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Abstract 

Despite the important roles that marine sponges play in ecosystem functioning and structuring, little is known about how the sponge 
holobiont responds to local anthropogenic impacts. Here we assess the influence of an impacted environment (Praia Preta) on the 
micr obial comm unity associated with the endemic sponge Aplysina caissara in comparison to a less-impacted area (Praia do Guaecá) 
from the coast of São Paulo state (Br azil, southw estern Atlantic coast). We hypothesized that the local anthropogenic impacts will 
change the microbiome of A. caissara and that the community assembly will be driven by a different process (i.e. deterministic versus 
stochastic) under distinct levels of impact. The microbiome at the amplicon sequence variants level was found to be statistically 
distinct between sponges from the different sites, and this was also seen for the microbial communities of the surrounding seawater 
and sediments. Microbial communities of A. caissara from both sites were found to be assembled by deterministic pr ocesses, ev en 

though the sites presented distinct anthropogenic impacts, showing a pi v otal r ole of the sponge host in selecting its own microbiome. 
Overall, this study revealed that local anthropogenic impacts altered the microbiome of A. caissar a ; howe ver, assembly processes are 
largely determined by the sponge host. 

Ke yw or ds: porifer a, bar coding, local pollution, community structure, deterministic and stochastic processes, southwestern atlantic 
coast 
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Introduction 

Marine sponges (phylum Porifera) are k e y components of benthic 
comm unities, wher e they play essential roles in ecosystem func- 
tioning (Bell 2008 ). They also harbor complex bacterial, archaeal,
fungal, and micro-eukaryotic microbiomes (Hardoim et al. 2021a ,
Thomas et al. 2016 , De Mar es et al. 2017 , Moitinho-Silv a et al. 2017 ,
Nguyen and Thomas 2018 , Nascimento-Silva et al. 2022 ). The sym- 
biotic bacterial and archaeal communities have been shown to be 
stable over time (Hardoim and Costa 2014 , Cárdenas et al. 2019 ),
season (Erwin et al. 2015 ), geogr a phical locations (Cárdenas et al.
2018 ), and depth (Steinert et al. 2016 ). Other studies e v aluated how 

sponge micr obiomes r espond to v arious str essors, including tem- 
per atur e, acidification, eutrophication, sedimentation (Pita et al.
2018 ), carbonate chemistry (Morrow et al. 2015 ), nutrients (Simis- 
ter et al. 2012 , Luter et al. 2014 ), heavy metals (Tian et al. 2014 ,
Gantt et al. 2017 ) and crude oil (Luter et al. 2019 ). In contr ast, v ery 
little is known about how sponge-associated symbiont communi- 
ties respond to general local anthropogenic impacts, such as pol- 
lutants. 

The assembly of sponge microbiomes will most likely involve 
deterministic and/or stochastic processes (Zhou and Ning 2017 ).
Deterministic processes presume that species traits, interspecies 
inter actions (e.g. m utualism, pr edation, competition) and envi- 
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onmental factors (e .g. nutrients , temperature , salinity) shape the
ssembl y of micr obial comm unities (Vellend 2010 , Zhou and Ning
017 ). In the case of sponge-associated bacterial communities,
his may be driven by host traits, microbe-microbe interactions 
nd/or environmental conditions (Hardoim et al. 2021a , De Mares
t al. 2017 , Steinert et al. 2017 , 2019 ). In addition, stochastic pro-
esses (e.g. immigr ation, spatio-tempor al v ariation, historical con-
ingency) have also been shown to influence microbial community 
ssembly (Chen et al. 2017 , Zhou and Ning 2017 ). Both processes
r e now r ecognized to occur concomitantl y and show the speci-
city of the interaction with the host (Gravel et al. 2006 , Chase
nd Myers 2011 , Stegen et al. 2016 , Zhou and Ning 2017 ). Micro-
ial species likel y hav e a differential ability to participate in or
e influenced by deterministic and stoc hastic pr ocesses (P andit et
l. 2009 , Székely and Langenheder 2014 ). Ho w e v er, whether pollu-
ants have an impact on the balance of these processes in sponge

