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Abstract

Let f : S1
→ S1 be a C3 homeomorphism without periodic points having a finite number of critical

points of power-law type. In this paper we establish real a-priori bounds, on the geometry of orbits of f ,
which are beau in the sense of Sullivan, i.e. bounds that are asymptotically universal at small scales. The
proof of the beau bounds presented here is an adaptation, to the multicritical setting, of the one given by the
second author and de Melo in de Faria and de Melo (1999), for the case of a single critical point.
c⃝ 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

In the study of smooth dynamical systems, it is often the case that the geometry of orbits at
fine scales is completely determined by a small number of dynamical invariants. The invariants in
question can be combinatorial, topological, even measure-theoretic. This phenomenon is known
as rigidity. In general, since in many cases a smooth self-map has a plethora of periodic orbits
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whose eigenvalues can vary under small perturbations, and since such eigenvalues are smooth
conjugacy invariants, one can only hope to have rigidity in the absence of periodic points.

The greatest success in the study of rigidity of dynamical systems, so far, has been achieved
in dimension one, i.e. for interval or circle dynamics. This success has been most complete in the
case of invertible smooth dynamics on the circle – homeomorphisms or diffeomorphisms of S1

with sufficient smoothness. Here, it is known since Poincaré and Denjoy that the only topological
invariant is the rotation number. The seminal works of M. Herman [10] and J.-C. Yoccoz [26]
cleared the path towards a fairly complete classification of smooth circle diffeomorphisms under
smooth conjugacies. They showed that if f is a Cr -smooth diffeomorphism of S1, with r ≥ 3,
whose rotation number ρ satisfies the Diophantine condition⏐⏐⏐⏐ρ −

p
q

⏐⏐⏐⏐ ≥
C

q2+β
(1.1)

for all rational numbers p/q, for some constants C > 0 and 0 ≤ β < 1, then, provided
r > 2β + 1, f is Cr−1−β−ϵ-conjugate to the corresponding rigid rotation, for every ϵ > 0.
This was subsequently sharpened by Katznelson and Ornstein [12], who showed that it is only
necessary to assume r > 2+β (instead of r ≥ 3 and r > 2β+1). Herman’s proof was simplified
by Stark [19] and Khanin–Sinai [13] through the use of renormalization methods. More recently,
in [15] Khanin and Teplinsky showed that this result is also valid without the use of any ϵ,
provided that 2 < r < 3. As communicated to us by the referee, it has recently been announced
by Ornstein that the use of ϵ is unnecessary for all r .

In other words, for almost all rotation numbers, a sufficiently smooth circle diffeomorphism
is almost as smoothly conjugate to the rotation with the same rotation number. The slight loss
of differentiability for the conjugacy is inherent to small-denominator problems, and is already
present even if the diffeomorphism in question is a small perturbation of a rotation. On the other
hand, Arnol’d has shown in his thesis (see [1]) that there are real-analytic circle diffeomorphisms
with “bad” irrational rotation numbers which are not even absolutely continuously conjugate to
the corresponding rotation. These results yield a fairly complete solution to the rigidity problem
for circle diffeomorphisms.

For smooth homeomorphisms of the circle with critical points (of non-flat type), the
topological classification is due to Yoccoz [27], see Theorem 2.1. Since no conjugacy between a
map of this kind and the corresponding rigid rotation can be smooth, the correct thing to do when
studying rigidity is to compare two such maps directly. In other words, assuming that there exists
a topological conjugacy between two such maps taking the critical points of one to the critical
points of the other, one asks: is this conjugacy a smooth diffeomorphism?

In the case of smooth homeomorphisms having exactly one critical point – the so-called
critical circle maps – a reasonably complete rigidity theory has emerged in recent years, thanks
to the combined efforts of several mathematicians – see [3,4,14,17,22–25] for the case of
real-analytic homeomorphisms, and [7–9] for the case of finitely smooth homeomorphisms. We
summarize those contributions in the following statements: any two C3 circle homeomorphisms
with the same irrational rotation number of bounded type (that is, β = 0 in (1.1)) and with
a unique critical point (of the same odd power-law type), are conjugate to each other by a
C1+α circle diffeomorphism, for some universal α > 0 [8]. Moreover, any two C4 circle
homeomorphisms with the same irrational rotation number and with a unique critical point
(again, of the same odd type), are conjugate to each other by a C1 diffeomorphism [9]. As it
turns out, this conjugacy is a C1+α diffeomorphism for a certain set of rotation numbers that has
full Lebesgue measure (see [3, Section 4.4] for its definition), but does not include all irrational
rotation numbers (see the counterexamples in [2] and [3, Section 5]).
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By contrast, for smooth circle homeomorphisms having two or more critical points — the
so-called multicritical circle maps, see Definition 2.2 — the rigidity problem remains wide open.

The very first step in the study of rigidity is to get real a-priori bounds on the geometry
of orbits. As it turns out, for one-dimensional maps with a finite number of critical points, the
behavior of the critical orbits essentially determines the behavior of all other orbits. Hence the
task reduces to finding a-priori bounds on the critical orbits, and for this it suffices to get uniform
bounds on the sequence of scaling ratios around each critical point, determined by successive
closest returns of the forward orbit of the critical point to itself. See Section 2 for the relevant
definitions. Such bounds have been obtained by M. Herman [11] and G. Świa̧tek [21]. A detailed
proof of such bounds in the case of multicritical circle maps can be found in [6].

Our goal in the present paper is to improve on the bounds presented in [6] by showing that
they are beau in the sense of Sullivan [20] (see Theorem A in Section 2.5). This means that
such bounds on the scaling ratios of the critical orbits become asymptotically universal, i.e.
independent of the map. As in the case of maps with a single critical point, beau bounds should
yield a strong form of compactness of the renormalizations of a given multicritical circle map.
However, the precise definition of such ‘renormalization semi-group’ in the multicritical case is
combinatorially more elaborate, and is therefore beyond the scope of the present paper.

1.1. Summary of results

We proceed to informal statements of our main results. Some rough explanations about
the terminology adopted in these statements are in order (precise statements will be given in
Section 2.5). We write S1

= R/Z for the unit circle, taken as an affine 1-manifold, and use
additive notation throughout. By a multicritical circle map f : S1

→ S1 we mean an orientation-
preserving, C3-smooth homeomorphism having a finite number of critical points, all of which are
non-flat (of power-law type), see Definition 2.2. Only maps without periodic orbits will matter to
us. By a scaling ratio around a critical point we mean the ratio of distances, to said critical point,
of two consecutive closest returns of the forward orbit of that critical point.

