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ABSTRACT. In this work we study the assymptotic properties of maps on
fuzzy spaces which are extensions of maps on R". The main results are
in section 4 (see Theorem 9) and we give an illustrative example in the
last section.

1. PRELIMINARIES

The interest in studying Fuzzy Dynamical Systems appears at least in three
different contexts: Images processing,where the functions are contractions
(see for instance Cabrelli et Alli [2]); Fuzzy Game Theory, see the work of
Klement and Butnariu [1] and Modeling Biological Population Dynamics,
see Barros, [3]. Here we give some basic results relating attractors and stable
fixed points of the Zadeh’s extension of a continuous functicn in R*. Our
approach is theoretical and is derived from the necessity to have a Fuzzy
theory for population dynamics, but has aspects in common with the other
branches cited above.

Here we fix some notations and recall known results. The family of all com-
pact nonempty subsets of R* will be denoted as Q(R"), while Q.(R") is for
the subset of Q(R"), whose elements are convex set in R*.

We also set F(R") for the family of fuzzy sets u : R* — [0, 1] whose a-level:

[W]*={z€R":u(z) >a} 0<a<land [u’=cl{z € R":u(z) > 0}

are in Q(R*). Finally £"denotes the family of fuzzy sets whose a-level are
in Q.(R").

It is known that the metric
D(u,v) = sup h([u]% [v]")
0<a<l1
where h is the Hausdorff metric in' Q(R"), makes the spaces (F(R"),D) and

(€™, D) into complete metric spaces [15].
We have also the endograph metric

H(u,v) = h(send(u), send(v))
1
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where
send(u) = ([u)® x [0,1]) Nend(x)
with
end{u) = {(z,a) € R" x [0,1] : u(z) > a}
this set is called the endograph [12] and here h means the Hausdorff metric
in the corresponding space.

We say that a sequence A, € Q(R") converges to A in the sense of Kuratowski
if

A =liminf A, = limsup A,

p—++oo p—++oo
where
- _ S
l,x,x_t:.l&pr ={zeR":z )Lr&:,,:t, € 4,}
and

o0
limsupd, ={zr €eR" :x = p!i_r’rlmx,j,zpj €Ay} = n U Ap
p—+o0 J] sty

We quote the following theorem from Hausdorff [10]

Theorem 1. Let A,, A € Q(R"), then the following are equivalents:
(1) Ap converges to A in the Hausdorff metric h.

(2) A and A, are contained in a compact set K, and A, converges to A in
the Kuratowski sense.

It is well known that the space(F(R"), D) is complete but not separable [15]
whereas (F(R"), H) is separable but not complete [12].
In the following we will need a proposition which can be found in [14]

Proposition 1. Let u, be a sequence in F(R")and u € F(R"*). Then the
sequence u, converges in the endograph metric to u if and only if

{u>a} C lim inf{u, > a}
p—co

(1) (= Pl'Lrgosup{u,, > a}
C{u=ea},Vae(o1l]

and

@) i (sl ) = 0

In the remainder of this section T is the interval [a,b) C R.
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Definition 1. Let f : T x R" — R" be a mapping then for each fized t we
define the Zadeh eztension as:
: SUp,es-1em w(t) [Tt z)#0
oy { gpareasts) 1 10m 40
for all fuzzy set u.
The proof of the following results can be found in [4]

Theorem 2. If f : TxR" = R" is continuous then f : T x F(R*) = F(R")
is well defined and for allt € T and « € [0, 1) we have

| (7 0)* = £ [W°)
Theorem 3. If f : T x R* — R" is Lipschitz with constent K so is the
Zadeh extension f : T x F(R") — F(R"), with the same Lipschitz constant
with respect to the metric D.
Note that if z € R" is a fixed point of a continuous function f : R* — R",
the the fuzzy set x, which is one for z and zero for all other points, is a fixed
point of f, hence we have
Corollary 1. If f : R* = R is a contraction, then f: F(R") - F(R") is
also a contraction. And if zo is the only fixed point of f given by the Banach
theorem, then x., is the only fixed point of f.

Next we recall some definitions for a typical function F : (F(R*),D) —
(F(R™), D) that the reader can find in Hale (8].

2. DiscreTE Fuzzy DYNAMICAL SYSTEMS (Fuzzy CASCADES)

A Discrete Fuzzy Dynamical System is an iterative system of the form
(3) Unst = Flun)
where, F:F(R") — F(R") is a function.
Given ug € F(R"), the sequence of elements
up, F(ug), F(F(up)),...

is called the Positive Orbit of equation (3) from uo and F"(ug) denotes the
n times composition of F.

