
Boletim Técnico da Escola Politécnica da USP

Departamento de Engenharia Eletrônica

BT/PEE/94-03

Transformada de Walsh e
Haar Aplicááas no

Processamento de Voz
Alexandre Augusto Ottati Nogueira

Thiago Antonio Grandi de Tolosa
Euvaldo F. Cabral Júnior

São Paulo - 1994



Nogueira , Alexandre Augusto Ottati
Transformada de Walsh e Haar aplicadas no proces

samento de voz / A. A. O . Nogueira , T . A. G. Tolosa , E .
F . Cabral Junior . –– são Paulo : EPUSP , 1994 .

22p . -- (Boletim Técnico da Escola Politécnica
da USP , Departamento de Engenharia EletrÔnica,
BT/PEE/94-03)

1. Transformada de Walsh 2 . Transformada de Haar
3 . Vozes - Processamento 1. Tolosa , Thiago Antonio
Grandi de II . Cabral JÚnior , Euvaldo F 111. Univer-
sidade de são Paulo . Escola Politécnica . Departamen
to de Engenharia EletrÔnica IV . TÍtulo V . Série –

CDU 517.51
517 51

CDD 621.399



Transformadas de Walsh e Haar
Aplicadas no Processamento de Voz

Alexandre Augusto Ottati Nogueira
Thiago Antonio Grandi de Tolosa

Orientador : Euvaldo F. Cabral Júnior
Escola Politécnica da Universidade de São Paulo

29 de Abril de 1994

Resumo do Trabalho

O trabalho realizado utiliza as transformadas de Walsh, Haar e Cosseno para
uma aplicação em processamento de voz.

Essa aplicação é dirigida para o reconhecimento do locutor de um sinal de voz
e discute-se qual das transformadas mais se adapta ao seguinte processo :

Aquisição do sinal em um arquivo de voz com extensão . WAV

f 70,373–> sample– /rarnes
Size < 0.146–>/ninuRS

Format{ 1 channel 8 bits int
Samp ling rate 8000 Khz

No processo, faz-se um janelamento de 800 amostras com espaço de 400
amostras entre as janelas, aplicando-se em cada uma, simultâneamente, pré-ênfase com
a = 0.95, o janelamento de Hanning, a Transformada Rápida de Fourier para 256
pontos, a deconvolução do sinal, a Transformada Rápida Cosseno e a Transformada
Rápida de Walsh-Hadamard

Obtém-se os 9 primeiros coe6cientes de cada janela das 6400 amostras para os
cálculos das distâncias inter-clusters e intra-clusters para cada transformada.
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1 - Introdução

1.1.1 - Série de Walsh

As funções de Walsh formam um conjunto ordenado de sinais retangulares,
tomando apenas dois valores de amplitude: +1 e -1, definidas em um intervalo de
tempo limitado. Dois argumentos são necessários para a definição completa; um
período de tempo t e um número de ordem n, relacionado à freqüência. A função pode
ser expressa corno:

PmE (n,1) (1.1)

Exemplo de um conjunto de funções de Walsh

WAL(O,t)

WAL( 1 ,t)

WAL(2,t)

WAL(3 ,t)

WAL(4,t)

WAL(5,t)

WAL(6,t)

WAL(7,t)

Fig. 1.1 - Conjunto de funções de Walsh.

Uma outra notação utilizada para classificar as funções de Walsh em termos de
sinais pares e ímpares pode ser:

W,il (2k,1) = CAL(k,t ) (1.2)

iml ç2k – i,/) = SAL (k,t) (1.3)
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onde # = 1,2,...,(N/2-1) .
Isso define duas séries de Walsh, com similaridades em relação as séries

cosserio e serio.

O número de ordem n, define a razão de repetição periódica do sinal e é
chamado de "sequency" para a função.

