

CLOSED HYPERSURFACES OF S^n WITH CONSTANT MEAN CURVATURE AND CONSTANT SCALAR CURVATURE

S. C. Almeida and F. G. B. Brito, Rio de Janeiro (Brazil)

§ 0 Introduction

S. S. Chern proposed the following problem (see [C, D, K] and [Y,]):

"Let Σ be the set of closed minimal immersed hypersurfaces of S^{n+1} with constant scalar curvature. Let $\kappa: \Sigma \rightarrow \mathbb{R}$ be the function given by: $\kappa(M) = \text{scalar curvature of } M$.

Question: Is $\kappa(\Sigma)$ a discrete set of real numbers?"

Probably the main motivation for this conjecture is Simon's formula ([S]) according to which, if $M \in \Sigma$ and $\kappa(M) < 1$ then $\kappa(M) \leq 1 - \frac{1}{n-1}$. It comes immediately from the definitions of minimality and scalar curvature that $\kappa(M) \leq 1$ for $M \in \Sigma$. It is clear that if $M \in \Sigma$ and $\kappa(M) = 1$ then M is a great round hypersphere of S^{n+1} . Chern, Do Carmo and Kobayashi ([C, D, K]) proved that if $M \in \Sigma$ and $\kappa(M) = 1 - \frac{1}{n-1}$ then M is the riemannian product of two round spheres.

Peng and Terng ([P, T]) made a breakthrough on this problem proving that if $M \in \Sigma$ and $\kappa(M) < 1 - \frac{1}{n-1}$ then $\kappa(M) \leq 1 - \frac{1}{n-1} - \frac{1}{12n^2(n-1)}$. Unfortunately, we don't know examples realizing this last value for the scalar curvature of M . However, for the special case where $n = 3$, the same authors got a stronger and sharp result that reads:

If $\dim M = 3$, $M \in \Sigma$ and $\kappa(M) < \frac{1}{2}$ then $\kappa(M) \leq 0$.

Notice that $\kappa(M) = 0$ is realized by Cartan's minimal isoparametric hypersurface of S^3 (see [C] and also [N]).

In this paper, we extend Peng and Terng's result for

hypersurfaces of S^n having constant mean curvature. Moreover we prove uniqueness of Cartan's isoparametric hypersurfaces of S^n in the sense that they are the only closed hypersurfaces of S^n having constant mean curvature and vanishing scalar curvature. Precisely, we prove:

Theorem:

"Let $M^3 \subset W^4$ be a 3-dimensional closed immersed hypersurface in a 4-dimensional space of constant curvature W . If M^3 has constant mean curvature and constant non negative scalar curvature then M is isoparametric."

Corollary 1:

"If $M^3 \subset S^n$ is a closed 3-dimensional immersed hypersurface of S^n with constant mean curvature H and constant non negative scalar curvature κ , then M^3 is isoparametric and consequently one of the following three possibilities holds:

- 1) M^3 is a round sphere
- 2) M^3 is a Clifford torus $S^1(r) \times S^1(t)$ where $S^1(r)$ and $S^1(t)$ are a sphere and a circle of radius r and t respectively.
- 3) M^3 is the unique isoparametric hypersurface of S^n with vanishing scalar curvature and given mean curvature H ."

Corollary 2:

"The only closed hypersurfaces of S^n with constant mean curvature and every where vanishing scalar curvature are Cartan's isoparametric hypersurfaces of S^n ."

Constancy of both κ and H is crucial for the characterization theorem stated above. Indeed, Hsiang ([Hs₁], [Hs₂]) gave many (embedded!) examples of non isoparametric hyperspheres of S^{n+1} (of S^n , in particular) having constant mean curvature. We should

mention that hypersurfaces of S^{n+1} with constant mean curvature and restrictions on the sectional curvatures or on the Ricci curvature had already been treated by Yau [Y₁] and Nomizu and Smyth [N, S].

