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Resumo do Trabalho

O trabalho realizado utiliza as transformadas de Walsh, Haar e Cosseno para

uma aplicagdo em processamento de voz.
Essa aplicagdo € dirigida para o reconhecimento do locutor de um sinal de voz

e discute-se qual das transformadas mais se adapta ao seguinte processo :
Aquisigdo do sinal em um arquivo de voz com extensio WAV :

70,373—> sample— frames
Size 0.146— minutes
68.8— kbytes

Format{ I channel 8 bits int
Sampling rate 8000 Khz

No processo, faz-se um janelamento de 800 amostras com espago de 400
amostras entre as janelas, aplicando-se em cada uma, simultdneamente, pre-énfase com
a=0.95, o janelamento de Hanning, a Transformada Rapida de Fourier para 256
pontos, a deconvolugido do sinal, a Transformada Rapida Cosseno e a Transformada
Répida de Walsh-Hadamard.

Obtém-se os 9 primeiros coeficientes de cada janela das 6400 amostras para os
calculos das distdncias inter-clusters e intra-clusters para cada transformada.

Sumario

1 Introdugdo 2
2 Desenvolvimento 5
3 Parte Experimental 12
4 Conclusio 20

5 Bibliografia e Referéncias 21



1 - Introducio

1.1.1 - Série de Walsh

As fungdes de Walsh formam um conjunto ordenado de sinais retangulares,
tomando apenas dois valores de amplitude: +1 e -1, definidas em um intervalo de
tempo limitado. Dois argumentos sdo necessarios para a definigdo completa; um
periodo de tempo 7 € um nimero de ordem n, relacionado a freqiiéncia. A fungio pode
Ser expressa como:

WAL (n,t) (1.1)

Exemplo de um conjunto de fungdes de Walsh:

WAL(0,t)

WAL(L,t)

WAL(2,1)

WAL(3,t)

= — WAL(@4,1)

WAL(5,1)

— ——  WAL(61)

WAL(7,t)

Fig. 1.1 - Conjunto de fungdes de Walsh.

Uma outra notagio utilizada para classificar as fungdes de Walsh em termos de
sinais pares e impares pode ser:

WAL (2k,t) = CAL(k,1) (1.2)

WAL (2k—1,t) = SAL (k,t) (1.3)



onde k = 1,2,...,(N/2-1).

Isso define duas séries de Walsh, com similaridades em relagdo as séries
COSSENo e seno.

O nimero de ordem n, define a razdo de repetigio periddica do sinal e ¢
chamado de "sequency" para a funcio.

A série discreta de Walsh correspondente a série de Fourier, na anilise de
Fourier é:

f(2) = awAL(0,2) + A%IthaiSAL (i,£)+b,CAL(j, r)] (1.4)

i=1 =1

onde a; e b; sdo coeficientes expressando a série em termos de seqiiéncia. A derivada

dessa série de coeficientes é classificada como a decomposi¢do de f{#) em suas
componentes espectrais. E importante notar que € possivel combinar componentes
senoidais e cossenoidais em uma varidvel complexa simples, expressando a mesma
frequiéncia na série de Fourier, mas nio com a fun¢do de Walsh, devido a auséncia de
um teorema (Shift Theorem) similar.

A ortogonalidade da série de Walsh pode ser mostrada através de duas funcdes,
WAL(m,t) e WAL(n,1):

= | N param=n
NZWAL (m,2)WAL (n,t) = { (1.5)

1=0 0 paramzn

Assim as fungdes de Walsh formam um conjunto ortogonal, que através da
divisdo das equagdes acima por &, se transformam num sistema ortonormal.

Com as séries de Walsh, qualquer forma de onda complexa pode ser
representada pela superposigdo de um nimero de elementos de forma analoga a analise
de Fourier, mas poucas vezes, estas fungdes sdo utilizadas para a representacio de
formas de onda descontinuas.

1.1.2 - Série de Haar

A série de Haar, mostrada no exemplo abaixo, também ¢ formada por um
conjunto de ondas quadradas periodicas.

