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INTRODUCTION 

Let G be a finite group and let ?LG denote the group 

ring of Gover the ring !Z of rational integers. As usual, we 

shall denote by £& ?lG • G the augmentation ~unction i.e. the 

map given by £(ta
9

g) • ta
9

• 

If we denote by U(?lG) the group of units of ?lG then 

the set V (?lG) • {a e u (?lG) IE (a) • l} is called the group of 

no4malized unit4 of ?lG. The elements of the form ±9, 

g e G are the t4iviat u.nit4 of ?lG. 

with 

G. Higman, in a classical paper on the units of 

group-rings [4] has shown that if G is abelian then all units of 

finite order in ?lG are trivial. When G is not abelian, an 

obvious way to exibit new torsion units in ?lG is to compute 

-1 
conjugates of the form y gY, with g e G and Ye V(?lG). One 

can also allow y to belong to Q)G provided that Y-1gY e ?lG. R. 

J. Zassenhaus has conjectured that all torsion units in ?lG can 

be constructed in this way. More precisely we have: 

• 
Zassenhaus Conj ecture. Let re ?lG be a normalized unit of --· 

·f.inite rrder. Then, ther~ exists an . invertible element a e QG, 

and an element g ~ G such that -1 
a :1'11·•9· 

It has bee~ shpwn that the conjecture holds for some 

famil.ies of groups (see, for example (5)), 

This vork vaa part1aliy-supported by FAPESP (Brasil) 



Non a·ssociative generalizations of group rings have 

been considered in recent literature. Let L be a finite loop1 

then, the loop ring RL of Lover an associative ring R can be 

defined in precisely the same way a group ring is. Since al­

ternative algebras are close to associative algebras, it is 

only natural to consider those loops whose loop rings are al­

ternative. In this paper, we shall show that the corresponding 

analogue to the Zassenhaua Conjecture holds for this type of 

ring. 

1. Some Basic Facts 

An -RA loop is a loop.which is not a group, whose 

loop rings over rings of characteristic other than 2 are 

alternative. We list a few facts about RA loops which can 

' 
be found in[!) and [3). 

1.1. Proposition - Let L be an RA loop. Then: 

(i) The nucleus and the center of L coincide. 

(ii) The conunutator subloop L' is generated by a central 

element e of order 2. 

(iii) There exists a non abelian group Ge Land an element 

u e L such that L • G U Gu. The center of G coincides 

witn the center of Land shall be denoted by z. For 

every element g e L we have that ga e z. 

(iv) The map * aL • L given J:>y 
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{

g if g e z 

g* -

eg if g • z 

is an involution of L which extends linearly to RL 

(v) Every element re RL can be written uniquely in the form 

r • x+yu with x,y e RG1 If we set g
0 

• u 2 the involution 

and multiplication ·in RL are given respectively by: 

(x + yu)* • x* , + eyu 

(x+yu) (z+wu) • (xz+g
0

w*y)+(wx+yz*)u, 

It is easy to see that the center of RL iss 

Z(RL) • {x+yulx,y e Z(RG), y • ey} 

so, it follows that r • x+yu e Z(RL) if and only if r • r• and 

hence, for every element re RL 

rr* are central. 

we have that both r+r* and 

Now, we turn our attention to augmentation ideals. 

Let N be a normal subloop of an RA loop L. Then, just as is 

done in .the case of group rings, the .natural map L + L/N can be 

extended to a ring homomorphiBlll vs ~L + ~L/N and it can be 

easily shown that ker(w) is spanned over flL by the elements of 

the set {n-lln e N) • 

In the case where Lis a group G, we denote 

ker(w) • A(G:N) and indicate simply by A(G) the ideal A(G:G) 

which is precisely the kernel of the augmentation function and· 
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If N ~ z (L) then, clearly, we have that N* = N. If N 

contains a non-central element n then, there exists an element 

g e L such that g-1ng ~ en e ~ and hence e e N. It follows 

that N* c: N also in this case. 

Now, write L •GU Gu where G is as in proposition 

1.1 and assume that N c: G. Let x+yu be any element in ~L , 

with x,y e rlG and set n e N. We have thata 

(x+yu) (n-1) "' x(n-1) + y(n-l)*u e A (G:N) + A (G:N)u • 

These remarks show that the following holds. 

1.2. Propositions With the notations above, we have thats 

(il An element x+yu e ~L belongs to ker(w) if and only 

if x,y e A (G:N) 

(ii) A (GzN) * c: A (GaN) 

2. Torsion Units 

In this section, we note that a well-known property 

of torsion units in group rings also holds in the case of an 

alternative loop ring and then derive consequences peculiar to 

the non-associative situation. Throughout the rest of this 

paper, L will always denote a finite RA loop. 
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· 2.1. Proposition. Let r • I a(g)g be a unit of finite 
geL 

order in the integral loop ring of L. If all)~ 0 then 

r • a (1) • ±1. 