Let f be a Zadeh's extension of a continuous function f : R® — R™ and take
the system .

(4) Unt1 = f(un).
We call (4) the associated fuzzy system to the deterministic system
(5) Tn+l = f(zn)
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The following theorem gives a result about the solutions of the both equations
(4) and (5). In some sense we can say that the deterministic solutions are
the preferred solutions of the associated fuzzy systems

Theorem 4. Suppose that u, and z, are the solutions of () and (5) through
uq and Ty respectively, and assume that ug(zo) = 1. Then up(z,) =1 for all
n20.

Proof. We have

(6) ) Uns1{Tns1) = f(un)(-rnﬂ) = sup un(T) > un(zn)

Zn+1=f(7)

since u, and z, solutions, hence
Un41(Tnt1) 2 a(2a) 2 .. 2 up(z0) = 1.
]

Note that for this result f needs not be continuous. What will be important
in the continuity of f is that this implies the monotonicity of f, see our work
[4], that is, we have f"*!(up) = f™(ug) for all n > m if f™*+'(ug) 2 f™(uo).

Definition 1. Let F : F(R") = F(R") be a map. A point Z € F(R") is
called a fized point of F if F(u) =u.

Observe that F(7) = 7@ if and only if
(M F@)° =@

for all a € [0,1].

It is clear that if F: F(R") — F(R") is a contraction then F has only one
fixed point since (F(R"), D) is a complete metric space.

Observe also that if % is the fixed point in this case, then

(8) D(F"(u),) < T D(F(u), )

give us a upper bound for n-th iteration as an approximation of @. Here k is
the contraction constant.

The next theorem is a consequence of Tychonoff fixed point theorem, whose
version in the fuzzy space was proved by Kaleva [11].

Theorem 5. Let K be a compact convez subset of (E", D). Every continu-
ous map K — K has a fized point

Note that if F : (F(R"),D) — (F(R"),D) is a contraction with a fixed
point different from a characteristic function of a point z € R*, then F isn’t
a Zadeh’s extension.
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Proposition 1. If f : R* —» R* is continuous and A C R" is a compact
subset, then A is invariant for [ (i.e. f(A) = A, see Hale [8]) if and only if,
the Characteristic function x4 is a fized point of the Zadeh’s extension f.

Proof. Using the properties of the extension of a continuous function [4] we
have

9) [FOea))® = F([xal®) = f(A) = A = [x4]® Ve € [0,1].
From this follows the result immediately. (]
In the next section we study the stability of the fixed points using the prop-
erties of the space (F(R"), D).

3. STABILITY OF THE FIXED POINTS

Definition 2. A fixed point T of F : F(R*) = F(R") is stable if for all
€ > 0 there is a § > 0 such that, for all « with D(u,u) < 6, we have
D(F™(u),u) < e foralln > 0. A fixed point T is unstable if it isn’t stable,
and @ is asymptotically stable if it is stable and there exists r > 0 such that
for all u satisfying D(%,u) < r, then nlirl-;-noo D(F™(u),7) = 0.

If @ is asymptotically stable then F™(u) H, % for all u such that D(@u)<r
(cf. Kaleva [11]).

Taking into account the definition of the space (F(R"), D) we can rewrite
the above definition as:

Definition 3. The fixed point T of F' : F(R*) — F(R") is stable if and only
if for all € > 0 there is § > 0 such that, for all » with sup A([u]?, [@]®) <4,
0<a<l

then sup h([F™(u)]% [@]°) <&, for all » > 0 and T is asymptotically stable
0<as<l
if it is stable and lim  sup h([F™(u)]%, [u]®) = 0if sup h{[u)%, [@]®) <.
n—++00 g<a<l 0<a<l

Then if T is stable h([F"(u)]%, [@]®) < € for all & € [0,1] and n > 0, which
means that

(10) inf{s : [F"(u)]* C B([@*,s) e [@]* € B([F"(u)]*,s)} <e.

