsey number (defined analogously as for
graphs) of tight paths may be linear. Let H(®’ denote the tight path of uniformity k on n vertices;
that is, V (H®) = [n] and E(H{) = {{1,..,k}, {2,....k + 1},...{n — k + 1,...,n}}. The following
question appears as Question 2.9 in [9].

Question 4.3. For any k € N, do we have f(H,(lk)) =0(n)?

Finally, we note that for fixed k, our main result implies the linearity of the size-Ramsey
number for the grid graphs Gy ,, the cartesian product of the paths P, and F,. Indeed our main
result implies the linearity of the size-Ramsey number for any sequence of graphs with bounded
bandwidth. For the d-dimensional grid graph G¢, obtained by taking the cartesian product of d
copies of B,, we raise the following question.

Question 4.4. For any integer d > 2, is #(GYH = 0(n?)?
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