icrobiomes has not been studied. 
The 700-km coast of São Paulo state (Southeast Brazil) is con-

idered one of the benthic biodiversity hotspots of the Southwest- 
rn Atlantic (Soares et al. 2017 ) and marks the transition between
ropical and warm temperate ecoregions (Spalding et al. 2007 ).
long this coastline, the region of São Sebastião hosts over 70 de-
cribed sponge species (Custódio and Hajdu 2011 ) and could be
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onsidered a local hotspot of sponge biodiversity in Brazil. The
ão Sebastião Channel (SSC) divides the continental area of São
ebastião from the São Sebastião Island and contains the sec-
nd biggest harbor (São Sebastião harbor) and the largest storage
erminal of oil and gas in Brazil (the Terminal Aquaviário Almi-
 ante Barr oso, TEBAR, da Silv a and Bícego 2010 , Amar al et al. 2016 ),
hic h hav e oper ated since 1955 and 1967, r espectiv el y. Since their

mplementation, the region has faced several environmental im-
acts , such as landfills , dredging and oil spills (Amaral et al. 2016 )
nd the continuous small-scale leakage of hydrocarbons from the
ipelines that bring oil from the in-land facilities to TEBAR (Lam-
arelli and Ortiz 2007 ). In addition to this, the Araçá submarine
e wa ge outfall disc har ges 44% of the urban w astew ater of São Se-
astião city in the area (CETESB 2020 ), imposing an additional an-
hr opogenic pr essur e onto the local environment. Together, these
actors dir ectl y affect the environmental complexity and biodi-
ersity along the SSC (Amaral et al. 2016 ), resulting in steep, local
r adients of anthr opogenic impacts . T his is further exemplified
y the area of Praia Preta, which is close to the Araçá submarine
e wa ge outfall, the São Sebastião harbor and the TEB AR (Har doim
t al. 2021b , Medeiros and Bícego 2004 , Muniz et al. 2015 ). This lo-
ation has been shown to have high concentrations of aliphatic
ydr ocarbons, petr oleum biomarkers, fecal contaminations, and
hermotolerant coliform bacteria in the sediment. This contrasts
ith the area of Praia do Guaecá, which has a much lo w er level of

ontaminants and can thus be considered a reference site in the
tudies of anthropogenic impacts (Hardoim et al. 2021b , Medeiros
nd Bícego 2004 , da Silva and Bícego 2010 , Muniz et al. 2015 , Ama-
al et al. 2016 , CETESB 2019 , Birocchi et al. 2021 ). These two areas
r e ther efor e ideal to further our knowledge of the influence that
ocal anthropogenic impacts have on sponges and the assembly
f their microbiomes. 

We collected and analysed the endemic sponge Aplysina cais-
ara along with seawater and sediments from both sites. Our first
ypothesis is that the local anthr opogenic impacts c hange the
ponge’s micr obiome. Furthermor e, giv en the v ery specific inter-
ctions that bacteria have with sponges, we expect that the alter-
tions in the microbiome are unique or distinct from the changes
n the surrounding seawater or sediment. Our second hypothesis
s that the interactions between microbes and the sponge result in

ore deterministic processes of microbiome assembly in compar-
son to seawater and sediment, and that the r elativ e pr oportion of
eterministic v ersus stoc hastic pr ocesses will v ary with the local
nthropogenic impacts. 

aterial and methods 

esign and sampling 

amples were collected at Praia Preta (23 ◦49 ′ 24.24 ′ ′ S–
5 ◦24 ′ 40.679 ′ ′ W) and at the Southern r oc k shor es of Guaecá,
er eafter called Pr aia do Guaecá (23 ◦49 ′ 22.8 ′ ′ S–45 ◦28 ′ 19.2 ′ ′ W) on
he 13 th of March 2019. These locations are around 6 km apart
Fig. 1 ). Sampling details were described in the Supplementary

aterial 1. 