Exemplo de um conjunto de fung¢des de Haar:



| | HAR(0,t)

HAR(L,t)
| i HAR(2,t)

[ | HAR(3,t)
l_q HAR(4,1)
_I__I HAR(5, 1)

| [ HARGY

—

| HAR(7,t)
Fig. 1.2 - Conjunto de fungoes de Haar.
Os valores de amplitude desses sinais, ndo tém valores uniformes, como nas
fungdes de Walsh, mas assumem um conjunto de valores limitados,
O,il,iﬁ . iz,ﬂﬁ, +4, etc. Uma forma de expressar essas fungdes vem a seguir :

HAR(n,t) (1.6)

Se for considerada a base de tempo 0<t<1, entdo seguindo uma defini¢do simplificada
sugerida por Kremer[1], segue :

HAR(0,2) =1 para 0<t<1

HAR(1,¢) =1 para 0<t<1/2



HAR(1,1) = -1
HAR(2,t)=~2
HAR(2,t) =2
HAR(2,t)=0
HAR(3,1)=0
HAR(3,1) =2

HAR(3,t) = -2

MR(Z“’ +nt) =27
HAR(2” +nt) =27

HAR(27 +nt) =0

onde (p =1,2,...,log, N), (n =01

para

para

para

para

para

para

para

para

para

para

1/2<t<1/2
0<t<l1/4
1/4<t<1/2
1/2<t<1
0<t<1/2
1/2<t<3/4

3/4<t<1

n/2" <t<(n+1/2)/2°
(n+1/2)/27 <t <(n+1)2*

qualquer outro valor  (1.7)

L —1) e N =27 Analisando a figura 1.2, nota-

se que as duas primeiras fun¢Ges de Haar sdo idénticas a WAL(0,t) e WAL(11).
HAR(2,t) é simplesmente HAR(1,t) deslocada para a metade esquerda da base de

tempo com amplitude w2, A proxima fungdo, HAR(3,1) é deslocada para o lado

direito da base de tempo.

Como visto acima, as fungdes de Haar também sdo ortogonais:

N-

=

2 - Desenvolvimento

HAR (m,t)HAR (n,t) ={

N—m=n

O—sm=n

(1.8)

2.1 - Transformacio das séries de Walsh e Haar

A Transformada Discreta de Walsh, pode ser estabelecida para uma série de
tempo x, composta de N amostras da seguinte forma:

N-1
X,=1/NY xWAL(n,i)

i=0

n=0,12,..,N-1 (2.1)




€ sua inversa:

N-1
X, =2 X, WAL (n,i) i=0,12,...N=1 (2.2)

n=0

A transformada e sua inversa podem ser obtidas pela multiplicagdo de matrizes.
Se as matrizes forem simétricas, a transformada e sua inversa sio idénticas, exceto por
um fator //N. Comparando a equagdo (2.1) com a correspondente DFT, verifica-se
que enquanto WAL (n,i) é real e limitado 4 +1 a outra é complexa e assume N
diferentes valores. Como conseqiiéncia disso, a Transformada de Walsh se torna mais
facil e mais rapida de ser calculada.

A Transformada Discreta de Haar (DHT) e sua inversa:

N-1
X,=1/N>"x,HAR(n,i/ N) (2.3)

i=0

x, =y X,HAR(n,i/ N) (2.4)

i

=

-]
1l
o

onde ( inm = 0,1,2,...N - 1 ). Diferentemente da transformada de Walsh, a matriz
formada ndo € simétrica, portanto, o calculo da transformada e da sua inversa sio
realizados separadamente.

Ha muita diferenga de tempo entre o calculo da FHT e da FWT. Enquanto a
transformada de Haar é mais rapida e seu formato prové melhores resultados em
aplicagdes envolvendo transigdes abruptas de nivel do sinal, tal como, detecgio de
bordas em processamento de imagens[2], a transformada de Walsh é mais propicia
para o trabalho no dominio da frequiéncia.

2.2 - Transformacio Bi-Dimensional

Transformagoes ortogonais discretas em duas dimensdes sdo necessarias para
um grande nimero de aplicagdes, tal como processamento de imagens[2]. Uma
imagem pode ser expressa como séries de sub-imagens ou "pixels" x,,, onde i =
0,1,2,..,N-1ek=012..M-1 Uma DFT bi-dimensional avaliada para valores
discretos de freqiiéncia:

w,=n(2z/N) ew, =m(2x/ M) (2.5)
¢ dada por:
N-1M-1
X, =1 MND > x,, exp(—j(w,i+w,k)) (2.6)
i=0 k=0

e a transformada inversa por:



X, exp(j(w,i+w,k)) @.7)

Mi

1
0

N-1
Fpp T Z
n=0

Embora x;, seja uma fungio real e positiva, sua transformada é geralmente
complexa. Assim enquanto a transformada inversa possui NM componentes, a
transformada possui 2NM (parte real e parte imaginaria de cada frequéncia espacial).
X, possui a propriedade da simetria conjugada:

XH.M =5 _X—n.—m (28)
Conseqiientemente:
Ko =K 2.9

Devido a essa propriedade da transformada de Fourier, seri necessario
considerar apenas as amostras de metade do plano de transformag@o.

