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ON THE LOOP OF UNITS OF AN
ALTERNATIVE LOOP RING

Edgar G. Goodaire and César Polcino Milies

ABSTRACT. An RA loop is a Moufang loop whose loop rings, in characteristic different
from 2, are alternative but not associative. In this paper, we determine the class of RA
loops in whose integral loop rings the torsion units form a subloop and show how this
property relates to many other properties of the unit loop. For example, we determine
the conditions under which the unit loop of the integral loop ring of an RA loop is also
an RA loop.

1. Introduction. Scattered throughout the fascinating theory of integral group rings are
theorems giving conditions under which the only units, or the only torsion units, are trivial. (A
unit of ZG is trivial if it is of the form +g for some g € G.) The earliest of these is a theorem
of Graham Higman which says that ZG has only trivial units if and only if G is an abelian
group of exponent 2, 3, 4 or 6, or a Hamiltonian 2-group [12]. S. D. Berman proved a similar
theorem giving conditions under which just the forsion units (those of finite order) are trivial
[1]. Later, M. M. Parmenter and C. Polcino Milies showed that for finite &G, the condition that
ZG have only trivial torsion units is equivalent to several others, the most fundamental being
that the torsion units of ZG should form a subgroup of the full unit group [14]. This theorem
was later extended by the second author to arbitrary groups [13].

In the last ten years, there has developed a theory of alternative loop rings and it has become
clear that many of the theorems of group rings hold also in the nonassociative setting. The
theorems of Higman and Berman, for example, extend to alternative loop rings [9]. In a similar
vein, it is the purpose of this paper to determine conditions under which the torsion units of a
loop ring form a subloop and to explore the consequences of this property.

An alternative ring is a ring in which the alternative laws

z(zy) = ¢’y and (yz)z = ya?

are valid. For us, the most important property of an alternative ring is a theorem of E. Artin
which says that the subring generated by any two elements of an alternative ring is associative
[18]. If L is a loop whose loop ring RL over a ring of characteristic different from 2 is an
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alternative, but not associative, ring, we call L an RA (ring alternative) loop. The following
theorem, which is implicit in [4] and clarified in [10], is fundamental.

Theorem 1.1. A loop L is RA if and only if
(i) L = G UGu us the disjoint union of a nonabelian group G and a single coset Gu;
(ii) G has a unique nonidentity commutator, s, which is necessarily central and of order 2;
(i) the map

«_ [ g ifg s central
(L.1) e d = { sg otherwise

is an involution of G (i.e., an antiautomorphism of order 2);
(iv) maultiplication in L is defined by

g(hu) = (hg)u
(gu)h = (gh")u
(gu)(hu) = goh'g

where gy = u? is a central element of G. Moreover, the group G can be taken to be any
group generated by the centre of L and two elements of L which do not commute.

The loop described in this theorem is denoted M (G, *,u). It is a Moufang loop and therefore
has the property that any two elements generate a group. (We refer the reader to the recent
text by Pflugfelder [15] for an introduction to the theory of loops and, in particular, of Moufang
loops.) In loop theory, a subloop N of a loop L is normal provided

NZ = EN, (Nfl)fz = N(Elﬁz), (EIN)EZ = EI(NEQ) and KI(EQN) — (leg)N

for any £,4,,{, € L. We will have cause to use the fact that, if L is RA, these conditions
are equivalent to the single condition N{ = £N for all £. (Actually, this property holds more
generally for RA2 loops; that is, for loops whose loop rings in characteristic 2 are alternative
[5, Corollaries 2.4 and 2.11].)

Since, for L = M(G,*,u), the elements of L are those of G U Gu, it is easy to see that any
element a = )" a,f in the loop ring RL can be expressed in the form o = z + yu, where z and
y are in the group ring RG. Also, the involution on G extends to L by setting (gu)* = s(gu),
and then to an involution on RL which can be expressed in equivalent forms:

(1.2) (Z al)” = Zalf* or (z4yu)" =2z + syu.

In this paper, Z(X) denotes the centre of a group or ring X. It is important to remember
that if X is not associative, the centre of X is the set of elements which commute with all other
elements and associate with all other pairs of elements. The centre of an alternative loop ring

RL is
(1.3) Z(RL)={a € RL |a" =a}

[10]. The group or loop of units (invertible elements) in a ring R is denoted U(R) while TU(R)
is the group or loop of torsion units in R (i.e., those units which have finite order). The
commutator subloop of a loop L is denoted L'.
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If L = M(G,*,u) is an RA loop, then Z(L) = 2(G) and L' = G' = {1,s}. Consequently,
for any z,£ € L,

(1.4) e Uz € {£,0°} C {4, sL}.

