

nº 07

**Torsion units in alternative group
rings.**

Edgar G. Goodaire

C. Polcino Milies

junho 1987

TORSION UNITS IN ALTERNATIVE LOOP RINGS

Edgar G. Goodaire

C. Polcino Milies

INTRODUCTION

Let G be a finite group and let $\mathbb{Z}G$ denote the group ring of G over the ring \mathbb{Z} of rational integers. As usual, we shall denote by $\epsilon: \mathbb{Z}G \rightarrow G$ the augmentation function i.e. the map given by $\epsilon(\sum a_g g) = \sum a_g$.

If we denote by $U(\mathbb{Z}G)$ the group of units of $\mathbb{Z}G$ then the set $V(\mathbb{Z}G) = \{a \in U(\mathbb{Z}G) \mid \epsilon(a) = 1\}$ is called the group of normalized units of $\mathbb{Z}G$. The elements of the form γg , with $g \in G$ are the trivial units of $\mathbb{Z}G$.

G. Higman, in a classical paper on the units of group rings [4] has shown that if G is abelian then all units of finite order in $\mathbb{Z}G$ are trivial. When G is not abelian, an obvious way to exhibit new torsion units in $\mathbb{Z}G$ is to compute conjugates of the form $\gamma^{-1}g\gamma$, with $g \in G$ and $\gamma \in V(\mathbb{Z}G)$. One can also allow γ to belong to $\mathbb{Q}G$ provided that $\gamma^{-1}g\gamma \in \mathbb{Z}G$. H. J. Zassenhaus has conjectured that all torsion units in $\mathbb{Z}G$ can be constructed in this way. More precisely we have:

Zassenhaus Conjecture. Let $r \in \mathbb{Z}G$ be a normalized unit of finite order. Then, there exists an invertible element $a \in \mathbb{Q}G$ and an element $g \in G$ such that $a^{-1}ra = g$.

It has been shown that the conjecture holds for some families of groups (see, for example [5]).

This work was partially supported by FAPESP (Brasil)

Non associative generalizations of group rings have been considered in recent literature. Let L be a finite loop; then, the loop ring RL of L over an associative ring R can be defined in precisely the same way a group ring is. Since alternative algebras are close to associative algebras, it is only natural to consider those loops whose loop rings are alternative. In this paper, we shall show that the corresponding analogue to the Zassenhaus Conjecture holds for this type of ring.

1. Some Basic Facts

An RA *loop* is a loop, which is not a group, whose loop rings over rings of characteristic other than 2 are alternative. We list a few facts about RA loops which can be found in [2] and [3].

1.1. Proposition - Let L be an RA loop. Then:

- (i) The nucleus and the center of L coincide.
- (ii) The commutator subloop L' is generated by a central element e of order 2.
- (iii) There exists a non abelian group $G \subset L$ and an element $u \in L$ such that $L = G \cup Gu$. The center of G coincides with the center of L and shall be denoted by Z . For every element $g \in L$ we have that $g^2 \in Z$.
- (iv) The map $*: L \rightarrow L$ given by

$$g^* = \begin{cases} g & \text{if } g \in Z \\ eg & \text{if } g \notin Z \end{cases}$$

is an involution of L which extends linearly to RL .

(v) Every element $r \in RL$ can be written uniquely in the form $r = x+yu$ with $x, y \in RG$: If we set $g_0 = u^2$ the involution and multiplication in RL are given respectively by:

$$(x+yu)^* = x^* + eyu$$

$$(x+yu)(z+wu) = (xz+g_0w^*y) + (wx+yz^*)u.$$

It is easy to see that the center of RL is:

$$Z(RL) = \{x+yu \mid x, y \in Z(RG), y = ey\}$$

so, it follows that $r = x+yu \in Z(RL)$ if and only if $r = r^*$ and hence, for every element $r \in RL$ we have that both $r+r^*$ and rr^* are central.

Now, we turn our attention to augmentation ideals. Let N be a normal subloop of an RA loop L . Then, just as is done in the case of group rings, the natural map $L \rightarrow L/N$ can be extended to a ring homomorphism $w: ZL \rightarrow ZL/N$ and it can be easily shown that $\ker(w)$ is spanned over ZL by the elements of the set $\{n-1 \mid n \in N\}$.

In the case where L is a group G , we denote $\ker(w) = \Delta(G:N)$ and indicate simply by $\Delta(G)$ the ideal $\Delta(G:G)$ which is precisely the kernel of the augmentation function and

If $N \subseteq Z(L)$ then, clearly, we have that $N^* = N$. If N contains a non-central element n then, there exists an element $g \in L$ such that $g^{-1}ng = en \in N$ and hence $e \in N$. It follows that $N^* \subseteq N$ also in this case.