Como no caso uni-dimensional, verifica-se que a representagio para ser valida,
0 campo deve ser periodico. Deve-se considerar ainda, a regido da imagem
periodicamente repetida nas dire¢des horizontal e vertical e sera considerado no
processamento sub-seqiiente da imagem.

Para o célculo da DFT bi-dimensional, nio é necessario avaliar diretamente a
somatoria dupla da equagdo (2.7). Se a matriz de dados x;, for submetida a duas

operagoes separadas de DFT, sendo uma delas em relacio as linhas da matriz de dados
€ a outra em relago as colunas resultantes, o problema se reduz a um multiplo do uni-
dimensional.

Enquanto a transformada de Fourier bi-dimensional processa muitas
propriedades analiticas importantes, ha dois problemas, calculos com numeros
complexos e razio de convergéncia baixa, que traz desvantagem no tratamento de
imagens. As transformadas de Walsh, Haar e Coseno nio possuem esse problema.

2.3.1 - Transformada Coseno

A representagdo de Fourier de uma fungdo real e simétrica possui somente
coeficientes reais, correspondente aos termos em coseno da série. Essa condi¢dao pode
ser implementada em um campo de imagem. Define-se entdo a Trasformada Discreta
Coseno (DCT):

N-1
X, =1/NY x,cos[(na(2i+ 1)/2N] (2.10)
i=0
e sua inversa:
N-
X, = 221 X, cos|(naf2i+ )/ 2N]- X, (2.11)

i=0

onde X € o valormédioein=0,12,..N-1.



O valor dessa transformada em processamento de imagens e compressdo de
dados deve-se a sua distribuigdo de variancia e baixa taxa de distor¢dao da fungdo. Isso
resulta em eficiente compactagdo de energia, como na transformada o6tima de
Karhunen - Loeve.

2.3.2 - Transformadas de Walsh e Haar

Para valores amostrados e simétricos x,,, as transformadas bi-dimensionais de

Walsh e Haar s@o aplicadas através de uma transformagdo uni-dimensional sobre as
linhas e colunas da matriz. Assim a transformada de Walsh bi-dimensional fica:

N-1N-1
=1/ N? X, , WAL (ni)WAL (mk) (2.12)
i=0 k=0
€ a sua inversa:
N-1N-1
X, WAL (n,i)WAL (m, k) (2.13)
m=0 n=0

De forma similar, a transformada de Haar bi-dimensional € definida:

N-1N-1
X .= l!NZZquMR(n,iIN)HAR(m,jfN) (2.14)

i=0 j=0

2.3 - Transformada Rapida de Walsh

Os métodos de implementagdo da "Fast Walsh Transform" (FWT) incluem
sinteses algébricas através de relagdes recursivas, multiplicagdo de um conjunto de
fungdes onda-quadradas (Rademacher) através de logica booleana e através de
matrizes de Hadamard. Esse ultimo método sera considerado.

A matriz da fungdo discreta de Walsh W, para N = 8 e referindo-se a
Jigura(l.1), é dada por :



11 1 1'1 1 1t 17 [wiaeloeq)
1 1 1 1 —1 -1 =1 -1 | #aL.e)
il =1 =1 ==l 1 4 (D)
o 1 1 -1 -1 1 1 -1 -1| |[WAL(3,)
"1 -1 -1 1 1 -1 -1 1| |wAL(4,2)
1 -1 -1 1 -1 1 1 -1| |w4aL(5;)
1 -1 1 -1 -1 1 =1 1| |wAL(6,1)
1 -1 1 -1 1 -1 1 -1 |WAL(7,1)]

