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ON THE LOOP OF UNITS OF AN 
ALTERNATIVE LOOP RING 

Edgar G. Goodaire and Cesar Polcino Milies 

ABSTRACT. An RA loop is a Moufang loop whose loop rings, in characteristic different 
from 2, are alternative but not associative. In this paper, we determine the class of RA 
loops in whose integral loop rings the torsion units form a subloop and show how this 
property relates to many other properties of the unit loop. For example, we determine 
the conditions under which the unit loop of the integral loop ring of an RA loop is also 
an RA loop. 

1. Introduction. Scattered throughout the fascinating theory of integral group rings are 
theorems giving conditions under which the only units, or the only torsion units, are trivial. (A 
unit of ZG is trivial if it is of the form ±g for some g E G.) The earliest of these is a theorem 
of Graham Higman which says that ZG has only trivial units if and only if G is an abelian 
group of exponent 2, 3, 4 or 6, or a Hamiltonian 2-group [12]. S. D. Berman proved a similar 
theorem giving conditions under which just the torsion units ( those of finite order) are trivial 
[l]. Later, M. M. Parmenter and C. Polcino Milies showed that for finite G, the condition that 
ZG have only trivial torsion units is equivalent to several others, the most fundamental being 
that the torsion units of ZG should form a subgroup of the full unit group [14]. This theorern 
was later extended by the second author to arbitrary groups [13]. 

In the last ten years, there has developed a theory of alternative loop rings and it has becorne 
clear that many of the theorerns of group rings hold also in the nonassociative setting. The 
theorems of Higman and Berman, for example, extend to alternative loop rings [9]. In a similar 
vein, it is the purpose of this paper to determine conditions under which the torsion units of a 
loop ring form a subloop and to explore the consequences of this property. 

An alternative ring is a ring in which the alternative laws 

and (yx )x = yx2 

are valid. For us, the most important property of an alternative ring is a theorem of E. Artin 
which says that the subring generated by any two elements of an alternative ring is associative 
[18]. If L is a loop whose loop ring RL over a ring of characteristic different from 2 is an 
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alterriative, but not associative, ring, we call L an RA (ring alternative) loop. The following 
theorem, which is implicit in [4] and clarified in [10], is fundamental. 

Theorem 1.1. A loop L is RA if and only if 
(i) L = G U Gu is the disjoint union of a nonabelian group G and a single coset Gu; 
(ii) G has a unique nonidentity commutator, s, which is necessarily central and of order 2; 
(iii) the map 

( 1.1) g f-+ g* = { g sg 
if g is cetitral 
otherwise 

is an involution of G (i.e.1 an antiautomorphism of order 2); 
(iv) multiplication in L is defined by 

g(hu) 
(gu)h 

(gu)(hu) 

(hg)u 
(gh* )u 
goh*g 

where g0 = u2 is a central element of G. M oreover, the group G can be taken to be any 
group generated by the cenire of L and two elements of L which do not commute. 

The loop described in this theorem is denoted M(G,*,u). It is a Moufang loop and therefore 
has the property that any two elements generate a group. (We refer the reader to the recent 
text by Pflugfelder [15] for an introduction to the theory of loops and, in particular , of Moufang 
loops.) In loop theory, a subloop N of a loop L is normal provided 

Nf = t N, (Nf1)f2 = N(f1f2), (f1N)f2 = C1(Nf2) and f1(f2N) = (f1f2)N 
for any f,f1,f2 E L. We will have cause to use the fact that , if L is RA, these conditions 
are equivalent to the single condition N f = CN for all C. ( Actually, this property holds more 
generally for RA2 loops; that is, for loops whose loop rings in characteristic 2 are alternative 
[5, Corollaries 2.4 and 2.11].) 

