RT-MAT 2003-14

THE ODD PART OF A N-KOSZUL ALGEBRA

E. N. MARCOS and R. MARTÍNEZ-VILLA

Julho 2003

Esta é uma publicação preliminar ("preprint").

THE ODD PART OF A N-KOSZUL ALGEBRA

E. N. MARCOS AND R. MARTÍNEZ-VILLA

ABSTRACT. The so called n-Koszul algebras have been studied in ,[2, 3]. They are natural generalizations of Koszul algebras, however, Koszul duality is not well understood in this case, some partial results in this direction were obtained in [3], where the following result is proved:

Given a n-Koszul algebra with Yoneda algebra $E(\Lambda)$, the even part, $e(E(\Lambda))$ of $E(\Lambda)$ is a Koszul algebra, and given a n-Koszul module M, the even part e(E(M)) of the module $E(M) = \bigoplus_{k \geq 0} Ext_{\Lambda}^k(M, \Lambda_0)$ is a Koszul module over e(E(M)).

The following question was raised in [3]. Is the odd part of E(M) also a Koszul module over e(E(M))? The aim of this note is to prove that this is indeed the case if we assume further that the orthogonal algebra Λ^1 is also n-Koszul.

1. Koszul algebras.

It was shown in [3], that the even part of the Ext-algebra of a n-Koszul algebra is Koszul. Since a Koszul algebra Λ is 2-Koszul, is follows that the even part of the Yoneda algebra Γ is Koszul, but Λ is isomorphic to the Yoneda algebra $E(\Gamma)$ of the Koszul algebra Γ , [1, 5, 6] it follows, that the even part $e(\Lambda) = \bigoplus_{j \geq 0} \Lambda_{2j}$ is Koszul. (This was generalized in [4] showing that if Λ is a Koszul algebra then $\sum_{k \in N} \Lambda_{(kn)}$ is a Koszul algebra, (after regrading).)

Using Koszul duality, we also obtain that the even part $e(M) = \bigoplus_{j \geq 0} M_{2j}$ of a Koszul module M is a Koszul $e(\Lambda)$ -module.

We know by [1, 5], that IM is a Koszul module, where $IM = \bigoplus_{j \geq 0} M_{2j}$

We know by [1, 5], that JM, is a Koszul module, where $JM = \bigoplus_{j \geq 1} M_j$ is the graded radical of M. Hence $e(JM[1]) = \bigoplus_{m \geq 0} e(JM[1])_{2m+1} = \bigoplus_{m \geq 1} M_{2m+1}$. It follows that the odd part, $o(E(M)) = \bigoplus_{m \geq 1} M_{2m+1}$ of M is also a Koszul module over $e(\Lambda)$.

The even part of a graded algebra can be interpreted as follows: Let $\Lambda = \bigoplus_{j \geq 0} \Lambda_j$ be a graded quiver K-algebra, with K a field of characteristic different from 2. We define an automorphism: $\sigma : \Lambda \to \Lambda$

Key words and phrases. Koszul, n-Koszul.

The authors thank CNPq and CONACYT for funding the reserach project.

as follows: let $x \in \Lambda_j$ be a homogeneous element, define $\sigma(x) = (-1)^j x$ and extend it to $\sigma(\sum_{j>0} x_j) = \sum_{j>0} (-1)^j x_j$.

It is easy to check, that σ is a graded K-algebra automorphism with $\sigma^2 = 1$ and the fixed ring Λ^{σ} is isomorphic to $e(\Lambda)$. By the above remarks, Λ^{σ} is Koszul.

Example: Let $\Lambda = K[x,y]$ be the polynomial algebra in two variables, with K a field of characteristic different from 2. The even part, $e(\Lambda) = K[x^2, xy, y^2]$ is isomorphic to $K[x, y, z]/(xy - z^2)$. Hence, $K[x, y, z]/(xy - z^2)$ is a Koszul algebra. The algebra: $K[x^2, xy, y^2]$ is the ring of invariants $K[x, y]^G$, where G is the subgroup

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \cong Z_2 \text{ of the special linear group } Sl(2, K).$$

If follows by Watanabe's theorem [8, 9], $K[x^2, xy, y^2]$ is a Gorenstein ring.