The specific case of closed hypersurfaces of S^{n+1} with constant mean curvature and constant scalar curvature was studied by Okumura [O]. It was proved that $\kappa > 1 - \frac{2}{n(n-1)} \cdot \frac{n(n-2)}{(n-1)^2} H^2$ implies the hypersurface is a round sphere. Our Corollary 1 provides a complete and sharp answer for this pinching problem in the case $n = 3$ and $\kappa > 0$. We should finally remark that the existence of closed hypersurfaces of S^{n+1} with negative scalar curvature is, as far as we know, an open problem.

5.1 Proof of the theorem

It is clearly sufficient to prove the theorem for oriented M^3 and the proof will be divided into two parts:

1st part: Suppose M^3 has three distinct principal curvatures at each point. Let $\{e_1, e_2, e_3\}$ be a local orthonormal frame belonging to the orientation of M^3 and diagonalizing the second fundamental form of the isometric immersion $i: M^3 \rightarrow W$. Let $\{\omega_1, \omega_2, \omega_3\}$ be the associated local coframe. We are, locally, in the following situation:

- a) $Ae_i = \lambda_i e_i$ $1 \leq i \leq 3$ on U , $\lambda_1 < \lambda_2 < \lambda_3$ on M .
- b) $\omega_i(e_j) = \delta_{ij}$, $\omega_i \in \Lambda^1(U, \mathbb{R})$

where A denotes the matrix of the second fundamental form of the immersion, λ_i is a principal curvature, U is an open set of M and δ_{ij} is the classical Kronecker symbol.

Define the 2-form $\varphi \in \Lambda^2(U, \mathbb{R})$ by

$$\Psi = \omega_{11} \wedge \omega_{12} \wedge \omega_{21} \wedge \omega_{22}, \quad (1)$$

ω_{ij} , $1 \leq i, j \leq 3$ being local Cartan connection forms associated to the given local orthonormal frame in such a way that

$$d\omega_i = - \sum_{j=1}^3 \omega_{ij} \wedge \omega_j, \quad \omega_{ij}(u) = \langle \nabla e_j, e_i \rangle.$$

Fact 1: Ψ is globally definable:

To see this let us consider another local frame $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ defined on an open set $V \subset M$. Suppose $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ satisfies a) and b). If, moreover, $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ belongs to the orientation of M then one of the four possibilities holds in $U \cap V$.

- i) $\bar{e}_i = e_i$, $1 \leq i \leq 3$;
- ii) $\bar{e}_1 = \bar{e}_1$, $\bar{e}_2 = -\bar{e}_2$, $\bar{e}_3 = -\bar{e}_3$;
- iii) $\bar{e}_1 = -\bar{e}_1$, $\bar{e}_2 = e_2$, $\bar{e}_3 = -e_3$;
- iv) $\bar{e}_1 = -e_1$, $\bar{e}_2 = -e_2$, $\bar{e}_3 = e_3$.

Now, defining $\bar{\Psi}$ in the same way as Ψ one can easily check that

$$\Psi_{UV} = \bar{\Psi}_{UV} \quad \square$$

$$\text{Fact 2: } d\Psi = \left| \frac{|\nabla f|^2}{9(\lambda_1 - \lambda_2)^2(\lambda_2 - \lambda_3)^2(\lambda_3 - \lambda_1)^2} + 3\kappa \right| v$$

where:

$$f = \lambda_1^3 + \lambda_2^3 + \lambda_3^3 = \text{trace } A^3 = \text{trace } (A \circ A \circ A)$$

κ is the scalar curvature function of M

and v is the volume element of M

Proof:

Using Cartan structure equations,

$$d\omega_{ij} = - \sum_{k=1}^3 \omega_{ik} \wedge \omega_{kj} + \Omega_{ij}, \quad d\omega_1 = - \sum_{j=1}^3 \omega_{ij} \wedge \omega_j; \quad 1 \leq i, j \leq 3$$

and (1) yields:

$$\begin{aligned} d\Psi = & - \omega_{11} \wedge \omega_{12} \wedge \omega_{21} \wedge \omega_{22} \wedge \omega_{11} + \omega_{12} \wedge \omega_{21} \wedge \omega_{22} + \\ & + \Omega_{12} \wedge \omega_3 - \Omega_{13} \wedge \omega_2 + \omega_1 \wedge \Omega_{23} \end{aligned} \quad (2)$$