Theorem 1.1. Let f : S1
→ S1 be a multicritical circle map with irrational rotation number.

Then the successive scaling ratios around each critical point of f are uniformly bounded, and
the bound is asymptotically independent of f .

This theorem is, in fact, a special case of Theorem A stated in Section 2.5; see also Section 5.
The main consequence of this result is the following quasi-symmetric rigidity statement, which is
an improvement over the main theorem in [6]. Given an orientation-preserving homeomorphism
h : S1

→ S1, we define its local quasi-symmetric distortion to be the function σh : S1
→

R+
∪ {∞} given by

σh(x) = lim
δ→0

lim sup
|t |≤δ

|h(x + t) − h(x)|
|h(x) − h(x − t)|

.

When σh(x) ≤ M for all x ∈ S1 and some constant M ≥ 1, we say that h is quasi-symmetric.

Corollary 1.1. Let f, g : S1
→ S1 be multicritical circle maps with the same irrational rotation

number and the same number N of (non-flat) critical points, whose criticalities are bounded by
some number d > 1. Suppose h : S1

→ S1 is a topological conjugacy between f and g which
maps each critical point of f to a critical point of g. Then h is quasi-symmetric, and its local
quasi-symmetric distortion is universally bounded, i.e. there exists a constant K = K (N , d) > 1,
independent of f and g, such that σh(x) ≤ K for all x ∈ S1.
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The fact that the conjugacy h is quasi-symmetric, in the above corollary, is the main theorem
proved in [6]. The improvement here is that the quasi-symmetric distortion of h is asymptotically
universal. We provide a sketch of the proof of Corollary 1.1 in Section 5.

This paper is organized as follows: in Section 2, we recall some well-known facts and state
our main results (see Section 2.5). In Section 3 we establish C1-bounds for suitable return
maps around a critical point, while in Section 4 we prove that these return maps have negative
Schwarzian derivative. In Section 5 we prove Theorems A, B, 1.1 and Corollary 1.1. Finally, in
Appendix, we provide proofs of some auxiliary results stated and used along the text.

2. Preliminaries and statements of results

In this section we review some classical tools of one-dimensional dynamics that will be used
along the text, and we state our main results (see Section 2.5).

2.1. Cross-ratios

Given two intervals M ⊂ T ⊂ S1 with M compactly contained in T (written M ⋐ T ) let us
denote by L and R the two connected components of T \ M . We define the cross-ratio of the
pair M, T as follows:

[M, T ] =
|L| |R|

|L ∪ M | |M ∪ R|
∈ (0, 1).

The cross-ratio is preserved by Möbius transformations. Moreover, it is weakly contracted by
maps with negative Schwarzian derivative (see Lemma 2.1).

Let f : S1
→ S1 be a continuous map, and let U ⊆ S1 be an open set such that f |U is a

homeomorphism onto its image. If M ⊂ T ⊂ U are intervals, with M ⋐ T , the cross-ratio
distortion of the map f on the pair of intervals (M, T ) is defined to be the ratio

CrD( f ; M, T ) =

[
f (M), f (T )

]
[M, T ]

.

If f |T is a Möbius transformation, then we have that CrD( f ; M, T ) = 1. When f |T is a
diffeomorphism onto its image and log D f |T has bounded variation in T (for instance, if f is a
C2 diffeomorphism), we obtain CrD( f ; M, T ) ≤ e2V , where V = Var(log D f |T ). We shall use
the following chain rule in iterated form:

CrD( f j
; M, T ) =

j−1∏
i=0

CrD( f ; f i (M), f i (T )) . (2.1)

2.2. Distortion and the Schwarzian

If f : T → f (T ) is a C1 diffeomorphism, we define its distortion by

Dist( f, T ) = sup
x,y∈T

|D f (x)|
|D f (y)|

.

Note that Dist( f, T ) = 1 if, and only if, f is an affine map on T . In any other case we have
Dist( f, T ) > 1. By the Mean Value Theorem, we have the following fact.

Remark 2.1. If Dist( f, T ) < 1 + ε, then CrD( f ; M, T ) < (1 + ε)2 for any M ⊂ T .



Please cite this article in press as: G. Estevez, et al., Beau bounds for multicritical circle maps, Indagationes Mathematicae (2018),
https://doi.org/10.1016/j.indag.2017.12.007.

G. Estevez et al. / Indagationes Mathematicae ( ) – 5

Recall that for a given C3 map f , the Schwarzian derivative of f is the differential operator
defined for all x regular point of f by:

S f (x) =
D3 f (x)
D f (x)

−
3
2

(
D2 f (x)
D f (x)

)2

.

The relation between the Schwarzian derivative and cross-ratio distortion is given by the
following well known fact.

Lemma 2.1. If f is a C3 diffeomorphism with S f < 0, then for any two intervals M ⊂ T
contained in the domain of f we have CrD( f ; M, T ) < 1, that is,

[
f (M), f (T )

]
< [M, T ].

See the Appendix for a proof.

2.3. Multicritical circle maps

Let us now define the maps which are the main object of study in the present paper. We start
with the notion of non-flat critical point.

Definition 2.1. We say that a critical point c of a one-dimensional C3 map f is non-flat
of degree d > 1 if there exists a neighborhood W of the critical point such that f (x) =

f (c) + φ(x)
⏐⏐φ(x)

⏐⏐d−1 for all x ∈ W , where φ : W → φ(W ) is a C3 diffeomorphism such
that φ(c) = 0. The number d is also called the criticality, the type or the order of c.

We recall here, the following facts about the geometric behavior of a map near a non-flat
critical point.

Lemma 2.2. Given f with a non-flat critical point c of degree d > 1 there exists a neighborhood
U ⊆ W of c such that:

(1) f has negative Schwarzian derivative on U \{c}. More precisely, there exists K = K ( f ) >

0 such that for all x ∈ U \ {c} we have:

S f (x) < −
K

(x − c)2 .

(2) There exist constants 0 < α < β such that for all x ∈ U

α|x − c|d−1 < D f (x) < β|x − c|d−1.

Moreover, α and β can be chosen so that β < (3/2)α.
(3) Given a non-empty interval J ⊆ U and x ∈ J we have

D f (x) ≤ 3d
| f (J )|

|J |
.

(4) Given two non-empty intervals M ⊆ T ⊆ U we have:

CrD( f ; M, T ) ≤ 9d2.

We postpone the proof of Lemma 2.2 to the Appendix.