A série discreta de Walsh correspondente à série de Fourier, na análise de
Fourier é:

N 12–\ N /2–1

/(/) = a,mz (o, 1) + }J E[a,.MZ(i,1) + ó,.az(J,1)] (1.4)
1=1 J= 1

onde a; e 6/ são coeficientes expressando a série em termos de seqüência. A derivada
dessa série de coeficientes é classificada como a decomposição de fd) em suas
componentes espectrais. E importante notar que é possível combinar componentes
senoidais e cossenoidais em uma variável complexa simples, expressando a mesma
freqüência na série de Fourier, mas não com a função de Walsh, devido a ausência de
um teorema (Shift Theorem) similar.

A ortogonalidade da série de Walsh pode ser mostrada através de duas funções,
W/IL(m,D e WÁL frI,1) 1

N–1 Í N P.-.-.="
WJZ (m, 1)PmE (/z,r) = 4E

1 =o l O para msn

(1.5)

Assim as funções de Walsh formam um conjunto ortogonal, que através da
divisão das equações acima por N, se transformam num sistema ortonormal.

Com as séries de Walsh, qualquer forma de onda complexa pode ser
representada pela superposição de um número de elementos de forma análoga a análise
de Fourier, mas poucas vezes, estas funções são utilizadas para a representação de
formas de onda descontínuas.

1.1.2 - Série de Haar

A série de Haar, mostrada no exemplo abaixo, também é formada por um
conjunto de ondas quadradas periódicas.

Exemplo de um conjunto de funções de Haar:



HAR(O,t)

HAR(1,t)

RAR(2,t)

HAR(3,t)

RAR(4,t)

HAR(5,t)

HAR(6,t)

RAR(7,t)

Fig. 1.2 - Conjunto de funções de Haar.

Os valores de amplitude desses sinais, não têm valores uniformes, como nas
funções de Walsh, mas assumem um conjunto de valores limitados,
0, tI, tH, t2,f2H, t4 , etc. Uma forma de expressar essas íunções vem a seguir :

FbiRÇn, t) (1.6)

Se for considerada a base de tempo 0<t<1, então seguindo uma definição simplificada
sugerida por Kremer[ 1], segue

HdR(O,/) = 1 para 0 É fÉ 1

/MR(1,r) = 1 para 0 gr < 1/ 2
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H/IR(1, t) = –1 para 1/2g / < 1/2

HARç2,t) = a para OÉ f < 1/ 4

HÁRÇ2,t) = –Ü para 1/4 < fÉ 1/2

FUR(2, 1) = O para 1/ 2 < fÉ 1

HARU,t) = 0 para 0 < fÉ 1/2

HÀRÇ3,,t) = fz para 1/2É / < 3/4

HARU),t) = –Ü para 3/4 < r É 1

HÁRÇ2p + /zr) = a para n/2’ $/ <(n+1/2)/2’

HÁRÇ2p + nÓ = – a para (n +1/ 2) / 2’ $ t < (n + 1)2’

HdR(2’ + 111) = 0 para qualquer outro valor (1.7)

onde (p = 1,2,...,1og2 IV), (n = 0,1,...,2P – 1) e IV = 2’. Analisando a fIgura 1.2, nota-
se que as duas primeiras funções de Haar são idênticas a WAt(0, 1) e W/il(1 , D .
HAl1(2,1) é simplesmente HAl1(1 ,t) deslocada para a metade esquerda da base de
tempo com amplitude +B. A próxima função, HAl1(3,t) é deslocada para o lado
direito da base de tempo.

Como visto acima, as funções de Haar também são ortogonais:

Ar-1 ( N–>m=n

EJ HARÇm, t)HÀR (n, /) = 4
1 =0 1 tbm+11

(1.8)

2 - Desenvolvimento

2.1 - Transformação das séries de Walsh e Haar

A Transformada Discreta de Walsh, pode ser estabelecida para uma série de
tempo xj composta de JV amostras da seguinte forma:

N –\

X, = 1/ N)’ax,WÁL (/2,i)
i=o

/2 = 0, 1, 2,...,N– 1 (2.1)
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e sua inversa:

N –\

1, = }y X„17/il (n,i)
n=0

i = O, 1, 2, ...,N– 1 (2.2)

A transformada e sua inversa podem ser obtidas pela multiplicação de matrizes.
Se as matrizes forem simétricas, a transformada e sua inversa são idênticas, exceto por
um fator 1/N. Comparando a equação (2.1) com a correspondente DFT, verifica-se
que enquanto PmE (n,i) é real e limitado à tl a outra é complexa e assume N
diferentes valores. Como conseqüência disso, a Transformada de Walsh se torna mais
fácil e mais rápida de ser calculada.