2. Some Basic Lemmas. The following lemma is not generally true for groups, but it
holds for RA loops, as a consequence of their rather special nature.

Lemma 2.1. Let T denote the set of torsion elements of an RA loop L. Then T is a normal
subloop of L. If L is finitely generated, then T is finite.

Proof. 1t is sufficient to prove that 7' is closed under inverses and products. Clearly it is closed
under inverses. Now if a and b are elements of " which commute, then certainly ab € 7. On
the other hand, if @ and b do not commute, then ab is again of finite order since, for n > 0,

(ab)" = a"d" if n=0or 1 (mod 4)
T sa”b” if n=2or3 (mod 4)

and s is central of order 2. So T is a subloop. Next, note that for ¢t € T and £ € L, £~'t{ has
the same order as t, so £~'T¢ C T and T = {T which, as we have mentioned, implies that T'is
normal. Now suppose that L is finitely generated. Since L' C T' (because s* = 1) and since s is
both a unique nonidentity commutator and associator in L [8, Theorem 3], T//L’ is a subgroup
of the finitely generated abelian group L/L'. So T//L'is a finitely generated torsion abelian
group and hence finite. [

It is an open question whether or not an integral group ring has idempotent elements other
than 0 and 1, but the situation is clear with RA loops.

Lemma 2.2. Suppose L = M(G,*,u) is an RA loop. Then the idempotents of ZL are trivial;
i.e., equal to 0 or 1.

Proof. We first claim that the idempotents of ZG are trivial. For this, let e € ZG' be idempotent.
Replacing G by the subgroup generated by the support of €, we may assume that G is finitely
generated. Let T(G) and T(L) denote the torsion units of G and L respectively. Since T(G) €
T(L) N G, the previous lemma shows that 7'(G) is a finite subgroup of G. Since G' C T(G),
G/T(G) is a finitely generated abelian group, hence polycyclic. By [17, Theorem 1.2.20], e is
trivial. Now suppose e is an idempotent in ZL. Write e = 2 4+ yu with « and y in the group
ring ZG and observe that
e’ = (2 +goyy’ )+ (ye+ys u=e = yle+27)=y = ylz+az")" =y

for all n > 1. Let Z = Z(L) and express z in theform ¢ = 3 .z 2,9+ ¢z @,g9. Remembering
that ¢* = sg for g ¢ Z, it is easy to see that z + 2" = 22, + (14 s)z, for some central element
z, € ZG. Tt follows that the coefficients of (z + z*)?, when expressed as a linear combination
of group elements, are even and hence, for any k > 0, (z + z*)zk has coefficients divisible by 2*.

Thus y = y(z + x*)zk has coefficients divisible by 2* for any k& > 0. This cannot happen unless
y = 0 in which case e = z € ZG where we have already shown that idempotents are trivial. O

In what follows, we need to be sure that a lemma of Sehgal remains true in the nonassociative
setting [17, Lemma VI1.3.22].
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Lemma 2.3. Let L be a finitely generated RA loop and T its normal torsion subloop. Suppose
that QT = D, & -+ @ D is the direct sum of division rings and that every idempotent of QT

is central in QL. Then
(i) Every unit p € ZL can be written in the form p =Y dili, with d; € Dy, £; € L, and
(i) U(ZL) = [U(ZT))L.

Proof. Write 1 = S e, for idempotents €1,€z,..- ;€n of QT. Since D; = (QT)e;, since e; is
central in QL (by hypothesis) and since T is normal in L, the division ring D; is also norma!

in QL in the sense that
Dia = aD;, (Dia)B = Di(aB), (aD;)B = a(D;f3), and a(BD;) = (af)D;

for any «,3 € QL. These facts are not hard to see. By linearity, it is sufficient to establish each
i the case that a and 3 are elements of L. So, to obtain (Dif1)l; = Di(£,£y) for £y, L2 € L, for
example, let d € D;, write d= (T dit)e = Sdi(te;), d € Q,t €T and use

((te)hally = [H(eata)}le = [t(bres)llr = [(t1)edls = (th)(eil) = (t)(Loes) = [(L1)La]es
= [t'(£1ls))es, for some t' € T',
= t[(tts)e] = ]e(bko)] = (Fe)(bile)
to conclude that (df;)f; = d'(£,4;) for some d € D;. Since T is normal in L, L has a decompo-

sition as the disjoint union of cosets of T [3, §V.1]; e,

L= UTq

q€eQ

for some transversal Q. Note that if ¢ € L \ T, then T'q N Tq™' = () since ¢* has infinite order.
Thus we may assume that ¢ € Q = g ' € Q as well.