(2.15)
Agora considerando-se a matriz de Hadamard H,; como :
1 1 1 1 1 1 1 17 [HAD(0,1)]
1 -1 1 -1 1 -1 1 -1| | HAD(L1)
1 1 < < 1 1 <t =1 |245(20)
1 =1l =f 1. % <% <F 1 HAD(3,t)
Hy=H, H,= =
1 1 1 1 -1 -1 -1 -1| |HAD(4,1)
o= 1 <f <t 4 <1 i HAD(5,1)
L 1 =1 =1 =% =% & 4 HAD(6,t)
1 -1 -1 1 -1 1 1 -1 [HAD(7,1)]
(2.16)

pode-se obter um conjunto de N fungdes discretas de Walsh. Representando as
sequéncias de N valores das linhas dadas em (2.16) como uma série de Hadamard,
HADMmt), n=10,1,2,..,7. Vem :

HAD (n,t) = WAL (b(u),1) 2.17)

onde u representa um "bit-reversal" para n € b(u) € uma conversao "Gray-code-to-
binary"[3].

Essa derivagdo traz um fato importante; que a série de Walsh pode ser
representada em diferentes ordenagdes de seqiiéncias, sendo todas ortogonais e validas
para analise. Ha trés convengdes de ordem de uso comum :

"Sequency order" - como mostrado na figura(l.1) como WAL(n,1);

"Natural order" - que resulta do método da matriz de Hadamard como HAD(n,1);
"Dyadic order" - é a ordem obtida quando a série de func¢des for obtida por produtos
de fungdes de Rademacher.




Transformagdes referindo-se as trés convengdes para os coeficientes
transformados sdo utilizadas. A mais econdmica em termos de simplicidade de
programagdo e rapidez de calculo é a baseada na matriz de Hadamard na "natural
order" dada por (2.16), chamada de Fast Hadamard Transform (FH 7).

A transformada discreta de Walsh correspondente a equagdo (2.1) pode ser
expressa em termos de matriz :

X =H .x (2.18)

n n I

onde x; € um vetor coluna de ordem N representando os valores amostrados de um
sinal de entrada. Esse procedimento levara N(N - 1) adigdes e subtragdes.

2.3.1 - "Fast transformation"

O algoritmo de transformagao rapida sera obtido pelo processo de fatorizagdo
de matrizes. Assim para a matriz de Hadamard para H, resulta em

- 13

1 10000 0 0
00 1 100 0 0
0000 1 1 0 0
000000 1 1

H, =
1 =10 0 0 0 0 0
00 1-1000 0
0000 T1-10 0
0 000 0 1 -1

(2.19)

Com a presenga de uma matriz com muitos valores nulos, ha uma consideravel
redugdo no numero de céalculos da Fast Walsh Transform (FWT) de N(N - 1) para
Nlog, N adigdes e subtragdes.

Um diagrama de fluxo para essa derivagio é mostrado em[3]. Isso leva a uma
saida na "natural-order" e ¢ conhecido como estrutura de geometria constante.

A estrutura recursiva desse algoritmo pode ser expressa como segue.
Referindo-se ao diagrama de fluxo da estrutura de geometria constante, onde N = 27 e
designando os valores de coeficientes 4 cada né como yi(n), ondei = 0,1,2,3 e comn

como a posi¢do de cada coluna de nés n = /,2,...,8 entdo os valores de entrada,
intermediarios e transformados sdo respectivamente :

Yo(n) = x(n)

Vialn)=y,(2n-1)+y,(2n) para 0<n< N/2

10



=J’.—(2"-N—l)—y;(2n—N) para N/2<n<N
(2.20)

Esses resultados podem facilmente ser extendidos a maiores dimensdes. Os algoritmos
de geometria constante ndo permitem calculos "in-place" para os coeficientes
intermediarios. Como na Fast Fourier Transform (FFT) de "radix-2", a FWT é bastante
similar com os algoritmos C-T e S-T[3]. Portanto é possivel programar a FWT com
algumas modificagdes de algum algoritmo C-T, com redug¢io dos valores
trigonométricos utilizados, 4 unidade e removendo-se a parte complexa da operagio.
Um exemplo, ¢ mostrado em([3] de um diagrama de fluxo, utilizando a transformada
rapida de Walsh-Hadamard para N = 8.

Uma dificuldade com a Walsh-Hadamard Transform (WHT) € obter uma
"sequency-order" saida, a qual é desejavel em muitas aplicagdes. Alguns métodos se
preocupam com isso, como o sugerido por Manz[7]. Um nimero de algoritmos
alternativos para FWT vem se desenvolvendo, sendo que alguns se preocupam com
dados de entrada ordenados normalmente com saida em "sequency-order", outros com
saida de forma particular.