Since, for L = M(G,*,u), the elements of L are those of G U Gu, it is easy to see that any 
element 0: = I:: 0:el in the loop ring RL can be expressed in the form 0: = x + yu, where x and 
y are in the group ring RG. Also, the involution on G extends to L by setting (gu)* = s(gu), 
and then to an involution on RL which can be expressed in equivalent forms: 

(1.2) (L aef)* = L O:t,l* or ( x + yu )* = x* + syu. 
In this paper, Z(X) denotes the centre of a group or ring X. It is important to remember 

that if X is not associative, the centre of X is the set of elements which commute with all other 
elements and associate with all other pairs of elements. The centre of an alternative loop ring 
RL is 

( 1.3) Z(RL) = {a E RL I 0:* = 0:} 

[10]. The group or loop of units (invertible elements) in a ring R is denoted U(R) while TU(R) 
is the group or loop of torsion units in R (i.e., those units which have finite order). The 
commutator subloop of a loop L is denoted L1

• 
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If L = M(G,*,u) is an RA loop, then Z(L) = Z(G) and L' = G' = {1,s}. Consequently, 
for any x,f E L, 

(1.4) 

2. Some Basic Lemmas. The following lemma is not generally true for groups, but it 
holds for RA loops, as a consequence of their rather special nature. 

Lemma 2.1. Let T denote the set of torsion elements of an RA loop L. Then T is a normal 
subloop of L. If L is finitely qenerated, then T is finite. 

Proo]. It is sufficient to prove that Tis closed under inverses and products. Clearly it is closed 
under inverses. N ow if a and b are elements of T which commute, then certainly ab E T. On 
the other hand, if a and b do not commute, then ab is again of finite order since, for n ~ 0, 

( b)n _ { anbn if n= 0 or 1 (mod 4) 
a - sanbn if n= 2 or 3 (mod 4) 

and s is central of order 2. So Tis a subloop. Next, note that for t E T and f E L, 1-1tf has 
the same order as t, so f-1Tf ~ T and Tt: = fT which, as we have mentioned, implies that T is 
normal. N ow suppose that L is finitely generated. Since L' ~ T (because s2 = 1) and since s is 
both a unique nonidentity commutator and associator in L [8, Theorem 3], T j L' is a subgroup 
of the finitely generated abelian group L j L'. So T j L' is a finitely generated torsion abelian 

, group and hence finite. D 

It is an open question whether or not an integral group ring has idempotent elements other 
than O and 1, but the situation is clear with RA loops. 

Lemma 2.2. Suppose L = M(G,*,u) is an RA loop. Then the idempotents of ZL are trivial; 
i. e., equal to 0 or 1. 

Proof. We first claim that the idempotents of ZG are trivial. For this, let e E ZG be idempotent. 
Replacing G by the subgroup generated by the support of e, we may assume that G is finitely 
generated. Let T( G) and T( L) denote the torsion units of G and L respectively. Since T( G) ~ 
T(L) n G, the previous lemma shows that T(G) is a finite subgroup of G. Since G' ~ T(G), 
G /T( G) is a finitely generated abelian gtoup, hence polycyclic. By [17, Theorem I.2.20], e is 
trivial. Now suppose e is an idempotent in ZL. Write e = x+ yu with x and y in the group 
ring ZG and observe that 

e2 = (x2 + g0yy*) + (yx + yx*)u = e ===:> y(x +x*)= y ===:> y(x + z "}" = y 
for all n~ 1. Let Z = Z(L) and express x in the form x = LgEZ a9g+ L9~z a9g. Remembering 
that g• = sg for g ~ Z, it is easy to see that x+ x• = 2x1 + (1 + s )x2 for some central element 
x1 E ZG. It follows that the coefficients of (x+ x*)2, when expressed as a linear combination 
of group elements, are even and hence, for any k > 0, (x+ x*)2k has coefficients divisible by 2k. 
Thus y = y( x + x· )2k has coefficients divisible by 2k for any k > 0. This cannot happen unless 
y = O in which case e = x E ZG where we have already shown that idempotents are trivial. D 

In what follows, we need to be sure that a lemma of Sehgal remains true in the nonassociative 
setting [17, Lemma VI.3.22]. 
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Lernrna 2.3. Lei L be a finitely generated RA loop and T its normal torsion subloop. Suppose 
that QT ~ D

1 
EB · · · EB D ; is the direct sum of division rings and that every idempotent of QT 

is central in Q L. The n 
(i) Every unit µ E ZL can be written in the formµ= L d/,;, with d; E D;, f; E L, and 
(ii) U(ZL) = [U(ZT)]L. 

