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S O Introduction 

S. S. Chern proposed the followini problem (se• (C, D, K] 

and (Y 
1
]): 

"Let t be th• •et of f sn-i • ~ closed minimal illllllersed hypersur!acts o 

With const•nt -~·l·r f · • ~~-. curvature. Let ,e: I - ~ be the unct1on 

iiven by: c(M) ~ scalar c:urvature of M. 

Question: Is ,e (t) :a discreta set of re:al numbers ?" 

Probably the m:ain motivation for this conjecture is Simon's 

foriauia ( [S]) accordini to which, if M e t a.nd "CM) < 1 then 

"CM) " 1 1 f " • n:-r. It comes immedi:auly fro11 the definitions o 

•ini11a1· I · 1 ty aad scala:r curv:ature tha t re (M) ~ 1 for M '- I • t 15 

clear that if M ( t and ,e (M) • 1 then M is :a ireat round 

hrpersphere of sn•1• Chern, Do Carmo and Kobayachi C[C, D, KJ) 

proved that if Mi t and re(Ml • 1 • i2,- then M is th• riemannian 

Product of t.10 round sphe:res. 

Peni uid Temi ([P, T]) made 

Provini tha t if Me t and "CM)< 
1 

a breakthrouih on this problem 
1 

1 then ,e (M) < 1 - n-T - n-'T 
12n'(n. l) • Unfortunately, we don't know examples -reali:ini 

thiJ 1 f h ªst value for the scalar curvatur• of M. However, or t • 

special case where n. 3, the sam• authors iot a stron1er .nd 

.sharp result that reads: 

If dim M • 3, M ( t and ,e (M) < ½ then c (M) ~ O· 

Notice that re(H) • o is reali:ed by Cartan's minimal 

isopara =•tric _hype:rsurface of s• (se• [C] and also (NJ). 

1 

1 

1 
i 

ln this paper, we extand P•ni a.nd Teruz's result 
for 
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hrpcrsur! ac:u of S • havini; e ons un t mcan curv ature. Moreov1 r 

wt prove uniqutncss o! Cartan's isoparamttric hypcrsurfaccs of 

s• in tht sens• that thty are tht only clos1d hypersurfac1s of 

s· havini; constant mean curvature and vanishini; scalar 

c:urvaturt. Prec:istly, we prove: 

Thcore11: 

"l.et M
1 
i: w• be a 3-dimensional closed i111111erud hyp1rsurfac:e 

in a 4-dimensional space o! constant curvature W. I! M' has 

c:onstant mtan curvature and constant non neiative scalar 

c:urvature then H is isoparametric." 

Corollary 1: 

"l! 141 i:: s" is a c Los e d 3-dimensional immersed hypersurhce 

of 5• with constant mean curvatura H and constant non neiative 

sc:alar curvatur1 ~. then M' is isopar:lllletric and consequently 

one of the followini three possibiiities holds: 

1) M1 is a round sphere 

2) M1 
í s a Clifford tON$ S1 (rl x S1 (tl where s' (r) and 

s1(t) are a sphere anda circle of radiu.s r and t respectively. 

3) M' i.s the unique isoparametric hypersurface of s• with 
vanishini scalar curvature and iiven mean curvatura H." 

Corollary 2: 

"The only closed hypersurface.s of s• with const:i.nt m.e:.n 

c:uTVature :1.11d every where vanishini scalar curvature :1.r1 Cartan's 

isoparametric hypersurface.s of S11
." 

Con.stancy of both ~ and H is crucial for the characterizat~on 

theore• .stated above. lndeed, Hsiani ([Hs1], [Hs2]) iave ~any 

(embedded!) ex.mples of non i.sopar:lllletric hyperspheres of 5n•1 

(of s•, in particular) havini const.uit mc:i.n curv:.ture. We should 
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mention that hypersurfaces of s""1 with constant mean curvaturc 

ªnd rtstrictions on th, sectional curvatures or on tht Ricci 

curvatur, had already been treated by Yau (Y1l and Nomi:u and 

Smyth (S' SJ. 

The specific case of closed hypersurfaces of s"·; .ith 

con5tant mean curvature and constant scalar curvature was 

studied by Okumura (O]. 
n(n-Z) , Tii:Tjt H implies the hypersuríace is a round sphere. 