Dois exemplos sio a transformada de Rademacher-Walsh usada em "logic
design"[8] e 0 CAL-SAL usado em processamento de sinais[9].

2.4 - Transformada ripida de Haar

Como mostrado na figura(l.2), com conjunto de fungdes de Haar para N = 8,
obtém-se a matriz de Haar Ha, como :

11 1 1 1 1 1 1
(G I =1 -1 -1 -
V2 2 2 -2 0o 0 0 0
|0 0 0 0 V2 V2 2 -2
d. =
1o 2 0 0O 0 0 0 0
0 0 2 =2 0 0 0 0
0 0 0 0 2 -2 0 0
[0 0 0 0 0 0 2 2]
(2:21)
Em forma de equagdo matricial :
X, = Ha, .x, (2.22)

Como outras matrizes unitarias a matriz acima pode ser fatorada para obter-se o
algoritmo de Fast Haar Transform (FHT). Como a matriz ndo € simétrica, um
algoritmo separado é necessario para a transformada direta e inversa.

11



Algoritmos para essas transformadas foram desenvolvidos por Andrews[3] e
seus diagramas de fluxo sdo mostrados em[3] para N = 8. Multiplicagdo dos valores de
soma/diferenga por 1 ou 2 s&o indicados no diagrama.

O total de somas/subtragdes desse algoritmo € :

N+N/2+N/4+.+2=2N-1) (2.23)

3 - Parte experimental
A implementagdo do trabalho segue os seguintes passos :
1. Aquisi¢io do sinal de voz :

70,373 — sample— frames

Size 8.8 — seconds
68.8 — kbytes
Format{ 1 channel 8 bits int Sampling rate 8000 Khz

2. O programa de aquisi¢do dos dados do arquivo de som de extensio WAV e
conversdo para o formato MAT :

‘I.I’*
* Wave_Cabe.h

*

* Header do programa Wave Cab.c
*

*

typedefint ~ WORD;
typedef long int DWORD,;

typedef struct {
char nome [4],
DWORD tam;

}
RIFF_BLOCK;

typedef struct {
WORD wFormatTag,
n_Channels;
DWORD nSamplesPerSec,
nAvgBytesPerSec;
WORD nBlockAlign;

}
WAVE_FMT;

12



typedef struct {
long type; /* type */
long mrows; /* row dimension */
long ncols; /* column dimension */
long imagf, /* flag indicating imag part */
long namlen; /* name length (including NULL) */
} Fmatrix;

extern void savemat(FILE *, int, char *, int, int, int, double *, double #):

—
*

Wave Cab.c
Programa para exibir o cabecalho de arquivos no formato .WAV

Autores: Alexandre Augusto Ottati Nogueira,
Thiago Antonio Grandi de Tolosa.

Data: 30.05.94

* * K R X R OE X E O

Baseado no arquivo extraido da revista PC TECH de 28.03.94
*

#include <stdio.h>
#include <stdlib.h>
#include <string. h>
#include <math.h>

#include "wave cab.h"
#define NUM_MAX_AMOSTRAS 6400 /* 0.8 segundos */

/* variaveis */
static const char nome_vetor_saida[] = "voz",
nome_arquivo []="voz.mat";

FILE *arq,
*vetor saida;

static RIFF_BLOCK riff block;
static WAVE FMT wave fmt;

static int d;
static long num_dados;
static char buffer[255],
dados [NUM_MAX AMOSTRAS];
static double voz [NUM_MAX AMOSTRAS];

void main(int argc, char *argv[])

{

13



/* ler parametro de entrada - nome do arquivo WAV */

if (arge |= 2)
{
printf{"Wave Cab <nome_arquivo wav> \n\n");
exit(1);
}

/* abrir arquivo */

if ((arq = fopen(argv[1], "rb")) == NULL)
{
printf(" Arquivo de som nao encontrado !\n\n");
exit(1);

}

/* ler cabecalho do arquivo (denominacao "RIFF" + tamanho) */
fread(buffer, 8, 1, arq);
memcpy(&riff block, buffer, 8);
if (strncmp(riff_block.nome, "RIFF", 4) |=0)
{
printf("O formato do arquivo nao e RIFF \n\n");
exit(1);

}

/* ler cabecalho WAVE */

fread(buffer, 4, 1, arq);

if (strncmp(buffer, "WAVE", 4) |=0)
{
printf("O tipo do arquivo nao e WAVE \n\n");
exit(1);