As a consequence we have that (see Kaleva [11])

[F*(u)]* C B([@]*,€) and [€]* € B([F"(u)]*,€) for all a € [0,1] and n > 0.
If lim sup A{[F"(u)]% [E]*) = 0 we have for all & € [0,1]
ll—!+tl)osasl

(1) Jlim A(F @), @) = 0
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that implies
(12) lim inf([F"(u)]*) = lim sup[F™(u)]* = [@]°,

n—++00 n—+00
according Theorem 1. Then, if lirf D(F"(u),a) = 0 we get

n—+o00

=] — n — % n a

@ = {yeR :y= lim ya, 3 € [F"(w)]}
fyveR:y= j-l-ETooyn"‘ Yn,; € [F™(u)]*}

N UFE @i

320 n2j

for all a €0,1).
Example 1: We consider the system

(13) Unt1 = F(un)

where F : €1 — £ is given by F(u) = M, A € £'. It’s clear that 0 = xo)
is fixed point. Suppose that [A]* = [Af, A%], [u]* = [uf,ug] with A? and u?
positive, then

(14) [F(w)]* = [Afuf, Aug], @ €[0,1]

using the multiplication of fuzzy numbers (see for instance Negoita and
Ralescu [13]) .
Given the initial condition up with [uo]® = [uf;, u$,] and u§, positive, we have

(13) [F™(u0)) = [A"uo]® = [(AT)"ugy, (A3)"ufa), @ € [0,1].

Then,

(16) D(F™(ug),0) = sup |z] = (A9)"ul, for all ug € £,
z€(Fn (uo)]®

Hence, as D(ug,0) = u3,, we have asymptotic stability at 0 if [A]° € [0,1)
and instability if [A)° ¢ [0, 1].

We remark that the length of the a-level of the solution is

(17) (A3)" ugo — (AD)"™ ugy

that decreases with n when [A]* C [0,1). What is a different result from the
differential fuzzy equations [5)

Let us also comment that, although F is not the extension of any function,
we have that all crisp linear system with coefficient a and initial condition z4
satisfying Af < a < Af, uf, < zp < uf, forall z € [0,1), leads to

(18) (AS)" ug; < a" 2o < (A3)" ufy, Va € [0,1].

In other words, the solution of the deterministic system

(19) Zp4l = QTn, To
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has always membership degree one. ( Is a preferred solution for the fuzzy
system). In fact, this example is extremely useful if one consider systems
where the fuzziness appears just in a multiplicative parameter.

4. STABILITY OF THE FIXED POINT OF THE ZADEH’S

In this section the map f : F(R®) — F(R") is the Zadeh’s extension of a
continuous function f : R® — R" and we know that T is a fixed point of f if
and only if, the a-levels [@]® are compact invariant sets of f, since

(20) [@* = [f@)" = f({@*), Ve € [0,1].
On the other hand, as [f"(u)]* = f*([«]°), then nll.IEo R((f*(w)]e, [@*) =0,
and we have

(a)®

1

{nh_)r{.‘o f{(2a), 2a € [4]°}
{ lim_f™ (2;), z; € [u]*}

N Um@®

Jj20 n2>j
this means [7]* = w([u]*) where w(B) is the w-limit set of B. Recall the
definition of the w-limit according Hale (8]

(21) w(B) =" [JS(B) (see Hale [8], p. 8).

320 nzj

In particular, w(z) C [@)® for all z € [u]°.
The following Lemma is very important for the rest of this section.

Lemma 1. Let X € F (R") the characteristic function of the compact set
X C R*. Then the open ball is characterized by

B(X,r) {u€ F(R"): D(X,u) <7}
{we FIR"): (v’ € B(X,r) and X C B(u]',r)}=F
Proof. 1f u € B(X,r), then sup h(X,[1)°) <r
0<a<l
or -7
(22) sup inf{e: [u]* C B(X,e) e X C B([u]*,¢)} <r
0<agl

1

which implies
(23) i(e) = inf{e: [u]* C B(X,e) e X C B([u]*,8)} <r

for all & € [0,1]. Hence [u]® C B(X,r) and X C B([u]®,r) for all a € [0, 1].
In particular we have [u)° C B(X,r) and X C B([u)',r) then u € F.
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If w € F, then [u]® C B(X,r) and X C B([u]',r), which implies [u]* C
[«]° € B(X,r) and X C B([u}',r) C B([u]*,) for all a € [0, 1].