In the general case, for a field of characteristic different from 2, the

$$\text{group } G = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ \cdot & 1 & 0 \\ \cdot & \cdot & \cdot \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & -1 \end{bmatrix} \right\} \cong Z_2 \text{ acts on the}$$

polynomial ring

 $\Lambda = K[x_1, x_2...x_n]$ and the fixed ring $K[x_1, x_2...x_n]^G$ is isomorphic to the even part of Λ . It follows that $K[x_1, x_2...x_n]^G$ is a Koszul algebra, which is Cohen-Macaulay, by Hochester-Eagen's theorem [7]. Moreover, when n is even, it is Gorenstein.

N-Koszul algebras.

We will recall some definitions and basic results about n-Koszul algebras which appear in [2, 3].

We will consider positively graded K-algebras, $\Lambda = \bigoplus_{j \geq 0} \Lambda_j$ such that the following three conditions hold:

- i) $\Lambda_0 = K \times K...K$
- ii) $\dim_K \Lambda_i < \infty$ for all i.
- iii) $\Lambda_i \Lambda j = \Lambda_{i+j}$ for all pairs i, j.

We will call algebras satisfying these three conditions, graded quiver algebras, because for such algebras there exists a finite quiver Q and a graded ideal I of KQ, in the grading given by path length, such that $I \subset \sum_{i \geq 2} (KQ)_j$ and $KQ/I \cong \Lambda$.

Definition 1. Given a graded module M over a graded algebra Λ then M is called n-Koszul if M has a minimal graded projective resolution: $\rightarrow P_k \rightarrow P_{k-1} \rightarrow ...P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ such that there exists a positive integer $d \geq 2$ where each module P_k is finitely generated in degree $\delta(k)$

$$\delta(k) = \begin{cases} \frac{k}{2}n & \text{if } k \text{ is even} \\ \frac{k-1}{2}n+1 & \text{if } k \text{ is odd} \end{cases}$$

 $\delta(k) = \left\{ \begin{array}{ll} \frac{k}{2}n & \text{if } k \text{ is even} \\ \frac{k-1}{2}n+1 & \text{if } k \text{ is odd} \end{array} \right.$ If n=2, then a 2-Koszul M is just a Koszul module. If Λ_0 is n-Koszul, then we say that Λ is a n-Koszul algebra.

We have the following characterization of n- Koszul algebras:

Theorem 1. [3] Let $\Lambda = KQ/I$ be an indecomposable graded quiver algebra. Then the following conditions two are equivalent:

- i) The algebra Λ is a n- Koszul algebra.
- ii) a) For some integer $n \geq 2$ the ideal I can be generated by elements of $(KQ)_n$
- b) The Yoneda algebra $E(\Lambda)$ of Λ is generated in degrees: 0, 1, 2, in the ext-degree grading.

The inspiration of this note is the following theorem:

Theorem 2. [3] Let Λ be a n-Koszul K-algebra and M a n-Koszul module. If $E(\Lambda) = \bigoplus_{k \geq 0} Ext^k_{\Lambda}(\Lambda_0, \Lambda_0)$ is the Yoneda algebra of Λ , then the even part $eE(\Lambda) = \bigoplus_{k \geq 0} E(\Lambda)_{2k}$ is, after regrading, a Koszul algebra and the even part $eE(M) = \bigoplus_{k>0} E(M)_{2k}$ of $E(M) = \bigoplus_{k>0} Ext^k_{\Lambda}(M, \Lambda_0)$ is after regrading a Koszul $eE(\Lambda)$ – module.