}

/* ler os blocos de informacao sonora ate o fim do arquivo */
do {

fread(buffer, 8, 1, arq);

memcpy(&riff block, buffer, 8);

/* se for referente ao formato ("fmt ") do arquivo */

if (strnemp(riff_block.nome, "fmt ", 4) == 0)
{
/* copia a informacao para o buffer e posiciona proximo bloco */
fread(buffer, riff block.tam, 1, arq);

/* copia o formato para a estrutura WAVE_FMT */
memcpy(&wave fmt, buffer, sizecof WAVE_FMT));
}

/* se for referente aos dados ("data") do arquivo */
else if (strnemp(riff_block.nome, "data", 4) == 0)
{
/* definir o numero de dados a serem lidos */
num_dados = (riff block.tam > (long) NUM_MAX AMOSTRAS)?

14



(long) NUM_MAX_ AMOSTRAS : riff block.tam;

fseek(arq, 20000, SEEK_CUR);

/* ler a informacao */
fread(&dados, num_dados, 1, arq);

/* break apos ter lido os dados necessarios */
break;

}

/* se for referente a descricao ("DISP") do arquivo */
else if (strncmp(riff_block.nome, "DISP", 4) = 0)

/* posiciona proximo bloco */
fseek(arq, riff_block.tam, SEEK_CUR);

}
while (! feof(arq));

/* fechar arquivo de entrada */
fclose(arq);

/* transformar os dados em double */
for (d =0; d < num_dados; d++)
voz[d] = (double) dados[d];

/* gravar vetor de saida no formato MAT-File */
if (num_dados)
{
if ((vetor_saida = fopen(nome_arquivo, "wb")) == NULL)
{
printf("Erro na abertura do vetor de saida !\n\n");
exit(1);
}
else
{
savemat(vetor_saida, 0, nome_vetor_saida, 1, num_dados, 0, voz,
(double *) 0);

/* fechar arquivo do MAT-Lab */
fclose(vetor saida);

}

/¥

* savemat - Rotina em linguagem C para salvar uma matriz texto em um MAT-file.
*

¢ Autores : Alexandre Augusto Ottati Nogueira
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Thiago Antonio Grandi de Tolosa

FILE *fp;
double xyz[1000], ar[1000], ai[1000];
fp = fopen("foo.mat","wb");
savemat(fp, 2000, "xyz", 2, 3, 0, xyz, (double *)0);
savemat(fp, 2000, "a", 5, 5, 1, ar, ai);
fclose(fp);

Baseado em : J.N. Little Data : 11-3-86

* ¥ K X X ¥ X O X *

¥*
—

#include <stdio.h>
#include <string.h>

#include "wave cab.h"

f****************#*****************#*****#*******#*******************
fp . File pointer
type : Type flag: Normally O for PC,
1000 for Sun, Mac, and Apollo,
2000 for VAX D-float,
3000 for VAX G-float
Add 1 for text variables.
See LOAD in reference section of guide for more info.
pname : pointer to matrix name
mrows : row dimension
ncols : column dimension
imagf : imaginary flag
preal : pointer to real data
pimag : pointer to imag data

****************************#***************************************;

void savemat(FILE *fp, int type, char *pname, int mrows, int ncols, int imagf,
double *preal, double *pimag)
{

Fmatrix x;
int mn;

X.type = type;

X.Mrows = mMrows;

x.ncols = ncols;

x.imagf = imagf;

x.namlen = strlen(pname) + 1;
mn = x.mrows * x.ncols;

fwrite(&x, sizeof(Fmatrix), 1, fp);
fwrite(pname, sizeof{char), (int)x.namlen, fp);
fwrite(preal, sizeof{double), mn, fp);

if (imagf)
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{
fwrite(pimag, sizeof(double), mn, fp);

}

3. Sinal de voz utilizado no processamento :
"Alo, Alo, testando!"

oo
e
-
i

SRR
L

s ‘
e
5 :

2 o

‘%\.mn- :

\ i

4. O procedimento FCC.m desenvolvido para aplicagdo no Matlab :

% Trabalho Especial - FCC (Frequency Cepstral Coefficients)

0

:2 Disciplina: PEE-810 Processamento Digital de Sinais I
:;: Professor: Euvaldo F. Cabral Junior

‘2 Componentes: Alexandre Augusto Ottati Nogueira

% Thiago Antonio Grandi de Tolosa

0

;: Data: 02/06/94

% carregar o vetor com a informacao sonora
load voz.mat

% janela para 100 milisegundos do sinal amostrado (fa = 8000)
extensao_janela = 800;