In this way, as X and [u]® are compact sets, B(X,r) and B([u]®,r) are open
sets and we have i(a) < 7 for all « € [0,1]. Now,

(24) i(e) < max{i(0),i(1)} <7

for all @ € [0, 1], using properties of the Hausdorff metric, since
(25) i(e) = h([u]*, X) and [4])' C [u]* C [u]°.
Finally,

sup i(a) < r isto é, u € B(X,r).
0<ax1

Analogously we can prove for the closed balls that
(26) B[X,r] = {ue F(R"): [u]° c B[X,r] e X C B([u)',]}

and since F(R", D) is a metric space we have

(27) B(X,r) = B[X,].
Corollary 2. If X is a set with one element, X = {T}, then
(28) B(X,r)={ue F(R"): [« C B(z,r)}

and from the definition of the metric D,

D(xz),u) = sup ||z —7]|.
ze[u)®

With the above Corollary we can establish a result relating the stability of the
fixed point T and the stability of the fuzzy set x(z;. We remark also that this
Corollary assure the continuity of f in every point of the form x(z}, = € R".

Theorem 6. Let f : R* — R" be continuous with f(Z) = T and f its
Zadeh's exiension. Then

a) x{z} is stable for the system (4) if and only if, T is stable for the system
(5)

b) x(z) is asymptotic stable for the system (4) if and only if, T is asymptotic
stable for the system (5).

Proof. a) Given £ > 0 there is § > 0 such that if ||z — Z|| < é then || f*(z) —
T|| <€ for all n > 0. If D(u, X{z)} < é then sup ||z —Z|| < § which implies

z€[u]®

[If"(z) — Z|| < € for all z € [u]° C B(%,§). Hence sup ||f*(z) —T|| <eor
z€[u)®

sup |ly—T|| <eoryet sup |ly—Z|| <esince f is continuous.
yes([u)%) velfr(w)e
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Then, by Corollary 2,

(29) D(f"(u), x(@}) <.

To show the stability of T, given the stability of x(z), it is enough to see that
(30) llz — Z|| = D(x{z), X(z))

and

(31) P (X)) = Xpm-

b) There is § > 0 such that if {|z—Z|| < & then ,,ll.m [|f*(z)—%|| = 0. Suppose
that D{x(z},u) < § which is equivalent to sup ||z —Z|| < ¢ following that

z€([u]°)

for all z € [u]°, lim ||f*(z) —Z||=0o0r

n—od

0 = lim sup|[f*(z)-Z||=lim sup |ly—7|=
R0 zefu]® N e ([ul®)
= lim sup |ly—7Z|| = lim D(f"(u), ()

n—oo !IEU"(")J“) n—co

what proves the assertion. O

Corollary 3. Let f : R® —» R", C! and f(ZT) =T. If i are the eigenvalues
of f'(%), then

a) If |Ai| < 1, for all i then x(z) is asymptotic stable for (4).

b) If |Ai] > 1, for some i, x(z) is unstable for (4).

Proof. It follows immediately from the above theorem. O

Again we recall some definitions from Hale [8]

An invariant set J is said to be an isolated invariant set, if there is a neigh-
borhood of J such that if K is an invariant set in this neighborhood then
KclJ.

Aset ACR" attractsaset B C R* under T : R* = R* if for all € > 0
there is ng = ng(e, 4, B) such that T"(B) is contained in B(A,¢) for n > nq
where B(A,¢) is the open ball centered at A and ratio €.

A is global attractor if it is compact maximal invariant set and attract every
bounded subset of R".

A subset A is a local attractorif A is compact invariant and there is a bounded
neighborhood B of A such that A attracts B.

Corollary 4. Let u € F(R") and i be characteristic functions of the levels
[u]°. Then@f € B(a®,r) if and only if, [u)f C B([u]*,7).

Proof. This is a consequence of the above lemma and the fact that [u]® C [u]?
ifa>pg. ) g

We observe that the step functions u : R® — [0, 1] are of this kind.
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Theorem 7. Let f : F(R*) = F(R*) be a Zadeh's extension of the continu-
ous function f : R® — R". IfT is a fized point of f and T}Lngo D(f*(u),w) =0
for D(T,u) <r, then the levels [@]* attract the levels [u]* by f.

Proof. If u € B(T, rh), then we have for all € > 0 that there is ny = ng(¢) such
that if n > ng, D(f™(u),%) < € what ensures h(f"([u]*), [@]°) < € Va
or
(32)
R(™([u]?), [@]%) = inf{s : f*([u]") C B([@]*,s) e [@]* € B(f*([u]"),s)} < e Va
leading to
(33) f"([u]*) € B([@)",¢)

O
Note that in this metric D, there is a kind of uniformity in a in the sense

that n = n(e) for all a.
As f*([u]*) € B([®]°,€) for n > np allow us to conclude that for = € [u]®

(34) {f"(2)} c B([@]*,€)  B([u]*,e).