icrobial community analysis 

enomic DN A w as extr acted fr om 0.25 g of sponge c hoanosome
amples using the DNeasy Po w erSoil DN A isolation kit (QIAGEN,
ermany) according to the manufacturer’s protocol. Seawater
amples (1 L) were filtered through 0.2- μm-pore-size nitrocellu-
ose filters (Merck Millipore, USA) using a vacuum pump. After, the
hole filters were cut into small pieces and directly used for DNA
xtraction. Sediment samples were mixed, sieved and aliquots of
.25 g were used for DNA extraction. 

ponge barcoding 

dentification and barcoding of sponges using the primer pair
iplo-cob-f1m and Diplo-cob-r1 (La vro v et al. 2008 ) for a 364 bp

r a gment fr om the cytoc hr ome b ( cob ) gene were performed as ex-
lained in detail in Hardoim et al. ( 2021c ). Classical phylogenetic
arkers, as COI, ITS , 18S , and 28S rRNA either were not able to

istinguish the A pl ysina species or no amplification was obtained.
etails on the phylogenetic analyses can be found in Supplemen-

ary Material 1. 

6S rRNA gene sequencing and analyses 

riefly, the V4-region of the 16S rRNA gene of bacteria and archaea
as amplified with the primer pair 515F-806R (Apprill et al. 2015 ,
 ar ada et al. 2016 ). The reaction mixture and thermal cycle were
erformed as explained pr e viousl y (Hardoim et al. 2021 ). The am-
licons were subjected to Illumina sequencing using MiSeq plat-
orm. 

The initial quality c hec k of the sequences was performed with
 astQC (W ingett and Andr e ws 2018 ). Sequence data were quality-
ltered and trimmed using Trimmomatic version 0.36 (Bolger et
l. 2014 ), truncating reads if the quality dropped below 25 in a
liding window of 4 bp. USEARCH version 11.0.667 (Edgar 2013 )
as used for further processing to merge and quality-filter se-
uencing reads, excluding reads with < 230 or > 300 nucleotides,

n addition to reads with more than one ambiguous base or an
xpected error of > 1. Filtered sequences were denoised and clus-
ered into unique sequences (amplicon sequence variants, ASV)
sing the UNOISE3 algorithm (Edgar 2016a ) implemented in USE-
RCH. Chimeric sequences were removed de novo during cluster-

ng and subsequently in reference mode using UCHIME2 (Edgar
016b ) with the Genome Taxonomy Database (GTDB, Parks et al.
020 ). The ASVs were classified against GTDB using the BLCA algo-
ithm (Gao et al. 2017 ). Sequences fr om mitoc hondria and c hlor o-
lasts wer e r emov ed fr om the dataset based on the Greengenes
3_5 taxonomy (McDonald et al. 2012 ). 

cological metrics and statistical analyses 

he alpha-div ersity measur ements of Good’s cov er a ge (Good
953 ), ric hness (Observ ed ASVs, CHA O, and A CE), diversity
Shannon—H’ and inverse Simpson—D 

2 ) and evenness (Pielou’s
 v enness) wer e calculated using the pac ka ge v egan v. 2.5–6 (Ok-
anen et al. 2019 , R Core Team 2022 ). Vegan v. 2.5–6 was also used
o perform an analysis of variance (ANOVA) for the alpha metrics
Oksanen et al. 2019 , R Core Team 2022 ). A P value of ≤ 0.05 was
onsider ed statisticall y significant. The R pac ka ge m ultcomp v er-
ion 1.4–13 (Hothorn et al. 2016 , R Core Team 2022 ) was applied to
ake multiple comparisons of means with Tukey contrasts. 
The non-metric multidimensional scaling (nMDS) was used to

isualize patterns of Bray–Curtis (BC) dissimilarities in commu-
ity structure at the levels of ASV and class using the vegan pack-
ge v. 2.5–6 (Oksanen et al. 2019 , R Core Team 2022 ). Permutational
 ultiv ariate anal ysis of v ariance (PERMANOVA) was used to test