A Transformada Discreta de Haar (DHT) e sua inversa:

X„ = 1/ N: dx,HÁRÇn,i | N)
N –\

(2.3)
1=0

N –\

x, =).dX„HARÇn,i / N)
n=O

(2.4)

onde ( i,n = 0,1,2,...,N - 1 ). Diferentemente da transformada de Walsh, a matriz
formada não é simétrica, portanto, o cálculo da transformada e da sua inversa são
realizados separadamente.

Hà muita diferença de tempo entre o cálculo da FHT e da FWT. Enquanto a
transformada de Haar é mais rápida e seu formato provê melhores resultados em
aplicações envolvendo transições abruptas de nível do sinal, tal como, detecção de
bordas em processamento de imagens[2], a transformada de Walsh é mais propícia
para o trabalho no domínio da freqüência.

2.2 - Transformação Bi-Dimensional

Transformações ortogonais discretas em duas dimensões são necessárias para
um grande número de aplicações, tal como processamento de imagens[2]. Uma
imagem pode ser expressa como séries de sub-imagens ou "pixels" x„, onde 1 =
0,1,2,...,N - lek = 0, 1 ,2,...,M - 7. Uma DFT bi-dimensional avaliada para valores
discretos de freqüência:

wH = /2(27r/ N) e Wm = in( 271/ M) (2.5)

é dada por:

N –\ À/–1

XR,„ = 1/ MN}d E xi,k exp(–J(w,1 + w,k))
i=O k=O

(2.6)

e a transformada inversa por:
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N –\ M–1

Ii,k = : E X „m exp(7(w,1 + w,k))
n=O m=O

(2.7)

Embora 1, k seja uma função real e positiva, sua transformada é geralmente
complexa. Assim enquanto a transformada inversa possui NM componentes, a
transformada possui 2M/ (parte real e parte imaginária de cada frequência espacial).
X„m possui a propriedade da simetria conjugada:

(2.8)

Conseqüentemente:

(2.9)

Devido a essa propriedade da transformada de Fourier, será necessário
considerar apenas as amostras de metade do plano de transformação.

Como no caso uni-dimensional, verifica-se que a representação para ser válida,
o campo deve ser periódico. Deve-se considerar ainda, a região da imagem
periódicamente repetida nas direções horizontal e vertical e será considerado no
processamento sub-seqüente da imagem.

Para o cálculo da DFT bi-dimensional, não é necessário avaliar diretamente a
somatória dupla da equação (2.7). Se a matriz de dados 1„ for submetida a duas
operações separadas de DFT, sendo uma delas em relação às linhas da matriz de dados
e a outra em relação às colunas resultantes, o problema se reduz a um múltiplo do uni-
dimensional.

Enquanto a transformada de Fourier bi-dimensional processa muitas
propriedades analíticas importantes, hà dois problemas, cálculos com números
complexos e razão de convergência baixa, que traz desvantagem no tratamento de
imagens. As transformadas de Walsh, Haar e Coseno não possuem esse problema.

2.3.1 - Transformada Coseno

A representação de Fourier de uma função real e simétrica possui somente
coeficientes reais, correspondente aos termos em coseno da série. Essa condição pode
ser implementada em um campo de imagem. Define-se então a Trasformada Discreta
Coseno (DCT):

N –\

[ nzd:21 + 1)) / 2N]
1=0

X, = 1/ N:x, cos( (2. 10)

e sua inversa:

N-\

1, = 2:J X. cos[(nd2/ + 1)) / 21V] – X, (2. 1 1)
1=0

onde Xo é o valor médio e i,n = 0,1,2,...,N - 1.
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O valor dessa transformada em processamento de imagens e compressão de
dados deve-se a sua distribuição de variância e baixa taxa de distorção da função. Isso
resulta em eficiente compactação de energia, como na transformada ótima de
Karhunen - Loêve.