Now let g be a unit in ZL. Then p can be written p = S u;g; with p; € ZT and the g;
distinct elements of @ and, for any ¢,

(2.1) =3 elng) = ) did
j=1

where d; = e;u; € D;, since é; is central. Since L/T is a finitely generated torsion free
abelian group, it can be ordered. Thus, in (2.1), we may assume that the ¢; are such that
Tq <Tgx <+ <Tqu. Similarly, we can write

(2.2) eill—l = ngq;
Jj=1

with d; € D; and Tgy < Tgg = v+ < Tq,.
Now, for a,b € D; and ¢,¢' € L,

ag; - bgy, = a1(g; -bg) = a1(gib Q) = ay(b2g; cq) = ar(bs- 4 Q) = a2by - 459
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where, by the normality of D;, the elements a;,as,b,,b,,b5 all belong to D;. From (2.1) and
(2.2), it follows that e;u - e;u~! can be written

e et = szﬂf -q;qx, where d;; € D;.

=1 k=1
On the other hand, Artin’s Theorem gives e;u - €;u~1 = €;; so, in fact,
u v
€ = szﬂc 'qjq;c'
J=l k=1

Now the left hand side of this expression has support in T, while the terms of the right hand
side have supports in

Tadi, Ta1gs, -, Tqug,-
The first coset here is the unique smallest and the last the unique largest, and, if either u > 1
or v > 1, these are different. Thus v = v = 1 so that e;u = d;q;, d; € D;, and

n n

ﬂ:(zez’),u:ZdiQi, d; € D;, g; € L.

1 1

This gives part (i) of the lemma.
Continuing, we can also write

(2.3) pl=Ygd,
1
d; € D;. It is important to realize that there is no reason here to expect the ¢; or ¢! to be
distinct. We can and do assume, however, that
Tq <Tg<---<Tq, and  Tq; <Tqy <---<Tyq,
Since for q,¢' € L,a € D;, b€ D; and ¢ # j,
qa-bg=q'(a; bq) = ¢'(ab-q),
a;,a, € D;, this product is 0, so

l=p'p=)" qdi-dig.
1

The left hand side has support in T" while the terms of the right hand side have supports in
Tq¢,q1,--.,1q,q, which are ordered T'q;q; < --- < Tq,q,. If the first and the last of these
cosets are different, we have a contradiction. Thus each T'q/q; = T, so each ¢!¢; € T and, by
choice of the transversal Q, each ¢/ = ¢;'. In the expression p = . d;q;, collect equal ¢; and

write
DY
qg€Q

where each p, € ZT is a sum of certain d;. Note that p,p, = 0if ¢ # ¢’ since the division rings
represented by the d; in y, are all different from those represented in u/. Since ¢/ = ¢;', the
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q"’s in the expression (2.3) for p=! will collect exactly as the ¢’s in the expression for u, so that

we have
H_l = Z q_ll/q

q9€Q

where both p,v, = 0 and v,v, = 0if ¢ # ¢'. Also,

I=pp = Y, g T Y
q,reQ

The left side has support in T while y,q - 7~ v, does not, unless r = g. So

(2.4) L= mq g v
q€Q

Choose some j,, # 0. Then we claim that (u,q-q¢~'v)pte,90 = 0if ¢ # go. To see why, observe
first that the element in question can be expressed as a linear combination of terms of the form

(aq - ¢~ *b)egy where b and ¢ come from different D;, that
(2.5) ag- ¢ 'b=(ag- ¢ ")b; = ab,

where b; and b come from the same D;, and hence (ag - ¢ 'b)cgy = ab; - cqy = (ab, - ¢,)qy =
(a; - bie1)qo, with @ and @, in the same division algebra, and ¢ and ¢; in the same division
algebra. Thus (p,q - ¢ 'vy)e,qo = 0 since byc; = 0.