he significance of the differences across samples. Generalized lin-
ar models (GLM) were separately fitted to each ASV and class us-
ng the R pac ka ge mv abund (Wang et al. 2021 , R Cor e Team 2022 )
ith a negative binomial distribution, given that a mean-variance
 elationship was observ ed. The r esulting sum of likelihood ratio
tatistics and statistical significance was e v aluated with ANOVA
sing mvabund (Wang et al. 2021 , R Core Team 2022 ). Bubble
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Figure 1. Map of the sampling sites and sources of pollution. Location of the sampling sites, the contaminated site of Praia Preta (blue diamond), 
less-impacted site of Praia do Guaecá (green diamond) on the São Sebastião Channel, Southeastern Brazil. Araçá Bay, one of the biodiversity hotspots 
in the region (magenta triangle). Sources of contamination: TEBAR (red asterisk), São Sebastião Harbor (yellow asterisk) and Araçá Submarine Sewage 
Outfall (orange asterisk). 
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plots were constructed for the most abundant classes, with rel- 
ative abundance across all samples above 0.5%, using the R pack- 
ages ggplot2 v3.3.2 and reshape2 v1.4.4 (W ickham. 2016 , W ickham 

2017 , R Core Team 2022 ). 
To test if the microbiomes of the sample types and sites were 

significantl y differ ent, the r elativ e r ead abundances at the ASV 

le v el wer e e v aluated. Anal ysis of compositions of micr obiomes 
with bias correction (ANCOM-BC) was used to detect the differ- 
ences in ASVs between the same sample type from different sites 
(Lin and Peddada 2020 ). ANCOM-BC e v aluates the unknown sam- 
pling fractions and modifies the bias produced by their disparities 
among samples . T he abundance data are modeled using a linear 
r egr ession fr ame work. 

Community assembly analyses 

The modified stochasticity ratio (MST) index was performed based 

on Bray–Curtis distance using the tNST (taxonomic normalized 

stoc hasticity r atio) function implemented in the R pac ka ge NST 

(Ning et al. 2019 , R Core Team 2022 ). The MST index is a particu- 
lar transformation of NST, which ranges from 0% to 100%, where 
the former signifies no contribution of stoc hastic pr ocesses and 

the latter specifies that the community is driven by stochastic 
processes . T he value of the MST index indicates a deterministic- 
or a stochastic-dominated community assembly when it is be- 
low or above 50%, respectively (Ning et al. 2019 ). Additionally, the 
Sloan neutral model was used to assess the potential contribu- 
tion of stochastic processes to microbial community assembly in 

each sample type and site (Sloan et al. 2006 , Burns et al. 2016 ).
It predicts the correlation between the occurrence frequency of 
ASVs (the proportion of local communities in which each ASV was 
detected) and their abundances (the mean r elativ e abundance 
across all local communities) (Sloan et al. 2006 ). In general, the 
most abundant taxa in the metacommunity are expected to be 
mor e widespr ead and be r andoml y sampled in an y giv en sample,
while the r ar e taxa ar e mor e likel y to be lost in different local com- 
munities because of ecological drift. In the model, the estimated 
igr ation r ate ( m ) e v aluates the pr obability that a r andom loss of
n individual in a local community would be replaced by a source
omm unity (i.e . mor e driv en by stoc hastic pr ocesses) or by r epr o-
uction of a member of the local community (i.e. more driven by
eterministic processes). The parameter R 

2 specifies the overall 
t to the neutral model, when its value is closer to 1, it indicates
hat the community was consistent with the neutral processes,
hile < 0 was considered unfit (Sloan et al. 2006 ). The 95% con-
dence interval of the model was calculated based on 1000 boot-
tr a p r eplicates. Eac h tr eatment was used to pr edict the model
sing R scripts, as pr e viousl y described (Burns et al. 2016 ). This
nal ysis compar es the fit of the neutr al model ( R 