Definition 2.2. A multicritical circle map is an orientation preserving C3 circle homeomorphism
having N ≥ 1 critical points, all of which are non-flat in the sense of Definition 2.1.
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Being a homeomorphism, a multicritical circle map f has a well defined rotation number. We
will focus on the case when f has no periodic orbits. By a result of J.-C. Yoccoz [27], f has no
wandering intervals. More precisely, we have the following fundamental result.

Theorem 2.1 (Yoccoz [27]). Let f be a multicritical circle map with irrational rotation number
ρ. Then f is topologically conjugate to the rigid rotation Rρ , i.e., there exists a homeomorphism
h : S1

→ S1 such that h ◦ f = Rρ ◦ h.

Given a family of intervals F on S1 and a positive integer m, we say that F has multiplicity
of intersection at most m if each x ∈ S1 belongs to at most m elements of F .

Cross-Ratio Inequality. Given a multicritical critical circle map f : S1
→ S1, there exists

a constant C > 1, depending only on f , such that the following holds. If Mi ⋐ Ti ⊂ S1,
where i runs through some finite set of indices I, are intervals on the circle such that the family
{Ti : i ∈ I} has multiplicity of intersection at most m, then∏

i∈I

CrD( f ; Mi , Ti ) ≤ Cm . (2.2)

The Cross-Ratio Inequality was obtained by Świa̧tek in [21]. Similar estimates were obtained
before by Yoccoz in [27], on his way to proving Theorem 2.1 (see [5, Chapter IV] for this
and much more). In this paper we will improve the Cross-Ratio Inequality, obtaining universal
bounds (see Theorem B in Section 2.5).

As explained before, given two intervals M ⊂ T ⊂ S1 with M ⋐ T (that is, M is compactly
contained in T ), we denote by L and R the two connected components of T \ M . We define the
space of M inside T as the smallest of the ratios |L|/|M | and |R|/|M |. If the space is τ > 0 we
said that T contains a τ -scaled neighborhood of M .

Lemma 2.3 (Koebe Distortion Principle). For each ℓ, τ > 0 and each multicritical circle map
f there exists a constant K = K (ℓ, τ, f ) > 1 of the form

K =

(
1 +

1
τ

)2

exp(C0 ℓ) , (2.3)

where C0 is a constant depending only on f , with the following property. If T is an interval such
that f k

|T is a diffeomorphism onto its image and if
∑k−1

j=0| f j (T )| ≤ ℓ, then for each interval
M ⊂ T for which f k(T ) contains a τ -scaled neighborhood of f k(M) one has

1
K

≤
|D f k(x)|
|D f k(y)|

≤ K

for all x, y ∈ M.

A proof of the Koebe distortion principle can be found in [5, p. 295].

2.4. Combinatorics and real bounds

Let f be a multicritical circle map, and let c0, c1, . . . , cN−1 be its critical points. As already
mentioned in the introduction, we assume throughout that f has no periodic points. Let ρ be the
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rotation number of f . As we know, it has an infinite continued fraction expansion, say

ρ( f ) = [a0, a1, . . .] =
1

a0 +
1

a1+
1

...

.

A classical reference for continued-fraction expansion is the monograph [16]. Truncating the
expansion at level n−1, we obtain a sequence of fractions pn/qn which are called the convergents
of the irrational ρ.

pn

qn
= [a0, a1, . . . , an−1] =

1
a0 +

1
a1+

1

... 1
an−1

.

Since each pn/qn is the best possible approximation to ρ by fractions with denominator at most
qn [16, Chapter II, Theorem 15], we have:

If 0 < q < qn then
⏐⏐⏐⏐ρ −

pn

qn

⏐⏐⏐⏐ <

⏐⏐⏐⏐ρ −
p
q

⏐⏐⏐⏐ , for any p ∈ N.

The sequence of numerators satisfies

p0 = 0, p1 = 1, pn+1 = an pn + pn−1 for n ≥ 1.

Analogously, the sequence of the denominators, which we call the return times, satisfies

q0 = 1, q1 = a0, qn+1 = anqn + qn−1 for n ≥ 1.

For each point x ∈ S1, the closed interval with endpoints x and f qn (x) containing the point
f qn+2 (x) contains no other iterate f j (x) with 1 ≤ j ≤ qn − 1.

For each critical point x ∈ S1 and each non-negative integer n, let In(x) be the interval with
endpoints x and f qn (x) containing f qn+2 (x). We write I j

n (x) = f j (In(x)) for all j and n.

Lemma 2.4. For each n ≥ 0 and each x ∈ S1, the collection of intervals

Pn(x) =
{

f i (In(x)) : 0 ≤ i ≤ qn+1 − 1
} ⋃ {

f j (In+1(x)) : 0 ≤ j ≤ qn − 1
}

is a partition of the unit circle (modulo endpoints), called the nth dynamical partition associated
to the point x.

See the Appendix for a proof.
For each n, the partition Pn+1(x) is a (non-strict) refinement of Pn(x), while the partition

Pn+2(x) is a strict refinement of Pn(x).
Let us focus our attention on one of the critical points only, say c0, and on its associated

dynamical partitions, namely Pn(c0) (n ≥ 0). To simplify the notation, we shall write below Pn
instead of Pn(c0). Accordingly, the intervals I i

n(c0) and I j
n+1(c0) will be denoted by I i

n and I j
n+1,

respectively. Moreover, for a given J ∈ Pn we shall denote by J ∗ the union of J with its left and
right neighbors in Pn . We may assume, for n large enough, that no two critical points of f are in
the same atom of Pn .

Theorem 2.2 (Real a-priori Bounds). Let f be a multicritical circle map. There exists a constant
C > 1 depending only on f such that the following holds. For all n ≥ 0 and for each pair of
adjacent atoms I, J ∈ Pn we have

C−1
|J | ≤ |I | ≤ C |J |. (2.4)
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In particular there exists µ = µ( f ) ∈ (0, 1) such that, if Pn+2 ∋ ∆ ⊂ ∆′
∈ Pn , then

|∆| < µ|∆′
| for all n ∈ N.

When we get the inequalities in (2.4) for two atoms I and J , we will say that they are
comparable, which will be denoted by |I | ≍ |J |. Thus the above theorem is saying that any
two adjacent atoms of a dynamical partition of f are comparable.

Note that for a rigid rotation we have |In| = an+1|In+1|+|In+2|. If an+1 is big, then In is much
larger than In+1. Thus, even for rigid rotations, real bounds do not hold in general.

Theorem 2.2 was obtained by Herman [11], based on estimates by Świa̧tek [21]. Further
proofs are to be found in [3] and [18] for the case of a single critical point, and in [6] for the
general case.