Proof. Write 1 = I:e;, for idempotents e1,e2,··· ,en of QT. Since D; = (QT)e;, since e; is 
central in QL (by hypothesis) and since T is normal in L, the division ring D; is also normol 

in QL in the sense that 
D;a = o.D«, (D;a)/3 = D;(a/3), (aD;)/3 = a(D;/3), and a(/3D;) = (af])D; 

for any a, f3 E QL. These facts are not hard to see. By linearity, it is suffi.cient to establish each 
in the case that a and /3 are elements of L. So, to obtain (D;f.1)f2 = D;(f.1f.2) for f.1,f2 E L, for 
example, let d E D;, write d = (L dtt)e; = L dt( te;), d; E Q, t E T and use 

[(te;)fi]f.
2 

[t(e;.i\)]f2 = [t(f.1e;)]f.2 = [(U\)e;]f.2 = (tf.1)(e;f2) = (ti\)(f.2e;) = [(tf1)f2]e; 
[t'(f/2)]e;, for some t' E T, 

= t'[(J\f2)e;] = t'[e;(f.1f2)] = (t'e;)(f.1f.2) 
to conclude that ( df

1
)f2 = d'(f1f2) for some d' E D;. Since Tis normal in L, L has a decornpo­ 

sition as the disjoint union of cosets of T [3, §V.l]; i.e., 

L= LJ Tq 
qEQ 

for some transversal Q. Note that if q E L \ T, then T'q n Tq-1 = 0 since q2 has infinite order. 
Thus we may assume that q E Q => q-1 E Q as well. 

Now let µ be a unit in ZL. Then µ can be written µ = L µj qj with µj E ZT and the qj 
distinct elements of Q and, for any i, 

(2.1) 

1.L 

e;µ = ~ e;(µjqj) = ~ d.q, 
j=l 

where dj = e;µj E D;, since e; is central. Since L /T is a finitely generated torsion free 
abelian group, it can be ordered. Thus, in (2.1 ), we may assume that the qj are such that 
T q1 < T q2 < · · · < T q1.1. Similarly, we can write 

(2.2) 

with di E D; and Tq~ < Tq; < · · · < Tq~. 
Now, for a, b E D; and q, q' E L, 
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where, by the normality of D;, the elements a1,a2,b1,b2,b3 all belong to D;. From (2.1) and 
(2.2), it follows that e;µ · e;µ-1 can be written 

u v 

e;µ · e;µ-1 = LL djk · qjq~, where djk E D;. 
j=l k=l 

On the other hand , Artin's Theorem gives e;µ · e;µ-1 = e;; so, in fact, 
u v 

e; = L L dj k . qj q~. 
j=l k=l 

Now the left hand side of this expression has support in T, while the terms of the right hand 
side have supports in 

T q1 q~, T q1 q;, ... , T q'" q~. 
The first coset here is the unique smallest and the last the unique largest, and, if either u > 1 
or v > 1, these are different. Thus u = v = 1 so that eiµ = d;qi, d; E D;, and 

n n 

d; E D;, q; E L. 