In the classical situation [1, 5], a Koszul algebra $\Lambda = KQ/I$ is quadratic, that is: the ideal I is generated by I_2 . We define a bilinear form: $\langle -, - \rangle : V \times V^{op} \to K$, where $V = (KQ)_2$, by: $\langle \alpha\beta, \beta'\alpha' \rangle =$

 $\left\{ \begin{array}{ll} 0 \quad if \quad \alpha \neq \alpha' \quad or \quad \beta \neq \beta' \\ 1 \quad if \quad \alpha = \alpha' \quad and \quad \beta = \beta' \end{array} \right. \text{ and let L_2 be the orthogonal of I_2 un$ der the bilinear form. It was proved [1, 5, 6], that the Yoneda algebra $E(\Lambda)$ is also Koszul and isomorphic to the orthogonal algebra $\Lambda^! = KQ^{op}/ < L_2 > .$

For a general n-Koszul algebra A we do not have such a nice relation between the Yoneda algebra $E(\Lambda)$ and the orthogonal algebra $\Lambda^! = KQ^{op}/ < L_n >$ where L_n is the orthogonal of I_n under the corresponding bilinear form in $V = (KQ)_n$. However, $E(\Lambda)$ can still be constructed from $\Lambda^!$. This is the content of the following theorem:

Theorem 3. [3] Let $\Lambda = KQ/I$ be an indecomposable n-Koszul algebra and $\Lambda^! = KQ^{op}/< L_n>$, where L_n is the orthogonal of I_n under the corresponding bilinear form in $V=(KQ)_n$. We will call this algebra the orthogonal algebra. Define a graded algebra $B=\bigoplus_{j\geq 0} B_j$ as follows:

 $B_k = \Lambda^!_{\delta(k)}$ as K-vector spaces and define the product $B_k B_m = 0$ if both k and m are odd and the product in $\Lambda^!$ otherwise. Then the Yoneda algebra $E(\Lambda)$ is isomorphic to B as graded algebras.

For a general n- Koszul algebra is not true that $\Lambda^!$ is again n-Koszul.

Example 1. Using the characterization of monomial n-Koszul algebras given in [2, 3] it is easy to see that the K- algebra $\Lambda=KQ/I$ with quiver

 $Q: \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \xrightarrow{\alpha_3} \xrightarrow{\alpha_4} \xrightarrow{\alpha_5}$ and ideal $I = \langle \alpha_3 \alpha_2 \alpha_1, \alpha_4 \alpha_3 \alpha_2 \rangle$ is 3-Koszul with orthogonal algebra $\Lambda^! = KQ/L$ with quiver

 $Q: \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \xrightarrow{\alpha_3} \xrightarrow{\alpha_4} \xrightarrow{\alpha_5} \text{ and ideal } L = <\alpha_5\alpha_4\alpha_3>, \text{ again 3-Koszul.}$

Example 2. Consider now the K-algebra $\Lambda = KQ/I$ with quiver

 $Q: \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \xrightarrow{\alpha_3} \xrightarrow{\alpha_4} \xrightarrow{\alpha_5}$ and ideal $I = \langle \alpha_4 \alpha_3 \alpha_2 \rangle$. It is 3 - Koszul with orthogonal algebra: $\Lambda^! = KQ/L$ with quiver

 $Q: \xrightarrow{\alpha_1} \xrightarrow{\alpha_2} \xrightarrow{\alpha_3} \xrightarrow{\alpha_4} \xrightarrow{\alpha_5}$ and ideal $L = \langle \alpha_3 \alpha_2 \alpha_1, \alpha_5 \alpha_4 \alpha_3 \rangle$, which is not 3-Koszul.

3. THE ODD PART OF A N-KOSZUL ALGEBRA.

It was conjectured in [3], that the odd part $oE(\Lambda) = \bigoplus_{k \geq 0} E(\Lambda)_{2k+1}$ of the Yoneda algebra $E(\Lambda)$ of a n-Koszul algebra Λ is a Koszul module over the even part $eE(\Lambda) = \bigoplus_{k \geq 0} E(\Lambda)_{2k}$. This statement is still a conjecture. The purpose of this note is to prove this conjecture for a particular case, our result is the following:

Theorem 4. Let $\Lambda = KQ/I$ be an indecomposable n-Koszul algebra and

 $\Lambda^! = KQ^{op}/ < L_n >$, where L_n is the orthogonal of I_n under the corresponding bilinear form in $V = (KQ)_n$, be the orthogonal algebra and assume $\Lambda^!$ is also n-Koszul. Then the odd part $oE(\Lambda) = \bigoplus_{k \geq o} E(\Lambda)_{2k+1}$

of the Yoneda algebra $E(\Lambda)$ of Λ is a Koszul module over the even part $eE(\Lambda) = \bigoplus_{k \geq 0} E(\Lambda)_{2k}$.

