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§0 Introduction
S. s.
Chern proposed the following problem (see (c, b, XJ

nd (Y. ]):
SHOI

"
Let I pe
the set of closed minimal immersed hypersurfaces of

with con
s
tant scalar curvature. Let x: I = R be the function

81ven by: «(M) « scalar curvature of M.

Question: Is x(I) a discrete set of real numbers?”
for,u::°:::;: the main motivation for this comjecture is Simon';
O ¢ 1 1 according to which, if M € I and x (M) <1 then

= 507 It comes immediately from the definitions
It is

Rinimaljry
ty and scalar curvature that < (M) &1 for M e L.

of

Clear tha
t
ot if M ¢ L and x (M) = 1 then M is a great round
YPersph Ne
phere of S, Chern, Do Carmo and Kobayachi (tc, o, X1

PToved tha
t
if M ¢TI and x(M) = 1 - E%T then M is the riemannian

Prod
Uct of two round spheres.

Pen
g and Terng ([P, T]) made a breakthrough on this problem

Provinz th :
at if McL and x(M)< 1 - z=y then x(¥) <1 = =

. 1
L
1 (n . 1y Unfortunately, we don't know examples realizing

is last
value for the scalar curvature of M.
got a stronger and

However, for the

Speci
1 3l case where n = 3, the same authors
*03TP result that reads:
If d4i
imM e 3, Mg I and x(M)< lz then x (M) £ 0.
Noti
- ice that x(M) = 0 is realized by Cartan’s minimal
Para
metric hypersurface of S (see (C] and 3ls0 (N1D -

In i
this paper, we extend Peng and Terng's result for
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hypersurfaces of S° having constant mean curvature. Moreover
we prove uniqueness of Cartan's isoparametric hypersurfaces of
s in the sense that they are the only closed hypersurfaces of
§° having constant mean curvature and vanishing scalar
curvature. Precisely, we prove:

Theoren:

wLet M © W' be a 3-dimensional closed immersed hypersurface
in a 4-dimensional space of constant curvature W. If M' has
constant mean curvature and constant non negative scalar
curvature then M is isoparametric.”

Corollary 1:

wif M’ « 5" is a closed 3-dimensional immersed hypersurface
of S* with constant mean curvature H and constant non negative
scalar curvature «, then M’ is isoparametric and consequently
one of the following three possibilities holds:

1) M’ is a round sphere

2) M’ is a Clifford torus S* (r) x S' (t) where s'(r) and
Ss(t) are a sphere and a circle of radius r and t respectively.

3) M' is the unique isoparametric hypersurface of S° with
vanishing scalar curvature and given mean curvature H."

Corollary 2:

"The only closed hypersurfaces of S* with constant mean
curvature and every where vanishing scalar curvature are Cartan's
isoparametric hypersurfaces of LR

Constancy of both x and H is crucial for the characterizatia
theorem stated above. Indeed, Hsiang ([Hs,], (Hs,]) gave many
(embedded!) examples of non isoparametric hyperspheres of §°*!

(of S‘. in particular) having constant mean curvature. We should
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Mention that hypersurfaces of S ' with constant mean curvature

and restrictions on the sectional curvatures or on the Ricci

Curvature had already been treated by Yau (Y] and Nomizu and

Smyth (X, s].
Nedt 3
The specific case of closed hypersurfaces of S with
Constant mean curvature and constant scalar curvature was

’
Studied by Okumura [0]. It was proved that « >l- FTqTT] °
N(n.2 .

TETTT% H' implies the hypersurface is a round sphere. R
Corollary 1 provides a complete and sharp answer for this

Pinching problea in the case n = 3 and « > 0. We should finally

nel Uith
Temark that the existence of closed hypersurfaces of § e

lem.
Negative scalar curvature is, as far as we knov, an open proble

§ 1 Proof of the theoren
jented
It is clearly sufficient to prove the theorem =

3
M and the proof will be divided into two parts:
4 : 3 atures
st part: Suppose M’ has three distinct principal cury

&t each point. Let (e,, ez, €3} be a local orthonormal frame
- cond
belonging to the orientation of M and dyagonalizing the se

fu z : 3. \q’- W. Let
Ndamental form of the isometric immersion 1: 7

ly, in |
("‘-“:-u:) be the associated local coframe. We aTe, locally

the following situation:

. < Ay On M.
a) Ae; « Ao, Tsig 3 on U, A1 < A3 ’
b - t(u,IR)

) wy (6) = 655 . w;ah (u, |

£
¥here A denotes the matriz of the second fundamental form O

3 en set
the imnersion, A; is a principal curvature, U is an 0P

°f N ang cij is the classical Kroenecker symbol.