This gives part (i) of the lemma. 
Continuing, we can also write 

(2.3) -J µ 
n 

= ~ q'd' 
~ii, 

1 

d; E Di. It is important to realize that there is no reason here to expect the q; or q; to be 
distinct. We can and do assume, however, that 

and 

Since for q,q' E L, a E D;, b E D, and i=/- j, 
o'o. · bq = q'(a1 · bq) = q'(a2b · q), 

a1, a2 E D;, this product is 0, so 
n 

1 = µ-1 µ = L q: d: . d; q;. 
J 

The left hand side has support in T while the terms of the right hand side have supports in 
Tq~ q1, .•• , Tq~ qn which are ordered Tq1 q~ s; · · · s; Tqnq~. If the first and the last of these 
cosets are different, we have a contradiction. Thus each Tq;q; = T, so each q;q; E T and, by 
choice of the transversal Q, each q; = q;-1. In the expression µ = 'i:,d;q;, collect equal q; and 
write 

µ = Lµqq 
qEQ 

where each µq E ZT is a sum of certain d;. Note that µqµq' = 0 if q =/- q' since the division rings 
represented by the d; in µ1 are all different from those represented in µ~. Since q; = q;-1, the 
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q"s in the expression (2.3) for µ-1 will collect exactly as the q's in the expression forµ, so that 
we have 

-1 ~ -1 µ = ~ q "« 
qEQ 

where both µqvq' = 0 and vqv1, = 0 if q =I- q'. Also, 

1 = µµ-1 = L µqq. r-1Vr· 
q,rEQ 

The left side has support in T while µqq · r-1vr does not, unless r = q. So 
1 = L µqq. q-lVq. 

qEQ 

Choose some µq0 =I- 0. Then we claim that (µqq · q-1vq)µq0qo = 0 if q =I- q0• To see why, observe 
first that the element in question can be expressed as a linear combination of terms of the form 
( aq . q-1 b )cq0 where b and c come from different D;, that 

(2.5) aq · q-1b = ( aq · q-1 )b1 = ab, 

(2.4) 

where b1 and b come from the sarne D;, and hence (aq · q-1b)cqo = ab, · cq0 = (ab1 • c1)q0 = 
( a1 · b1 c1 )q0, with a and a1 in the same division algebra, and c and c1 in the same division 
algebra. Thus (µqq · q-1vq)µq0qo = 0 since b,«. = 0. 

From (2.4), we now obtain µq0qo = (µq0qo ·tr;1vq0)µq0qo and, since x= xyx implies that xy is 
an idempotent, we see that µq0q0·q01vq0 is a (nonzero) idempotent, and as a calculation similar to 
(2.5) (using normality of T) shows, it's in ZT. Since idempotents in ZT are trivial (Lemma 2.2), 
'µqo qo . g·(;1 Vqo = 1. So g·c;1 Vqo' and therefore Vqo' are invertible. Similarly, µqo is invertible. Since 
µqvq0 = 0 for q =/- qo, it follows that µq = 0 for q =/- qo and µ = µq0qo E [U(ZT)]L. This 
completes the lemma. D 

3. Main Results. A Hamiltonian 2-loop is a nonabelian loop all of whose elements have 
order a power of 2 and in which all subloops are normal. It is well-known that the only 
Hamiltonian 2-loops which are Moufang are Q (the group of quaternions), C (the Cayley loop ) 
and direct products of Q and C with elementary abelian 2-groups. The following theorem shows 
that a result of Polcino Milies for group rings [13] holds also for alternative loop rings. 

Theorem 3.1. Let L be an RA loop and T its torsion subloop. Then the torsion units in the 
integral loop ring of L form a subloop ofU(ZL) if and only if T is an abelian group or a Moufang 
Hamiltonian 2-loop and, for every f E Land t E T, 1-1u E (t). 
Proof. Suppose the torsion units of ZL form a subloop. If T is associative, it is a group and 
the torsion units of the group ring ZT form a subgroup of the unit group of ZT since they are 
contained in the torsion units of ZL. By the known result for groups, the set of torsion units 
of T (that is to say, T itself) is an abelian or a Hamiltonian 2-group. Suppose that T is no: 
associative and hence an RA loop. Let a, b and u be three elements of T which do not associate 
and let G = (a, b, Z), where Z is the centre of L. Note that a and b do not commute, since 
commuting elements in an RA loop associate with every third element [8, Theorem 3]. Then 
L = M(G,*,u) and we claim that T = M(T(G),*,u), where T(G) is the torsion subgroup of 
G. The only point at issue here is the fact that T is the set union T( G) U T( G)u. For this, we 
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first note that T( G) t;;;; T and T( G)u t;;;; T because the elements of T( G)u are the products of 
torsion units (which form a loop). On the other hand, if x E T and also x E G, then x E T(G), 
while if x E T but x ~ G, then x = gu for some g E G, in which case g = xu-1 is the product 
oftorsion units, hence in T(G), giving x E T(G)u. So T = M(T(G),*,u) as asserted. 