Proof. By hypothesis, there exits a minimal graded projective resolution of the right $\Lambda^!$ —module $\Lambda^!_0$ of the form:

 $\rightarrow (V_k)^* \otimes \Lambda^! \left[-\delta(k) \right] \rightarrow (V_{k-1})^* \otimes \Lambda^! \left[-\delta(k-1) \right] \rightarrow ...(V_1)^* \otimes \Lambda^! \left[-\delta(1) \right] \rightarrow (V_0)^* \otimes \Lambda^! \left[\delta(0) \right] \rightarrow 0$

where each V_k is a semisimple left Λ_0 module concentrated in degree zero and $(V_k)^*$ is the dual with respect to Λ_0 .

Hence; $Ext^k_{\Lambda^!}(\Lambda^!_0, \Lambda^!_0) = Hom_{\Lambda^!}((V_k)^* \otimes \Lambda^! [-k], \Lambda^!_0) \cong Hom_{\Lambda^!}((V_k)^*, \Lambda^!_0) \cong V_k$.

By theorem 4, above $Ext^k_{\Lambda^!}(\Lambda^!_0, \Lambda^!_0) \cong \Lambda_{\delta(k)}$.

Therefore: the minimal projective resolution of $\Lambda_0^!$ has the following form:

which, omitting the arrows, can be displayed as a matrix:

If $E(\Lambda)$ denotes the Yoneda algebra of Λ , then the odd part has the following form: $oE(\Lambda) = \underset{n \geq o}{\oplus} Ext_{\Lambda}^{2k+1}(\Lambda_0, \Lambda_0) = \underset{k \geq o}{\oplus} \Lambda_{kn+1}^!$ and the even part $eE(\Lambda) = \underset{n \geq o}{\oplus} Ext_{\Lambda}^{2k}(\Lambda_0, \Lambda_0) = \underset{n \geq o}{\oplus} \Lambda_{kn}^!$.

It follows from the above matrix, that there exists an exact sequence of graded $eE(\Lambda)$ modules:

$$\rightarrow (\Lambda_{3n})^* \otimes oE(\Lambda) [-3] \rightarrow (\Lambda_{2n+1})^* \otimes eE(\Lambda) [-3] \rightarrow (\Lambda_{2n})^* \otimes oE(\Lambda) [-2] \rightarrow (\Lambda_{n+1})^* \otimes eE(\Lambda) [-1] \rightarrow (\Lambda_n^* \otimes oE(\Lambda) [-1] \rightarrow (\Lambda_1)^* \otimes eE(\Lambda) \rightarrow oE(\Lambda) \rightarrow oE(\Lambda) \rightarrow oE(\Lambda)$$

Consider the graded modules $H_k = Ker f_{2(k-1)}$ and $K_k = Ker f_{2k-1}$ for $k \geq 1$. Here f_i denotes the map with domain $(\Lambda_i)^* \otimes ...$ in the sequence above.

From the exactness of the above sequence, it follows that both H_k and K_k are generated in degree k for all $k \geq 1$.

We have exact sequences:

$$0 \to K_k \to (\Lambda_{\delta(2k)})^* \otimes oE(\Lambda)[-k] \to H_k \to 0$$
 and

$$0 \to H_{k+1} \to (\Lambda_{\delta(2k+1)})^* \otimes eE(\Lambda)[-k] \to K_k \to 0$$
, in particular, $H_{k+1} = \Omega(K_k)$.