Proof. - For a given element r e 2ZL we can define a linear 

map Rr: 2ZL + 2ZL by Rr (x) • xr, 'Y x e 2ZL. For each fixed 

element x e 2ZL the subring generated by rand xis 

associative so, we see that Rn• Rn• 
r r 

' 1 
By considering a matrix of Rr we can apply step by 

step the well-known argument which is used in the case of 

group rings to obtain the desired conclusion. 

II.1.1]. 

See (10, Theorem 

2.2. Corollary: If r • I a(g)g is a torsion unit in 2ZL 
geL 

' and a(g) - 0 for some~ e Z(L) then r • ±g. 

2.3. Corollary. Let r be a torsion unit in 2ZL. Then, 

r 2 e z. 

Denote S • supp(r) so that r • I a(g)g with a(g)-o 
ges 

for all. g es. Then we can write 

with 

r 2 • I a 2 (g)g2 + 8 + y 
ges ., 

8 • 2Ia(g)8(h)gh where the sum runs over all pairs (g,h) 



such that gh • hg 

y • Ea(g)a(h) (gh+hg) 

where the sum runs over those pairs (g ,h) such that gh ;e hg. 

Note that both E(S) 4n.d E(Y) are even integers 

while E(~ 2 ) = l since r is a unit. · Therefore, there must 

exist an element g1 e S such that a (g1) is odd_. 

Since gf is central, it cannot be equal to an 

element gh in the support of y (note that this would imply 

gh = hg) and, obviously, the term a 2 (g1)gl cannot cancel with 

a term of the form 2a(g)8(h)gh. Hence, gf e supp(r 2 ) and now 

corollary 2.2. shows that r 2 
• ±gi. Finally, since c(r 2

) • 1 

we must have that r 2 
• 9f e z. D 

Notice that the proof of the corollary above actually 

shows that r 2 is equal to the square of an element in L. We 

wish to determine this element in a precise way. 

Let w iZL +ZL/L' denote the homomorphism induced by 

the natural map L+ L/L' and let re V(rlG). Then, r • w(r) is 

a unit of finite order in the integral group ring rlL/L' ana is 

thus trivial (see [1.0, Corollary II.1.8.]). Hence, either 

w(r)-= w(g') or. w(r) • w(g•u) for some g' e G. If 

w(r) • w(g') we can writer in the form: 

r • g' + 6 + oau, where 8 t.(G;G') 
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Using the so-called Whitcomb argument UO,p.103] it 

can be shown that g' + 6 • g + 6 1 for some g e G and some 

6
1 

e A(G)A(G') where A(G') denotes the augmentation ideal 

of ZlG 1 • Consequently, we can writer in the form: 

In a similar way, if ,I.I) (r) • w (g'u) we can write r 

in the form: 

. r - (g+6i)U + c5;z with 6i e A(G) A(G') and c5;z e A(G:G') 

2.4 Proposition. Let r be a normalized unit of finite order 

in ZlL: Then either ra • ga or ra • (gu)a where g e G is 

an element satisfying one of the equalities above. 

, Proof: Assume first that r can be written in the form 

r • g+ 4:i. + 6.iu with 4:i. and 6.i as above. 'rhen, it is easy to 

see that ra can be written as: 

r 3 • g 3 + 4i + 62u with 4i e li(G)li(G') and 6i eti(G:G'). 
, ◄ 

We know from corollary 2.3 that ra e zc: G so we 

must have that ra • ga + 4i and 42u • O. Bence, using 

[1.Q, Lemma VI. 5 .1] whe have: 

If r 2 •(g+61)u +6i it also follows, in a similar 

way~ that ra • (gu) a. O 
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In what follows, we shall .prove the zassenhaus 

Conjecture by showing that a normalized torsion unit re ~L 

is conjugate in mG to the element g or gu found above. J. 

Ritter and S.K. Sehgal have shown in (8] that something 

similar happens when working with integral group rings of 

nilpotent class 2 groups and observed, by means of a 

counterexample that this need not be the case in general. 

3. A reduction 

In this section, we wish to show that the zassenhaus 

conjecture can be reduced to the question of conjugacy in the 

complex loop algebra ~L. The argument is essentially due to 

c. Polcino Milies and S.K. Sehgal (6, lemma 5) and we go 

through it again here to show· that the techniques work 

equally well in the alternative case. 