2 ) of a giv en sam-
le type and site with the fit of random sampling ( R 

2 .pois) of all
ample types and sites . T he model is considered fitted when R 

2 is
arger than R 

2 .pois. 

esults 

 pl ysina caissara identification 

hylogenetic analysis of 364 bp-long sequences of the cytochrome 
 gene sho w ed no intraspecific variations among the 10 individ-
als collected from both sites (Supplementary Figure 1). The pro-
ortion of nucleotide sites at which two sequences being com-
ar ed ar e differ ent ( P -distance) between A. caissara fr om this study
nd those obtained from Recife (Northern Brazil) and Genbank 
as 0.82%. Phylogenetic reconstructions based on maximum like- 

ihood and Bayesian inferences sho w ed that A. caissara formed a
obust cluster that is distinct from other Aplysina species. 

acterial and archaeal alpha diversity 

 total of 2 492 761 sequences for the V4-region of the 16S rRNA
ene were obtained after quality control, removal of chimera, sin-
letons, mitochondria and chloroplast, and assigned to 8339 am- 
licon sequence variants (ASVs, Supplementary Table 1). For the 
lpha diversity, the dataset was rarefied to 50 081 sequence reads
er sample, resulting in a total of 1 502 430 sequences that were
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Figure 2. Micr obial comm unity structur e at the ASV-le v el. Non-metric 
multidimensional scaling (nMDS) based on Bray–Curtis distances for 
ASV-le v el. 
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ssigned to 8339 ASVs . T he r ar efaction curv es demonstr ated that
he given sequencing effort captured most of the diversity for any
iven sample (Supplementary Figure 2), which was also supported
y Good’s cov er a ge estimates of > 97.7% for all samples (Table 1 ).

The microbiome of sediment sho w ed higher values for all alpha
iversity metrics than the microbiome of A. caissara (Table 1 ). For
he microbiome of A. caissara , the Shannon diversity and Pielou’s
 v enness indices wer e significantl y lo w er ( P < 0.05) for the less-
mpacted site of Praia do Guaecá compared to the contaminated
ite of Praia Preta (Supplementary Table 2). In contrast, signifi-
antly higher richness and Shannon diversity indices ( P < 0.001)
er e observ ed for the micr obiome of sediments fr om Pr aia do
uaecá when compared to Praia Preta. All indices, except inverse
impson, wer e significantl y lower ( P < 0.001) for the microbiome
f seawater from Praia do Guaecá when compared to Praia Preta. 

omparison of community structure 

he nMDS of the BC dissimilarity at the ASV le v el sho w ed a clear
eparation between sample types as well as between sites (Fig. 2 ).
hese patterns for the factors sample types and sites were sup-
orted by permutational multivariate analysis of variance (PER-
ANOVA, P < 0.001, Supplementary Table 3a) and by GLM-based

nalysis ( P = 0.001, Supplementary Table 3e), while there was no
upport for the interactions of these two factors (GLM, P = 0.095).
iven these results, the differences in community structure were
nalyzed for each sample type separately (Supplementary Table
b–d, f–h). 

Analysis of compositions of microbiomes with bias correction
ANCOM-BC) between sites for each sample type was performed
t the ASV-le v el. For the micr obiome of A. caissara , 71 ASVs were
ignificantl y differ ent (ANCOM-BC, P < 0.05, Supplementary Ta-
le 4) in r elativ e r ead abundances between the contaminated site
f Praia Preta and less-impacted site of Praia do Guaecá. From
hese enriched ASVs, 73.2% had a higher r elativ e r ead abundance
t Praia Preta and 26.8% at Praia do Guaecá. For the microbiome
f seawater, 549 ASVs were significantly different (ANCOM-BC,
 < 0.05) in r elativ e r ead abundances between sites. A total of
0.3% of the ASVs had r elativ e r ead abundances higher at Praia do
uaecá and 39.7% at Praia Preta. For the microbiome of sediments,
202 ASVs sho w ed distinct r elativ e r ead abundances (ANCOM-BC,
 < 0.05) between sites, of which 56% were higher at Praia Preta
nd 44% at Praia do Guaecá. Among these enriched ASVs, 48 and
6 were affiliated with genera known to contain members capable
f degrading polycyclic aromatic hydrocarbons (PAHs) and linear
lkylbenzenes (LABs), r espectiv el y (Supplementary Table 4). 