We claim that for any k the module $\Omega(H_k)$ is generated in degree k+1.

We have a commutative exact diagram:

with S_k a semisimple Λ_0 —module generated in degree zero. It follows that $\Omega(H_k)$ is generated in degree k+1.

We have an exact sequence of graded modules generated in the same degree:

$$0 \to H_{k+1} \to (\Lambda_{\delta(2k)})^* \otimes H_1 \left[-(k+1) \right] \to \Omega(H_k) \to 0$$

Hence; we obtain an exact sequence of modules generated in the same degree:

$$0 \to \Omega(H_{k+1}) \to \Omega((\Lambda_{\delta(2k)})^* \otimes H_1[-(k+1)]) \to \Omega^2(H_k) \to 0.$$

It follows by induction, $\Omega^m(H_k)$ is generated in degree m+k for all m and all k. Therefore: all graded modules H_k and K_k are Koszul up to shifting, in particular, $H_1 = \Omega(oE(\Lambda))$ is Koszul. It follows $oE(\Lambda)$ is Koszul.

Our main theorem can be generalized as follows:

Theorem 5. Let Λ be a n-Koszul algebra such that the orthogonal algebra $\Lambda^!$ is also n-Koszul. Then for any n-Koszul module M the graded module $oE(M) = \bigoplus_{k \geq 0} Ext_{\Lambda}^{2k+1}(M, \Lambda_0)$ is a Koszul module over $eE(\Lambda)$.

Proof. We know from [3], we have an exact sequence:

$$0 \to Ext_{\Lambda}^{2(k-1)+1}(\Omega(JM), \Lambda_0) \to Ext_{\Lambda}^{2k+1}(M_0, \Lambda_0) \to Ext_{\Lambda}^{2k+1}(M, \Lambda_0) \to 0$$
, with J the graded radical of Λ .

The sequence can be written as:

$$0 \to E(\Omega(JM))_{2(k-1)+1} \to (M_0)^* \otimes E(\Lambda)_{2k+1} \to E(M)_{2k+1} \to 0.$$

Adding the sequences, we obtain an exact sequence:

$$0 \to oE(\Omega(JM))[-1] \to (M_0)^* \otimes oE(\Lambda) \to oE(M) \to 0.$$

Hence; we obtain a commutative exact diagram:

The modules $(M_0)^* \otimes \Omega(oE(\Lambda))$ and $oE(\Omega(JM))$ [-1] are generated in degree one. It follows, $\Omega(oE(M))$ is generated in degree one.

We know by [3], $\Omega(JM)$ is n-Koszul, hence; considering this module instead of M it follows by induction, $oE(\Omega(JM))$ is Koszul. Using the fact $oE(\Lambda)$ is Koszul and the sequence:

$$0 \to (M_0)^* \otimes \Omega(oE(\Lambda)) \to \Omega(oE(M)) \to oE(\Omega(JM))$$
 [-1] $\to 0$ is exact, it follows $oE(M)$ is a Koszul $eE(\Lambda)$ - module.

References

- A.A. Beilinson, V. Ginsburg, and W. Soergel, Koszul duality patterns in representation theory, J. Am. Math. Soc. 9 1996, 473-527.
- [2] R. Berger Koszulity of nonquadratic algebras, J. of Algebra, 2001 (239), 705-734.
- [3] E. L. Green, E. N Marcos, R. Martínez-Villa, Pu Zhang, n-Koszul algebras, (preprint) 2003.
- [4] E. L. Green, E. N. Marcos, f-Koszul Algebras, in preparation
- [5] E. L. Green, R. Martínez-Villa, Koszul and Yoneda Algebras, Rep. Theory of algebras, CMS, Conf. Proc. 18, Amer. Math. Soc. Providence, R.I. 1996, 247-297.
- [6] E. L. Green, R. Martínez-Villa Koszul and Yoneda Algebras II, Algebras and Modules II, CMS, Conf. Proc. 24, Amer. Math. Soc. Providence, R.I. 1998, 227-244.
- [7] M. Hochester and J.A. Eagon Cohen-Macaulay rings, invariant theory, and the generic perfection of determinant loci., Amer. J. Math. 93 1971, 1020-1058.
- [8] K. Watanabe, Certain invariant subrings are Gorenstein I Osaka J. Math. 11 1974, 1-8.
- [9] K. Watanabe, Certain invariant subrings are Gorenstein II I,Osaka J. Math. 11 1974, 379-388.