3.1. Lemma. Let kc K be infinite fields and let L be a 

finite loop whose loop algebra over K is both sernisimple and 

alternative. If two _given elements a,B e kL are conjugate 

in KL then they are also conjugate in kL. 

Proof: Let a,a e kL be as in our statement. Then, the 

equation 

ax - xa 

has a solution in KL. 



Let La and Rs denote the linear transformations of 

KL defined as left · multiplication by a and right multiplication 

by S respectively •. 

Set nm ILi. If we identify X with its coordinate 

vector X • (x1, ••• ,xn) in Kn relative to the basis L of KL, 

then the equation above can be written in matrix form as XM • O, 

where Mis the matrix of the linear transformation La-Rs• 

Clearly, Mis a nxn singular matrix with entries in 

k · and hence the matrix equation has also solutions in kn. Let 

{v1 , ••• ,vt} be a basis for ker(La-RS) in kn. 

We wish to show that there exists at least one 

vector v e ker(La-RS) which is invertible, since it would 

then be such that v-1av • 8. 

We claim that it is enough to prove that it is not 

a zero divisor since the simple components of the semisimple 

alternative algebra KL are either simple associative algebras 

or Cayley-Dickson algebras. In the first case it is clear 

that non zero divisors are invertible; in the second case 

this also follows since an element a is invertible if and only 

if aa ,;, o, where a derotes the illage of a urxler the c:aronical imol.ution 

in a Ca.ylE!f-01.ckson alga:>ra. 
So, assume that for every choise of scalars 

Al, ••• , At e k the element correspo:1ding to 

x ·• A1v 1 + ••• + Atvt is a zero divisor in kL or, equivalen­

tly, that the matrix of R,c is singular. Thel),~(A 1, ••• ,At) • . 
t 

det ~ • det( I A1R,,) e k [A 1, ••• ,At) is a polynomial over 
i•l i 
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• 
the infinite field k which vanishes for all possible values 

of the variables and thus it is the zero polynomial. Hence, 

Rx is singular al~o for all x e EKVi , a contradiction. 

Consequently, there must exist a solution of the 

equation XM "' 0 whose corresponding element in kL is 1nvertible 

and thus the result follows. □ 

As an immediate consequence we obtain: 

3.2. Corollary. If two elements a,B € mL are conjugate in mL 

then they are also conjugate in mL. 

Because of this result, we shall work in WL throughout 

the rest of this paper. If we write ICL = A1 61 ••• e An, where 

Ai, l..; i..; n, denote the simple alternative components of 

a:L, then Ai n A1 is a• non zero ideal contained in Ai, 

(for example, the center of A1 is fixed by the involution 

of U:L) so Ai n A1 • Ai, l "- 1 "- n. 

Given an element x e a:L, we shall denote by ·xi its 

component in Ai. To prove that two· elements a,a e mL are 

conjugate in ICL it suffices to show that their respective 

components ai,Bi are conjugate in Ai, l c;; i c;; n. 

We now define a map 8: ICL + ICL by e(r) • r+r*, 

Yr e U:L, and call e(r) the tAace of r. Notice that e is 

a linear map whose values lie in the center of ICL. Also, 

... . 
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8(r) • 8(r*) for any re ~L and, if a e ~Lis central then 

8(a) = 2a. Since AI c: Ai' 1 Sis n, each simple component 

of ~Lis invariant under e. 

3.3. Lemma. Let 6 e ~(G:G'). Then 8(6,ui) • 0 and, if 
--- 1 

supp(o) n Z(G) • 0 then also 8(oi) • O. 

~: First we note that, since e is central, its component 

ei lies in Z(Ai), the center of Ai' which is a field. Since 

ea• l we readily get that e 1 z ±1 in Ai' 1 Si Sn. 

An element 6 e MG:G') is of the form 6 • a (e-1) 

with a e ~G. If ei • l it is clear that 8(6i) • o. So, we 

may assume, from now on, that ei • -1. 

On the one hand, we have that 0((6iui)•) • 0(6iui); 

' on the other hand, since (6iui)* • ei6iu1 , we get that 

8((6iui)*) • -8(6iui) and thus we must have 8(6iui) ~ O, 

l Si Sn and hence 8(61u1)• O. 

Now, assume that supp(o) n z • ti). Writing 

6 • (ta
9

g) (e-1) it is easy to see that we must have a
9 

• 0 

for every g e Z. Now 8(61) • -2ta
9
8(gil and, when g is 

not central, we have that 8(gi) • 8(gi) • 8(e1g1) • -0(gi) 

so 8(gi) E O and hence 8(61) • O, 1 Si Sn. 0 

3.4. Lemma. Let rands be units in ~L such that 

supp(r) n z • supp(s) n z • ~= Then ri is central in Ai if 

and only if s 1 is central, 1 Si Sn. Furthermore, if this 

is the case and if 8(ri) • 8(si) then r 1 • &i. 