The analysis of microbial community structure based on the
C dissimilarity of the 81 classes detected in the dataset was sim-

lar to that from ASV-based analyses for seawater and sediment
amples, while r eplicates fr om A. caissara gr ouped together in-
ependently of the site (Supplementary Figure 3). This distinct
attern among sample types and the interaction between sam-
le types and sites were statistically supported by PERMANOVA
 P < 0.001) and GLM-based analysis ( P < 0.05) as well as between
ites (GLM, P = 0.023). For the microbiome of A. caissara from both
ites, the classes with the highest r elativ e r ead abundances wer e
he Gammaproteobacteria and Dehalococcoidia (Supplementary Table
, Fig. 3 ). The microbiome of seawater from both sites was dom-
nated by reads assigned to the Alphaproteobacteria and Cyanobac-
eriia (Fig. 3 ). Gammaproteobacteria was the most abundant class in
he microbiome of sediment from both sites, follo w ed b y Cyanobac-
eria in Praia Preta and Nitrososphaeria in Praia do Guaecá (Fig. 3 ). 

ssemblage of microbial community 

 MST analysis based on BC dissimilarity sho w ed that the assem-
l y of micr obial comm unities of A. caissara was str ongl y driv en
y deterministic processes (MST < 4%, Fig. 4 ), independent of
he in vestigated sites . T he microbiome of sea water fr om Pr aia do
uaecá was also c har acterized by a stronger deterministic as-
embl y pr ocesses when compar ed to Pr aia Pr eta (Fig. 4 ). In con-
r ast, micr obial comm unity assembl y in the sediment samples
as lar gel y dominated by stoc hastic pr ocess (MST > 79%). 
The estimated immigration rate m of each community group

 e v ealed that the Sloan neutral model fitted well for the micro-
iome of A. caissara (Supplementary Table 6). The m values for the
icrobiome of A. caissara were smaller than those observed in the
icrobiome of the sediment, independent of the sites, which rein-

orces the importance of deterministic processes governing com-
 unity assembl y within the sponges. 

iscussion 

icrobial community structure 

n increase in Shannon diversity and Pielou’s evenness was ob-
erved in A. caissara at Praia Preta compared to Praia do Guaecá
Table 1 , Supplementary Table 2). To the best of our knowledge,
he vast majority of studies performed in those areas investi-
ated PAHs and LABs in sediments (Hardoim et al. 2021b , da
ilva and Bícego 2010 , Muniz et al. 2015 ), whic h ar e biomarkers
or petroleum and sewage contaminations, respectively, mainly
ue to the presence of the São Sebastião Harbor, TEBAR, and
r açá se wa ge outfall next to Pr aia Pr eta (Fig. 1 ). Wher eas, Pr aia do
uaecá is considered a reference site, because it presented a much

o w er concentration of PAHs and LABs, with some of their con-
tituents not being detected (Hardoim et al. 2021b , Medeiros and
ícego 2004 , da Silva and Bícego 2010 , Muniz et al. 2015 , Amaral
t al. 2016 , CETESB 2019 , Bir occ hi et al. 2021 ). The higher inputs of
hose pollutants in Praia Preta might have supported the increase
n numbers of less-dominant microbial members that would be
a pable to degr ade these compounds and/or the reduction in the
bundance of members that are dominant in other less-impacted
reas but lack this capacity. 

