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Non associative generalizations of group rings have
been considered in recent literature. Let L be a finite loop;
then, the loop ring RL of L over an associative ring R can be
defiped in precisely the same way a group ring is. Since al-
ternative algebras are close to associative algebras, it is
only natural to consider those loops whose loop rings are al-~
ternative. 1In this paper, we shall show that the corresponding
analogue to the Zassenhaus Conjecture holds for this type of

ring.

1. Some Basic Facts

An.RA loop is a loop,which is nét a group, whose
loop rings over rings of characteristic other than 2 are
alternative. We list a few facts about RA loops which can

be found in [2] and [3].

1.1. Proposition - Let L be an RA loop. Then:

(i) The nucleus and the center of L coincide.
(ii) The commutator subloop L' is generated by a central

element e of order 2,

{(iii) There exists a non abelian group G < L and an element
u € L such that L =G UGu. The center of G coincides
witn the center of L and shall be denoted by Z. For
every element g € L we have that g2 € 2.

(iv) The map ":L « L given by
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g* =

eg if g ¢ 2

is an involution of L which extends linearly to RL

(v) Every element r € RL can be written uniquely in the form
r = x+yu with x,y € RG: If we set 9, = u2 the involution

and multiplication in RL are given respectively by:

(x + yu)* = x*.+ eyu

(x+yu) (z+wu) = (xz+g W*y) +(wx+yz*)u.
It is easy to see that the center of RL is:

Z(RL) = {x+yu[x,y € Z(RG), Yy = ey}

so, it follows that r = x+yu € Z{RL) if and only if r = r* and
hence, for every element r € RL we have that both r+r* and

rr* are central.

Now, we turn our attention to augmentation ideals.
Let N be a normal subloop of an RA loop L. Then, just as is
done in the case of group rings, the natural map L -+ L/N can be
extended to a ring homomorphism w: ZL + ZL/N and it can be
easily shown that ker{w) is spanned over ZL by the elements of

the set {n-1l|n € N} .

In the case where L is a group G, we denote
ker (w) = A(G:N) and indicate simply by A(G) the ideal A(G:G)

which is precisely the kernel of the augmentation function and



If N €2(L) then, clearly, we have that N* = N. If N
contains a non-central element n then, there exists an element

1

g € L such that g 'ng = en € N and hence ¢ € N, It follows

that N* <= N also in this case.

Now, write L = G U Gu where G is as in proposition
1.1 and assume that N < G. Let x+yu be any element in ZL,

with x,y € 2ZG and set n € N. We have that:

(x+yu) (n~1) = x(n=1) + y({n=1)*u € & (G:N) + A (G:N)u .

These remarks show that the following holds.

1.2. Proposition: With the neotations above, we have that:s

(1) An element x+yu € ZL belongs to ker(w) if and only
if 2,y € 8(G:N)

(ii) 4 (GsN)* < 4 (G:N)

2, Torsion Units

In this section, we note that a well-known property
of torsion units in group rings also holds in the case of an
alternative loop ring and then derive consequences peculiar to
the non-asscciative situation. Throughout the rest of this

paper, L will always denote a finite RA loop.



2.1, Proposition. Let r = ] a{g)g be a unit of finite
g€eL

order in the integral loop ring of L. If a(l) # 0 then

r =a(l) = z1,

Proof. - For a given element r € ZL we can define a linear

map Rr: ZL + ZL by Rr(x) = xr, ¥ x € ZL. For each fixed
element x € ZL the subring generated by r and x is
associative so, we see that Rg = an.

By considering a matrix of R we can apply step by
step the well-known argument which is used in the case of
group rings to obtain the desired conclusion. See [10, Theorem
11.1.1}.

2.2. Corollary: If r = Z alglg is a torsion unit in ZL
g€L
and a(g) = 0 for some g € Z(L) then r = tg,

2.3. Corollary. Let r be a torsion unit in ZL. Then,

r2 e 2.