Now, write $L = G \cup G_u$ where G is as in proposition 1.1 and assume that $N \subseteq G$. Let $x+yu$ be any element in ZL , with $x, y \in ZG$ and set $n \in N$. We have that:

$$(x+yu)(n-1) = x(n-1) + y(n-1)*u \in \Delta(G:N) + \Delta(G:N)u.$$

These remarks show that the following holds.

1.2. Proposition: With the notations above, we have that:

- (i) An element $x+yu \in ZL$ belongs to $\ker(w)$ if and only if $x, y \in \Delta(G:N)$
- (ii) $\Delta(G:N)^* \subseteq \Delta(G:N)$

2. Torsion Units

In this section, we note that a well-known property of torsion units in group rings also holds in the case of an alternative loop ring and then derive consequences peculiar to the non-associative situation. Throughout the rest of this paper, L will always denote a finite RA loop.

2.1. Proposition. Let $r = \sum_{g \in L} \alpha(g)g$ be a unit of finite order in the integral loop ring of L . If $\alpha(1) \neq 0$ then $r = \alpha(1) = \pm 1$.

Proof. - For a given element $r \in \mathbb{Z}L$ we can define a linear map $R_r: \mathbb{Z}L \rightarrow \mathbb{Z}L$ by $R_r(x) = xr$, $\forall x \in \mathbb{Z}L$. For each fixed element $x \in \mathbb{Z}L$ the subring generated by r and x is associative so, we see that $R_r^n = R_{r^n}$.

By considering a matrix of R_r we can apply step by step the well-known argument which is used in the case of group rings to obtain the desired conclusion. See [10, Theorem II.1.1].

2.2. Corollary: If $r = \sum_{g \in L} \alpha(g)g$ is a torsion unit in $\mathbb{Z}L$ and $\alpha(g) \neq 0$ for some $g \in \mathbb{Z}(L)$ then $r = \pm g$.

2.3. Corollary. Let r be a torsion unit in $\mathbb{Z}L$. Then, $r^2 \in \mathbb{Z}$.

Proof: Denote $S = \text{supp}(r)$ so that $r = \sum_{g \in S} \alpha(g)g$ with $\alpha(g) \neq 0$ for all $g \in S$. Then we can write

$$r^2 = \sum_{g \in S} \alpha^2(g)g^2 + \beta + \gamma$$

with

$$\beta = 2 \sum_{\{g, h\}} \alpha(g)\alpha(h)gh \text{ where the sum runs over all pairs } \{g, h\}$$

such that $gh = hg$

$$\gamma = \sum \alpha(g)\beta(h)(gh+hg)$$

where the sum runs over those pairs (g, h) such that $gh \neq hg$.

Note that both $\epsilon(\beta)$ and $\epsilon(\gamma)$ are even integers while $\epsilon(r^2) = 1$ since r is a unit. Therefore, there must exist an element $g_1 \in S$ such that $\alpha(g_1)$ is odd.

Since g_1^2 is central, it cannot be equal to an element gh in the support of γ (note that this would imply $gh = hg$) and, obviously, the term $\alpha^2(g_1)g_1^2$ cannot cancel with a term of the form $2\alpha(g)\beta(h)gh$. Hence, $g_1^2 \in \text{supp}(r^2)$ and now corollary 2.2. shows that $r^2 = \pm g_1^2$. Finally, since $\epsilon(r^2) = 1$ we must have that $r^2 = g_1^2 \in \mathbb{Z}$. \square

Notice that the proof of the corollary above actually shows that r^2 is equal to the square of an element in L . We wish to determine this element in a precise way.

Let $\omega : \mathbb{Z}L \rightarrow \mathbb{Z}L/L'$ denote the homomorphism induced by the natural map $L \rightarrow L/L'$ and let $r \in V(\mathbb{Z}G)$. Then, $\bar{r} = \omega(r)$ is a unit of finite order in the integral group ring $\mathbb{Z}L/L'$ and is thus trivial (see [10, Corollary II.1.8.]). Hence, either $\omega(r) = \omega(g')$ or $\omega(r) = \omega(g'u)$ for some $g' \in G$. If $\omega(r) = \omega(g')$ we can write r in the form:

$$r = g' + \delta + \delta_2 u, \text{ where } \delta, \delta_2 \in \Delta(G; G')$$

Using the so-called Whitcomb argument [10,p.103] it can be shown that $g' + \delta = g + \delta_1$ for some $g \in G$ and some $\delta_1 \in \Delta(G)\Delta(G')$ where $\Delta(G')$ denotes the augmentation ideal of $\mathbb{Z}G'$. Consequently, we can write r in the form:

$$r = g + \delta_1 + \delta_2 u \quad \text{with } \delta_1 \in \Delta(G)\Delta(G'), \delta_2 \in \Delta(G:G').$$

In a similar way, if $\omega(r) = \omega(g'u)$ we can write r in the form:

$$r = (g + \delta_1)u + \delta_2 \quad \text{with } \delta_1 \in \Delta(G)\Delta(G') \quad \text{and } \delta_2 \in \Delta(G:G')$$

2.4 Proposition. Let r be a normalized unit of finite order in $\mathbb{Z}L$. Then either $r^2 = g^2$ or $r^2 = (gu)^2$ where $g \in G$ is an element satisfying one of the equalities above.