As B([u]°,€) is compact, since [z]® is compact, then f"(z) has a convergent
subsequence. Hence w(z) # ¢ for all © € [u]®.
Corollary 5. If f and f are as in Theorem 7, then

1. lgTwD(f"(u),ﬁ) =0 for allu € B(@,r),r >0, and X C R* is
compact invariant for f with (@)° C B(X,r) and X C B([g]',r), then
U= J\’.

2. T is a fized point of f with [@* c B([@)',r) and [@]° C B([a@]°,r), for
some a € 0,1, then ()’ = [u]'.

3. If (@]® c B([@),r) then [a)° = [a]*.

4. the fized point X of f is stable if and only if, for alle > 0 there is§ > 0
such that if u € F(R") with [u]® C B(X,d) and X C B([u]',d) then
f*([u]°) € B(X,€) and X € B(f"([u]',€) for alin > 0.

5. If f, f and X are as above then w(z) C X for all z near X.

Proof. 1. It follows from lemma 1 D(%, X) < r, then “T D(f*(X),7) =
n=++00
0 or lilzl D()i’,ﬁ) =0 since X is a fixed point for f. Then
D(X, @) =0 or a=X.
2. In the first item we make [7]* = X.

3. Immediate.
4. Consequence of Lemma 1.
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5. Let [u]® = B[X,6] with 0 < § < r. By lemma 1 u € B(X,r) then
X = w(B[X,4]), and finally w(z) C X.
(]
Remark: It follows from Corollaries 5 that the only fixed points of f, as-
ymptotic stable, with £([u]% [u]') < r, are the characteristic functions of some
compact subset X of R®. Observe that B[X,d] C R™ is compact if X is also
compact.
The case where the fixed points are isolated plays an important role as in
classical dynamical systems. Corollary 4 suggests that we concentrate the
study for the fixed points u : R* — [0, 1] that are step functions, moreover by
Corollary 5 we know that the fixed point X of f is the characteristic function
of the compact set X C R". i
We list some results on the fixed point X of f,

Theorem 8. Let X be the characteristic function of the compact set X C
R such that f( X) = X and X is asymptotic stable for f. Under these
conditions we have

(35) X = [ f(BX,9)).
n20
for all § € [0, with r given by the Definition 2
Proof. Let u € F(R") such that [u]* = B[X, 4] where ¢ € [0,7].
By lemma 1 u € B(X,r). Hence X attracts B[X,d]. As X C B[X,é] and
w(B[X, 8]) = X, it follows from Lemma 2.1.1, p. 9, Hale (8], that

X =[)f(BlX,4).

n>0

O

Note that in part.lcular X is a local attractor since it attracts the neighborhood
B[X, 4], as seen in Theorem 7, although it is not sufficient for X to be
asymptotic stable.

Example 2 Consider z,4, = f(z,), with

(36) fl@)=Vz-3+43- M

. 8 1 :
The fixed points of f are ;, = 3 — o and z, =3+ 3——\;_.5 with f'(z5) = 1.

The interval X = [:c,,:cg] is a local attractor for f. We assert that the
characteristic function X, of X, is not asymptotic stable for f, since that for
any ug € F(R") close to X, of the form

(37) [uo]° = [uo]° = [I1 + 5, Ty — 5]
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for all & € [0,1], and § > 0, appropriated

(38) (" (wo))* = F([wo]’)
and

(39) Jim_h(f"(fwol), (1)) =0,
which implies

(40) limR(f™([uol®), ) # 0.

3 H . " D .
Then by Proposition 1, f™(ug) /4 X and it follows f"(ug) /4 X, that shows
the assertion. In fact, we can see in this example that X ¢ B(f™([u)},€) for

W=

° as ] 15 2 25 3 as .

FIGURE 1. Fixed Points of f(z)

infinity n, for any interval [u)' contained in X and by lemma 1, X cannot be
asymptotic stable.

Lemma 2. Let f be the Zadeh’s extension of the continuous function f :
R - R". If

nEToo D(f™(z),u) = 0 for any z € R", then u 1s the characteristic function
of some point in R*.