Proof: Denote S = supplr) so that r = ] alg)lg with a(g)=0

ges
for all. g € S. Then we can write

r2 = J a?(g)g’+ B + ¥
ges

with

B = 2fa(g)B(h)gh where the sum runs over all pairs (g,h)
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such that gh -hé

y = La{g)B (h) (gh+hg)

where the sum runs over those pairs (g,h) such that gh# hq.

Note that both € (B) ard ¢(Y) are even integers
while €(x?) = 1 since r is a unit. Therefore, there must

exist an element 9 € § such that a(gl) is odd.

Since gi is central, it cannot be equal to an
element gh in the support of y (note that this would imply
gh = hg) and, obviously, the term az(gl)gi cannot cancel with
a term of the form 2a(g)B(h)gh. Hence, gi e supp(rz) and now
corollary 2.2. shows that r? = tg3. Finally, since e(r?) =1
we must have that r? = g} € 2. []

Notice that the proof of the corollary above actually

shows that r3 is equal to the square of an element in L. We

wish to determine this element in a precise way.

Let w :ZL -+ZL/L' denote the homomorphism induced by
the natural map L+ L/L' and let r € V{(ZG). Then, T = w(r) is
a unit of finite oxder in the integral group ring ZL/L' and is
thus trivial (see [10, Corollary II.1.8.]). Hence, either
wl(r) = wig") or w(r) = w(g'u) for sopé g'eG. If

w(r) = w(g') we can write r in the form:

r=g'+ &+ §,u, where 6,6, € A(G:G')
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Using the so-called Whitcomb argument [I0,p.103] it
can be shown that g' +§ = g + 6, for some g € G and some
6§, €4 (G)A(G') where A(G') denotes the augmentation ideal

of ZG'. Consequently, we can write r in the form:
r=g+6; +65u with 6§, € a{cla(c’), &6, € 2(G;G'").

In a similar way, if w(x) = w(g'u) we can write r

in the form:

r o= (g+61)u + 62 with 51 € AlG) A(G') and 52 € AlG:G')

2.4 Proposition. Let r be a normalized unit of finite order
in ZL: Then either r3 = g2 or r2 = (gu)2 where g € G is

an element satisfying one of the egualities above.

Proof: Assume first that r can be written in the form
r = g+ 61+ 62\1 with 61 and 62 as above. Then, it is easy to

see that r2 can be written as:

r? = g2 + §; + 8ju with §; € 4(C)A(G") and 85 €AG:G").
We know from corollary 2.3 that r2 € 2= G s0 we
must have that r3 = g2 + Gi and Giu = 0. Hence, using

[10, Lemma VI.5.1] whe have:

g %2 =1+ 8%

2 €6 fil (14A(G:G')) = G" = 1 , hence, r2 = gi,’

If ra=(g+§,)u +4§ it also follows, in a similar
way, that r3 = (gu)3. []
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In what follows, we shall prove the Zassenhaus
Conjecture by showing that a normalized torsion unit r € ZL
is conjugate in mG‘to the element g or gu found above. J.
Ritter and S.K. Sehgal have shown in [8] that something
similar happens when working with integral group rings of
nilpotent class 2 groups and observed, by means of a

counterexample that this need not be the case in general.
3. A reduction

In this section, we wish to show that the Zassenhaus
Conjecture can be reducéd to the question of conjugacy in the
complex loop algebra CL. The argument is essent}ally due to
C. Polcino Milies and S.K. Sehgal [6, lemma 5] and we goO
through it again here to show that the technigues work

equally well in the alternative case.

3.1. Lemma. Let k © K be infinite fields and let L be a
finite loop whose loop algebra over K is both semisimple and
alternative. If two given elements a,B € kL are conjugate

in KL then they are also conjugate in kL.

Proof: Let a,B € k. be as in our statement. Then, the

equation
aX = X8

has a solution in KL.



Let L, and RB denote the linear transformations of
KL defined as left multiplication by « and right multiplication

by B respectively.

Set n = |L|. If we identify X with its coordinate
vector X = (xl,...,xn) in K™ relative to the basis L of KL,
then the equation above can be written in matrix form as XM = 0,

where h is the matrix of the linear transformation Lu'RB'

Clearly, M is a nxn singular matrix with entries in
k and hence the matrix equation has also solutions in k™. Let

! n
{vl,...,vt} be a basis for ker(La-RB) in k7.