Proof: Assume first that r can be written in the form

$r = g + \delta_1 + \delta_2 u$ with δ_1 and δ_2 as above. Then, it is easy to see that r^2 can be written as:

$$r^2 = g^2 + \delta_1^2 + \delta_2^2 u \quad \text{with } \delta_1^2 \in \Delta(G)\Delta(G') \quad \text{and } \delta_2^2 \in \Delta(G:G').$$

We know from corollary 2.3 that $r^2 \in \mathbb{Z} \subset G$ so we must have that $r^2 = g^2 + \delta_1^2$ and $\delta_2^2 u = 0$. Hence, using [10, Lemma VI.5.1] we have:

$$g^{-2}r^2 = 1 + \delta_2^2 \in G \cap (1 + \Delta(G:G')) = G'' = 1, \text{ hence, } r^2 = g^2.$$

If $r^2 = (g + \delta_1)u + \delta_2$ it also follows, in a similar way, that $r^2 = (gu)^2$. \square

In what follows, we shall prove the Zassenhaus Conjecture by showing that a normalized torsion unit $r \in \mathbb{Z}L$ is conjugate in $\mathbb{Q}G$ to the element g or gu found above. J. Ritter and S.K. Sehgal have shown in [8] that something similar happens when working with integral group rings of nilpotent class 2 groups and observed, by means of a counterexample that this need not be the case in general.

3. A reduction

In this section, we wish to show that the Zassenhaus Conjecture can be reduced to the question of conjugacy in the complex loop algebra $\mathbb{C}L$. The argument is essentially due to C. Polcino Milies and S.K. Sehgal [6, lemma 5] and we go through it again here to show that the techniques work equally well in the alternative case.

3.1. Lemma. Let $k \subset K$ be infinite fields and let L be a finite loop whose loop algebra over K is both semisimple and alternative. If two given elements $\alpha, \beta \in kL$ are conjugate in KL then they are also conjugate in kL .

Proof: Let $\alpha, \beta \in kL$ be as in our statement. Then, the equation

$$\alpha x = x\beta$$

has a solution in KL .

Let L_α and R_β denote the linear transformations of KL defined as left multiplication by α and right multiplication by β respectively.

Set $n = |L|$. If we identify X with its coordinate vector $x = (x_1, \dots, x_n)$ in k^n relative to the basis L of KL , then the equation above can be written in matrix form as $XM = 0$, where M is the matrix of the linear transformation $L_\alpha - R_\beta$.

Clearly, M is a $n \times n$ singular matrix with entries in k and hence the matrix equation has also solutions in k^n . Let $\{v_1, \dots, v_t\}$ be a basis for $\ker(L_\alpha - R_\beta)$ in k^n .

We wish to show that there exists at least one vector $v \in \ker(L_\alpha - R_\beta)$ which is invertible, since it would then be such that $v^{-1}av = \beta$.

We claim that it is enough to prove that it is not a zero divisor since the simple components of the semisimple alternative algebra KL are either simple associative algebras or Cayley-Dickson algebras. In the first case it is clear that non zero divisors are invertible; in the second case this also follows since an element a is invertible if and only if $a\bar{a} \neq 0$, where \bar{a} denotes the image of a under the canonical involution in a Cayley-Dickson algebra.

So, assume that for every choice of scalars $\lambda_1, \dots, \lambda_t \in k$ the element corresponding to $x = \lambda_1 v_1 + \dots + \lambda_t v_t$ is a zero divisor in KL or, equivalently, that the matrix of R_x is singular. Then, $\phi(\lambda_1, \dots, \lambda_t) = \det R_x = \det \left(\sum_{i=1}^t \lambda_i R_{v_i} \right) \in k[\lambda_1, \dots, \lambda_t]$ is a polynomial over

the infinite field k which vanishes for all possible values of the variables and thus it is the zero polynomial. Hence, R_x is singular also for all $x \in \Sigma k v_i$, a contradiction.

Consequently, there must exist a solution of the equation $XM = 0$ whose corresponding element in kL is invertible and thus the result follows. \square

As an immediate consequence we obtain:

3.2. Corollary. If two elements $\alpha, \beta \in \mathbb{Q}L$ are conjugate in $\mathbb{Q}L$ then they are also conjugate in QL .