EDUARDO DO NASCIMENTO MARCOS, DEPARTMENT DE MATEMÁTICA -IME UNIVERSIDADE DE SÃO PAULO, CEP 66281 CEP 05315-970, SAO PAULO-SP, BRAZIL

E-mail address: enmarcos@ime.usp.br

Current address: Roberto Martínez-Villa, Instituto de Matemáticas de la UNAM, Unidad Morelia, Apdo. Postal 61-3, 58089, Morelia Mich. México

E-mail address: mvilla@matmor.unam.mx

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

2002-01	COELHO, F. U. and LANZILOTA, M. A. On non-semiregular components containing paths from injective to projective modules. 13p.
2002-02	COELHO, F. U., LANZILOTTA, M. A. and SAVIOLI, A. M. P. D. On the Hochschild cohomology of algebras with small homological dimensions. 11p.
2002-03	COELHO, F. U., HAPPEL, D. and UNGER, L. Tilting up algebras of small homological dimensions. 20p.
2002-04	SHESTAKOV, I.P. and UMIRBAEV. U.U. Possion brackets and two-generated subalgebras of rings of polynomials. 19p.
2002-05	SHESTAKOV, I.P. and UMIRBAEV. U.U. The tame and the wild automorphisms of polynomial rings in three variables. 34p.
2002-06	ALENCAR, R. and LOURENÇO, M.L. On the Gelbaum-de Lamadrid's result. 16p.
2002-07	GRISHKOV, A. Lie algebras with triality. 28p.
2002-08	GRISHKOV, A. N. and GUERREIRO, M. Simple classical Lie algebras in characteristic 2 and their gradations, I. 21p.
2002-09	MELO, S. T., NEST, R. and SCHROHE, E. K-Theory of Boutet de Monvel's algebra. 8p.
2002-10	POJIDAEV, A. P. Enveloping algebras of Filippov algebras. 17p.
2002-11	GORODSKI, C. and THORBERGSSON, G. The classification of taut irreducible representations. 47p.
2002-12	BORRELLI, V. and GORODSKI, C. Minimal Legendrian submanifolds of S ²ⁿ⁺¹ and absolutely area-minimizing cones. 13p.
2002-13	CHALOM, G. and TREPODE, S. Representation type of one point extensions of quasitilted algebras. 16p.
2002-14	GORODSKI, C. and THORBERGSSON, G. Variationally complete actions on compact symmetric spaces. 8p.
2002-15	GRISHKOV, A .N. and GUERREIRO, M. Simple classical Lie algebras in characteristic 2 and their gradations, II. 15p.
2002-16	PEREIRA, Antônio Luiz and PEREIRA, Marcone Corrêa. A Generic Property for the Eigenfunctions of the Laplacian. 28p.