2.3.2 - Transformadas de Walsh e Haar

Para valores amostrados e simétricos xik, as transformadas bi-dimensionais de
Walsh e Haar são aplicadas através de uma transformação uni-dimensional sobre as
linhas e colunas da matriz. Assim a transformada de Walsh bi-dimensional fica:

N –\ N–\

Xm,m = 1/N2 EEJ 11+ml (ni)FKz4Z (mk) (2. 12)
j=o t=o

e a sua inversa:

N –\ N –\

xi.k = }J : X„wWE (n, i)WA L (m, À) (2.13)
m=O n=O

De forma similar, a transformada de Haar bi-dimensional é definida:

N –\ N –\

X l,m = 1/ N2: 5 dxi,jHÁRÇn,i | N)HÁRÇm, j / N) (2.14)
i=o J=o

2.3 - Transformada Rápida de Walsh

Os métodos de implementação da "Fast Walsh Transform" (FWT) incluem
sínteses algébricas através de relações recursivas, multiplicação de um conjunto de
funções onda-quadradas (Rademacher) através de lógica booleana e através de
matrizes de Hadamard. Esse último método será considerado

A matriz da função discreta de Walsh W, para IV
fIgura( 1.1) , é dada por :

8 e referindo-se a



1

-1

-1
1

1

-1
-1

1

1

-1
-1

1

-1
1

1

-1

1

-1
1

-1
-1

1

-1
1

pp,11 (0, r)

Fml (1,r)
W,41 (2, r)

PPJL (3, /)
iml (4,/)
iml (5, i)
PL4L (6, /)

_W/IL (7, /)

-1
-1
-1
-1

-1
-1

178 -1
-1
-1
-1

-1
-1

(2. 15)

Agora considerando-se a matriz de Hadamard lr, como

1

1

1

1

-1
-1
-1
-1

1

-1
1

-1
-1

1

-1
1

1

1

-1
-1
-1
-1

1

1

1

-1
-1

1

-1
1

1

-1

HdD (O, /)

HAD V, t)
HAD (2, t)

HAD (3, 1)

HAD (4, 1)
HdD (5, r)

HAD (6, t)

.HADÇl ,à

-1

-1

-1

-1

-1
-1-1

-1
Hs = Hq.Hz

-1

-1-1
-1

(2.16)

pode-se obter um conjunto de N funções discretas de Walsh. Representando as
seqüências de IV valores das linhas dadas em (2.16) como uma série de HadamardJ
HAD(n,t), n = 0,1,2,...,7.Nem -.

HAD (n, t) = PmE (ó(u),r) (2. 17)

onde u representa um "bit-reversal" para n e b(u) é uma conversão "Gray-code-to-
binary"[3 ]

Essa derivação traz um fato importante; que a série de Walsh pode ser
representada em diferentes ordenações de seqüências, sendo todas ortogonais e válidas
para análise. Hà três convenções de ordem de uso comum :
"Sequency order" - como mostrado na fIgura(1 . /) como WÁL(11,1) 1
"Natural order" - que resulta do método da matriz de Hadamard como HAD(n,t)-,
"Dyadic order" - é a ordem obtida quando a série de funções for obtida por produtos
de firnções de Rademacher.
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Transformações referindo-se às três convenções para os coeficientes
transformados são utilizadas. A mais econômica em termos de simplicidade de
programação e rapidez de cálculo é a baseada na matriz de Hadamard na "natural
order" dada por (2.16), chamada de Fast Hadamard Transform (TIIT) .