Proof. It is enough to observe that

(41) lim D(f"(3),2)=0= lim sup ||f"(z)—y|[=0
n—+00 n—+00 ye(u)®
which leads to the result. 0
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Theorem 9. If f and f are as above, U is e fized point of f, asymptotic
stable with diameter diam[T|® < r, when r is from definition 2 then T is
the characteristic function of some point in R™, moreover if T is globally
asymptotic stable, then u 1is the characteristic function of some point in R".
Proof. If diam[t]° < r, then by lemma 1 for all z € [@]°, we have D(%, ) < 7.
Hence nli»TooD( f™(),4) = 0 and from Lemma 2 we have the first part.

For the second part just note that in this case nlionD( f"(f),ﬁ) =0 for all
z € R". a
Next we give some results about the periodic orbits.

Definition 4. A point u* € F(R") is periodic point with period p of F :
F(R*) —» F(R") if p is the least positive integer such that FP(u") = u®,

where F? stands for composition. The set of all iterated of a periodic point
is called p-periodic orbit or p-cycle.

A p-periodic point u* is a fixed point of FP. Consequently, the notion of
stability of u* is the same of a fixed point.

Definition 5. A p-periodic point u* is stable, asymptotic stable, or unstable
if u® is a point stable, asymptotic stable or unstable respectively of F”.

If f is the Zadeh extension of the continuous function f : R® — R", then z* is -
p-periodic point of f if and only if, the characteristic function Z* of z* is a p-
periodic point of f, since [f(#)]* = f"(z) for alln > 0 and & € [0, 1], where
£ is the characteristic function z € R*. We recall also that f is continuous
at .

Corollary 6. If f is the Zadeh eztension of the continuous Junction f :
R" — R", then =" is a stable p-periodic point (asymptotic stable, unstable)
fgr [ if and only if, £° 1s p-periodic stable (asymptotic stable, unstable) for

f
Proof. Just apply Theorem 6 for fP. [m]

Corollary 7. Let z* a 2-periodic point of the function of class C', f : R —
R. IFIf'(f(z"))f(z")| <1, then the orbit by £* is stable.

Proof. Use the fact that |f'(f(z*)).f'(z*)] < 1 implies the stability of the
orbit by z*. See Edelstein [7]. O

5. AN EXAMPLE

We consider the normalized logistic function
(42) f(z) = az(1 - 2),
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with 1 < a < 4, as we want just £ 2 0. Let us research the fixed points
of the Zadeh's extension f, different from the characteristic functions 0 and
FayTa=1-—1.

According we have seen until here, we have to solve the following equation
f(u]*) = [u* = [uf,ug), forall @ € [0,1], i. e.

u(ll = uf <zi<u° f(I)
4 a 1 =T
) w5 = max f(z)
If1<e<?, thenxa—l—igé
Let u € £ be such that f(u) = u. Then
1
2 < = R i
@ = e S Smaf) =)= <3

Then, u§ < § for all @ € [0,1]. Hence, as f is increasing in (—oo, 3], 43 is
given by
(45) {u? = f(u‘ll) = au‘ll(l = u?)

uf = f(u3) = auz(l — uf)
Then the only solution of equation 45 excluding 0 and ,, is the fuzzy set
u € E' such that (u]* = [0, z,), for all @ € [0, 1).
Ifa>2,thenz,=1-1> % In this case we consider all the possibilities of
fixed points using 4 and u).
e Forud < 1, the solutions of 45, for alla € [0,1], are u§ = 0 and u§ = z, > }
what contradicts u§ < u} < }. Then, there are no new fixed points if ud < 1
o For uj > 7, 45 is given by

uf = f(ug) = auf(l — ug)
e e e

Since f is decreasing in [2, +00).
Changing variables we transform 46 in

(4 il

from this e have also ,
(48) 7 =a’z(1 - z)[1 - az(l - 2)] = f*(z),

Explaining: the coordinates of the solutions of the above system are exactly
the fixed points of f2(x) which are given by z = 0, To=1- Land 3y, 2, =

1+ \/__——_
at (a (a+1 , (See Edelstein [[7]]). So,if2 < a <3, z; and z,

are not reals, and the only solution of 46 is u$ = u§ = z,, Ya € [0,1]. On the
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other hand if 3 < a < 4, the solutions of 46 are u{ = u§ =z, or u% = z; and
u§ = T, Ve € [0,1]. But in this last case we must observe that v} =z, > 1
ifand only if, 3<a <1+ v/5. In this way, apart 0 and ,, we have a new
fixed point T given by [7]* = [Ty, 2] = [z1, f(z1)] for all @ € [0, 1].