2 
lt was proved that e >1- iiTií-Tí • 

Corollary 1 providas a complete and sh a rp answer for t h í s 

pinchini problem in the case n. 3 ande> O. We should finally 

remark that the existence of closed hypersurfaces of s""
1 

wi
th 

neaative scalar curvature is, as far as we know, an open probl•~- 

S 1 Proof of the theorem 

lt is clearly sufficient to prove the theore11 

M' ªnd the proof vill be divided into two parts: 

Our 

b) 

for oriented 

1st part: Suppose M1 has three distinct principal curvaturas 

lt each point. Let {e
1
, ,1, 11} be a local orthonormal frame 

beloniini to the orientation of M1 and dyaionali:ini the 5eco
nd 

funduental fana of the isometric i,mmersion i: M
1

• W. Let 

Cwi,wa,w,} be the associated local coframe. We are, locallY, in 

th• foll0~1·na ~ • situation: 

a) Ae, • >..e. 1 ~ i ,< 3 on U, ;,. 1 < >.1 < 41 on M. 
l l l ' 

Where A denotes the matrit of the second fundamental form of 

the immersion ' . U is an open set , ~i is a principal curvatura, 

of l4 d an 6 •• is the classical Kroenecker syiabol. 
lJ 

lldine the 2-foTlll , ( A 1 (U, til.) by 
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'f • 1o11: J,..,, .,.1, A.,1-"'1 Aw11, ( 1) 

"'ij , 1 ~ i, J ~ ~ bein~ local Cutan connection !orms auocined 

to the &h·en local o?'thonormal frame in such a -.ay that 

< V tj e > u ' i , 

fact 1: , is &lobally definable: 

To see this let us consider another local frame ( ê , e , ê) 1 2 1 

defined on an open set VC:)4. Suppose {ê1, c1, ê1) s a t i s f í e s a) 

and b}. If, moreove'I', (ê1, e1, ê,l belongs to the oricntation 

o! M then on• of the !our possibilities holds í n U nv. 

iii) i1 • ·•1, •1 • •1 , •, • ·•,; iv) e1 • -<!1, •2 • ~. , 

• 1 ••• 

Now, defining f in the same way as Tone can easily check that 

'unv 'unv o 

where: 

f • À 1' • ÀI • ÀI 
l % 1 

' • trace A • trace {A o A o A) 

K is the scalar curvature function of M 

and v is the volume element of M 

Proof: 

Using Cart= structure equations, 

dwij • - ti wilr. A.111kj • Qij • d'i. • - ~1 ""ij A ""j 

and (1) yields: 

(2} 
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Notice th•t "' " t, " ' ' be1·no th• • .. ij • "ij "'i . wj • "ij • e • Ai Aj • 
sectional curv&ture o{ M in th• direction o{ th• plant i•n•rated 

by •1 and d { h •j an e bein~ the sectional curvatur• o t • 

c:onnantl>· curved ambient space W. 

Lrt us wri te 
1 

wij • r r k and UH Codai:.i equations .to ,,t: 
k. 1 1j wk 

~~- -ri •Cl - À.) dl e ) C3) 
lJ j i j 1 1 .j 

r• ri i 
1 2 r 
- • ...J.J...... --l.J.... 
Àz•À1 >.,->.1 À1•Àz 

Let us now denote 

Àij • dÀi <•j). 

Usin~ (2), (l) and (4) one &•ts: 

"h•re " l 1 • e: • - ( >. 1 >. i + >. 1 >. 1 • >. 2 l. 1) • - (R • R • R ) 3 3 ll li li 

111• relation bet1o1een ,e and H is aiven by 

IC • l • 
- ( 9H • S) • e: 
6 

"h•re: 

li•~ C>-1+ >-1 • >.J is t.he mean curvature of M 

S • À 1 + À 
1 
• À 

1 
is the S"uar• of th• norm o! t.he ucond f l l 1 "\ 

undamental form of M. 

(4) 

So, if 1: and H are c:onstant se is s. Derivin& S and H iives 
dS (ek) 

1 ( Sl . 2 t À À ik • o • l ~ lql 
1.1 i 

dli (e"-) 1 (6) .. t Àik. o i-1 1 "k ~ l 
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"º"· usini; (Sl and ( 6) • ..., may wri te 

1 e 
11 11 11 

1 
d, . • • . V (i) 

Clz- l,)' ( l 1 -l l). Cli-lz)' 

A st ra i i;h t{or,,ard compu tat ion usini; (S) and (6) iivu: 

d{(t ) . !1 . 3(>.1->.1) P1-l1l 111. 1 

d!C• ) . ! . .3(l
1
•l

1
)(À1•l1) l J 1 • (8) 

1 1 

d{(t ) . !, • l(l1·l,)(l2·l,) À li 
1 

Observe that V!• í1 e1 • í1 •1 • Í1 e1 

and this ends the proof o! f ac t 2. O 
Applyini Stokes theorem yitlds the desired result for. 

hypersurfaces havini thret distinct principal curvatures at 

each point. 