A transformada discreta de Walsh correspondente à equação (2.1) pode ser
expressa em termos de matriz :

XR = Hn.11 (2. 18)

onde x, é um vetor coluna de ordem IV representando os valores amostrados de um
sinal de entrada. Esse procedimento levará N(N - 1) adições e subtrações.

2.3.1 - "Fast transformation"

O algoritmo de transformação rápida será obtido pelo processo de fatorização
de matrizes. Assim para a matriz de Hadamard para H, resulta em :

1

0

0

0

-1
0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

-1
0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

-1
0

0

0

0

1

0

0

0

1

(2. 19)

Com a presença de uma matriz com muitos valores nulos, há uma considerável
redução no número de cálculos da Fast Walsh Transform (FWT) de N(N - 1) para
Nlog2 N adições e subtrações.

Um diagrama de fluxo para essa derivação é mostrado em[3]. Isso leva a uma
saída na "natural-order" e é conhecido como estrutura de geometria constante .

A estrutura recursiva desse algoritmo pode ser expressa como segue
Referindo-se ao diagrama de fluxo da estrutura de geometria constante, onde N = 2’ e
designando os valores de coe6cientes à cada nó como y'(n), onde / = 0, 1,2,3 e com n

como a posição de cada coluna de nós 11 = 1 ,2,...,8 então os valores de entrada,
intermediários e transformados são respectivamente :

y,(/1) = 1(n)

y„,(,:) = y,(2,z – 1) +y,(2,2) para 0 É ns N 12
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= 7, (2/: – IV – 1) – y,(2/1 – N) para N 12<nGN
(2.20)

Esses resultados podem facilmente ser extendidos a maiores dimensões. Os algoritmos
de geometria constante não perlnitem cálculos "in-place" para os coeficientes
intermediários. Como na Fast Fourier Transform (FFT) de "radix-2", a FWT é bastante
similar com os algoritmos C-T e S-T[3]. Portanto é possível programar a FWT com
algumas modificações de algum algoritmo C-T, com redução dos valores
trigonométricos utilizados, à unidade e removendo-se a parte complexa da operação.
Um exemplo, é mostrado em[3] de um diagrama de fluxo, utilizando a transformada
rápida de Walsh-Hadamard para N = 8.

Uma dificuldade com a Walsh-Hadamard Transform (WITF) é obter uma
"sequency-order" saída, a qual é desejável em muitas aplicações. Alguns métodos se
preocupam com isso, como o sugerido por MarIz[7]. Um número de algoritmos
alternativos para FWT vem se desenvolvendo, sendo que alguns se preocupam com
dados de entrada ordenados normalmente com saída em "sequency-order'', outros com
saída de forma particular.

Dois exemplos são a transformada de Rademacher-Walsh usada em "logic
design"[8] e o CAL-SAL usado em processamento de sinais[9]

2.4 - Transformada rápida de Haar

Como mostrado na $gura(1.2) , com conjunto de funções de Haar para JV = 8,
obtém-se a matriz de Haar Ha, como :

1 1

1

Ü
0

-2

1

1

-r2
0
0

1

1

– f2
0

0

1 1
–1 –1

1

-1

0

-f2
0

0

0

2

1

-1

0

-r2
0

0

0

-2

1

f2 00
f2ü
00-.*= :

–2 0 000 2

00
0 0

0

0

0

0

2 –2

0 0

(2.21)

Em forma de equação matricial :

Xn= HaN .x, (2.22)

Como outras matrizes unitárias a matriz acima pode ser fatorada para obter-se o
algoritmo de Fast Haar Transform (FHT). Como a matriz não é simétrica, um
algoritmo separado é necessário para a transformada direta e inversa.

11



Algoritmos para essas transformadas foram desenvolvidos por Andrews[3] e
seus diagramas de fluxo são mostrados em[3] para N = 8. Multiplicação dos valores de
soma/diferença por 1 ou 2 sào indicados no diagrama.