Because of this result, we shall work in QL throughout the rest of this paper. If we write $QL = A_1 \oplus \dots \oplus A_n$, where A_i , $1 \leq i \leq n$, denote the simple alternative components of QL , then $A_i \cap A_i^*$ is a non zero ideal contained in A_i , (for example, the center of A_i^* is fixed by the involution of QL) so $A_i \cap A_i^* = A_i$, $1 \leq i \leq n$.

Given an element $x \in QL$, we shall denote by x_i its component in A_i . To prove that two elements $\alpha, \beta \in \mathbb{Q}L$ are conjugate in QL it suffices to show that their respective components α_i, β_i are conjugate in A_i , $1 \leq i \leq n$.

We now define a map $\theta: QL \rightarrow QL$ by $\theta(r) = r + r^*$, $\forall r \in QL$, and call $\theta(r)$ the trace of r . Notice that θ is a linear map whose values lie in the center of QL . Also,

$\theta(r) = \theta(r^*)$ for any $r \in CL$ and, if $a \in CL$ is central then $\theta(a) = 2a$. Since $A_i^* \subset A_i$, $1 \leq i \leq n$, each simple component of CL is invariant under θ .

3.3. Lemma. Let $\delta \in \Delta(G:G')$. Then $\theta(\delta_i u_i) = 0$ and, if $\text{supp}(\delta) \cap Z(G) = \emptyset$ then also $\theta(\delta_i) = 0$.

Proof: First we note that, since e is central, its component e_i lies in $Z(A_i)$, the center of A_i , which is a field. Since $e^2 = 1$ we readily get that $e_i = \pm 1$ in A_i , $1 \leq i \leq n$.

An element $\delta \in \Delta(G:G')$ is of the form $\delta = \alpha(e-1)$ with $\alpha \in CG$. If $e_i = 1$ it is clear that $\theta(\delta_i) = 0$. So, we may assume, from now on, that $e_i = -1$.

On the one hand, we have that $\theta((\delta_i u_i)^*) = \theta(\delta_i u_i)$; on the other hand, since $(\delta_i u_i)^* = e_i \delta_i u_i$, we get that $\theta((\delta_i u_i)^*) = -\theta(\delta_i u_i)$ and thus we must have $\theta(\delta_i u_i) = 0$, $1 \leq i \leq n$ and hence $\theta(\delta_i) = 0$.

Now, assume that $\text{supp}(\delta) \cap Z = \emptyset$. Writing $\delta = (\sum_g a_g g)(e-1)$ it is easy to see that we must have $a_g = 0$ for every $g \in Z$. Now $\theta(\delta_i) = -2\sum_g a_g \theta(g_i)$ and, when g is not central, we have that $\theta(g_i) = \theta(g_i^*) = \theta(e_i g_i) = -\theta(g_i)$ so $\theta(g_i) = 0$ and hence $\theta(\delta_i) = 0$, $1 \leq i \leq n$. \square

3.4. Lemma. Let r and s be units in CL such that $\text{supp}(r) \cap Z = \text{supp}(s) \cap Z = \emptyset$: Then r_i is central in A_i if and only if s_i is central, $1 \leq i \leq n$. Furthermore, if this is the case and if $\theta(r_i) = \theta(s_i)$ then $r_i = s_i$.

Proof. Our hypothesis on the supports of r and s implies that $r^* = er$ and $s^* = es$ hence, $(rs + sr)^* = e^2(rs+sr) = rs + sr$. Thus, $rs+sr$ is central and, consequently, $r_i s_i + s_i r_i$ is central in A_i , $1 \leq i \leq n$. Since both r_i and s_i are units, it is clear that r_i is central if and only if s_i is central.

Also, if $\theta(r_i) = \theta(s_i)$ and r_i and s_i are central, we have that $2r_i = \theta(r_i) = \theta(s_i) = 2s_i$ and thus $r_i = s_i$. \square

4. The Conjecture

We are now ready to prove the main result of this paper.

Theorem. Let L be a finite RA loop and let r be a normalized torsion unit in $\mathbb{Z}L$. Then, there exists a unit $\alpha \in \mathbb{Q}L$ and an element $w \in L$ such that $\alpha^{-1}ra = w$.

Proof. If $\text{supp}(r) \cap Z(G) \neq \emptyset$ then Corollary (2.2) shows that actually $r = w$, for some $w \in L$. So, we may assume that $\text{supp}(r) \cap Z = \emptyset$.

We can write r either in the form $r = g + \delta_1 + \delta_2 u$ or in the form $r = gu + \delta_1 + \delta_2 u$, with $\delta_1 \in \Delta(G)\Delta(G')$ and $\delta_2 \in \Delta(G:G')$. We consider these two cases separately.