2.5. Statements of main results

Our main goal in the present paper is to establish the following two results, which immediately
imply Theorem 1.1.

Theorem A (Beau Bounds). Given N ≥ 1 in N and d > 1 there exists a constant B =

B(N , d) > 1 with the following property: given a multicritical circle map f , with at most N
critical points whose criticalities are bounded by d, there exists n0 = n0( f ) ∈ N such that for
all n ≥ n0 and for any adjacent intervals I and J in Pn we have:

|J |

B
≤ |I | ≤ B|J |.

Theorem B. Given N ≥ 1 in N and d > 1 there exists a constant B = B(N , d) > 1 with
the following property: given a multicritical circle map f , with at most N critical points whose
criticalities are bounded by d, there exists n0 = n0( f ) such that for all n ≥ n0, ∆ ∈ Pn and
k ∈ N such that f j (∆) is contained in an element of Pn for all 1 ≤ j ≤ k, we have that:

CrD( f k
;∆,∆∗) ≤ B.

The proof of the beau bounds (Theorem A) is the same as the proof of the real bounds
(Theorem 2.2) given by the first two authors in [6, Section 3, p. 8–16], but replacing the Cross-
Ratio Inequality with Theorem B. In other words, Theorem A follows directly from Theorem B.
The remainder of this paper is devoted to proving Theorem B. Its proof will be given in Section 5.

3. The C1 bounds

In this section we prove the following result.

Lemma 3.1. Given a multicritical circle map f there exist two constants K = K ( f ) > 1 and
n0 = n0( f ) ∈ N such that for all n > n0, x ∈ In and j ∈ {0, 1, . . . , qn+1}, we have

D f j (x) ≤ K
| f j (In)|

|In|
. (3.1)

For future reference, we note the following consequence of the real bounds.

Corollary 3.1. The sequence
{

f qn+1 |In
}

is bounded in the C1 metric.
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Proof of Corollary 3.1. By combinatorics, In+1 ⊂ f qn+1 (In) ⊂ In ∪ In+1. Then:

|In+1|

|In|
≤

⏐⏐ f qn+1 (In)
⏐⏐

|In|
≤ 1 +

|In+1|

|In|
.

By the real bounds (Theorem 2.2) we have |In+1| ≍ |In|, and then
⏐⏐ f qn+1 (In)

⏐⏐ ≍ |In|. Therefore
Corollary 3.1 follows from Lemma 3.1. □

The remainder of this section is devoted to proving Lemma 3.1.

Proof of Lemma 3.1. For each n ∈ N consider Ln = In+1, Rn = f qn (In) and Tn = I ∗
n =

Ln ∪ In ∪ Rn . We have three preliminary facts:

Fact 3.1. The family {Tn, f (Tn), . . . , f qn+1−1(Tn)} has intersection multiplicity bounded by 3.

Fact 3.1 follows from the following general fact: given z ∈ S1 and n ∈ N let I =
[
z, R3qn

ρ (z)
]
,

where Rρ is the rigid rotation of angle 2πρ in the unit circle. Then the multiplicity of intersection
of the family

{
I, Rρ(I ), . . . , Rqn+1−1

ρ (I )
}

is 3 for any n ∈ N.

Fact 3.2. There exists a constant τ > 0 (depending only on the real bounds of f ) such that

|L j
n| > τ |I j

n | and |R j
n | > τ |I j

n |

for each j ∈ {0, . . . , qn+1} and for all n ∈ N.

Proof of Fact 3.2. For j = 0, observe that the intervals Ln , In and Rn are adjacent and belong
to the dynamical partition Pn , then by the real bounds they are comparable by a constant that
only depends on f . Let us prove now that for j = qn+1 the three intervals L j

n , I j
n and R j

n are
comparable too.

On one hand, the intervals In+1 and I qn+1
n+1 are adjacent and belong to Pn+1, then they are

comparable (again by the real bounds). Moreover In+1 ⊂ I qn+1
n ⊂ In+1 ∪ In . By the real bounds

|In| ≍ |In+1| and then |I qn+1
n | ≍ |I qn+1

n+1 |, that is:

|Lqn+1
n | ≍ |I qn+1

n | . (3.2)

On the other hand, the intervals In and I qn
n are adjacent and belong to Pn , then they are

comparable. Moreover:

I qn
n+1 ⊂ I qn+qn+1

n ⊂ In ∪ I qn
n .

From [6, item (v), p. 14] we know that |I qn
n+1| ≍ |In| and then |I qn+qn+1

n | ≍ |In|. But
In+1 ⊂ I qn+1

n ⊂ In ∪ In+1 and then by the real bounds:

|Rqn+1
n | = |I qn+qn+1

n | ≍ |In| ≍ |I qn+1
n | . (3.3)

Therefore, for j = qn+1, the three intervals L j
n , I j

n and R j
n are comparable. Now, let

1 ≤ j ≤ qn+1 − 1. Consider the intervals |L j
n|, |I j

n |, |R j
n | and their images by the map f qn+1− j .

By the Cross-Ratio Inequality (combined with Fact 3.1) we have that there exists a constant
K0 = K0( f ) > 1 such that

|Lqn+1
n ||Rqn+1

n ||L j
n ∪ I j

n ||I j
n ∪ R j

n |

|L j
n||R

j
n ||Lqn+1

n ∪ I qn+1
n ||I qn+1

n ∪ Rqn+1
n |

≤ K0.
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Using (3.2) and (3.3) in the last inequality, we get(
1 +

|I j
n |

|L j
n|

)(
1 +

|I j
n |

|R j
n |

)
≤ K ,

and we are done. □

Remark 3.1. We can always assume, whenever necessary, that n0 = n0( f ) given by Lemma 3.1
is such that for all n ≥ n0 and j ∈ {0, . . . , qn+1} we have Card( f j (Tn) ∩ Crit( f )) ≤ 1, where
Card denotes the cardinality of a finite set, and Crit( f ) is the set of critical points of f (this is
because, by minimality,

⏐⏐ f j (Tn)
⏐⏐ goes to zero as n goes to infinity).

Definition 3.1 (Critical Times). We say that j ∈ {1, . . . , qn+1} is a critical time if f j (Tn) ∩

Crit( f ) ̸= Ø.

Remark 3.2. Note that Card({critical times}) ≤ 3N .

Fact 3.3. Let 1 ≤ j1 < j2 ≤ qn+1 be two consecutive critical times. Then for all x ∈ f j1+1(In)
we have:

D f j2− j1−1(x) ≍
| f j2 (In)|

| f j1+1(In)|
,

with universal constants (depending only on the real bounds).