% deslocamento da janela para cada 50 milisegundo do sinal amostrado
delta_janela = 400;

% determinar vetor de componentes da janela de hanning
j_hanning =0 .* (1 : extensao_janela);
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forj=1: extensao janela,
j_hanning(j) = 0.5 * (1-cos(2*pi*(j)/(extensao_janela+1)));
end;

% carregar matriz de hadamard (matriz_h = hadamard(8), ou seja, para 256 pontos)
load matriz_h.mat

% ultima janela de voz
ultima_amostra = length(voz) - extensao janela + 1;

% inicializar vetores
det =0 .*(1:9),
wht =0 .*(1:9);
n_ite = 0,

% para cada janela do sinal, deslocando a janela em 'delta_janela' posicoes
for amostra =1 : delta_janela : ultima_amostra,

disp (amostra);

% monta a janela de extensao 'extensao_janela'
largura = amostra + extensao janela - 1;
X = voz(amostra : largura);

% aplicar pre-enfase na janela para alfa = 0.95
X_aux =x;
for j =2 : extensao janela,

x_aux(j) =x() - (0.95 * x(j - 1));
end;
X =X_aux;

% aplicar janela de Hanning na janela corrente
p : J

X_aux =x .*j hanning;

X =X_aux;

% aplicar Fast Fourier Transform (FFT) na janela para 256 pontos
f = fh(x, 256);

% aplicar logaritmo no vetor transformado e filtrado (256 pontos)
% --- deconvolucao no tempo ----

£=log(f);

% aplicar Discrete Cossine Transform (DCT) para os 9 primeiros coeficientes
det ¢=0.*(1:9);

forj=1:9,
soma =0;
soma p=0;
fori=1":256,

soma_p = (f{i) * cos((j*pi*(2*i+1))/512));
soma = soma + soma_p;
end;
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dct_c(j) = soma / 256;

% acumula o vetor resultado para dct
det(j) = dct(j) + dct_c(j);

end;

% aplicar Walsh-Hadamard Transform (WHT) (256 pontos)
wht ¢=0.%(1:9);

forj=1:9,
soma =0;
soma_p =0;
fori=1:256,

soma_p = (f{i) * matriz_h(j,1));
soma = soma + soma_p,
end;
wht_c(j) = soma / 256;
% acumula o vetor resultado para wht
wht(j) = wht(j) + wht_c(j);
end;

% contabiliza o numero de iteracoes
n_ite =n_ite + 1;
end;

3

% calcular o valor medio normalizado dos 9 primeiros coeficientes
dct =dct / n_ite;
wht = wht / n_ite;

end.

- Janelamento de 800 amostras com espago de 400 amostras entre as janelas;
- Pré-énfase com a =0.95;

- Janela de Hanning;

- FFT;

- Aplicag¢do do LOG (deconvolugdo do sinal);

- Implementag@o e comparagdo entre as transformadas DCT e a WHT;

- Obtengdo dos 9 primeiros coeficientes de cada janela das 6400 amostras.
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4 - Conclusio

Com os resultados obtidos, conclui-se que a Transformada de Walsh-
Hadamard, mais se adapta ao trabalho proposto.

Isto deve-se ao fato de que a média da parte normalizada para os 9 coeficientes
ser praticamente nula, propiciando uma melhor observacio de "features" na
transformacdo.

O processo também foi muito importante para a determinacdo dos valores dos
coeficientes constituintes do sinal :

c € € ¢ € ¢ B ¢ @
DCT 0.0618 0.2157 0.0474 0.0654 0.0781 0.0268 0.0670 0.0382 0.0459
WHT 5.7788 0.0247 0.0185 0.0305 0.0707 0.0208 0.0193 0.0204 0.0200

0.22

o.18} _
0.16} i
0.14 B
012} |

0.1k '-_II o

0.06 g B . ' : |

0.02

Fig.4.1 - Grdfico Coeficiente X Meédia, que mostra a média da parte
normalizada dos 9 primeiros coeficientes das 6400 amostras utilizando a
Transformada Discreta Cosseno no processamento.
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Fig.4.2 - Grdfico Coeficiente X Valor, que mostra a média da parte
normalizada dos 9 primeiros coeficientes das 6400 amostras utilizando a
Transformada de Walsh-Hadamard no processamento.
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