Case 1 - We assume that r is of the form $r = g + \delta_1 + \delta_2 u$, so $r^2 = g^2$ as shown by Proposition (2.4). Notice that since $\text{supp}(r) \cap Z = \emptyset$ it follows that $g \notin Z$ and $\text{supp}(\delta) \cap Z = \emptyset$. Hence, Lemma (3.3) shows that $\theta(r_i) = \theta(g_i)$, $1 \leq i \leq t$. Then Lemma (3.4) shows that we should study only those components where r_i and g_i are non-central. Also if $e_i = 1$ it is clear that $r_i = g_i$ (because $(\delta_1)_i = (\delta_2)_i = 0$) so we may assume that $e_i = -1$.

From now on, we shall work inside a fixed component A_i so we shall omit the subindex i to simplify notations. Let B be the subalgebra of A generated by r and g (which is associative in view of Artin's Theorem [7, Theorem 3.1]). Since $r^2 = g^2$ is central in B , it is a scalar, so we can find $\lambda \in \mathbb{C}$ such that $\lambda^2 = r^2 = g^2$. Also $u = rg + gr$ is a scalar so every element in B is a linear combination of $1, r, g$ and rg .

Set $f_1 = \frac{1}{2}(1 + \frac{r}{\lambda})$ and $f_2 = \frac{1}{2}(1 - \frac{r}{\lambda})$. Then, it is easily seen that f_1 and f_2 are orthogonal idempotents, different from 0 and 1, such that $f_1 + f_2 = 1$ and $r = \lambda(f_1 - f_2)$. We can write $B = f_1 B f_1 + f_1 B f_2 + f_2 B f_1 + f_2 B f_2$ and find by straightforward computation:

$$f_{11} = f_1 g f_1 = \frac{\mu}{2\lambda} f_1, \quad f_{22} = f_2 g f_2 = \frac{-\mu}{2\lambda} f_2, \quad f_{12} = f_1 g f_2 = f_1 g - \frac{\mu}{2\lambda} f_1$$
$$f_{21} = f_2 g f_1 = f_2 g + \frac{\mu}{2\lambda} f_2.$$

Hence $f_i B f_i$ is one-dimensional with basis f_i , $i = 1, 2$ and $\dim(f_i B f_j) \leq 1$ with equality holding if $f_{ij} \neq 0$ in which case $f_i B f_j$ is spanned by f_{ij} .

Moreover, we see that:

$$f_{12}f_{21} = (\lambda^2 - \frac{\mu^2}{4\lambda^2})f_1 \quad \text{and} \quad f_{21}f_{12} = (\lambda^2 - \frac{\mu^2}{4\lambda^2})f_2$$

If $\lambda^2 - \frac{\mu^2}{4\lambda^2} \neq 0$ it follows readily that $B \cong M_2(\mathbb{C})$.

Since the minimal polynomial of both r and g over \mathbb{C} is $x^2 - \lambda^2$ each one is similar to diag $(\lambda, -\lambda)$ so r is conjugate to g in B .

If $\lambda^2 - \frac{\mu^2}{4\lambda^2} = 0$ then $\frac{\mu}{2\lambda} = \pm 1$. Assume first that $\frac{\mu}{2\lambda} = 1$. Then $f_{12} + f_{21} = (f_1 + f_2)g - \frac{1}{2} \frac{\mu}{\lambda} (f_1 - f_2) = g - r$ so $g = r + f_{12} + f_{21}$. Write $s = f_1 - f_2 + \frac{1}{2\lambda} f_{12} + \frac{1}{2\lambda} f_{21}$; then $s^2 = 1$ and $s^{-1}rs = g$.

If $\frac{\mu}{2\lambda} = -1$ we obtain that $g = f_2 + \frac{1}{2\lambda} f_{12} + \frac{1}{2\lambda} f_{21}$ and setting $t = -f_1 + f_2 + \frac{1}{2\lambda} f_{12} + \frac{1}{2\lambda} f_{21}$,

we have that $t^2 = 1$ and $t^{-1}rt = -g$. Since g is non central, for some h in the projection of L in A we must have that $h^{-1}gh \neq h$ so actually $h^{-1}gh = eg = -g$ so it follows again that r is conjugate to g .

Case 2. Assume now that $r = \delta_1 + (\delta_2 + g)u$ and thus, that $r^2 = (gu)^2$. Since $\text{supp}(r) \cap Z = \emptyset$ we easily see that $\text{supp } \delta_1 \cap Z = \emptyset$ and hence $\theta(r_i) = \theta(g_i)$ so, once again, we may suppose that r_i and g_i are non-central in A_i and also that $e_i = -1$ in A_i . Hence we can essentially repeat the argument above to obtain the desired conclusion.

Since r and g are conjugate in GL , lemma 3.1. shows that there exist $\alpha \in GL$ and $w \in L$ such that $\alpha^{-1}r\alpha = w$.