From (2.4), we now obtain #,,q0 = (Kg,90 - 45 ' V4o )lqoqo and, since z = zyz implies that 2y is
an idempotent, we see that 1, go-¢y ', is a (nonzero) idempotent, and as a calculation similar to
(2.5) (using normality of T') shows, it’s in ZT'. Since idempotents in ZT are trivial (Lemma 2.2),

Moo 0 Vg = 1. So g5 vy, and therefore v, , are invertible. Similarly, p,, is invertible. Since
PV, = 0 for ¢ # qo, it follows that p, = 0 for ¢ # g0 and pu = p,,q0 € [U(ZT)]L. This
completes the lemma. [J

3. Main Results. A Hamuiltonian 2-loop is a nonabelian loop all of whose elements have
order a power of 2 and in which all subloops are normal. It is well-known that the only
Hamiltonian 2-loops which are Moufang are @ (the group of quaternions), C' (the Cayley loop)
and direct products of @ and C' with elementary abelian 2-groups. The following theorem shows
that a result of Polcino Milies for group rings [13] holds also for alternative loop rings.

Theorem 3.1. Let L be an RA loop and T its torsion subloop. Then the torsion units in the
integral loop ring of L form a subloop of U(ZL) if and only if T is an abelian group or a Moufang
Hamiltonian 2-loop and, for every L € L andt € T, £'tL € (t).

Proof. Suppose the torsion units of ZL form a subloop. If T' is associative, it is a group and
the torsion units of the group ring ZT' form a subgroup of the unit group of ZT since they are
contained in the torsion units of ZL. By the known result for groups, the set of torsion units
of T (that is to say, T itself) is an abelian or a Hamiltonian 2-group. Suppose that T is no:
associative and hence an RA loop. Let a, b and u be three elements of 7" which do not associate
and let G = (a,b, Z), where Z is the centre of L. Note that a and b do not commute, since
commuting elements in an RA loop associate with every third element [8, Theorem 3]. Then
L = M(G,*,u) and we claim that T = M(T(G),*,u), where T(() is the torsion subgroup of
G'. The only point at issue here is the fact that 7" is the set union T(G)U T(G)u. For this, we
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first note that 7(G) C T and T(G)u C T because the elements of T'(G')u are the products of
torsion units (which form a loop). On the other hand, if z € T and also € 7, then z € T(G),
while if z € T but z ¢ G, then z = gu for some g € G, in which case g = zu™" is the product
of torsion units, hence in T(G), giving z € T(G)u. So T = M(T(G),*,u) as asserted.

Now the torsion units of ZT(G) form a subgroup of U(ZT(G)), so the set of torsion units
of T(G) (i.e., T(G) itself) is an abelian group or a Hamiltonian 2-group (by the known result
for groups), but not abelian because it contains a and b. Thus T(G) = @ or @ x E, for some
elementary abelian 2-group E. In the case T(G) = @, we claim that T = M(Q,*,u) = C, the
Cayley loop. For this first note that, in the case of (), the involution * defined by (1.1), is just
the map ¢ — ¢~ '. Secondly, since u and b are part of a triple of elements which do not associate,
u and b do not commute, so (b,u) is a nonabelian group in an integral group ring where the
torsion units form a subgroup. Thus (b,u) is @ or @ x E, E some elementary abelian 2-group,
and, in either case, u? is the generator of the centre of (b,u). In particular, u® # 1. Thus u*> = s
is the unique nonidentity commutator of @, so T' = M(Q,*,u) = C [8, preamble to Theorem
1]. It remains to consider the possibility that T(G) = @ x E, where E is an elementary abelian
2-group. As before, we note that # is necessarily the inverse map on ¢ x E and that u* = (s,1),
s the generator of the centre of Q. Thus T(G) = (@ x E,~1,u) = M(Q,-1,u;) x E = C x E,
where u = (u;,u5) € @ X E, [5, Lemma 5.2]. This completes the proof in one direction.