Now the torsion units of ZT(G) form a subgroup of U(ZT(G)), so the set of torsion units 
of T( G) (i.e., T( G) itself) is an abelian group or a Harniltonian 2-group (by the known result 
for groups), but not abelian because it contains a and b. Thus T(G) = Q or Q x E, for some 
elementary abelian 2-group E. In the case T( G) = Q, we clairn that T = M ( Q, *, u) = C, the 
Cayley loop. For this first note that, in the case of Q, the involution * defined by (1.1), is just 
the map g 1-+ g-1. Secondly, since u and b are part of a triple of elements which do not associate, 
u and b do not commute, so (b,u) is a nonabelian group in an integral group ring where the 
torsion units form a subgroup. Thus (b, u) is Q or Q x E, E some elementary abelian 2-group, 
and, in either case, u2 is the generator of the centre of (b,u). In particular, u2-:/- 1. Thus u2 = s 
is the unique nonidentity commutator of Q, so T = M(Q,*,u) = C [8, preamble to Theorem 
l]. It remains to consider the possibility that T(G) = Q x E, where E is an elementary abelian 
2-group. As before, we note that * is necessarily the inverse map on Q x E and that u2 = (s, 1), 
s the generatorofthe centre ofQ. Thus T(G) = (Q X E,-1,u) = M(Q,-l,u1) x E = C x E, 
where u = ( u1, u2) E Q x E, [5, Lemma 5.2]. This completes the proof in one direction. 

In the other direction, we assume that the torsion subloop T of L is a loop which is either 
an abelian group or a Moufang Hamiltonian 2-loop and that 

(3.1) 

for every t E T and fl. E L. We first argue that in each case here, idempotents of QT are 
central in QL. If T is an abelian group, the idempotents of QT are group determined, that 
is, Q-linear combinations of idempotents of the form ]( = 111 LkEK k, ]( a subgroup of T [17, 
Proposition VI.1.16]. Since every subgroup of Tis normal in L by (3.1), every K is central and 
so every idempotent of QT is central in QL as claimed. If T = Q or Q x E, Coelho and Polcino 
Milies have explicitly determined the idempotents of T and noted that (3.1) implies that each 
is central in QL [6]. If T = C, then T = M(Q,-1,u) where u2 = s is the generator of the 
centre of Q. The group algebra QQ ~ 4Q (B H, H the division algebra of quaternions over Q, 
and the primitive idempotents corresponding to this decomposition are, respectively, 

e1 ½(1 +a+ a2 + a3 +b+ ab + a2 + a3b) = Q 
e2 ½(1 +a+ a2 + a3 - b - ab - ab - a3b) = a - Q 
e3 ½(1 - a+ a2 - a3 + b - ab + a2b - a3b) = b - Q 
e4 ½(1 - a+ a2 - a3 - b+ ab - a2b + a3b) = ";J - Q 
e5 ½(1 - a2). 