Notice that $\Omega_{ij} = R_{ij} w_i \wedge w_j$, $R_{ij} = c + \lambda_i \lambda_j$ being the sectional curvature of M in the direction of the plane generated by e_i and e_j and c being the sectional curvature of the constantly curved ambient space W .

Let us write

$$\omega_{ij} = \sum_{k=1}^3 \Gamma_{ij}^k w_k \quad \text{and use Codazzi equations to get:}$$

$$\Gamma_{ij}^i = -\Gamma_{ji}^i = (\lambda_j - \lambda_i) d\lambda_i (e_j) \quad (3)$$

$$\frac{\Gamma_{12}^1}{\lambda_2 - \lambda_1} = \frac{\Gamma_{13}^2}{\lambda_3 - \lambda_1} = \frac{\Gamma_{23}^1}{\lambda_3 - \lambda_2} \quad (4)$$

Let us now denote

$$\lambda_{ij} = d\lambda_i (e_j).$$

Using (2), (3) and (4) one gets:

$$d\psi = \left[3\kappa - \left(\frac{\lambda_{12} \lambda_{23}}{(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)} + \frac{\lambda_{21} \lambda_{31}}{(\lambda_2 - \lambda_1)(\lambda_1 - \lambda_3)} + \frac{\lambda_{12} \lambda_{13}}{(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)} \right) \right] v$$

$$\text{where } \kappa = c + \frac{1}{3} (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3) = \frac{1}{3} (R_{12} + R_{13} + R_{23})$$

The relation between κ and H is given by

$$\kappa = \frac{1}{6} (9H^2 - S) + c$$

where:

$$H = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3) \text{ is the mean curvature of } M$$

$S = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$ is the square of the norm of the second fundamental form of M .

So, if K and H are constant so is S . Deriving S and H gives

$$dS (e_k) = 2 \sum_{i=1}^3 \lambda_i \lambda_{ik} = 0, \quad 1 \leq k \leq 3 \quad (5)$$

$$dH (e_k) = \sum_{i=1}^3 \lambda_{ik} = 0, \quad 1 \leq k \leq 3 \quad (6)$$

Now, using (5) and (6), we may write

$$d\tau = \left| \kappa + \frac{\lambda_{11}^2}{(\lambda_2 - \lambda_1)^2} + \frac{\lambda_{22}^2}{(\lambda_1 - \lambda_2)^2} + \frac{\lambda_{33}^2}{(\lambda_1 - \lambda_2)^2} \right| v \quad (7)$$

A straightforward computation using (5) and (6) gives:

$$\begin{aligned} df(e_1) &= f_1 = 3(\lambda_2 - \lambda_1)(\lambda_1 - \lambda_2) \lambda_{11}, \\ df(e_2) &= f_2 = 3(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_2) \lambda_{22}, \\ df(e_3) &= f_3 = 3(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_1) \lambda_{33}, \end{aligned} \quad (8)$$

Observe that $\nabla f = f_1 e_1 + f_2 e_2 + f_3 e_3$,

and this ends the proof of fact 2. \square

Applying Stokes theorem yields the desired result for hypersurfaces having three distinct principal curvatures at each point.

2nd part: General case, i.e., there are points $x \in M$ such that $\lambda_i(x) = \lambda_j(x)$, $i \neq j$:

We proceed by steps and general strategy is: M non isoparametric implies $\kappa < 0$

Step 1) If there is a point $x \in M$ such that $\lambda_1(x) = \lambda_2(x) = \lambda_3(x)$: then M is isoparametric.

Proof:

Suppose $\lambda_1 = \lambda_2 = \lambda_3$ on a point x . So $S = 3H^2$ on x and because S and H are constant, $S = 3H^2$ all over M .