- 2002-17 GALINDO, P., LOURENÇO, M. L. and MORAES, L. A. Polynomials generated by linear operators. 10p.
- 2002-18 GRISHKOV, A. and SIDKI, S. Representing idempotents as a sum of two nilpotents of degree four. 9p.
- 2002-19 ASSEM, I. and COELHO, F. U. Two-sided gluings of tilted algebras. 27p.
- 2002-20 ASSEM, I. and COELHO, F. U. Endomorphism rings of projectives over Laura algebras. 10p.
- 2002-21 CONDORI, L. O. and LOURENÇO, M. L. Continuous homomorphisms between topological algebras of holomorphic germs. 11p.
- 2002-22 MONTES, R. R. and VERDERESI, J. A. A new characterization of the Clifford torus. 5p.
- 2002-23 COELHO, F. U., DE LA PEÑA, J. A. and TREPODE, S. On minimal non-tilted algebras. 27p.
- 2002-24 GRISHKOV, A. N. and ZAVARNITSINE, A. V. Lagrange's theorem for Moufang Loops. 21p
- 2002-25 GORODSKI, C., OLMOS, C. and TOJEIRO, R. Copolarity of isometric actions. 23p.
- 2002-26 MARTIN, Paulo A. The Galois group of $x^n x^{n-1} \dots x 1$. 18p.
- 2002-27 DOKUCHAEV, M.A. and MILIES, C. P. Isomorphisms of partial group rings. 12p.
- 2002-28 FUTORNY, V. and OVSIENKO, S. An analogue of Kostant theorem for special PBW algebras. 14p.
- 2002-29 CHERNOUSOVA, Zh. T., DOKUCHAEV, M. A., KHIBINA, M. A., KIRICHENKO, V. V., MIROSHNICHENKO, S. G. and ZHURAVLEV, V. N. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I. 36p.
- 2002-30 FERNÁNDEZ, J. C. G. On commutative power-associative nilalgebras. 10p.
- 2002-31 FERNÁNDEZ, J. C. G. Superalgebras and identities. 11p.
- 2002-32 GRICHKOV, A. N., GIULIANI, M. L. M. and ZAVARNITSINE, A. V. The maximal subloops of the simple Moufang loop of order 1080. 10p.
- 2002-33 ZAVARNITSINE, A. V. Recognition of the simple groups L₃(q) by element orders. 20p.
- 2002-34 ZUBKOV, A. N. and MARKO, F. When a Schur superalgebra is cellular? 13p.
- 2002-35 COELHO, F. U. and SAVIOLI, A. M. P. D. On shod extensions of algebras. 11p.

2003-01	COELHO, F. U. and LANZILOTTA, M. A. Weakly shod algebras. 28p.
2003-02	GREEN, E. L., MARCOS, E. and ZHANG, P. Koszul modules and
2003-03	modules with linear presentations. 26p. KOSZMIDER, P. Banach spaces of continuous functions with few operators. 31p.
2003-04	GORODSKI, C. Polar actions on compact symmetric spaces which admit a totally geodesic principal orbit. 11p.
2003-05	PEREIRA, A. L., Generic Hyperbolicity for the equilibria of the one- dimensional parabolic equation $u_i = (a(x)u_x)_x + f(u)$. 19p.
2003-06	COELHO, F. U. and PLATZECK, M. I. On the representation dimension of some classes of algebras. 16p.
2003-07	CHERNOUSOVA, Zh. T., DOKUCHAEV, M.A., KHIBINA, M.A., KIRICHENKO, V.V., MIROSHNICHENKO, S.G., ZHURAVLEV, V.N. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. 43p.
2003-08	ARAGONA, J., FERNANDEZ, R. and JURIAANS, S. O. A Discontinuous Colombeau Differential Calculus. 20p.
2003-09	OLIVEIRA, L. A. F., PEREIRA, A. L. and PEREIRA, M. C. Continuity of attractors for a reaction-diffusion problem with respect to variation of the domain. 22p.
2003-10	CHALOM, G., MARCOS, E., OLIVEIRA, P. Gröbner basis in algebras extended by loops. 10p.
2003-11	ASSEM, I., CASTONGUAY, D., MARCOS, E. N. and TREPODE, S. Quotients of incidence algebras and the Euler characteristic. 19p.
2003-12	KOSZMIDER, P. A space C(K) where all non-trivial complemented subspaces have big densities. 17p.
2003-13	ZAVARNITSINE, A.V. Weights of the irreducible SL ₃ (q)-modules in defining characteristic. 12p.
2003-14	MARCOS, E. N. and MARTÍNEZ-VILLA, R. The odd part of a N-Koszul algebra. 7p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 2001 estão à disposição no Departamento de Matemática do IME-USP.

Cidade Universitária "Armando de Salles Oliveira"

Rua do Matão, 1010 - Cidade Universitária

Caixa Postal 66281 - CEP 05315-970