Proof of Fact 3.3. Note that f j2− j1−1
: f j1+1(Tn) → f j2 (Tn) is a diffeomorphism. Fact 3.1

implies that
∑ j2− j1−1

i=0 | f i ( f j1+1(Tn))| < 3, and by Fact 3.2 the interval f j2− j1−1( f j1+1(Tn))
contains a τ -scaled neighborhood of f j2− j1−1( f j1+1(In)). By Koebe Distortion Principle
(Lemma 2.3) there exists a constant K0 = K0( f ) > 1 such that for all x, y ∈ f j1+1(In) we
have that

1
K0

≤
D f j2− j1−1(x)
D f j2− j1−1(y)

≤ K0.

Let y ∈ I j1+1
n be given by the Mean Value Theorem such that

D f j2− j1−1(y) =
| f j2 (In)|

| f j1+1(In)|
.

Then for all x ∈ f j1+1(In),

1
K0

| f j2 (In)|
| f j1+1(In)|

≤ D f j2− j1−1(x) ≤ K0
| f j2 (In)|

| f j1+1(In)|
. □

We finish the proof of Lemma 3.1 by combining Fact 3.3 and Item (3) in Lemma 2.2 with the
help of the chain rule:

D f j (x) ≤ (3d)3N K 3N
0

| f j (In)|
|In|

for any x ∈ In and j ∈ {1, . . . , qn+1},

where N = Card
(
Crit( f )

)
is the number of critical points of f , d is the maximum of its

criticalities and K0 = K0( f ) is given by Fact 3.3. □
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4. The negative Schwarzian property

In this section we prove the following result.

Lemma 4.1. Let f be a multicritical circle map. There exists n1 = n1( f ) ∈ N such that for all
n ≥ n1 we have that

S f j (x) < 0 for all j ∈ {1, . . . , qn+1} and for all x ∈ In regular point of f j .

Likewise, we have

S f j (x) < 0 for all j ∈ {1, . . . , qn} and for all x ∈ In+1 regular point of f j .

In the proof we adapt the exposition in [3, pages 380–381].

Proof of Lemma 4.1. We give the proof only for the case x ∈ In regular point of f j for some
j ∈ {1, . . . , qn+1} (the other case is entirely analogous).

By Item (1) in Lemma 2.2 we know that for each critical point ci there exist a neighborhood
Ui ⊆ S1 of ci and a positive constant Ki such that for all x ∈ Ui \ {ci } we have

S f (x) < −
Ki

(x − ci )2 < 0 . (4.1)

Let us call U =
⋃i=N−1

i=0 Ui , and let V ⊂ S1 be an open set that contains none of the critical
points of f and such that U ∪ V = S1. Since f is C3, M = supy∈V

⏐⏐S f (y)
⏐⏐ is finite. Let

δn = max0≤ j<qn+1 |I
j

n |. We know that δn → 0 as n → ∞, because f is topologically conjugate
to a rotation. We choose n1 = n1( f ) so large that δn is smaller than the Lebesgue number of the
covering {U ,V} of the circle for all n ≥ n1. Using the chain rule for the Schwarzian derivative,
we have for all n ≥ n1 and all x ∈ In regular point of f j

S f j (x) =

j−1∑
k=0

S f ( f k(x))
[
D f k(x)

]2
. (4.2)

We can decompose this sum as Σ (n)
1 (x) + Σ (n)

2 (x) where

Σ (n)
1 (x) =

∑
k:I k

n ⊂U

S f ( f k(x))
[
D f k(x)

]2
, (4.3)

and Σ (n)
2 (x) is the sum over the remaining terms.

Now we proceed through the following steps:

(i) Since In ⊂ U , the sum in the right-hand side of (4.3) includes the term with k = 0, namely
S f (x). Since all the other terms in (4.3) are negative as well, and since |x − c0| ≤ |In|, we
deduce from (4.1) that:

Σ (n)
1 (x) < −

K1

|In|
2 . (4.4)

(ii) Observe that,⏐⏐⏐Σ (n)
2 (x)

⏐⏐⏐ ≤

∑
I k
n ⊂V

|S f ( f k(x))|
[
D f k(x)

]2
. (4.5)
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Assuming n1 > n0, where n0 = n0( f ) ∈ N is given by Lemma 3.1, we know that there
exists K = K ( f ) > 1 such that⏐⏐⏐Σ (n)

2 (x)
⏐⏐⏐ ≤

∑
I k
n ⊂V

|S f ( f k(x))|K 2 |I k
n |

2

|In|
2

≤ M
K 2

|In|
2

∑
I k
n ⊂V

|I k
n |

2

≤ M
K 2

|In|
2 max

0≤k≤ j−1
|I k

n |

∑
I k
n ⊂V

|I k
n |

≤ M
K 2

|In|
2 δn.

(4.6)

Choosing n1 so large that K 2 Mδn < K1 for all n ≥ n1, we deduce from (4.4) and (4.6) that,
indeed, S f j (x) < 0 for all j ∈ {1, . . . , qn+1} and for n ≥ n1. □

5. Proof of main results

In this final section we prove Theorems A, B, 1.1 and Corollary 1.1.
For each critical point ci we consider its neighborhood Ui given by Lemma 2.2. Moreover,

let n1 ∈ N be given by Lemma 4.1. The following decomposition will be crucial in the proof of
Theorem B (recall that, for a given J ∈ Pn , we denote by J ∗ the union of J with its left and right
neighbors in Pn).

Lemma 5.1. Given ε > 0 there exists n2 ∈ N, n2 = n2(ε, f ) > n1, with the following property:
given n ≥ n2, ∆ ∈ Pn and k ∈ N such that f j (∆) is contained in an element of Pn for all
1 ≤ j ≤ k, we can write

f k
|∆∗

= φk ◦ φk−1 ◦ ... ◦ φ1,

where:

(1) For at most 3N +1 values of i ∈ {1, . . . , k}, φi is a diffeomorphism with distortion bounded
by 1 + ε.

(2) For at most 3N values of i ∈ {1, . . . , k}, φi is the restriction of f to some interval
contained in Ui .

(3) For the remainder values of i , φi is either the identity or a diffeomorphism with negative
Schwarzian derivative.

In the proof we adapt the argument given in [3, pages 352–353].