Now, $3H^2 = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)^2 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = S$ all over M and so $0 = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)^2 - \lambda_1^2 - \lambda_2^2 - \lambda_3^2 = -\frac{1}{3} [(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_3 - \lambda_1)^2]$ all over M .

Therefore $\lambda_1 = \lambda_2 = \lambda_3 = H$ are constant on M \square

Let us now suppose that there are no points $x \in M$ such that $\lambda_1(x) = \lambda_2(x) = \lambda_3(x)$ and that $\lambda_1 < \lambda_2 < \lambda_3$ on M

Step 2: Maximum and minimum of f :

Proposition

$f = \lambda_1^3 + \lambda_2^3 + \lambda_3^3$ attains its maximum when $\lambda_1 = \lambda_2$ and its minimum when $\lambda_2 = \lambda_3$, whenever points of this type exist.

Proof: It is sufficient to study the function

$g: \mathbb{R}^3 \rightarrow \mathbb{R}$ given by

$g(x, y, z) = x^3 + y^3 + z^3$ subject to the restrictions

$x + y + z = H$ and $x^2 + y^2 + z^2 = S$ using Lagrange's multipliers method. \square

Step 3: Analyticity of f :

Let us now observe that M is a real analytic submanifold of W and $f: M \rightarrow \mathbb{R}$ is a real analytic function on M . This is a consequence of a well known theorem stating that hypersurfaces of constant mean curvature on spaces of constant curvature are real analytic submanifolds (see, for example [M]). In particular f has a finite number of critical values because M is closed.

Proposition 2:

If $\lambda_1 = \lambda_2$ on M or $\lambda_2 = \lambda_3$ on M then M is isoparametric.

Proof:

Just solve the system on the unknowns $\lambda_1, \lambda_2, \lambda_3$:

$$\lambda_1 + \lambda_2 + \lambda_3 = H$$

$$\lambda_1^2 + \lambda_2^2 + \lambda_3^2 = S$$

$$\lambda_1 = \lambda_2 \quad (\text{resp } \lambda_2 = \lambda_3)$$

and write λ_i in terms of H and S . \square

Suppose now $p \in M$ satisfies $\lambda_1(p) = \lambda_2(p)$ and take $c_1 \in \mathbb{R}$ to be a regular value of f close to $\max f = f(p)$. Suppose $c_1 \neq f(p)$ (this is possible otherwise, by proposition 2, M is isoparametric). Denote

$L_{c_1} = f^{-1}(c_1)$ the closed level surface of f in M determined by c_1 .

Analogously, take $q \in M$ such that $\lambda_1(q) = \lambda_2(q)$ in such a way that $\min f = f(q)$ and $c_2 \neq f(q)$; c_2 being a regular value of f close to $f(q)$. Let $f^{-1}(c_2) = L_{c_2}$ be the corresponding level surface.

Setting

$N_{c_1}^{c_2} = f^{-1}([c_1, c_2])$ gives a hypersurface of W^* with boundary $L_{c_1} \cup L_{c_2}$.

We convention that $L_{c_1} = \emptyset$ if there are no points q on M such that $\lambda_1(q) = \lambda_2(q)$. In the same way, $L_{c_2} = \emptyset$ if there are no points p on M such that $\lambda_1(p) = \lambda_2(p)$.

Step 4: Applying Stokes to $N_{c_1}^{c_2}$ and ψ :

In our case, Stokes theorem with boundary reads:

$$\int_{N_{c_1}^{c_2}} dv = \int_{L_{c_2}} i_1^* \psi + \int_{L_{c_1}} i_2^* \psi$$

Here, $i_1: L_{c_1} \rightarrow N_{c_1}^{c_2}$ and $i_2: L_{c_2} \rightarrow N_{c_1}^{c_2}$ are natural inclusions and the boundary is "outward" oriented, i.e., the normal vector to L_{c_1} has the same sense as ∇f and the normal vector to L_{c_2} has the opposite sense of ∇f .