The microbiomes of A. caissara and sediment from Praia Preta
ad mor e enric hed ASVs than Pr aia do Guaecá, wher eas the op-
osite occurred with the seawater. For the microbiomes of A. cais-
ara and seawater from Praia Preta, four and five enriched ASVs,
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Table 1. Ecological metrics values for richness, diversity, and evenness indices. 

Ac_PP Ac_PG SW_PP SW_PG SD_PP SD_PG 

Good´s cov er a ge 99.86 ± 0.018 99.85 ± 0.009 99.20 ± 0.019 99.30 ± 0.013 97.78 ± 0.040 97.92 ± 0.026 
Observ ed Ric hness 356 ± 9.94 360.8 ± 6.785 1193.8 ± 18.90 992.8 ± 17.72 5053.2 ± 50.72 5555.4 ± 22.04 
CHAO 427.70 ± 23.51 443.3 ± 7.40 1713.50 ± 29.71 1457.90 ± 37.10 5821.74 ± 45.44 6203.73 ± 26.85 
Ace 430.23 ± 24.33 440.6 ± 8.25 1664.12 ± 31.51 1445.14 ± 23.43 5778.25 ± 46.74 6135.08 ± 18.40 
Shannon 4.29 ± 0.070 4.12 ± 0.02 4.26 ± 0.020 3.76 ± 0.033 7.23 ± 0.044 7.42 ± 0.015 
Inverse Simpson 35.18 ± 6.94 20.7 ± 0.99 17.54 ± 0.54 9.62 ± 0.159 316.25 ± 18.40 299.26 ± 8.96 
Pielou’s e v enness 0.73 ± 0.011 0.70 ± 0.003 0.60 ± 0.002 0.54 ± 0.003 0.85 ± 0.004 0.86 ± 0.0015 

Figure 3. Micr obial comm unity composition. Bubble plot for the most r elativ e r ead abundances classes. Ac: A pl ysina caissara , SW: seawater, SD: 
sediment, PP: Praia Preta, PG: Praia do Guaecá. 

 

 

 

m  

t
m
a  

s  

A  

e  

a  

G  

m  

t  

a  

t  

h  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/article/doi/10.1093/fem
sle/fnad064/7218552 by U

niversidade de Sao Paulo (U
SP) user on 17 O

ctober 2023
r espectiv el y, wer e assigned to genera containing members that 
hav e been r eported to be hydr ocarbon-degr aders in marine envi- 
ronment or possess the genes needed for PAHs degradation (Sup- 
plementary Table 4), whereas for the microbiomes of A. caissara 
and seawater from Praia do Guaecá, zero and three enriched ASVs,
r espectiv el y, exhibited similar featur es (Dong et al. 2014 , Br own 

et al. 2015 , Yuan et al. 2015 , Hazaimeh and Ahmed 2021 , Xiao et 
al. 2021 ). For the sediments, there were 16 and 20 enriched ASVs 
fr om Pr aia Pr eta and Pr aia do Guaecá, r espectiv el y, encompass- 
ing members that have been described as hydrocarbon-degraders 
in the marine environment (Dong et al. 2014 , Brown et al. 2015 ,
Hidalgo et al. 2020 , Hazaimeh and Ahmed 2021 ). It is still to be 
determined if those gener a ar e indeed metabolizing PAHs in situ ; 
ho w e v er, these r esults indicate that the higher inputs of hydro- 
carbons in Praia Preta were sufficient to select for hydrocarbon 

degraders in the microbiomes of A. caissara and seawater. 
Another source of pollution at Praia Preta was the Araçá sub-
arine se wa ge outfall, the pr obable origin of the LABs used for

he synthesis of alkylbenzene sulfonates (LAS), which are the 
ost widely used anionic surfactants in detergents (Hardoim et 

l. 2021b , Scott and Malcolm 2000 ). The microbiomes of A. cais-
ara and sediment from Praia Preta were enriched in two and 20
SVs, r espectiv el y (Supplementary Table 4), assigned to the gen-
ra known to contain LAS degraders (Andrade et al. 2020 , Kim et
l. 2021 ), while no similar enrichment was observed in Praia do
uaecá. These genera are found in activated sludge used in do-
estic se wa ge or waste water tr eatment plants, but the ability of