In the other direction, we assume that the torsion subloop 7" of L is a loop which is either
an abelian group or a Moufang Hamiltonian 2-loop and that

(3.1) 1t e (t).

for every t € T and £ € L. We first argue that in each case here, idempotents of QT are
central in QL. If T is an abelian group, the idempotents of QT are group determined, that
is, Q-linear combinations of idempotents of the form K= 'K, Y kek K, K a subgroup of T' [17,

Proposition VI.1.16]. Since every subgroup of T' is normal in L by (3.1), every K is central and
so every idempotent of QT is central in QL as claimed. If T = @ or @ x E, Coelho and Polcino
Milies have explicitly determined the idempotents of 7" and noted that (3.1) implies that each
is central in QL [6]. If T = C, then T = M(Q,—1,u) where u* = s is the generator of the
centre of . The group algebra QQ = 4Q & H, H the division algebra of quaternions over Q,
and the primitive idempotents corresponding to this decomposition are, respectively,

er = i(l+a+a®+a®+b+abta®+a’h)= Q
e = Hltota®fa® - b—ab—a—a%):& Q
es = s(l-a+a®-ca*+b-ab+a’-a’ )—_— Q
es = s(1-a+a*—d®>—b+ab-a’b+a’)= —{
es = 3(1-a?).
Here () is presented as (a,b | a* = 1,b* = a*,ba = a3b> and we have written z for </L\> By

expressing each idempotent as a linear comblnatlon of K’s for various subgroups K of @ it is
very clear why each is central. Now, remembering that the elements of ' are those of Q U Qu,
it is easy to see that in QC, for v = 1,2,3,4, ¢, is the sum e;; + e;5 of orthogonal idempotents
L(1 + u)e; and e;; = 3(1 — u)e; and that (QC)e;; = Q. (The important thing to note

€1 = 5
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‘s that u? = a2 and a%e; = ¢;.) Thus QC = 8Q & C where C = (QC)es is the Cayley division
algebra. (See also [7, p. 3983].) Since e5 and each of the e;; are of the form z+yu, with z central
in QQ and a’y = ¥, and since a® = s, the unique commutator in C, it follows that e5 and all the
e;; are central in QL (see (1.2) and (1.3)). Since QC is the direct sum of division algebras with
identities es and the e;;, the only idempotents in QC are linear combinations of the primitive
ones and hence central. The case T = C x E is similar. Here, the loop algebra QT is the loop
algebra of C with coefficients in QE which is the direct sum of fields ; with identities ¢;. In
this case, Coelho and Polcino Milies have shown that the primitive idempotents of (QE)Q are
€;€e;, with the e;, j = 1,...,5, as above. It follows that the primitive idempotents of Q(C' x E)
are ¢;es and -12—(1 + u)ee;, j = 1,2,3,4. These are central in QL and hence all idempotents are.
Note that our arguments here have also shown that if 7' is a Moufang Hamiltonian 2-loop, the
loop algebra QT is the direct sum of division algebras, something which is also certainly true
if T is abelian. Thus the hypotheses of Lemma 2.3 are satisfied.

Now let y be a torsion unit in ZL. Replacing L by the subloop generated by the support
of p, we can assume that L is finitely generated. By Lemma 2.3, p = v{ where v € ZT and
¢ € L. Since p* = 1 for some n and since (3.1) implies that (v£)" can be written in the form
y0* where v € ZT', we have {" = 4=1. So £" has support in T and, since it’s an element of L,
/e T. Thus £ € T and p € U(ZT). Since T is abelian or a Hamiltonian 2-loop, the torsion
units of ZT are trivial [9] and hence form a subloop. This completes the proof. [

The following corollary is the nonassociative analogue of a lemma of Polcino Milies [13].

Corollary 3.2. The torsion units of an alternative loop ring form a subloop if and only if they
are trivial.

Proof. One direction is obvious and the other became obvious in the last steps of our proof. [

We shall now show that several properties of the loop of units in ZL, known to be equivalent
for groups which are finite [14], are always equivalent when L is an RA loop (finite or infinite).
In doing so, we shall use some ideas of Vikas Bist [2].

In general, in an arbitrary loop, it is not true that conjugacy is an equivalence relation
because it need not be transitive. However, as in group theory, we shall say that a loop L is an
FC loop if, for each £ € L, the set {z7'fz |z € L} is finite. From (1.4) we see that RA loops
are F'C loops.

A loop L is n-Engel if for any z,y € L, the extended commutator (...((z,¥),y),...,y) (with
y repeated n times) is the identity. Since commutators of an RA loop are central, an RA loop
is 2-Engel (and hence n-Engel for all n > 2 )

Theorem 3.3. Let I be an RA loop with torsion subloop T. Then the following are equivalent:
(i) U(ZL) is an RA loop.