Step 5: Applying a theorem due to Robert M. Hardt (see [Ha]).

Theorem (R.M. Hardt)

Let f be a real analytic function of a compact sub analytic subset of a real analytic manifold M . Let k be a positive integer. Then,

$\sup \{ \mathcal{H}^k (f^{-1}(\{y\})) \text{ such that } \dim f^{-1}(\{y\}) \leq k \} < \infty$

where \mathcal{H}^k represents the k -dimensional Hausdorff measure.

Applying this theorem to the situation described in this paper we get the following:

Proposition 3:

There is a real number T such that

$\text{area}(L_c = f^{-1}(\{c\})) < T$, for all regular values c of f . \square

Step 6: Computing $i_1 \nabla$ and $i_2 \nabla$:

$$i_1 \nabla = \frac{1}{|\nabla f|} \left| \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_1^2 + \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_2^2 + \right. \\ \left. + \frac{(\lambda_1 - H)}{(\lambda_2 - \lambda_1)^2 (\lambda_1 - \lambda_2)^2} f_3^2 \right|_{V_1} \quad (9)$$

$$i_2 \nabla = \frac{1}{|\nabla f|} \left| \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_1^2 + \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_2^2 + \right. \\ \left. + \frac{(\lambda_1 - H)}{(\lambda_2 - \lambda_1)^2 (\lambda_1 - \lambda_2)^2} f_3^2 \right|_{V_2} \quad (10)$$

V_1 and V_2 standing for volume elements of L_{c_1} and L_{c_2} respectively.

Proof:

Notice that

$$\Psi = \Gamma_{12}^1 \omega_1 \wedge \omega_2 + \Gamma_{12}^2 \omega_2 \wedge \omega_1 - \Gamma_{13}^1 \omega_1 \wedge \omega_3 - \Gamma_{13}^2 \omega_3 \wedge \omega_1 - \Gamma_{23}^1 \omega_2 \wedge \omega_3 - \Gamma_{23}^2 \omega_3 \wedge \omega_2$$

Now, using formulas (3) and (8) yields:

$$\begin{aligned} \Psi &= \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_3)^2} f_1 \omega_2 \wedge \omega_3 + \frac{(\lambda_2 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_3)^2} f_2 \omega_3 \wedge \omega_1 + \\ &+ \frac{(\lambda_3 - H)}{(\lambda_1 - \lambda_3)^2 (\lambda_2 - \lambda_3)^2} f_3 \omega_1 \wedge \omega_2 \end{aligned}$$

Now, observe that

$i_1^* (\omega_1 \wedge \omega_2) = \langle e_1, n_1 \rangle v_1$, n_1 being the "outward" normal vector to L_{C_1} on M . Also,

$$i_1^* (\omega_1 \wedge \omega_3) = \langle e_1, n_1 \rangle v_1,$$

$i_1^* (\omega_2 \wedge \omega_3) = \langle e_2, n_1 \rangle v_1$ and similar formulas hold for i_2 and n_2 (the "outward" normal vector to L_{C_2} on M).

It is important to observe that:

a) n_1 has the opposite sense and the same direction of ∇f

because of the orientation and the fact that L_{C_1} is a level surface of f . So, $n_1 = - \frac{\nabla f}{|\nabla f|}$

b) By the same reasons, n_2 has the same sense and direction of ∇f and $n_2 = \frac{\nabla f}{|\nabla f|}$

c) $\nabla f \neq 0$ on L_{c_1} and on L_{c_2} because c_1 and c_2 are regular values of f .