O total de somas/subtrações desse algoritmo é :

N+N/2+N/ 4+...+2 = 2(N – 1) (2.23)

3 - Parte experimental

A implementação do trabalho segue os seguintes passos :

1. Aquisição do sinal de voz :

Í70, 373 9 sample – frames
Size q 8.8 –> sec onds

} 68.8 –> kbytes

Format{ 1 channel 8 bits int Sampling rate 8000 Khz

2. O programa de aquisição dos dados do arquivo de som de extensão . WAV e
conversão para o formato MAT :

/+
+ Wave Cabe.h
+

+ Header do programa Wave Cab.c+

+/

typedef int WORD;
typedef long int DWORD;

typedefstruct {
char nome [4];
DWORD tam;

}

RIFF BLOCK;

typedefstruct {
WORD wFormatTag,

n Channels:
DWORi) nSamplesPerSec,

nAvgBytesPer Sec;
WORD nBlockAlign;
}
WAVE FMT:
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typedefstruct {
long type; /* type *1
long mrows; 1* row dimension +1
long ncols; /+ column dimension +/
long imagf; /+ flag indicating imag part +1
long namlen; /+ name length (including NULL) */
} Fmatrix;

extern void savemat(FILE *, int, char +, int, int, int, double *, double *);

/+
+ Wave Cab.c
4

+ Programa para exibir o cabecalho de arquivos no formato . WAV+

+ Autores: Alexandre Augusto Ottati Nogueira,
+ Thiago Antonio Grandi de Tolosa.
+

+ Data: 30.05.94
#

+ Baseado no arquivo extraido da revista PC TECH de 28.03.94
+/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "wave cab.h"

#define NUM MAX AMOSTRAS 6400 /+ 0.8 segundos +/

1+ variaveis +/

static const char nome vetor_saida[] = "voz",
nome arquivo [] = "voz.mat";

FILE +arq,
+vetor saida;

static RIFF BLOCK riff block:
static WAV–E FMT wa;e fmt;

static int d:
static long num dados;
static char buffer[255],

dados [NUM MAX AMOSTRAS];
static double voz [NUM MAX AMOSTRAS];

void main(int argc, char +argv[])
{

13



/+ ler parametro de entrada - nome do arquivo . WAV +1
if (argc != 2)

{
printf("Wave_Cab <nome_arquivo wav> !\n'
exit( 1 );
}

/+ abrir arquivo +/
if ((arq = fopen(argv[ 1],

{
pdntf(" Arquivo de som nao encontrado !\n\n");
exit( 1 );
}

rb")) NULL)

/+ ler cabecalho do arquivo (denominacao "RIFF" + tamanho) +1
fread(buffer, 8, 1, arq);
memcpy(&riff block, bufFer, 8);
if(strncmp(riff block.nome, "RIFF", 4) != O)

{
printf("0 formato do arquivo nao e RIFF !\n\n");
exit( 1 );
}

/+ ler cabeçalho WAVE +1
fread(buffer, 4, 1, arq);
if(strncmp(buffer, "WAVE", 4) != 0)

{
printf("0 tipo do arquivo nao e WAVE !\n\n");
exit( 1 );
}

/+ ler os blocos de informacao sonora ate o fim do arquivo */
do {

fread(bufFer, 8, 1, arq);
memcpy(&riff block, buffer, 8);

/+ se for referente ao formato ("fmt ") do arquivo +/
if(strncmp(riff block.nome, "fmt ", 4) 0)

{
/+ copia a informacao para o bufFer e posiciona proximo bloco 41
fread(buffer, riff block.tam, 1, arq);

/* copia o formato para a estrutura WAVE FMT */
memcpy(&wave_fmt, buffer, sizeof(WAVE FMT));
}

/+ se for referente aos dados ("data") do arquivo */
else if(strncmp(riff block.nome, "data", 4) O)

/+ definir o numero de dados a serem lidos +/
num dados = (rifF block.tam > (long) NUM MAX AMOSTRAS) ?