We wish to show that there exists at least one
vector v € ker(Lu—RB) which is invertible, since it would

1

then be such that v —av = B.

We claim that it is enough to prove that it is not
a zero divisor since the simple components of éhe semisimple
alternative algebra KL are either simple associative algebras
or Cayley-Dickson algebras. In the first case it is clear
that non zero divisors are invertible; in the second case
this also follows since an element a is invertible if and only

if a3 # 0, where 3 demotes the image of a under the caronical involution

in a Cayley-Dickson algebra.
So, assume that for every choise of scalars
Al,...,kt € kX the element correspo:uding to

X = Alvl + oo + Atvt is a zero divisor in kL or, eguivalen-

tly, that the matrix of Ry is singular. Then,@(xl,...,xt) =
t

det R, = det( I AR, ) €k [A\,...,A ] is a polynomial over
i=1 i
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the infinite field k which vanishes for all possible values
of the variables and thus it is the zero polynomial. Hence,

Ry is singular also for all x € Ikv; , a contradiction.

Consequently, there must exist a solution of the
equation XM = 0 whose corresponding element in kL is invertible

and thus the result follows. E]

As an immediate conseguence we obtain:

3.2. Corollary. If two elements o,f € QL are conjugate in QL

then they are also conjugate in QL.

Because of this result, we shall work in QL throughout
the rest of this paper. If we write CL = Ay ® ... ® A, where
Ay 1 < i < n, denote the simple alternative components of

rL, then A; n A* is a'non zero ideal contained in Ay,

b
(for example, the center of AI is fixed by the involution -
of CL) so Ay n Ay =n;, 1 < i< n.

Given an element x € EL, we shall denote by x; its
component in A,. To prove that two elements «,8 € QL are
conjugate in CL it suffices to show that their respective

components ay By are conjugate in Ay, 1<i<n.

We now define a map 6: CL + LL by 9(x) = r+r¥,
% r @ CL, and call e(x) the trace of r. Notice that 6 is

a linear map whose values lie in the center of TL. Also,
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o(r) = &(r*) for any r € CL and, if a € CL is central then
9(a) = 2a. Since Al < Ay, 15 is n, each simple component

of CL is invariant under 0.

3.3. Lemma. Let § € A(G:G'). Then e(&iui) =0 and, if

supp(§) N 2(G) = ¢ then also B(Gi) = 0.

Proof: First we note that, since e is central, its component
e; lies in Z(Ai), the center of Ai' which is a field. Since

e = 1 we readily get that e; = +1 in Ai' 1 isn.

An element § gA(G:G') is of the form § = o({e-1)
with o € €G. If e; = 1 it is clear that G(Gi) = 0. So, we

may assume, from now on, that e; = -1 .

Oon the one hand, we have that e((éiui)*) = B(Giui);
' on the other hand, since (Giui)* = eiﬁiui' we get that
e((siui)*) = -e(diui) and thus we must have Q(Giui) =0,

1 $isn and hence e(aiui)- 0.

Now, assume that supp{(6) i 2 = 9. Writing
§ = (ngg) {e-1) it is easy to see that we must have ag = 0
for every g € Z . Now 9(51) = -22ug6(gi) and, when g is
not central, we have that G(gi) = B(g;) = G(eigi) = -G(gi)

so 0(g;) = 0 and hence e(s;) =0, 1s4isn. I

3.4. Lemma. Let r and s be units in @L such that
supp(r) N Z = supp(s) N z=@: Then r; is central in Ai if
and only if sy is central, 1 $ i § n. Furthermore, if this

is the case and if e(ri) = e(si) then r; = 8-



-12-

Proof. Our hypothesis on the supports of r and s implies
that r* = er and s* = es hence, (rs + sr)* = e?(rs+sr) =
= rg8 + sr. Thus, -rs+sr is central and, consequently,
risi+siri is central in Ai, 18 is n. Since both r and

5; are units, it is clear that ry is central if and only if

8; is central.

e Also, if e(ri) = e(si) and Ty and s; are central,

we have that 2r; = 0(ry) = 6(s;) = 25; and thus r; = s;. O

4. The Conjecture

We are now ready to prove the main result of this

paper.