Define the 2-form Y€ A'(U,R) by
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Y e w3z A U:-w;;hb;-uxﬂu:,, n
vij * 1¢i, jg3 being local Cartan connection forms associated
to the given local orthonormal frame in such a way that

3
, sw o Aw, o, . - e) X
dw 1f1u13 vy “i5 (u) ‘Vu 1, e,

Fact 1: Y is globally definable:
To see this let us consider another local frame (¢, e, ¢)
1* T3¥ Ty

defined on an open set VEM. Suppose {e,, €, €,) satisfies a)

and b). 1f, moreover, f{(€,, €, € ) belongs to the orientation

of M then one of the four possibilities holds in UNV.

1) € .0, 141435 i) F1 s €1 , €1 8 -8, € w = 0,y

. iii) @ = -1, S: = @1 , €3 = -@,; iv) € = =€), € = - ,

Now, defining ¥ in the same way as Y one can easily check that

,Uﬂv - ‘Uﬂv U
lvfl®

Fact 2: dY = - 3
DAY (A, sy Y R ok {

where:

£ e x:, .x: .A: « trace A'w trace (A0AGA)
x is the scalar curvature function of M

and v is the volume element of M

Proof:

Using Cartan structure equations,
3
e ¥ e fa1 Wik Awygy ¢ 845 ““&"“3.1 wighey it i jg3

and (1) yields:

dY & = wy3 A w2 A wy~wrr1 A wyr A wrewrz A wya A wy »

e Q12 A wy = Q13 Awz ey A Qi (2)
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Notice th - B
: at nij Rij wy A uj ’ RXJ
$€€tional curvature of M in the direction of the plane generated

= C o Ai Aj being the

by ¢; and ¢; and c being the sectional curvature of the
€Onstantly curved ambient space W.

Let us write

3
I rk w, and use Codazzi equations to get:

lj = k.‘ lj

—IS—
—
e

(3
5 |

riu -ri Y A
ij ii «( i i) d i (e
i r? rx
e S L

Kx-k, xl-ll l,-k,

(4)

Let us now denote
Myt By e,

Using (2), (3) and (4) one gets:
LIS PR Ay Az, . Mgy Ny . A1z
(1ed)) (Azed)  (Ap=3y) By=dy)  Gg=dg) (i)

Ay ) P

Vhere . 1 1 2 )
[ 0; (A1A, *A1d; e A30,;) = ; (R“o Rl) -

The relation between x and H is given by

1 2
";UH «8) & ¢

wh.r.: |
Hal ;
3 (A1s+X; ¢ is the mean curvature of M

S x: * *:’ X: is the square of the norm of the second

funducngu form of M.

. Deriving S and H gives

(s)

» if K and H are constant so is S.

) 2 -
. 1E| Mok

H (q,) : (6)
« I
K o2k =0 . 1gke3

ds
kS -0 ,1 g kg3
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Now, using (5) and (6), we may write

31 2?7 A7
d' - < - il * il * 1l v (T)

Orge B30 fhyed ) )

A straightforward computation using (5) and (6) gives:
dfe) « £, = 30,30 03,=3,) 4y,
df(c’) - f: o 3O =) 3 ) A s (3)
df(c,) o £ 30020 0=0) 2,

Observe that Vf « f, e, « f, e, + f e,

and this ends the proof of fact 2. 0

Applying Stokes theorem yields the desired result for.
hypersurfaces having three distinct principal curvatures at

each point.

2nd part: General case, i.e., there are points x € M such
that xi(x) - xj(x). @

We proceed by steps and general strategy is: M non

isoparametric implyes « < 0

Step 1) If there is a point x € M such that A\ (x)a);(x) =

e A3(x): then M is isoparametric.

Proof:
Suppose A = X =) ona point x. So S = MY on x and

because S and H are constant, S = 3H' all over M.
LI | 3 2 2 2
Now, 3H = ; (Ay+ Azed;) =dy A3 #d; = S all over M and
1 A : g & 1 ) 2
o ; et Lk R b Sl ;(“‘ =A2) + (A3=1,) .
2
+ (A3=13) Jall over M.