Here Q is presented as (a,b I a4 = 1,b2 = a2,ba = a3b) and we have written x for (:0. By 
expressing each idempotent as a linear combination of K's for various subgroups J{ of Q it is 
very clear why each is central. Now, remembering that the elements of C are those of Q U Qu, 
it is easy to see that in QC, for i= 1, 2, 3, 4, e, is the sum ei1 + e;2 of orthogonal idempotents 
ei1 = ½(1 + u)e; and e;2 = ½(1 - u)ei and that (QC)e;j ~ Q. (The important thing to note 
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is that u2 = a2 and a2e; = e;.) Thus QC =::: 8Q EB C where C =::: (QC)es is the Cayley division 
algebra. (See also (7, p. 3983].) Since es and each of the e;j are of the form x+yu, with x central 
in QQ and a2y = y, and since a2 = s, the unique commutator in C, it follows that e5 and all the 
eij are central in QL (see (1.2) and (1.3)). Since QC is the direct sum of division algebras with 
identities e

5 
and the e;j, the only idempotents in QC are linear combinations of the primitive 

ones and hence central. The case T = C x E is similar. Here, the loop algebra QT is the loop 
algebra of C with coefficients in QE which is the direct sum of fields Q; with identities Ei. In 
this case, Coelho and Polcino Milies have shown that the primitive idempotents of (QE)Q are 
E;ej, with the ej, j = 1, ... , 5, as above. It follows that the primitive idempotents of Q( C x E) 
are E;e

5 
and ½(1 ± u)E;ej, j= 1,2,3,4. These are central in QL and hence all idempotents are. 

Note that our arguments here have also shown that if Tis a Moufang Hamiltonian 2-loop, the 
loop algebra QT is the direct sum of division algebras, something which is also certainly true 
if T is abelian. Thus the hypotheses of Lernma 2.3 are satisfied. 

Now let µ be a torsion unit in ZL. Replacing L by the subloop generated by the support 
of µ, we can assume that L is finitely generated. By Lemma 2.3, µ = vf where v E ZT and 
f E L. Since µn = 1 for some n and since (3.1) implies that (vft can be written in the form 
,fn where I E ZT, we have r = ,-1. So gn has support in T and, since it's an element of L, 
r E T. Thus f E T and µ E U(ZT). Since T is abelian or a Hamiltonian 2-loop, the torsion 
units of ZT are trivial [9] and hence form a subloop. This completes the proof. D 

The following corollary is the nonassociative analogue of a lemma of Polcino Milies [13]. 

Corollary 3.2. The torsion units of an alternative loop ring form a subloop if and only if they 
are trivial. 
Proo]. One direction is obvious and the other became obvious in the last steps of our proof. D 

We shall now show that several properties of the loop of units in ZL, known to be equivalen t 
for groups which are finite [14], are always equivalent when L is an RA loop (finite or infinite). 
In doing so, we shall use some ideas of Vikas Bist [2]. 

In general, in an arbitrary loop, it is not true that conjugacy is an equivalence relation 
because it need not be transitive. However, as in group theory, we shall say that a loop L is an 
FC loop if, for each f E L, the set { x-1 fx I x E L} is finite. From ( 1.4) we see that RA loops 
are FC loops. 

A loop L is n-Engel if for any x, y E L, the extended commutator ( ... ( (x, y ), y), ... , y) ( with 
y repeated n times) is the identity. Since commutators of an RA loop are central, an RA loop 
is 2-Engel ( and hence n-Engel for all n 2". 2). 
Theorem 3.3. Let L be an RA loop with torsion subloop T. Then the following are equivalent: 

(i) U(ZL) is an RA loop. 
(ii) U(ZL) is FC. 
(iii) U(ZL) is nilpotent. 
(iv) U(ZL) is nilpotent of class 2. 
(v) [U(ZL)]' is a torsion loop. 
(vi) [U(ZL)]' is a group of order 2. 
(vii) U(ZL) is n-Engel for some n 2". 2. 
(viii) U(ZL) is 2-Engel. 
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(ix) T is an abelian group or a Moufang Hamiltonian 2-loop and, for any t E T and any 
x E L, we have xr+t» = t±1. Moreooer, if T is abelian and x E L is an elemeni that 
does not centralize T, the n x- 1 tx = r 1 J or all t E T. 