REFERENCES

- [1] EDGAR G. GOODAIRE, Alternative Loop Rings, *Publ. Math. Debrecen* 30 (1983), 31-38.
- [2] E.G. GOODAIRE and M.M. PARMENTER, Units in Alternative Loop Rings, *Israel Journal of Math.*, 53 (1986), 209-216.
- [3] E.G. GOODAIRE and M.M. PARMENTER, Semisimplicity of Alternative Loop Rings, *Acta Math. Hungar.*, to appear.
- [4] G. HIGMAN, The Units of Group Rings, *Proc. London Math. Soc.* 2, 46 (1940) 231-248.
- [5] C. POLCINO MILIES, Torsion Units in Group Rings and a Conjecture of H.J. Zassenhaus, in *Group and Semigroup Rings*, ed. by G. Karpilovsky, North Holland Math. Studies № 126, Elsivier, Amsterdam, 1986, p.p. 179-192.
- [6] C. POLCINO MILIES and S.K. SEHGAL, Torsion Units in Group Rings of Metacyclic Groups, *J. of Number Theory*, 19, 1 (1984), 103-114.
- [7] J. MARSHALL OSBORN, Lie-Admissible Noncommutative Jordan Loop Rings, *Algs. Gps. Geom.* 1 (1984), 453-489.
- [8] J. RITTER and S.K. SEHGAL, On a Conjecture of Zassenhaus on Torsion Units in Integral Group Rings, *Math. Ann.*, 264 (1983), 257-270.

[9] R.D.SCHAFER, *An Introduction to Non-Associative Algebras*, Academic Press, New York, 1966.

[10] S.K. SEHGAL, *Topics in Group Rings*, Marcel Dekker, New York, 1977.

Francisco César Polcino Milies
Instituto de Matemática e Estatística
Departamento de Matemática
Rua do Matão, 1010
Caixa Postal nº 20570
CEP - 01000 - São Paulo - Brasil

Edgar G. Goodaire
Department of Mathematics
Memorial University of Newfoundland
St. John's - Newfoundland
A1C 5&7
Canada

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA
TÍTULOS PUBLICADOS

80-01 PLETCH, A. Local freeness of profinite groups. 10 p.

80-02 PLETCH, A. Strong completeness in profinite groups. 8 p.

80-03 CARNIELLI, W.A. & ALCANTARA, L.P. de. Transfinite induction on ordinal configurations. 22 p.

80-04 JONES RODRIGUES, A.R. Integral representations of cyclic p -groups. 13 p.

80-05 CORRADA, M. & ALCANTARA, L.P. de. Notes on many-sorted systems. 25 p.

80-06 POLCINO MILIES, F.C. & SENGAL, S.K. FC-elements in a group ring. 10 p.

80-07 CHEN, C.C. On the Ricci condition and minimal surfaces with constantly curved Gauss map. 10 p.

80-08 CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. 21 p.

80-09 CHEN, C.C. On the image of the generalized Gauss map of a complete minimal surface in R^4 . 8 p.

81-10 JONES RODRIGUES, A.R. Units of ZCp^n . 7 p.

81-11 KOTAS, J. & COSTA, N.C.A. da. Problems of model and discussive logics. 35 p.

81-12 BRITO, F.B. & GONÇALVES, D.L. Álgebras não associativas, sistemas diferenciais polinomiais homogêneos e classes características 7 p.

81-13 POLCINO MILIES, F.C. Group rings whose torsion units form a subgroup II. Iv. (não paginado)

81-14 CHEN, C.C. An elementary proof of Calabi's theorems on holomorphic curves 5 p.

81-15 COSTA, N.C.A. da & ALVES, E.H. Relations between paraconsistent logic and many-valued logic 8 p.

81-16 CASTILLA, M.S.A.C. On Przymusinski's theorem. 5 p.

81-17 CHEN, C.C. & GOES, C.C. Degenerate minimal surfaces in R^4 . 21 p.

81-18 CASTILLA, M.S.A.C. Imagens inversas de algumas aplicações fechadas. 11 p.

81-19 ARAGONA VALLEJO, A.J. & EXEL FILHO, R. An infinite dimensional version of Hartogs' extension theorem.

81-20 GONÇALVES, J.Z. Groups rings with solvable unit groups. 15 p.

81-21 CARNIELLI, W.A. & ALCANTARA, L.P. de. Paraconsistent algebras. 16 p.

81-22 GONÇALVES, D.L. Nilpotent actions. 10 p.

81-23 COELHO, S.P. Group rings with units of bounded exponent over the center. 25 p.

81-24 PARMENTER, M.M. & POLCINO MILIES, F.C. A note on isomorphic group rings. 4 p.

81-25 MERKLEN GOLDSCHMIDT, H.A. Hereditary algebras with maximum spectra are of finite type. 10 p.

81-26 POLCINO MILIES, F.C. Units of group rings: a short survey. 32 p.