{
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(long) NUM_MAX_AMOSTRAS : riff block.tam;

fseek(arq, 20000, SEEK CUR);

/+ ler a informacao +/

fread(&dados, num dados, 1, arq);

/+ break apos ter lido os dados necessarios +/
break:
}

/+ se for referente a descricao ("DISP") do arquivo +1
else if(strncmp(riff block.nome, "DISP", 4) 0)

{
/+ posiciona proximo bloco +1
fseek(arq, riff_block.tam, SEEK CUR);
}

}

while (! feof(arq));

/+ fechar arquivo de entrada +l
fclose(arq);

/+ transformar os dados em double +/
for (d = O; d < num dados; d++)

voz[d] = (double) dados[d];

/+ gravar vetor de saida no formato MAT-File +/
if (num dados)

{
if ((vetor_saida = fopen(nome_arquivo, "wb")) NULL)

{
printf("Erro na abertura do vetor de saida !\n\n");
exit( 1 );
}

else

savemat(vetor saida, 0, nome vetor saida, 1, num dados, 0, voz,
(double +) 0);

/+ fechar arquivo do MAT-Lab +/
fclose(vetor saida);
}

}

}

/+

+ savemat - Rotina em linguagem C para salvar uma matriz texto em um MAT-file.
+
+ Autores : Alexandre Augusto Ottati Nogueira
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+

+

Thiago Antonio Grandi de Tolosa

+

4

+

+

+

+

+

FILE +fp;
double xyz[ 1000], ar[1000], ai[1000];
fp = fopen("foo.mat’',"wb");
savemat(fp, 2000, "xyz", 2, 3, 0, xyz, (double +)0);
savemat(fp, 2000, ’'a", 5, 5, 1, ar, ai);

fclose(fp);

+ Baseado em : J.N. Little
+/

Data 11-3-86

#include <stdio.h>
#include <string.h>

#include "wave cab.h"

/+++++++++++++++++++++++++++++++++++++ 444444444+++++++++++++++++++++ 4

fp
type

: File pointer
: Type flag: Normaily 0 for PC,

1000 for Sun, Mac, and Apollo,
2000 for VAX D-float.
3000 for VAX G-float
Add 1 for text variables.
See LOAD in reference section of guide for more info

pname : pointer to matrix name
mrows : row dimension
ncols : column dimension
imagf : imaginary flag
preal : pointer to real data
pimag : pointer to imag data

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#++++++++/

void savemat(FILE +fp, int type, char *pname, int mrows, int ncols, int imagf,
double +preal, double +pimag)

{

Fmatrix x;
int mn:

x.type = type;
x.rnrows = rnrows:
x.ncols = ncols:
x.imagf = imagf;
x.namlen = strlen(pname) + 1 ;
mn = x.mrows + x.ncols;

fwdte(&x, sizeof(Fmatrix), 1, fp);
fwdte(pname, sizeof(char), (int)x.namlen, fp);
fwdte(preal, sizeof(double), mn, fp);
if(imagf)
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{

fwrite(pimag, sizeof(double), mn, fp);
}

}

3 . Sinal de voz utilizado no processamento

" Alô, Alô, testando ! "

4. O procedimento FCC.m desenvolvido para aplicação no Matlab

% Trabalho Especial - FCC (Frequency Cepstral Coefficients)
%
% Disciplina: PEE-810 Processamento Digital de Sinais l
%
% Professor: Euvaldo F. Cabral Junior
%

% Componentes: Alexandre Augusto Ottati Nogueira
% Thiago Antonio Grandi de Tolosa
%
% Data: 02/06/94

% carregar o vetor com a informacao sonora
load voz.mat

% janela para 100 milisegundos do sinal amostrado (fa = 8000)
extensaoJanela = 800;

% deslocamento da janela para cada 50 milisegundo do sinal amostrado
deltajanela = 400;

% determinar vetor de componentes da janela de hanning
j_hanning = 0 .+ (1 : extensaojanela);
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for j = 1 : extensaoJanela,
j_hanningÜ) = 0.5 + (1-cos(2+pi+a)/(extensaojanela+1)));

end;