Finally, if a = 4, we have again u$ = u§ = z, as unique solution of 48.

e Now, if u§ < } and u§ > } for some ¢, then 43 is given by

uf = min{/(u?), /)
“@ (L

Hence, if u¢ = f(u?) then uf = 0. Ifu§ = f(ug), then uf = f(2) = % (4—a),
we compute that f(§) < %, That is,

2
(50) a—(4 a)<l1=ba>1+\/_
16 2

As a resume we have
eIf 1 < a < 2, the only fixed points ares: 0;%, and %, given by [ =
[0, z.], Ve € [0,1).
e If2 < a < 3, apart 0 and %,, we have fixed point T, given by []° = [0, 8].
o If 3 <a < 1+ /5, excluding 0, £, and T,, we have also the fixed point %;
with (%] = (74, 7a], Ve € [0,1].
e If 14+ /5 < a < 4, the fixed points are 0, £,, Uz, %, Uy, With Eu4]" (£(9).5]
e Ts given by:

. [[0,f(8)] If a<@&
(61) [@s] = {[f(%)’ 8 If a>a

for all a € [0,1] and some @.

e If a = 4 the only fixed points are 0, %, and Ts with [Zg]* = [0,1] for all
a€(0,1]:

We are going to study the stability of the new fixed points for the function f
since the old one have the same behavior of the deterministic counterpart.
For1l < a < 2, the fixed point %, is unstable (cf. Corollary 5) since D(u,7;) <
8 if [u]* = [8,z,] and f([8, z4]) = [f(8), za) for & > 0, small, since that f
is increasing [0, ). Then [0,z.] ¢ B(f"([u]",¢) for infinitely many n € IN.
For 2 < a £ 4 we have:

® Ty, U3 and U aren’t stable according Corollary 5.

® T; is also unstable since given 0 < § < (%), the fuzzy set u defined by its
levels

o_J [£% I a<a
(52) ful ‘{[f[(g ]3] I a>a
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is such that D(u,%s) = g < §and D(f"(u), s) > ¢ for infinitely many n € IN
taking 0 < € < 4, since that

(53)  D((u)s) = sup A(F (), @)% = RS, 210, 2D
0<a<l 2'4 4

and f([¢,2]) C [¢, 2] for n big, since f is increasing in (0, 3].

e T, is asymptotic stable:

First we show the stability:

By continuity of f, we have that € > 0, exists 0 < § < e with § =8 > z, >
and f(2) — & > 0 such that (3 — ) < f($) +& < 3. Hence if D(u, %) <4,
that is,

(54) [® € BUA(. 310) e (). ) € BU(EI9),
we have since z, > 1, that

(55) [ +6.5-8) =1/ =), 7]

and

(56) UG +8.5 - =1UG17)
concluding that

(57) UG +65-a =133 w22

Then [f($).§]l € B(/™([f(§) +6,§ - 4d]), &) V¥n20.
from hypothesis [f(2) + 4,2 — é] C [u]', it follows that

(58) 73,51 € BU () vnz0.

Taking [u)° = (!, m] and supposing that [u)° ¢ [f(2), 4] = [54]°, since in this
case we have nothing to do.

(59) I () = fmin ), £}, 5)

foralln>1.

As f"(!) and f"(m) are increasing sub sequences with the same limits f($),
we have

a, a

(60) - () € B3 5e) Va2 0

Using Corollary 5 we have that %, is stable. R

It is clear that %, is asymptotic stable since lirl\ D(f*(u),u,) = 0 for all

u € €' with D(u,T,) < r where r is such that f($) —r>0and §+r <1
In the classical (crisp) case @ = 3 is a bifurcation value, i. e. if a is greater
than 3 the fixed point z, lose its stability and appears a 2-periodic orbit.
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If a is greater than 1 + /6, it will appear a stable 4-periodic orbit.

From about @ = 3.89 we have chaos. (See Hale [9], Edelstein [7], Devaney
(6]).

In the fuzzy case, a =1, a = 2, a = 3, a = 1 + /5 are also values of
bifurcations. We summarize our results in figure 2

u

detérministic branch /—"—"—__—< <:

fuzzy branch

FIGURE 2. Bifurcation Diagram
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