Proof of Lemma 5.1. Let C0 = C0( f ) ≥ 1 be given by the Koebe distortion principle
(Lemma 2.3). Let C > 1 and µ ∈ (0, 1) given by Theorem 2.2. Let δ ∈ (0, 1) be such that
(1 + δ)2 exp(C0 δ) < 1 + ε, and let n2 ∈ N be such that

n2 > n1 +
4 log(δµ3/2/C)

log µ
.
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Note that 0 < (µ1/4)n2−n1 < δµ3/2/C . Given n ≥ n2 consider

m = m(n) =

⌊
n + n1

2

⌋
,

the integer part of 1
2 (n + n1). Let ∆ and k be as in the statement, and consider Jm ∈ Pm such

that ∆ ⊆ Jm , and consider also Jn1 ∈ Pn1 with Jm ⊆ Jn1 . Taking n sufficiently large, we may
assume that ∆∗

⊂ Jm .
Let s ≥ 0 be the smallest natural number such that f s(Jn1 ) contains a critical point of f .

Claim 5.1. The distortion of f s on ∆∗ is bounded by 1 + ε.

Proof of Claim 5.1. The proof uses the Koebe Distortion Principle (Lemma 2.3). Replacing n1
by n1 + 1 if necessary, we may assume that f j (Jn1 ) ∈ Pn1 for all j ∈ {0, . . . , s − 1}. By the real
bounds, the space τ of ∆∗ inside J ∗

m is bounded from below by

τ ≥
1
C

|Jm |

|∆∗|
≥

1
C

(
1
µ

)⌊(n−m)/2⌋

>
µ

C

(
1
µ

)(n−m)/2

.

Since m ≤
n+n1

2 , we have n − m ≥ n −
n+n1

2 =
n−n1

2 , and then

1
τ

≤
C
µ

µ(n−m)/2
≤

C
µ

(µ1/4)n−n1 <
√

µ δ < δ . (5.1)

Now we estimate the sum ℓ of the lengths of the iterates of J ∗
m between 1 and s − 1. Since

n+n1
2 < m + 1, we have m − n1 >

n−n1
2 − 1, and then for all j ∈ {0, . . . , s − 1}:⏐⏐ f j (J ∗

m)
⏐⏐ ≤ µ⌊(m−n1)/2⌋

⏐⏐ f j (J ∗

n1
)
⏐⏐ ≤ (µ1/4)n−n1

(
1
µ

)3/2⏐⏐ f j (J ∗

n1
)
⏐⏐ ≤

δ

C

⏐⏐ f j (J ∗

n1
)
⏐⏐.

Therefore:

ℓ =

s−1∑
j=0

| f j (J ∗

m)| <
3δ

C
< δ , (5.2)

since
∑s−1

j=0| f j (J ∗
n1

)| < 3 by combinatorics (and assuming C > 3). From inequalities (5.1), (5.2)
and Koebe distortion principle (see (2.3)) we get that the distortion on ∆∗ is bounded from above
by

(1 + δ)2 exp(C0 δ) < 1 + ε. □

To prove Lemma 5.1 we decompose the orbit of ∆∗ under f according to the following
algorithm. For each i ∈ {0, 1, . . . , k − 1} we have two cases to consider:

(1) If f i (Jn1 ) does not contain any critical point of f , we define the corresponding φ to be
f s , where s ≥ 1 is the smallest natural such that f i+s(Jn1 ) contains a critical point of f .
Arguing as in Claim 5.1, we see that this case belongs to the first type of components in the
statement.

(2) If f i (Jn1 ) contains a critical point c of f we may assume, by taking n2 large enough, that
f i (∆∗) ⊂ In1 (c) ∪ In1+1(c). We have two sub-cases to consider:

(i) If f i (∆∗) does not contain c (and therefore no other critical point) let s ≥ 1
be the smallest natural such that f i+s(∆∗) contains a critical point of f , and we
define the corresponding φ to be f s . By Lemma 4.1 (and the fact that composition
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of diffeomorphisms with negative Schwarzian derivative is a diffeomorphism with
negative Schwarzian derivative too) this case belongs to the third type of components
in the statement.

(ii) If the critical point belongs to f i (∆∗) we define the corresponding φ to be just a
single iterate of f (and this sub-case belongs to the second type of components in the
statement).

Note finally that, by combinatorics, the first case happens at most 3N + 1 times, while the
second case occurs at most 3N times. □

With Lemma 5.1 at hand, we are ready to prove our main results.

Proof of Theorem B. Theorem B follows at once from the decomposition obtained in
Lemma 5.1, by combining Remark 2.1, Lemma 2.1 and Item (4) of Lemma 2.2. The constant B
depends only on the number and order of the critical points of f , but not on f itself. It is in fact
enough to consider B = (1 + 1/2)2(3N+1)(9d2)3N . □

Proof of Theorem A. As explained in Section 2.5, the proof of Theorem A is the same as
the proof of the real bounds (Theorem 2.2) given by the first two authors in [6, Section 3], but
replacing the Cross-Ratio Inequality with Theorem B. □

Proof of Theorem 1.1. This is clearly a special case of Theorem A. □

Proof of Corollary 1.1. Here we merely sketch the proof (the details are tedious repetitions
of arguments in [6]). The proof uses the notion of fine grids given in [6, Definition 5.1] and
the criterion for quasi-symmetry given in [6, Proposition 5.1]. Let

{
Qn( f )

}
n≥0 be the fine grid

constructed in [6, Proposition 5.2], and let B > 1 and n0 = max
{
n0( f ), n0(g)

}
be given by

Theorem A. Then for all n ≥ n0, adjacent atoms of P f
n are comparable by the constant B, and

the same is valid for adjacent atoms of Pg
n . Consider the sequence

{
Q′

n( f )
}

n≥n0
of partitions of

J f
n0 = I f

n0 ∪ I f
n0+1 given by Q′

n( f ) = {∆ ∈ Qn( f ) : ∆ ⊂ J f
n0}. Then

{
Q′

n( f )
}

n≥n0
is a fine

grid restricted to J f
n0 , and its fine grid constants depend only on B, N and d, and therefore are

universal. By [6, Proposition 5.1], it follows that h|J f
n0

has quasi-symmetric distortion bounded

by K0 = K0(B, N , d) (a universal constant). In particular, we have σh(x) ≤ K0 for all x ∈ J f
n0 .

It now follows from Theorem B that σh(x) ≤ K1 for all x ∈ S1, for some universal constant
K1 = K1(N , d). □
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Appendix. Proofs of auxiliary results

In this appendix, we prove the three auxiliary lemmas stated without proof in the main text:
Lemmas 2.1, 2.2 and 2.4. All of them are well known, but we provide proofs for the sake of
completeness of exposition, and as a courtesy to the reader. Let us start with the following
observation.
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Lemma A.1. The kernel of the Schwarzian derivative is the group of Möbius transformations.
Moreover, if φ is a Möbius transformation and f is any C3 map, then S(φ ◦ f ) = S f .