Therefore Ay= A;= A, H are constant on M D
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Let us now suppose that there are no points x € M such

t
RaY Aghn) wagila) shpba) dmd Chat %y € Az € 1) on M

Step 2: Maximum and minimum of f:

Proposition
f'l’ol,.l’
its nj ' ! !
$ Binimum when ;e A, whenever points of this type exist.

attains its maximum when A;e A; and

Proof: gt js sufficient to study the function

R . R given by
8x, vy, 2) 01’ y' + 2’ subject to the restrictions
**Y ez eH andx' +y' . 2" =5 using Lagrange's

Bultiphyers method. D

Step 3: Analyticity of f:
Let us now observe that M is a real analytic submanifold
°f ¥ ang f: M+ R is a2 real analytic function on M. This is a
Onsequence of 5 well known theorem stating that hypersurfaces
°f constane mean curvature on spaces of CONsSTant curvature are
Tl analyege submanifolds (see, for example [M]). In particular
fhas , finite number of critical values because M is closed.
Proposition 2.

If 1., A2 0n M or A; = A\; on M then M is isoparametric.

Proof:
Just solve the System on the unknowns Ai,Az,As:
X" * A . Ay = H
x‘ » xl & xl
1 3 . S
e A (resp Az = Ay)

And wyj .
Tite A. in terms of H and S. 0
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Suppose now p ¢ M satisfies 1, (p) e A;(p) and take ¢, € R
to be a regular value of f close to max f « f (p). Suppase
c, ¥ f (p) (this is possible otherwise,by proposition 2, M is

isoparametric). Denote

£t (c,) the closed level surface of f in M
3

determined by ¢,.

Analogously, tale q ¢ M such that A,(q) = 1,(q) in such 3 way
that min f = £ (q) and ¢y # f (Q); ¢i being a regular value of

-1
£ close to f (q). Let £ (c‘) - ch be the corresponding level

surface.
Setting
N £ ({e., c 1) gives a h surf ™
<, o ) 8 ypersurface of W with boundary
Lc‘ u Lc:.

We convention that Lc‘ « § if there are no points q on M such
that Az(q) = XMi(q). In the same way, Lc; » § if there are no

paintspon M such that Ay (p) = Ai(p).

Step 4: Applying Stokes to Ngl and ¥:
1
In our case, Stokes theorem with boundary reads:

3 ® .'
J dy = I iy o I iw
c
N-? )4 L
< L <
o T - .C3 g u < ~ .
Here, i,: L. = Nc, and i : Lc,’ NI are natural inclusions
and the boundary is "outward" coriented, i.e., the norzal vec:tor
to L. has the same sense as Vf and the normal vector to L. has
e ¢

3
the opposite sense of VE£.
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Step S: Applying a theorem due to Robert M. Hardt (see(Ha]).
Theorem (R.M. Hardrt)
Let £ be 3 real analytic function of a compact sub analytic
sub
6t 0f 3 req) analytic manifold M. Let k be a positive

lateger. Theq,
o
P OC (7 Uy such thar dim £73({y}) g k } < =
wh k
®T® )X represents the k-dimensional Hausodorff measure.

A i i :
PPlying this theorem to the situation described in this

Paper ve get the following:

Proposition 3:

There 15 3 rea; number T such that

a .
T (Le e £73((e))) < T, for all regular values ¢ of f. [J

Step 6: Computing 1:7 and 1;7 :

iy . 1 (A3 = ) . (, - H) fl

£
[vg] (Ag=ag)® CXg=2 )t * i (A1=33)* (Ag=2p)*
. “l - H)
(x:. 1,).(x,-h)' s vi , (9)
h?._ 1 (A= H) 3 (xl - H) f.
Too £ . *
IVf[ (x,.x,)‘(x,.x‘)‘ 1 (x;-x,)'(x,-k.)' &
» (A, < n . 0)
1
(Ax'l') (X,-X)‘ fl l » (
v

v

i i and L respectively.
1

1 3tanding faor volume elements of LcL

180
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Proof:
Notice that

i 2 1
Vel o dow, o T wgduwy =Ty 0 Aa, - Y;, Wy A wy -

1 b
D w, Aw, - Fx, Wy A wy

Now, using formulas (3) and (8) yields:

(A1~ H) p (A; = H)
,I——T-—_ Wy A wy ¥ ————p——f w_ A -
Ehgd, ] (1,-19' i P Age,) (Ag=apt “
- H
Q, ! w, Aw,

i (xl-xl).(xl-kl). i

Now, observe that

i; (¢, Awy) = <o, n, > v,, n, being the "outward"
to L_ on M. Also,
C1

i

, (W, Awi) = < e, 0 >y

b TR
3 (W Aw,) = <e,, n >V, and similar formulas hold for i
1
and n, (the "outward"” normal vector to L. on M),
b

It is important to observe that:

a) n, has the opposite sense and the same direction of vf

ause of the orientation and th
bec e fact that l.Cx is 3 level surface

of £. So, m, = - =2
[vg]

b) 3y the same reasons, n  has the same sense and directicn of
g€

|og

f and o, =

181
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€) V£ 4 0 on ch and on L. because c, and ¢, are regular values
3

of £,

n“"forc,

40Y 5 B = B) A, - 0

£.1 (u & w,)
g=2e) tagar,)? 8 ke T Qyedg) (Rgedg)

" Ay < H)
£, d* (uldu,) -

Q- k,)‘(x‘ i 11):

ol G- ) s el g
. r f
| (x"'ll)l(x:‘kl). ' (A;'A')‘(l,-k,)
A<

Gl-l,)'(xl .xt)a fl lvx

and .
the sane computation is applyable to i Y. O
3

Step 7. Controlling integral in the boundary:
Given ¢ » L ¢, sufficiently closc to f(q) and f(p

T 5
"Pecu\-”.\.' such that

[
]“\.“3-}1) gt ] ks and
L ""x)'(h-k:)’ lvrl 3 2

<

H - ;
c(h-x,)z {4524 % |9E) 1
1

< i
2

182
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: .
Proof: Clcarly._ii_ < |eg] and .53: < |ve|
|vfy €l

Alsa, |9€] =0 as ¢ = @ or ¢ = p.

3 a
Moreover, (A -xl) Ay = )x) > Lx >0 or M for some constant L
L
This is so because M A ¢ X, M is closed and, by assumption

there are no points where Ay Aze Ag.

z 3
In the same way, (3= X)) (4= 2,0 > L >0 an N for some constant

L,- Naw, apply step S and get step 7.

Step 8: Conclusion:

First suppose chi g and Lcl 4 0.

Notice that A, - H < 0 and A,-H>0 because A; ¢ A; & A,

md He -13' (X;O X10x|).
Moreover, for a point qi close To g and a point p, close to p

we have

Az(py) = H < 0 and A;(q,) - H?> 0

Therefore, by step 7

( i7 ¥ < ¢ for ¢, close to f(q) and ¢, close to f(p).

aad
LC; Lca

Sa, by step 4,

] &% <8
C:

N
€3
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_ Now, taking T,, T, ‘such that c, <T,¢ £(Q1, f(p)> 1> €1 We get !

NEI: NC' 3ﬂd
Cy Cl

- - i N.
JE di o< i- for a suitable choice of ¢, and ¢, for a given 1€
N*12 ‘

-

<
Suppose by contradiction that < > 0.

Using formula (7) vields

.3 2 1 23,
5 X;z N Xy] < - —L‘_Z.
R W Y 1 oF (A zedy)
N-1 (haedy) (Ay=2,)2 (A1 = 2y) No i
(51 cl
i 2
Ce=l L A ¢ £ yneN, T,T; conveniently chosen-

(X|-)_x)l (X;-Xt)' n R

¢
Cy

Caruoqucntly xu 10 tgig3 on N

The Choice of €, , ¢, being arbitrary implyes:

M0 da M. (£ p) U £1Q))

Then 2 so, because of

ii ¥ 0 in one non empty open set of M and

£
STMulae (2), V¢ 3 0 on this open set. Analyticity of £ implves A

is
9M3tant on M. Therefore M is isoparametric (contradiction).

Fi . - -
My, i Le. s L. = #, the proof was given in part 1. |
1 1 I

If i

Lt,‘ 9 and L. = 8, then.

1

f‘"'[ iy

N
ch

184
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17 Lc,‘ 9 and ch s § then

f dy = J i,? . In both cases proofs are obvious reductions of

b}
M Lc‘ the general one. ﬂ
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