Therefore,

$$\begin{aligned}
 i_1^* \nabla &= \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_1)^2} f_1^* i^* (\omega_2 \wedge \omega_1) + \frac{(\lambda_2 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_2^* i^* (\omega_1 \wedge \omega_2) \\
 &+ \frac{(\lambda_1 - H)}{(\lambda_2 - \lambda_1)^2 (\lambda_1 - \lambda_1)^2} f_1^* i^* (\omega_1 \wedge \omega_2) = \\
 &= - \frac{1}{|\nabla f|} \left| \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_1)^2} f_1^* + \frac{(\lambda_2 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_1)^2} f_2^* \right| \\
 &\cdot \frac{(\lambda_1 - H)}{(\lambda_2 - \lambda_1)^2 (\lambda_1 - \lambda_1)^2} f_2^* \Big|_{V_1}
 \end{aligned}$$

and the same computation is applicable to $i_2^* \nabla$. \square

Step 7: Controlling integral in the boundary:

Given $\epsilon > 0$, $\exists c_1, c_2$ sufficiently close to $f(q)$ and $f(p)$ respectively, such that

$$\left| \int_{L_{c_1}} \frac{(\lambda_1 - H)}{(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_1)^2 |\nabla f|} \cdot f_1^* \right| < \frac{\epsilon}{2} \quad \text{and}$$

$$\left| \int_{c_1} \frac{(H - \lambda_1)}{(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_1)^2 |\nabla f|} \cdot f_1^* \right| < \frac{\epsilon}{2} .$$

Proof: Clearly, $\frac{f_1^i}{|\nabla f|} \leq |\nabla f|$ and $\frac{f_2^i}{|\nabla f|} \leq |\nabla f|$

Also, $|\nabla f| = 0$ as $c_1 = q$ or $c_1 = p$.

Moreover, $(\lambda_1 - \lambda_2)^2 (\lambda_2 - \lambda_3)^2 > L_1 > 0$ or M for some constant L_1 . This is so because $\lambda_1 \leq \lambda_2 \leq \lambda_3$. M is closed and, by assumption, there are no points where $\lambda_1 = \lambda_2 = \lambda_3$.

In the same way, $(\lambda_1 - \lambda_2)^2 (\lambda_1 - \lambda_3)^2 > L_2 > 0$ on M for some constant L_2 . Now, apply step 5 and get step 7.

Step 8: Conclusion:

First suppose $L_{c_1} \neq \emptyset$ and $L_{c_2} \neq \emptyset$.

Notice that $\lambda_1 - H < 0$ and $\lambda_2 - H > 0$ because $\lambda_1 \leq \lambda_2 \leq \lambda_3$ and $H = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)$.

Moreover, for a point q_1 close to q and a point p_1 close to p we have

$$\lambda_1(p_1) - H < 0 \quad \text{and} \quad \lambda_2(q_1) - H > 0$$

Therefore, by step 7,

$$\int_{L_{c_1}} i_1^i \psi = \int_{L_{c_2}} i_2^i \psi < c \text{ for } c_1 \text{ close to } f(q) \text{ and } c_2 \text{ close to } f(p).$$

So, by step 4,

$$\int_{N_{c_1}^{c_2}} d \psi < c$$

Now, taking \bar{c}_1, \bar{c}_1 such that $c_1 < \bar{c}_1 < f(q), f(p) > \bar{c}_1 > c_1$ we get
 $N_{\bar{c}_1} \supset N_{c_1}^{c_1}$ and

$$\int_{N_{\bar{c}_1}} \frac{d\tau}{\bar{c}_1} < \frac{\epsilon}{n} \text{ for a suitable choice of } \bar{c}_1 \text{ and } \bar{c}_1 \text{ for a given } n \in \mathbb{N}.$$

Suppose by contradiction that $\epsilon > 0$.