% carregar matriz de hadamard (matriz h = hadamard(8), ou seja, para 256 pontos)
load matriz h.mat

% ultima janela de voz
ultima_amostra = length(voz) - extensaojanela + 1 ;

% inicializar vetores
dct = 0 .+ (1 : 9);
wht = 0 .* (1 : 9);
n ite = 0;

% para cada janela do sinal, deslocando a janela em ’deltaJanela1 posicoes
for amostra = 1 : deltaJanela : ultima amostra,

disp (amostra);

% monta a janela de extensao ’extensaojanela'
largura = amostra + extensaoJanela - 1 ;
x = voz(amostra : largura);

% aplicar pre-enfase na janela para alfa = O.95
x aux = x:
fir j = 2 : extensaojanela,

x_auxa) = xG) - (o.95 + xG - 1));
end:
x = x aux:

% aplicar janela de Hanning na janela corrente
x_aux = x .+ j hanning;
x = x aux:

% aplicar Fast Fourier Transform (FFT) na janela para 256 pontos
f = fn(x, 256);

% aplicar logaritmo no vetor transformado e filtrado (256 pontos)
% –- deconvolucao no tempo ––
f = log(0;

% aplicar Discrete Cossine Transform (DCT) para os 9 primeiros coeâcientes
dct c = 0 .* (1 : 9);
for j = 1 : 9,

soma = 0:
soma J) = 0;
for i = 1 : 256.

soma 1 = (Ri) + cos(0+pi+(2*i+1))/5 12));
sorna = soma + sornaJ);

end:
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dct cO) = soma / 256;

% acumula o vetor resultado para dct
dota) = dctG) + dct ca);

end;

% aplicar Walsh-Hadamard Transform (win) (256 pontos)
wht_c = 0 .* (1 : 9);
for j = 1 : 9,

soma = 0:
somaJ) = O;
for i = 1 : 256.

somaJ> = (f(i) + matriz ha,i));
sarna = soma + somaJ);

end:
wh_cG) = soma / 256;

% acumula o vetor resultado para wht
whtG) = whtG) + wht cG);

end;

% contabiliza o numero de iteracoes
n ite = n ite + 1;

end;

% calcular o valor medio normalizado dos 9 primeiros coeficientes
dct = dct / n ite:
wht = wht / i ite;

end.

- Janelamento de 800 amostras com espaço de 400 amostras entre as janelas;

- Pré-ênfase com a = 0.95;

- Janela de Hanning;

- FFT;

- Aplicação do LOG (deconvolução do sinal);

- Implementação e comparação entre as transformadas DCT e a WHT;

- Obtenção dos 9 primeiros coeficientes de cada janela das 6400 amostras.
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4 - Conclusão

Com os resultados obtidos, conclui-se que a Transformada de Walsh-
Hadamard, mais se adapta ao trabalho proposto.

Isto deve-se ao fato de que a média da parte normalizada para os 9 coeficientes
ser praticamente nula, propiciando uma melhor observação de "features" na
transformação .

O processo também foi muito importante para a determinação dos valores dos
coeficientes constituintes do sinal :

C\ C2 C3 C4 Cs C6 C7 C8 C9
D('T O.0618 0.2157 0.0474 O.0654 0.0781 0.0268 0.0670 0.0382 0.0459
WliT 5.7788 O.0247 O.0185 0.0305 O.0707 O.0208 O.0193 O.0204 O.0200

0,22
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0.18

0, 16

0.14

0.12
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0.06

0.04

0.02

Fig.4.1 - Grã$co Coe$ciente X Média, que mostra a média da parte
normatizada dos 9 primeiros coeDcientes das 6400 amostras utilizando a
Transformada Discreta Cosseno no processamento.
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Fig.4.2 - Gráfico CoefIciente X Valor, que mostra a média da parte
normalizada dos 9 primeiros coeDcientes das 6400 amostras utilizando a
Transformada de Walsh-Hadamard no processamento.
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