Znd part: General case, i.e., there are points x EM such 

tha t l. ( x) • l . (x) , i -/, j : 
l J 

~e proco•d by steps and ieneral strateiy is: M non 

isopara.metric implyes e< O 

Step 1) If there is a point x EM such that l1(x)el1(x) • 

• l1(x): then M is isopara.metric. 

Proof: 

So S • 3H
1 

• bKause S and H are constant, S • .3H all over M. 

on x and 

• 1 • z 1 1 
Sov, .3H • - (À i. Àz•l1) •À1 .,., .,. 1 

.3 
1 )' - l J z 

so o . - (li •"z .,. J li _,. z - À1 

:s 

• S all over ~ ..nd 

1 
• c:.1.;.1) 1all over M. 
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L~t 1n "º" supposr t h a t thcrt a r e no poinu x f M suc:h 
th
•t Ài(xJ •l,Cx) al,(x) and thH J.1 < l, ~ l, on M 

5t•p 2: Maximum and minimum o{ í: 

Proposition 

f • ,., 1 1 
• l À a ttains i ts maximum wh•n À1• À z and 

1 z 
its minimum ..,hen points o{ this exist. li• l 1 .-henever typ• 

Proof: It is sufficient to study the íunction 

1: IR'• ~ 1ivcn by 
,ex, }", 1) 1 

• X 
1 

• y 1 
• 1 

• • y 

subject to tht restrictions 

• 1
1 

• S usina La1ran1•'s 

Step 3: Analyticity of f: 

Let us no.., observe that M is real analytic submanifold a 
Of lt and f: M ... This is IR is a real analytic function on M. a 

cons.quenc• of a h f eis well known theorea statin1 that ypersur a 
of tonstan t mean curvature on spaces oí constant curvaturc are 
?tal ana1 · · l > t rc submanifolds (see, for uample [MI). I n particu ar 
f has a f1·n1·te · l d number of critical values because M is e os• • 

Propos i tion 2: 

lf l. 1 • À z on M or J.1• l.1 on M then M is isopara.metric. 

Proof: 

Just solve.~. , , ' ._.. system on the u.nknowns Al,Az,41: 
41 • 4z • l., • H 

1 1 À z . l. • À • s 1 1 

l.1 . 41 (resp Àz • À J) 

~ci WTite l. o i in tenis of H and s. 

1 

1 
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Suppou no'lõ p f M satisfies 11 (pl • lz(pl and tüir e:, i li< 

to be a re,ular value of ! c:lose to max ! • ! (p). Suppose 

e:, , f (p) ( tbis is possiblt otherwise 1by proposi tion ; ;r,i is 

isopar:uaetric:). Denote 

L • r·1 (e:,) the closed level sur!ac:1 o!! in M e, 
det1niined by e:,. 

Analo,ousl)·, t.üe q f M such that l.1 Cql • l. 1 (qJ in su:h , "'ª~­ 
that ain í • ! (q) and C:1 , ! (q); C:1 bein~ a rezular value o! 

f elos• to ! (q). 

Settin, 

N e,. f·1c( c:
1
]) sives a hy-persur!ace a! w• 

'1 '1' "'i th baundary 

Lc: U Lc: • 
l 1 

we c:onventian that Lc:
1 

• S if there are na points q on M suc:h 

that i 1 (q) • l. i(q). ln the same war, Lc:
1 
• li i! th1re are no 

paints p an M such that l.1 (p) • l.1 (p). 

Step •= ApplyiD& Stokes ta N'1 and ,: e i 
In our case, Stokes theorem with boundary reads: 

\ Hore, i,: Lc:, - l\~: and i
1
: Lc:,· N~~ are natural ínc Ius Lcn s 

~d th• boundary is "out,,;;ud" c r í en t ed , i.e., the nor.:al vec t o r 

to Lc:, has the sa.me 5ense as Vf and the normal vec:tor to Lc:, ~as 

t.~e opposite sense of Vf. 
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Step 5: Applying a theorem dueto Robert H. Hardt (see(Hal). 

Theore: (R.H. Hardt) 

Let f be a real analytic: func:tion of a c:ompac:t sub analytic: 

SUbset of a real anal~ic: manifold H. Let k be a positive 
inte111r. ""- •uen, 

sup {...,k (f-1({y})) su~h . i } .;,. - that dilll 1· ({y}) ~ k < • 

1the?' .Xk 
• ?'Op?'esents the k-di=ensional Hausodorff measure. 