Proof of Lemma A.1. On one hand, the fact that the Schwarzian derivative vanishes at Möbius
transformations is a straightforward computation. On the other hand, given an increasing C3 map
φ without critical points on some interval I , consider the C2 map g defined by g = (Dφ)−1/2. A
straightforward computation gives the identity:

Sφ = −2
(

D2g
g

)
.

In particular Sφ ≡ 0 if and only if D2g ≡ 0, and then there exist real numbers a and b such
that g(x) = ax + b, that is, Dφ(x) = 1/(ax + b)2. By integration we get:

φ(x) =

(
−1
a

)(
1

ax + b

)
+ c,

for some real number c. In particular, φ is a Möbius transformation.
Finally, by the chain rule for the Schwarzian derivative of the composition of two functions:

S(φ ◦ f )(x) = S f (x) + Sφ( f (x))(D f (x))2,

we see at once that if φ is a Möbius transformation, we have Sφ ≡ 0 and then S(φ◦ f ) = S f . □

Let us point out that the change of variables used in the proof of Lemma A.1 was already
used by Yoccoz in [27]. With Lemma A.1 at hand, we are ready to prove Lemma 2.1, stated in
Section 2.

Proof of Lemma 2.1. The proof is the one given in [5, Section IV.1]. Let M = [b, c] ⊆ T =

[a, d]. Let us call L and R the two connected components of T \M . Let φ be the (unique) Möbius
transformation such that φ( f (a)) = a, φ( f (b)) = b and φ( f (d)) = d. Note that φ ◦ f is a C3

diffeomorphism with negative Schwarzian derivative, since S(φ ◦ f ) = S f < 0 by Lemma A.1.
We claim that φ( f (c)) > c. Indeed, if this is not true, then by the Mean Value Theorem there

exist z0 ∈ [a, b], z1 ∈ [b, c] and z2 ∈ [c, d] such that

D(φ ◦ f )(z0) =
φ( f (a)) − φ( f (b))

a − b
= 1, D(φ ◦ f )(z1) =

φ( f (c)) − φ( f (b))
c − b

≤ 1

and

D(φ ◦ f )(z2) =
φ( f (d)) − φ( f (c))

d − c
≥ 1.

If1 z1 ∈ (z0, z2), the previous inequalities contradict the Minimum Principle for diffeomor-
phisms with negative Schwarzian derivative [5, Section II.6, Lemma 6.1]. Therefore, φ( f (c)) > c
as claimed. With this at hand we get:

CrD(φ ◦ f ; M, T ) =

[
φ
(

f (M)
)
, φ
(

f (T )
)]

[M, T ]
=

⏐⏐M ∪ L
⏐⏐ ⏐⏐φ( f (c)

)
− d

⏐⏐⏐⏐R⏐⏐ ⏐⏐a − φ
(

f (c)
)⏐⏐ < 1.

Since φ is a Möbius transformation, CrD(φ ◦ f ; M, T ) = CrD( f ; M, T ) and the lemma is
proved. □

1 In the particular case z1 = z0, we obtain z1 = z0 = b, and then D
(
φ ◦ f

)
(b) = 1 and φ( f (c)) = c. This implies

that D
(
φ ◦ f

)
(c) < 1 (otherwise, the Minimum Principle would imply that D

(
φ ◦ f

)
(x) > 1 for all x ∈ (b, c), which

is impossible since φ ◦ f fixes both b and c). Again, this contradicts the Minimum Principle since c ∈ (b, z2). The
remaining case z1 = z2 is analogous.
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Proof of Lemma 2.2. From Definition 2.1 there exists a neighborhood of the critical point c
such that f (x) = g

(
φ(x)

)
+ f (c), where g is the map x ↦→ xd and φ is a C3 diffeomorphism

with φ(c) = 0. The chain rule for the Schwarzian derivative gives S f = Sg(φ)(Dφ)2
+ Sφ.

Since Sg(x) = −
(d2

−1)
2x2 , we get:

Sg(φ(x))(Dφ(x))2
= −

1
2

(d − 1)(d + 1)
(

Dφ(x)
φ(x)

)2

≤ −
A

(φ(x))2 ,

where A =
1
2 (d − 1)(d + 1)minx

⏐⏐Dφ(x)
⏐⏐ > 0. In particular:

S f (x) <
−A + Sφ(x)

(
φ(x)

)2(
φ(x)

)2 .

On the other hand, since φ is a diffeomorphism, |Sφ(x)| < M for some M > 0. Then we can
choose δ > 0 such that for all x ∈ (c − δ, c + δ) we have |φ(x)| <

√
A
M , and this implies that

S f < 0 in (c − δ, c + δ) \ {c}. Finally, since φ is bi-Lipschitz we have |φ(x)| ≍ |x − c| and we
obtain Item (1).

Item (2) follows at once from Taylor Theorem since:

lim
x→c

(
D f (x)

|x − c|d−1

)
= d(Dφ(c))d > 0.

With Item (2) at hand we prove Item (3). Let J = (a, b) ⊆ U . By symmetry it is enough to
consider the following two cases:

(i) c ≤ a < b: In this case we have for any x ∈ (a, b) that

D f (x)|J |

| f (J )|
≤

β(x − c)d−1(b − a)

α
∫ b

a (t − c)d−1dt

≤

(
βd
α

)
(b − c)d−1(b − c − a + c)

(b − c)d − (a − c)d

=

(
βd
α

)(
1 +

(a − c)d
− (b − c)d−1(a − c)

(b − c)d − (a − c)d

)
≤

βd
α

< 3d/2.

(ii) a < c < b: Without loss of generality, we may assume that |a − c| < |c − b|. If x ∈ J ,
then

D f (x)|J |

| f (J )|
≤

β|x − c|d−1
|b − a|∫ b

c D f (t) dt
≤

2β|b − c|d∫ b
c α(t − c)d−1dt

=
2βd
α

< 3d.

Finally, to prove Item (4), let us call L , R the two connected components of T \ M . By the
Mean Value Theorem there exist z0 ∈ L and z1 ∈ R such that

CrD( f ; M, T ) =
D f (z0) D f (z1) |L ∪ M | |M ∪ R|⏐⏐ f (L ∪ M)

⏐⏐ ⏐⏐ f (M ∪ R)
⏐⏐ .