81-27 CHEN, C.C. & GACKSTATTER, F. Elliptic and hyperelliptic functions and complete minimal surfaces with handles. 14 p.

81-28 POLCINO MILIES, F.C. A glance at the early history of group rings. 22 p.

81-29 FERRER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. 52 p.

81-30 COSTA, N.C.A. da. The philosophical import of paraconsistent logic. 26 p.

81-31 GONÇALVES, D.L. Generalized classes of groups, spaces c-nilpotent and "the Hurewicz theorem". 3

81-32 COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. 18

81-33 MERKLEN GOLDSCHMIDT, H.A. Homogeneous \mathbb{A} -hereditary algebras with maximum spectra. 32 p.

81-34 PERESI, L.A. A note on semiprime generalized alternative algebras. 10 p.

81-35 MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtered power structures of stable continuous functions. 9 p.

81-36 FIGUEIREDO, G.V.R. Catastrophe theory: some global theory a full proof. 91 p.

82-37 COSTA, R.C.F. On the derivations of gametic algebras. 17 p.

82-38 FIGUEIREDO, G.V.R. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod 5.

82-39 VELOSO, J.M.M. Lie equations and Lie algebras: the intrasitive case. 97 p.

82-40 GOES, C.C. Some results about minimal immersions having flat normal bundle. 37 p.

82-41 FERRER SANTOS, W.R. Cohomology of comodules II. 15 p.

82-42 SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds. 15 p.

82-43 GOES, C.C. The stability of minimal cones of codimension greater than one in R^n . 27 p.

82-44 PERESI, L.A. On automorphisms of gametic algebras. 27 p.

82-45 POLCINO MILIES, F.C. & SENGAL, S.K. Torsion units in integral group rings of metacyclic groups.

82-46 GONCALVES, J.Z. Free subgroups of units in group rings. 8 p.

82-47 VELOSO, J.M.M. New classes of intransitive simple Lie pseudogroups. 8 p.

82-48 CHEN, C.C. The generalized curvature ellipses and minimal surfaces. 10 p.

82-49 COSTA, R.C.F. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. 24 p.

83-50 GONCALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. 3 p.

83-51 MANDEL, A. & GONCALVES, J.Z. Free k-triples in linear groups. 7 p.

83-52 BRITO, F.G.B. A remark on closed minimal hypersurfaces of S^n with second fundamental form of constant length. 12 p.

83-53 KIHL, J.C.S. U-structures and sphere bundles. 8 p.

83-54 COSTA, R.C.F. On genetic algebras with prescribed derivations. 23 p.

83-55 SALVITTI, R. Integrabilidade das distribuições dadas por subalgebras de Lie de codimensão finita no $gh(n, C)$. 4 p.

83-56 MANDEL, A. & GONCALVES, J.Z. Construction of open sets of free k-Tuples of matrices. 18 p.

83-57 BRITO, F.G.B. A remark on minimal foliations of codimension two. 24 p.

83-58 GONCALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. 9 p.

83-59 BELOQUI, J.A. Modulus of stability for vector fields on 3-manifolds. 40 p.

83-60 GONCALVES, J.Z. Some groups not subnormal in the group of units of its integral group ring. 8 p.

84-61 GOES, C.C. & SIMOES, P.A.Q. Imersões mínimas nos espaços hiperbólicos. 15 p.

84-62 GIAM BRUNO, A.; MISSO, P. & POLCINO MILIES, F.C. Derivations with invertible values in rings with involution. 12 p.

84-63 FERRER SANTOS, W.R. A note on affine quotients. 6 p.

84-64 GONCALVES, J.Z. Free-subgroups and the residual nilpotence of the group of units of modular and p-adic group rings. 12 p.

84-65 GONCALVES, D.L. Fixed points of S^1 -fibrations. 18 p.

84-66 RODRIGUES, A.A.M. Contact and equivalence of submanifolds of homogenous spaces. 15 p.

84-67 LOURENCO, M.L. A projective limit representation of (DFC)-spaces with the approximation property. 20 p.

84-68 FORNARI, S. Total absolute curvature of surfaces with boundary. 25 p.

84-69 BRITO, F.G.B. & WALCZAK, P.G. Totally geodesic foliations with integral normal bundles. 6 p.

84-70 LANGEVIN, R. & POSSANI, C. Quase-folhações e integrais de curvatura no plano. 26 p.

84-71 OLIVEIRA, M.E.G.G. de Non-orientable minimal surfaces in R^3 . 41 p.

84-72 PERESI, L.A. On baric algebras with prescribed automorphisms. 42 p.

84-73 MIRAGLIA NETO, F. & ROCHA FILHO, G.C. The measurability of Riemann integrable-function with values in Banach spaces and applications. 27 p.