heir marine counterparts to degrade LAS in A. caissara , seawater
nd sediment still needs further investigation. Similar to PAHs,
his indicates that the higher input of LAS in Pr aia Pr eta might
ave selected those members of the microbiome that would have
he capacity to degrade these compounds. Overall, these results 
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Figure 4. Micr obial comm unity assembla ge . T he modified stochasticity 
ratio (MST) of the microbial community. Ac: Aplysina caissara , SW: 
seawater, SD: sediment, PP: Pr aia Pr eta, PG: Pr aia do Guaecá. 

t  

(  

s  

t  

i

A
A  

m  

r  

s  

p  

r  

a  

m
 

m  

m  

o  

M  

n  

b  

(  

T  

o  

m  

w

C
T  

o  

b  

t  

h  

L  

e  

t  

p  

a  

m  

o  

i  

L  

s  

i  

P
S  

A  

G  

s  

d  

d  

0  

A

A
C  

s  

s  

t  

v

A
W  

t  

H  

w  

c  

f  

t  

o

S
S

C

F
T  

d  

p  

t  

(  

t  

F  

p

R
A  

A  

 

 

A  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/article/doi/10.1093/fem
sle/fnad064/7218552 by U

niversidade de Sao Paulo (U
SP) user on 17 O

ctober 2023
ogether with the community structure at ASV- and class-levels
Fig. 2 , Supplementary Figure S3), demonstrated that due to the
pecificity of the sponge microbiome, the alterations observed in
he present study in A. caissara were distinct from those detected
n seawater and sediments. 

ssembly of microbial community 

s hypothesized, a more deterministic and stoc hastic pr ocesses of
icr obiome assembl y wer e observ ed in A. caissara and sediments,

 espectiv el y. Ho w e v er, the seawater microbiome was mainly as-
embled by deterministic processes (Fig. 4 ). In contrast to our hy-
othesis, the local anthropogenic impacts did not influence the
 elativ e pr oportion of deterministic vs . stoc hastic pr ocesses in the
ssembly of the microbiome of A. caissara , seawater, and sedi-
ent. 
Deterministic pr ocesses, suc h as host featur es, micr obe-

icr obe inter actions , and en vir onmental conditions ar e thus
ost likely the main processes in the assembly of the microbiome

f A. caissara as pr e viousl y described (Hardoim et al. 2021a , De
ares et al. 2017 , Steinert et al. 2017 , 2019 ). The microbial commu-
ities of sediments collected at the bioturbation zones (10–15 cm
elow the seafloor) ar e mainl y assembled by stochastic processes

Petr o et al. 2017 ), whic h corr obor ated the r esults obtained her e.
he microbial communities of seawater contaminated with crude
il have been previously shown to be mainly assembled by deter-
inistic pr ocesses (Nik olov a et al. 2021 ) in a gr eement with what
as seen in the present study. 

onclusions 

he distinct inputs of toxic compounds affect the microbiome not
nly of the en vironment (i.e . sea water and sediment), which has
een pr e viousl y noted, but also of A. caissara . The structur e of
he host microbiome was modified, including members that could
av e the ca pacity to degr ade toxic compounds, suc h as PAHs and
ABs. As all A. caissara individuals are located r elativ el y close to
ach other they most likely belong to the same population, and
hus the host genetics and its derived traits are unlikely to ex-
lain any result observed in the present study . Interestingly , the
ssembl y of micr obiomes in A. caissara collected at both sites was
ainl y driv en by deterministic assembl y pr ocesses . T he results

btained here provide the baseline to perform a controlled exper-
ment to verify the effects of different concentrations of PHAs and
ABs would have on the functional role and metabolism of the
ponge microbiome. Together, it can provide a better understand-
ng of how the sponge holobiont may adapt to pollution stressors.
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