,... 
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Proof. Our hypothesis on the suppo·rts of r and s implies 

that r• s er and s* • es hence, (rs + sr) * a e:a (rs+&.r) "' 

•rs+ sr. Thus, . rs+sr is central and, consequently, 

risi+siri is central in Ai' 1 Si Sn. Since both r 1 and 

si are units, it is clear that r 1 is central if and only if 

si is central. 

Also, if 8(r1) a 8(s1) and r 1 and s 1 are central, 

we have that 2ri • 8(ri) • 8(si) • 2s1 and thus ri • s 1 • D 

4. The Conjecture 

We are now ready to prove the main result of this 

paper. 

Theorem. Let L be a finite RA loop and let r be a normalized 

torsion unit in Zl;L. Then, there exists a unit a e (DL and an 

element w ~ L -1 such that a ra • .w. 

Proof. If supp(r) n Z(G) • 0 then corollary (2.2) shows that 

actually r • w, for some we L, So, we may assume that 

supp(r) n z • 0. 

We can writer either in the form r • g+6 1+6 2u or in 

the form r • gu + 61 + 62µ, with 61 e A(G)A(G') and 

62 E A(G:G') • We consider these two cases separately. 
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Case 1 - We assume that r is of the form r = g+6 1+6 2u, so 

r 2 c g 2 as shown by Proposition (2.41. Notice that since 

supp(r) n z ~ 0 it follows that g $ z and supp(6) n z s 0 ■ 

Hence, Lemma (3.3) shows that 8(r1 ) • 0(gi) , 1 Si St. 

Then Lemma (3.4) shows that we should study only those 

components where r 1 and gi are non-central. Also if e 1 • 1 

it is clear that ri • gi (because (6
1

)
1 

= (6 2 )
1

a O) so we may 

assume that e
1 

m -1. 

From now on, we shall work inside a fixed component 

Ai ', so we shall omit the subindex i to simplify notations. 

Let B be the subalgebra of A generated by rand g (which is 

associative in view of Artin's Theorem [7, Theorem 3.1]). 

Since r 2 • g 2 is central in B, it is a scalar, so we can find 

A et such that A2 
• r 2 • g 2 • Also~ x rg+gr is a scalar 

so every element in Bis a , linear combination of 1,r,g and rg. 

l · r l r 
Set fl• 2 (1+ r> and f 2 • 2 (1-r>• Then, it is 

easily seen that f 1 and f 2 are othogonal idempotents, 

different from O and 1, such that f 1+f2 • 2 and r • A(f1-f2). 

we can write B • £1sf1 + £1sf2+f2Bf1+f2B£2 

straightforward computation: 

and find by 

Hence fiBfi is one-dimensional with basis £1 , ~ • f,2 

and dim (f1Bfj) S 1 with equ~lity holding if fij • 0 in 

which case f 1Bfj is spanned by fi .• 
). 
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Moreover, we see that: 

. 2 

If >. 2 - fu- :a:Q it follows readily that Ba M2 (a:). 
4>. 

Since the minimal polynomial of both rand g over a: is 

x2 - >. 2 each one is similar to diag ( A,"!' A) so r is conjugate 

tog in B. 

If 

..lL • l 2>. • Then 

2 
>.z--tf,.-o 

f12 + fu • 

then li • ±1. Assume first that 

(f1 + t 2)g - +t- (£1-£2) • g- r 

BO g • r + f1z+f21· Writes• f~-£2 + 1t f12 + 2~ f21 I then 

sa • 1 and s-1rs • g. 

If 

and setting 

µ 
2A" - -1 

1 t• -£1 + £2 + 
2>. 

we have that ta• land t-1rt • -g. Since g is non central, 

for some h in the projection of L· in A we must have that 

h-1gh ~ h so actually h-1gh • eg • -g so it follows again 

that r is conjugate tog. 

Case 2. Assume now that r • 61 + (6 2+g)u and thus, that 

ra • (gu)a. • Since supp(r) n Z • ¢ we easily see that 

supp 61 n z • 0 . and hence 0(ri) • 0(g1) so, once again, we 

may suppose that ri and gi are non-central in Ai and also 

that e 1 • -1 in A1• Hence we can essentially repeat · the 

argument above to obtain the desired conclusion. 
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Since rand g are conjugate in IL, lennna 3.1. shows 

that there exist a~ ;Land w ~ L such that a-1ra • w. 

'! 

. I 
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