84-74 MERKLEN GOLDSCHMIDT, H.A. Artin algebras which are equivalent to a hereditary algebra modulo preprojectives. 38 p.

84-75 GOES, C.C. & SIMOES, P.A.Q. The generalized Gauss map of minimal surfaces in H^3 and H^4 . 16 p.

84-76 GONCALVES, J.Z. Normal and subnormal subgroups in the group of units of a group rings. 13 p.

85-77 ARAGONA VALLEJO, A.J. On existence theorems for the $\bar{\delta}$ operator on generalized differential forms. 13 p.

85-78 POLCINO MILIES, C. ; RITTER, J. & SEHGAL, S.K. On a conjecture of Zassenhaus on torsion units in integral group rings II. 14 p.

85-79 JONES RODRIGUES, A.R. & MICHLER, G.O. On the structure of the integral Green ring of a cyclic group of order p^2 . The Jacobson radical of the integral Green ring of a cyclic group of order p^2 . 26 p.

85-80 VELOSO, J.M.M. & VERDERESI, J.A. Three dimensional Cauchy-Riemann manifolds. 19 p.

85-81 PERESI, L.A. On baric algebras with prescribed automorphisms II. 18 p.

85-82 KNUDSEN, C.A. O impasse aritmo-geométrico e a evolução do conceito de número na Grécia antiga. 43 p.

85-83 VELOSO, J.M.M. & VERDERESI, J.A. La géométrie, le problème d'équivalence et la classification des CR-varietés homogènes en dimension 3. 30 p.

85-84 GONCALVES, J.Z. Integral group rings whose group is solvable, an elementary proof. 18 p.

85-85 LUCIANO, O.O. Nebuleuses infinitesimalmente fibrées. 5 p.

85-86 ASPERTI, A.C. & DAJCZER, M. Conformally flat Riemannian manifolds as hypersurfaces of the 11th cone. 8 p.

85-87 BELOQUI, J.A. A quasi-transversal Hoof bifurcations. 11p.
85-88 POLCINO MILIES, C. & RAPHAEL D.M. A note on derivations with power central values in prime rings. 7p.
85-89 POLCINO MILIES. Torsion units in group rings and a conjecture of H.J.Zassenhaus. 14p.
86-90 LOURENCO, M.L. Riemann domains over (DFC) spaces. 32p.
86-91 ARAGONA VALLEJO, A.J. & FERREIRA, J.C.D. The Hartogs extension theorem for holomorphic generalized functions. 9p.
86-92 CARRARA ZANETIC, V.L. Extensions of immersions in dimension two. 27p.
86-93 PERESI, L.A. The derivation algebra of gametic and zygotic algebras for linked loci. 25p.
86-94 COELHO, S.P. A note on central idempotents in group ring. 5p.
86-95 PERESI, L.A. On derivations of baric algebras with prescribed automorphisms. 21p.
86-96 COELHO, F.U. A generalization of a theorem of Todorov on preprojectives partitions 18p.
86-97 ASPERTI, A.C. A note on the minimal immersions of the two-sphere. 11p.
86-98 COELHO, S.P. & POLCINO MILIES, C. A note on central idempotents in group rings II. 8p.
86-99 EXEL, R. Hankel matrices over right ordered amenable groups. 18p.

NOVA SERIE

86-01 GOODAIRE, E. G. & POLCINO MILIES, C. Isomorphisms of integral alternative loop rings. 11p.
86-02 WALCZAK, P. G. Foliations which admit the most mean curvature functions. 11p.
86-03 OLIVEIRA, M.E.G.G. Minimal Klein bottles with one end in R^3 and R^4 . 12p.
86-04 MICALI, A. & VILLAMAYOR, O.E. Homologie de Hochschild de certaines algèbres de groupes. 11p.
86-05 OLIVEIRA, M.E.G.G. Minimal Klein bottles in R^3 with finite total curvature. 9p.
86-06 CARRARA ZANETIC, V. L. Classification of stable maps between 2-manifolds with given singular set in
87-01 BRITO F.G.B. & WALCZAK P.G. Total curvature of orthogonal vector fields on three-manifolds. 4p.
87-02 BRITO F.G.B. & LEITE M.L. A remark on rotational hypersurfaces of S^n . 13p.
87-03 GONCALVES J., RITTER J. & SEHGAL S. Subnormal subgroups in $U(ZG)$. 13p.
87-04 ARAGONA VALLEJO, A.J. & COLOMBEAU, J.F. The interpolation theorem for holomorphic generalized functions. 12p.
87-05 ALMEIDA, S.C. de & BRITO, F.G.B. Immersed hypersurfaces of a space form with distinct principal curvatures. 9p.
87-06 ASPERTI, A.C. Generic minimal surfaces. 21p.
87-07 GOODAIRE, E.G. & POLCINO MILIES, F.C. Torsion units in alternative group rings. 17p.