Since z0 ∈ L ∪ M and z1 ∈ R ∪ M we obtain from Item (3) that

CrD( f ; M, T ) ≤ (3d)2. □
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Proof of Lemma 2.4. Since the families Pn are dynamically defined, and since any multicritical
circle map with irrational rotation number is topologically conjugate to a rigid rotation (see
Yoccoz’s Theorem 2.1 in Section 2) we will assume in this proof that f is itself the rigid rotation
in the unit circle of angle 2πρ, where ρ ∈ [0, 1) is an irrational number. Moreover, in order to
simplify the notation, we normalize the unit circle to have total length equal to 1 (and then f is
just the rotation of angle ρ). Being irrational, ρ has an infinite continued-fraction expansion, say
ρ = [a0, a1, . . .].

We claim that for all n ∈ N, if {pn/qn} is the sequence obtained by truncating the continued-
fraction expansion at level n − 1, we have:

qn pn+1 − qn+1 pn = (−1)n . (A.1)

Indeed, note that q0 p1 −q1 p0 = 1 and that q1 p2 −q2 p1 = a0a1 −a1a0 −1 = −1. Let us suppose
now that qn pn+1 − qn+1 pn = (−1)n . Then:

qn+1 pn+2 − qn+2 pn+1 = qn+1(an+1 pn+1 + pn) − (an+1qn+1 + qn)pn+1

= an+1qn+1 pn+1 + pnqn+1 − an+1qn+1 pn+1 − qn pn+1

= −(qn pn+1 − qn+1 pn) = (−1)n+1 , as claimed.

The arithmetical properties of the continued fraction expansion described in Section 2 imply
that, for any point x ∈ S1, the iterates { f qn (x)}n∈N are the closest returns of the orbit of x under
the rigid rotation f , in the following sense:

d
(
x, f qn (x)

)
< d

(
x, f j (x)

)
for any j ∈ {1, . . . , qn − 1}

where d denotes the standard distance in S1. In particular, all members of the family{
In, f (In), . . . , f qn+1−1(In)

}
are pairwise disjoint, and all members in the family{

In+1, f (In+1), . . . , f qn−1(In+1)
}

are pairwise disjoint too. Moreover, we claim that any two members in the union of these families
(and recall that this union is precisely the definition of Pn) are disjoint. Indeed, suppose, by
contradiction, that there exist i < qn+1 and j < qn such that f i (In) ∩ f j (In+1) ̸= Ø. Without
loss of generality, we may assume that i < j = i + l, for some l < qn , and that the qnth iterate
of every point x ∈ S1 is on the right-hand side of x , and consequently the qn+1th iterate is on the
left-hand side of x . We have three possible cases to consider:

• If f i (In) ⊆ f j (In+1), then f j (In+1) intersects f i (In+1) and this is impossible as explained
above.

• If f j (In+1) ⊆ f i (In), then the point f j (c) = f i+l(c) is closer to f i (c) than f i+qn (c), which
is impossible since l < qn .

• If both differences between f j (In+1) and f i (In) are non-empty and connected, then we
have two sub-cases: either f j (c) ∈ f i (In) or f j+qn+1 (c) ∈ f i (In). In the first case, the point
f j (c) = f i+l(c) is closer to f i (c) than f i+qn (c), and since l < qn this is a contradiction.
In the second case, the point f i+qn (c) = f j ( f qn+i− j (c)) is closer to f j (c) than f j+qn+1 (c),
which again is impossible since qn + i − j < qn+1.

Therefore, any two members of Pn are disjoint, as claimed.
Finally, since we are assuming that f is the rigid rotation of angle ρ in the (normalized)

unit circle, the lengths of the intervals In and In+1 are |qnρ − pn| = qn|ρ − pn/qn| and
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qn+1|pn+1/qn+1 − ρ| respectively. Therefore, the total length of the union of the members of
Pn is equal to:⏐⏐⏐⏐qnqn+1

(
pn+1

qn+1
−

pn

qn

)⏐⏐⏐⏐ = |qn pn+1 − pnqn+1|.

By (A.1), this absolute value is equal to 1, that is, the union of the members of Pn is a compact
set of full Lebesgue measure, and therefore it covers the whole circle. □

References
[1] V.I. Arnol’d, Small denominators I. Mappings of the circle onto itself, Isv. Acad. Sci. USSR Ser. Mat. 25 (1961)

21–86.
[2] A. Avila, On rigidity of critical circle maps, Bull. Braz. Math. Soc. 44 (2013) 611–619.
[3] E. de Faria, W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc. 1 (1999) 339–392.
[4] E. de Faria, W. de Melo, Rigidity of critical circle mappings II, J. Amer. Math. Soc. 13 (2000) 343–370.
[5] W. de Melo, S. van Strien, One Dimensional Dynamics, Springer-Verlag, 1993.
[6] G. Estevez, E. de Faria, Real bounds and quasisymmetric rigidity of multicritical circle maps, Trans. Amer. Math.

Soc. (2017). http://dx.doi.org/10.1090/tran/7177. Available at arXiv:151109056 (in press).
[7] P. Guarino, Rigidity Conjecture for C3 Critical Circle Maps, (Ph.D. Thesis), IMPA, 2012.
[8] P. Guarino, W. de Melo, Rigidity of smooth critical circle maps, J. Eur. Math. Soc. 19 (2017) 1729–1783.
[9] P. Guarino, M. Martens, W. de Melo, Rigidity of critical circle maps. Available at arXiv:1511.02792.

[10] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. Inst.
Hautes Études Sci. 49 (1979) 5–233.

[11] M. Herman, Conjugaison quasi-simétrique des homéomorphismes du cercle à des rotations (manuscript), 1988.
(see also the translation by A. Chéritat, Quasisymmetric conjugacy of analytic circle homeomorphisms to rotations,
www.math.univ-toulouse.fr/∼cheritat).

[12] Y. Katznelson, D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle, Ergodic
Theory Dynam. Systems 9 (1989) 643–680.

[13] K. Khanin, Y. Sinai, A new proof of M. Herman’s theorem, Comm. Math. Phys. 112 (1987) 89–101.
[14] K. Khanin, A. Teplinsky, Robust rigidity for circle diffeomorphisms with singularities, Invent. Math. 169 (2007)

193–218.
[15] K. Khanin, A. Teplinsky, Herman’s theory revisited, Invent. Math. 178 (2009) 333–344.
[16] Khinchin, A. Ya, Continued Fractions, Dover Publications, Inc., 1997, (reprint of the 1964 translation).
[17] D. Khmelev, M. Yampolsky, The rigidity problem for analytic critical circle maps, Mosc. Mat. J. 6 (2006) 317–351.
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