)

) U(ZL) is nilpotent.

) U(ZL) is nilpotent of class 2.

(v) [U(ZL)] is a torsion loop.

(vi) [U(ZL)) is a group of order 2.

(vii) U(ZL) is n-Engel for some n > 2.
) U(ZL) is 2-Engel.

25
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(ix) T is an abelian group or a Moufang Hamiltonian 2-loop and, for any t € T and any
z € L, we have z~ 'tz = t¥'. Moreover, if T is abelian and = € L is an element that
does not centralize T, then t='tz = t~! for allt € T.

Proof. We show that each of conditions (i) through (viii) is equivalent to (ix). First, notice
that each of conditions (i) to (vi) guarantees that TU(ZL) is a subloop, hence that 7" is an
abelian group or a Moufang Hamiltonian 2-loop, by Theorem 3.1. In the case that U(ZL) is
RA, Lemma 2.1 gives this to us. If /(ZL) is FC, and if o and 3 are torsion units of ZL, then
the subgroup which they generate is FC (a subloop of an FC loop is clearly FC) and it contains
the torsion units o and 3. Since the torsion units of an FC group form a subgroup [16, Chapter
15], af is a torsion unit. The argument in the case U(ZL) is nilpotent is essentially the same.
If U(ZL) is nilpotent and o and 3 are torsion units of ZL, then the group which they generate
is nilpotent. Since the torsion elements of a nilpotent group form a subgroup, it follows again
that af3 is a torsion unit. If [(/(ZL)]’ is a torsion subloop, and if @ and /3 are torsion units, then
for any n, (af)" = a" "¢, for some c in the commutator subloop of U(ZL). Thus, for some n,
(af)" is in [U(ZL)] and hence of finite order. So again we see that a3 has finite order. In the
case that U(ZL) is n-Engel, we argue differently. In this case, for each element z € L and each
t € T, we know that (z,t) is a group contained in L whose group ring is therefore n-Engel. So
we can apply the argument in [2, §2] to Z(z,t) and obtain directly that every subloop of 7" is
normal in L; so T is an abelian group or a Moufang Hamiltonian loop which is necessarily a
2-loop (otherwise, its loop ring would contain a free noncyclic group [11]). Hence, in all cases,
T is an abelian group or a Moufang Hamiltonian 2-loop. Also, if z € L and ¢t € T', by applying
another argument from §2 of [2] to the group (z,t), we see, in addition, that, 2z~ 'tz = t*'. If
T is abelian and z € L does not centralize T, there exists at least one element ¢; € T" such that
¢~ 'tyz = t7'. Then, given any other t € T, since t; and ¢t commute, they associate with every
other element z € L, so (z,1;,t) is a group. Further arguments in [2] now give z~ 'tz = ¢~
Thus, each of conditions (i) through (viii) implies (ix). Now we show that condition (ix) implies
all the other conditions of the theorem.

Assuming (ix), we first notice that if T' is a Moufang Hamiltonian 2-loop, then U(ZT) = £T
[9] so U(ZL) = +L by Lemma 2.3. Suppose T is commutative. Here the arguments in [2, §3]
show that U(ZL) = TL, T = {y € U(ZT) | v = 7'} where, for v = 3.1, 7' is defined to be
27,71, We claim that every y € [ is central. For this, let v € T' and note that v is certainly
central if every ¢ in the support of 7 is central. On the other hand, if some ¢ in the support
of 7 is not central, then for some ¢ € L, z~ 'tz = t~! for every t € T. Since z~'tz € {t,t"}
(see (1.4)), we have t=! € {t,¢*} for all t (since T is commutative). If t™' = ¢, then ¢ is central
(because z~'tz = t*! for all z), so t* =t and t™' = t = ¢*. Thus, for any ¢, we have =t =4,
so 7" = 7" (see (1.2)) and again we have that v € I is central, by (1.3).

Summarizing, we have shown that whether T is an abelian group or a Moufang Hamiltonian
2-loop, we have

UZL)=TL
where I is a group contained in Z(U(ZL)). From this fact, it is clear that #(ZL) is nilpotent
and 2-Engel. It is also clear that this loop has a unique nonidentity commutator and the limited
commutativity property (see [4]) and hence is RA, thus FC (as remarked earlier) and with a
commutator subloop of order 2. Thus condition (ix) implies all of conditions (i) through (viii)
and the theorem is complete. [J
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