Proo]. We show that each of conditions (i) through (viii) is equivalent to (ix). First, notice 
that each of conditions (i) to (vi) guarantees that TU(ZL) is a subloop, hence that T is an 
abelian group or a Moufang Hamiltonian 2-loop, by Theorem 3.1. In the case that U(ZL) is 
RA, Lemma 2.1 gives this to us. If U(ZL) is FC, and if 0: and /J are torsion units of ZL, then 
the subgroup which they generate is FC ( a subloop of an FC loop is clearly FC) and it contains 
the torsion units 0: and (3. Since the torsion units of an FC group form a subgroup [16, Chapter 
15], 0:/3 is a torsion unit. The argument in the case U(ZL) is nilpotent is essentially the same. 
If U(ZL) is nilpotent and 0: and /J are torsion units of ZL, then the group which they generate 
is nilpotent. Since the torsion elements of a nilpotent group form a subgroup, it follows again 
that 0:/3 is a torsion unit. If [U(ZL )]' is a torsion subloop, and if 0: and /J are torsion units, then 
for any n, (a/Jt == o,n(Jnc, for some c in the commutator subloop of U(ZL). Thus, for some n, 
(0:/Jt is in [U(ZL)]' and hence of finite order. So again we see that a/J has finite order. In the 
case that U(ZL) is n-Engel, we argue differently. In this case, for each element x E Land each 
t E T, we know that (x, t) is a group contained in L whose group ring is therefore n-Engel. So 
we can apply the argument in [2, §2] to Z(x, t) and obtain directly that every subloop of T is 
normal in L; so T is an abelian group or a Moufang Hamiltonian loop which is necessarily a 
2-loop ( otherwise, its loop ring would contain a free noncyclic group [11]). Hence, in all cases, 
Tis an abelian group or a Moufang Hamiltonian 2-loop. Also, if x E Land t E T, by applying 
another argument from §2 of [2] to the group (x, t), we see, in addition, that, x-1tx == t±1. If 
Tis abelian and x E L does not centralize T, there exists at least one element t1 E T such that 
x-1t1x = t11. Then, given any other t E T, since ti and t commute, they associate with every 
other element x E L, so (x,t1,t) is a group. Further arguments in [2] now give x-1tx = r1

. 

Thus, each of conditions (i) through (viii) implies (ix). Now we show that condition (ix) implies 
all the other conditions of the theorem. 

Assuming (ix), we first notice that if Tis a Moufang Hamiltonian 2-loop, then U(ZT) == ±T 
[9] so U(ZL) == ±L by Lemma 2.3. Suppose Tis commutative. Here the arguments in [2, §3] 
show that U(ZL) == r L, r == {, E U(ZT) \ , == ,'} where, for , = L ,tt, ,' is defined to be 
L,tr1• We claim that every, E r is central. For this, let, E r and note that o' is certainly 
central if every t in the support of , is central. 0n the other hand , if some t in the support 
of 1 is not central, then for some x E L, x-1tx = r1 for every t E T. Since xr+t» E { t, t·} 
( see ( 1.4)), we have r 1 E { t, t•} for all t ( since T is commutative). If r 1 == t, then t is central 
(because x-1tx == t±1 for all x), so t• = t and r1 = t = t*. Thus, for any t, we have r1 = t*, 
so ,' = ,• (see (1.2)) and again we have that v E r is central, by (1.3). 

Summarizing, we have shown that whether T is an abelian group or a Moufang Hamiltonian 
2-loop, we have 

U(ZL) = r L 
where r is a group contained in Z(U(ZL)). From this fact, it is clear that U(ZL) is nilpotent 
and 2-Engel. It is also clear that this loop has a unique nonidentity commutator and the limited 
commutativity property (see [4]) and hence is RA, thus FC (as remarked earlier) and with a 
commutator subloop of order 2. Thus condition (ix) implies all of conditions (i) through (viii) 
and the theorem is complete. 0 
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