Applyin11 this theorltlll to the situation described in this 

Pape?' we &•t the follovini: 

l'ropos i tio11 :s: 
Th,r, is a real number T such that 

aru CLc • r-1 Clc:})) < T, for all re,uiar valuu e: o! !. O 

Scep 6: Computin& 1;, and 1:, 

• 1 1 ( l 1 - H) 
- ----.----- { 1 1 ':( 1 ( l l - l z) l ( l, -li ) 1 1 • 

• - 0,. HJ 
o.,. l,)' 0.,-l.i)' 

( •' • H) 

(l - Hl 1 

elementJ 

1 f • 
1 

(9) 

( 1 O) 

of L and L respec:tively. 
e:. e, . 
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Proof: 

Notic:• that 

Now, usini fórmulas (3) and (8) yields: 

w • 
1 

so._, observe that 

1; (..-, /1 w,l • < e1, n1 > v1, n1 bcin~ thc "out'-ard" nonial vci::tor 

to L on M. Also, e: 1 

and si111ilar formulas hold {or i, 

and n, (thc "outward" nol"lllal vector to Lc on M). 
1 

It is important to observe that: 

a) n1 has the opposite sense and the same direction o! 'Jf 

because of the orientation and the fact that L is a Ievel surface e, 
of f. So, n • - 1 

b) By the same reasons, n, has the s.uie sense and direction of 
'Jf a,• - 
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and on L because e ande are reiular values e, i • 

Tberefore, 

• • -L. I º·1· H) 
lvt 1 0·1-l,J Cl,.ltJ' 

• .,;,,, (l. J - li) f' 1 
(l.,•la)'(l., ·l.1)' • vi 

lllci the • O saiae coarp11ta1:ion is applyable to i T • 
a 

5tc.-r 7: CantTolJin~ inu~ral in thc boundary: 

Civ"n t > () ~ ff' . 1 ~10,c to {{") and frp, ' .;:i C: 1 , C: 1 su 1 C: l en t 'r ,. .., 
r,,r"c:t· i,·,1y, such that 

r J- (li - Hl 1 < j_ and 
L ºl·•1l:(•1•À:)I l'HI 

r, z 
e, 

1 J CH-Ãi) < l< e 
L 01.,i)J (•1·•ilJ l<HI z 
~I 
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Proof: Cl1arly,.!1.,_ ~ !víl 
IHI 

Also, !Vfl-0 uc:1•q cr c:1•p. 

Moreover, (),.1-i.,)'ci., - ,. '). > L1 > 0 or M for some c:onstant Li. 

This is so bec:a1.1se J.1 ~ ,. l ~ i.,, M is c:losed and, by as suap t í c n , 

ther• are no pointS wher• l.1. Àz• "·· 
ln th• sam• way, P·i- J.,)'CJ.1- "'). > L > o on M for some c:onstant • 

L,. Now, apply step S and it•t sup 7. 

Sup s: Conel1.1sion: 

Firs't suppose Le
1
i' lJ and Lc:, i' f. 

Notic:• that l.
1
- H < 0 and l.1• H > 0 bec:ause l.1 ~ l.1 ~ i.1 

and H • !. C l. 1 • l. z ••a) • 
3 

Moreover, for a point qi elos• to q anda point p1 elo.se top 

we have 

f iº t < , for c:
1 

c:losc to f(ql ande:, c:lose to f(p). 
J ' L,, 

\ se , by ,t~P 4• 
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J-d-~cc 
Nc, n 
c1 

S1.1ppou by contradiction that < > o. 
Usinz farlllul• (7) • yields 

for a suitable che í ce 0! c1 and e, for a iiven n e s. 

f ......:. ~ . z 1 ~ ~, - • Àp • À 11 < t2. se, ( '._ ~- l.,)' p,.l.1)' (l.1-l.,)1 (Àz•À,)
0 

<:1 
. - e 

1 

Consequently ' "ii I O 

< ~ Yn e N, c'i~z convenientlY chosen. 
n 

l , i ~ l on 

Th• <:boice of <=1 , <:1 b•in& arbitrary i.mplye.s: 

\i i Q in M • cr1cpl U C1(q)) 

Then l.. i O ,_ • f li ..., one non empty open set of M and so, because ot 
0l"lllula• (S) • 7f I O ~n this open set. Analyticiq o! f implyes f 
h e onst.:nt on !it. Th•r•fore M is isoparam•tric (contradiction). 

1 f L • li 
~I 

I d, • 
~ 

and Li:,• li, then. 

í 
L e 1 

i ' 1 
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• 1 then 

ln both cases praofs ar, abviaus reduction, oi 

th• &•n•ral ana. Q 

\. 
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