Using formula (7) yields

$$\int_{N_{c_1}^{c_1}} \frac{\lambda_{11}^2}{(\lambda_2 - \lambda_1)^2} + \frac{\lambda_{22}^2}{(\lambda_1 - \lambda_2)^2} + \frac{\lambda_{33}^2}{(\lambda_1 - \lambda_2)^2} < \int_{N_{\bar{c}_1}} \frac{\lambda_{11}^2}{(\lambda_2 - \lambda_1)^2} +$$

$$+ \frac{\lambda_{22}^2}{(\lambda_1 - \lambda_2)^2} + \frac{\lambda_{33}^2}{(\lambda_1 - \lambda_2)^2} < \frac{\epsilon}{n} \quad \forall n \in \mathbb{N}, \bar{c}_1, c_1 \text{ conveniently chosen.}$$

Consequently $\lambda_{ii} \geq 0 \quad 1 \leq i \leq 3 \text{ on } N_{c_1}^{c_1}$

The choice of c_1, c_2 being arbitrary implies:

$$\lambda_{ii} \geq 0 \text{ in } M - (f^{-1}(p) \cup f^{-1}(q))$$

Then $\lambda_{ii} \geq 0$ in one non empty open set of M and so, because of formulae (8), $\nabla f \geq 0$ on this open set. Analyticity of f implies f is constant on M . Therefore M is isoparametric (contradiction).

Finally, if $L_{c_1} = L_{c_2} = \emptyset$, the proof was given in part 1.

If $L_{c_1} \neq \emptyset$ and $L_{c_2} = \emptyset$, then

$$\int_M d\tau = \int_{L_{c_1}} \frac{d\tau}{c_1}$$

If $L_{C_1} \neq \emptyset$ and $L_{C_1} = \emptyset$ then

$\int_{X \setminus L_{C_1}} d\pi = \int_{L_{C_1}} i_{*}\pi$. In both cases proofs are obvious reductions of the general one. \square

REFERENCES

[C] - E. Cartan: "Familles de surfaces isoparamétriques dans les espaces à courbure constante", *Annali di Mat.* 17 (1938)

[C, D, K] - S.S. Chen, M.P. do Carmo and S. Kobayashi: "Minimal submanifolds of a sphere with second fundamental form of constant length". In: *Functional analysis and related fields*, 59-75. Berlin, Heidelberg, New York: Springer (1970).

[Ha] - R.M. Hardt: "Some analytic bounds for subanalytic sets", *Prog. Math.* vol. 27, 259-267 (1983).

[Hs₁] - W. Hsiang: "Minimal cones and spherical Bernstein Problem I", *Ann. Math.* II, Ser. 118, 61-73 (1983).

[Hs₂] - W. Hsiang: "On the construction of constant mean curvature imbeddings of exotic and/or knotted spheres into $S^n(1)$ ", *Inv. Math.*, vol. 82, 423-445 (1985).

[M] - C.B. Morrey Jr.: "Multiple Integrals in the calculus of Variations", Springer Verlag (1966).

[N] - K. Nomizu: "Elie Cartan's work on isoparametric families of hypersurfaces", *Proc. Symp. Pure Math.*, vol. 27, 191-200 (1975).

[N, S] - K. Nomizu and B. Smyth: "A formula of Simon's type and hypersurfaces with constant mean curvature", *Jour. Diff. Geom.*, vol. 3, 367-377 (1969).

[O] - M. Okumura: "Hypersurfaces and a pinching problem on the second fundamental tensor", *Am. Jour. Math.*, vol. 96 207-213 (1974).

[P, T] - C.K. Peng and C.L. Terng: "Minimal hypersurfaces of spheres with constant scalar curvature", *Ann. Math. Studies* Vol. 103, 177-198 (1983).

[S] - J. Simons: "Minimal varieties in Riemannian manifolds",
Ann. of Math., vol. 88, 62-105 (1968).

[Y₁] - S.T. Yau: "Submanifolds with constant mean curvature III",
Am. J. of Math., vol. 97, 76-100 (1975).

[Y₂] - S.T. Yau: "Seminar on Differential Geometry", Ann. Math.
Studies, vol. 103, p. 693 (1982).

Sebastião Carneiro de Almeida
Instituto de Matemática
Universidade Federal do Ceará
Campus do Pici
60.000 - Fortaleza
BRAZIL

Fabiano Gustavo Braga Brito
Departamento de Matemática
Pontifícia Universidade Católica
do Rio de Janeiro
22.453 - Rio de Janeiro
BRAZIL