Theorem. Let L be a finite RA loop and let r be a normalized
torsion unit in ZL. Then, there exists a unit a € @QL and an

element w € I such that o lra = w.

Proof. 1If suppl(r) N 2(G) = § then Corollary (2.2) shows that
actually r = w, for some w € L. S0, we may assume that
supp(r) N z = @.

We can write r either in the form r = g+61+62u or in

the form r = gu + §; + ézp, with 61 € A(G)A(G') and

62 € A{G:G’) . We consider these two cases separately.



Case 1 - We assume that r is of the form r = g+61+62u, s0
r2 = g2 as shown by Proposition (2.4). Notice that since
supp(r) N 2 = @ it follows that g § Z and supp(é) N Z = @.
Hence, Lemma (3.3) shows that e(ri) = O(g;) e 1 318 ¢.
Then Lemma (3.4) shows that we should study only those
components where ry and gy are non-central . Also if e; = 1
it is clear that r; = g; (because (61)1 = (52)1= 0) so we may
assume that ei = -1,

From now on, we shall work inside a fixed component
A; s0 we shall omit the subindex i to simplify notations.
Let B be the subalgebra of A generated by r and g (which is
associative in view of Artin's Theorem [7, Theorem 3.1]).
Since r? = g3 is central in B, it is a scalar, so we can find
A et such that A2 = r2 = g2 ., Also u = rg+gr is a scalar

50 every element in B is a linear combination of 1,r,q9 and rg.

Set £, = 3 (1+ §) and £, = 101-§). Then, it is
easily seen that f1 and £2 are othogonal idempotents,
different from 0 and 1, such that £1+f2 =1 and r = A(fl-fz).
We can write B = fIBf1 + f13£2+f23f1+f23f2 and £find by

straightforward computation:

£19 = £,9F) = 5xfy o f5p = £9f, = 33fys £1; = £,95 = £,9° 5§

- ' u
£, = £,9f, = £,9 + 55 £, -

Hence fiBfi is one-dimensional with basis £, i=1,2

and dim (fiij) € 1 with equality holding if fij = 0 in

which case fiBf

j is spanned by fij:
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Moreover, we see that:

2 o 2 Jiiz
£1,85, = O - gy and f£,5;, = (AT- gl
2
If A? - -%—,- =0 it follows readily that B = M,(T).
Since the minimal polynomial of both r and g over C is
X3 - A2 each one is similar to diag (3,2 so r is conjugate

to g in B.

) k
If A%~ i%? = 0 then 5% = z1. Assume first that

.E_s = —_].'-.L - = —3

25 1. Then f12 + le. (f1 + fz)g 3 ) (f1 fz) g=r
£ £ it £ -f e £ 1 £

gso g = r + ]2+ 21° Write s = 17%, + 2 £12 + o £2q ¢ then

§3 = 1 and s lrs = g.

1f 5%— = -1 we obtain that g = f2 + f%f12 + é%f21
and setting t= -f, + £, + ado of d ol
1 2 12 2 21

2

rt = -g. Since g is non central,

we have that t2 = 1 and t:'-1

for some h in the projection of L in A we must have that

1

h"lgh = h so actually h "gh = eg = =g so it follows again

that r is conjugate to g.

Case 2. Assume now that r = 61 + (62+g)u and thus, that

r2 = (gu)2. Since supp(r) N 2 = ¢ we easily see that

supp 51 nz=¢ and hence e(ri) = e(gi) so, once again, we
may suppose that ry and g; are non-central in Ai and also
that e; = -1 in A Hence we can essentially repeat the

argument above to obtain the desired conclusion.



-15-

Since r and g are conjugate in CL, lemma 3.1. shows

that there exist @ € QL and w € L such that, o lra = w.
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