

Model Theory of Sheaves of Metric Spaces of Analytic Functions

RICARDO BIANCONI*

Universidade de São Paulo, São Paulo, SP, Brazil

Keywords: continuous logic, metric structures, sheaves, analytic functions

We have started to study from a logical perspective a heuristic principle in complex analysis, the so called *Bloch's Principle*, that is, *there is nothing in the infinite that was not previously in the finite; every proposition in whose statement the actual infinity occurs can be always viewed as a corollary, almost immediate, of a proposition where it does not occur, a proposition in finite terms*, proposed by André Bloch in his article [3, p. 84] in 1926, and with a first (non logical) approach obtained by Lawrence Zalcman in [11], following a suggestion of Abraham Robinson, [10, §8, pp. 508–510]. The logical framework we intend to apply is of sheaves of metric structures as described below.

Model Theory of Metric Structures is a recent version of Continuous Logic where the structures are complete metric spaces with bounded diameter, that is, they are endowed with a metric with values in the real interval $[0, 1]$, also considered a metric spaces with the usual metric $|y - x|$ (see [1, 2].) This logic generalizes classical logic in the sense that we view classical structures as discrete metric spaces, whose metrics assume values in the set $\{0, 1\}$, but with 0 as “truth” and 1 as “false”. A metric structure is a complete metric space (M, d) , whose metric is the function $d : M \times M \rightarrow [0, 1]$, n -ary uniformly continuous functions $f : M^n \rightarrow M$, and n -ary predicates as uniformly continuous functions $P : M^n \rightarrow [0, 1]$, together with their “moduli of uniform continuity” $\Delta_f, \Delta_P : [0, 1] \rightarrow [0, 1]$, considered as continuous crescent functions (here we diverge a little from the current literature). The logical part comprises continuous functions $f : [0, 1]^n \rightarrow [0, 1]$ as n -place propositional connectives, and the operators \sup_x and \inf_x as quantifiers.

Sheaves of metric structures were studied in [8, 9]. We propose to study the (pre-)sheaf of analytic functions over \mathbb{C} . Choose an enumeration ρ_n for all positive rational numbers and an enumeration ξ_n of $\mathbb{Q} + i\mathbb{Q} \subset \mathbb{C}$. The set of closed disks $B(\xi_m, r_n) = \{z \in \mathbb{C} : |z - \xi_m| \leq r_n\}$ generates by unions the topology of \mathbb{C} , and we fix an enumeration B_k of such disks. With this we define the metric on the set $\Gamma(U)$ of sections os analytic functions on the open set $U \subseteq \mathbb{C}$ as follows. The chordal distance in \mathbb{C} comes from the stereographical projection of \mathbb{C} into \mathbb{R}^3 and reduces to $\chi(z_0, z_1) = \frac{|z_0 - z_1|}{\sqrt{|z_0|^2 + 1} \sqrt{|z_1|^2 + 1}} \in [0, 1]$. For each open set $U \subseteq \mathbb{C}$, let $\mathcal{B}_U = \{B_{k_m} : m \in \omega\}$ be the set of all closed balls from \mathcal{B} contained in U , with the enumeration derived from that of \mathcal{B} , and let $K_{U,n} = \bigcup_{j=1}^n B_{k_j}$, an exhausting sequence of compact subsets of U . The $[0, 1]$ -valued metric in $\Gamma(U)$ is $d_U(f, g) = \sum_{j \in \omega} 2^{-j-1} \sup\{\chi(f(z), g(z)) : z \in K_j\}$. These metrics satisfy $U \subseteq V$ and $f, g \in \Gamma(V)$ imply $d_U(f|_U, g|_U) \leq d_V(f, g)$.

We recall that a normal family of analytic functions on an open set $U \subseteq \mathbb{C}$ is a relatively compact subset of $\Gamma(U)$. We intend to formalize this notion in the appropriate language and try to find a common feature of the questions treated in [12], and particularly in [11] [*each property of analytic functions which implies that entyre functions to be constant locally implies that the family with such property is normal*], with the techniques from [4–9].

*bianconi@ime.usp.br

References

- [1] Ben Yaacov, I., Berenstein, A., Henson, C. W., Usvyatsov, A. Model theory for metric structures, in *Model Theory with Applications to Algebra and Analysis*, vol. II (Z. Chatzidakis et al., eds.), London Math. Soc. Lecture Notes Series, no. 350, Cambridge University Press, pp. 315–427, 2008.
- [2] Ben Yaacov, I., Usvyatsov, A. Continuous First Order Logic and Local Stability. *Transactions of the American Mathematical Society*, Vol. 362 No. 10: 5213–5259, 2010.
- [3] A. Bloch, La conception actuelle de la théorie des fonctions entières et méromorphes, *L'Enseignement Mathématique*, Vol. 25 (1926), pp. 83–103.
- [4] Brunner A. B. M., *The Method of Constants in the Model Theory of Sheaves over a Heyting Algebra*, Ph.D. thesis, University of São Paulo (USP), Brazil, June, 2000 (in Portuguese).
- [5] Brunner, A. B. M., Miraglia, F. An Omitting Types Theorem for Sheaves over Topological Spaces, *Logic Journal of the IGPL*, vol. 12(6), 525–548, 2004
- [6] Brunner, A. B. M., Miraglia, F. Model Theory in Sheaves. *South American Journal of Logic*, Vol. 2, n. 2: 379–404, 2016.
- [7] Ghasemi, S. Reduced products of metric structures: a metric Feferman-Vaught theorem. *The Journal of Symbolic Logic*, Vol. 81, No. 3: 856–875, 2016.
- [8] Lopes, V. C. Reduced products and sheaves of metric structures. *Math. Log. Quart.* 59, No. 3: 219–229, 2013.
- [9] Ochoa, M. A., Villaveces, A. Sheaves of Metric Structures. In J. Väänänen et al. (eds.): WoLLIC 2016, *Lecture Notes in Computer Science*, Vol. 9803, pp. 297–315, 2016.
- [10] Abraham Robinson, Metamathematical problems, *The Journal of Symbolic Logic*, Vol. 38 (1973), pp. 500–516.
- [11] Zalcman, L. A Heuristic Principle in Complex Function Theory, *The American Mathematical Monthly*, Vol. 82, No. 8 (Oct., 1975), pp. 813–818.
- [12] Zalcman, L. Modern perspectives on classical function theory, *Rocky Mountain Journal of Mathematics*, Vol. 12, No. 1 (1982), pp. 75–92.