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Abstract. Infinitesimal bendings for classes of two-dimensional surfaces in

R3 are investigated. The techniques used to construct the bending fields in-
clude reduction to solvability of Bers-Vekua type equations and systems of

differential equations with periodic coefficients.

1. Introduction

This paper deals with infinitesimal bendings for classes of orientable surfaces.
We consider a smooth surface S ⊂ R3 given by a position vector R over a region
Ω ⊂ R2. Thus

S = {R(s, t) ∈ R3; (s, t) ∈ Ω},
where R ∈ C∞(Ω,R3). A one parameter deformation surface Sϵ (ϵ ∈ R) given by
the position vector

Rϵ(s, t) = R(s, t) + 2

m∑
j=1

ϵjUj(s, t) ,

with Uj ∈ Ck(Ω,R3) ( k ∈ Z+), is an infinitesimal bending of S of order m ∈ Z+ if
the metrics of S and Sϵ coincide to order m as ϵ→ 0. That is,

dR2
ϵ (s, t) = dR2(s, t) + o(ϵm) as ϵ→ 0.

The study of infinitesimal bendings of surfaces has a long and rich history and has
many physical applications (see [N], [P], and [R]). For a complete overview we refer
to the survey article by Sabitov [S] and the extensive references within.

The results of this paper are generalizations of those contained in [M1], [M3]
that deal with infinitesimal bendings of surfaces with nonnegative curvature. For
a surface with positive Gaussian curvature except at a finite number of planar
points, we use the (complex) vector field of asymptotic directions and an associated
Bers-Vekua type equation to construct non trivial infinitesimal bendings of any
finite order (Theorem 3.2). For surfaces with nonnegative curvature given as a
graph of a homogeneous function: R(s, t) = (s, t, z(s, t)) with z a homogeneous
function, we construct infinitesimal bendings of higher orders through the solvability
of associated systems of periodic differential equations, provided that two numbers
attached to the surface satisfy a number theoretic condition (Theorems 4.2 and
4.3).
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In the final section, we consider a special class of surfaces defined as a graphs of
function sm+2±tn+2 (a model for surfaces defined as graphs of functions f(s)+g(t)).
We show (Theorem 5.1) that the space of real analytic infinitesimal bendings on
the rectangle |s| < ρ, |t| < ρ with 0 < ρ ≤ ∞, is isomorphic to the space A(ρ)4,
where A(ρ) is the space of convergent power series of one variable with radius of
convergence ρ.

2. Definitions and Equations for Bending Fields

Let S be a C∞ surface in R3 over a domain Ω ⊂ R2 given by

S = {R(s, t) = (x(s, t), y(s, t), z(s, t)) ; (s, t) ∈ Ω} , (2.1)

and Sε a deformation of S, given by

Sε =
{
Rε(s, t) = R(s, t) + 2εU1(s, t) + . . .+ 2εmUm(s, t)

}
, (2.2)

where U j : Ω → R3 is a Ck function for j ∈ {1, 2, . . . ,m}, for some k ∈ N. The
deformation Sε is an infinitesimal bending of S of order m if its first fundamental
form dR2

ε satisfies the following condition:

dR2
ε = dR2 + o(εm), as ε→ 0.

Since

dR2
ε = dR2 + 4ε

(
dR · dU1

)
+

m∑
j=2

4εj

(
dR · dU j +

m−1∑
i=1

dU i · dUm−i

)
+ o(εm),

then Sε is an infinitesimal bending of order m if and only if

dR · dU1 = 0 and dR · dU j = −
j−1∑
i=1

dU i · dU j−i, j = 2, 3, . . . ,m. (2.3)

For each j ∈ {1, 2, . . . ,m}, set U j(s, t) =
(
uj(s, t), vj(s, t), wj(s, t)

)
. Equation (2.3)

can be written as
xsu

j
s + ysv

j
s + zsw

j
s = F j ,

xsu
j
t + ysv

j
t + zsw

j
t + xtu

j
s + ytv

j
s + ztw

j
s = Gj ,

xtu
1
t + ytv

1
t + ztw

1
t = Hj ,

(2.4)

with F 1 = G1 = H1 = 0 and, when j ≥ 2,

F j = −
j−1∑
i=1

(
uj−i
s uis + vj−i

s vis + wj−i
s wi

s

)
,

Gj = −
j−1∑
i=1

(
uisu

j−i
t + visv

j−i
t + wi

sw
j−i
t + uitu

j−i
s + vitv

j−i
s + wi

tw
j−i
s

)
,

Hj = −
j−1∑
i=1

(
uj−i
t uit + vj−i

t vit + wj−i
t wi

t

)
.

(2.5)

The trivial bendings of S are those generated through the rigid motions of the
underlying space R3. In particular, the first order trivial infinitesimal bendings of S
are given by SA,B

ε =
{
RA,B

ε (s, t) = R(s, t) + ε (A×R(s, t) +B)
}
, where A,B are

constants in R3 and × denotes the vector product in R3. A surface S is said to be
rigid under infinitesimal bendings if it admits only trivial infinitesimal bendings.
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Let N be the normal unit vector to S given by
Rs ×Rt

∥Rs ×Rt∥
and e, f , g, the

coefficients of the second fundamental form of S:

e = Rss ·N, f = Rst ·N, g = Rtt ·N. (2.6)

The Gaussian curvature of S is:

K(s, t) =
eg − f2

∥Rs ×Rt∥2
. (2.7)

Throughout this work, except for the last section, we will assume that the Gaussian
curvature of S is nonnegative: K(s, t) ≥ 0, for all (s, t) ∈ Ω.

3. Surfaces with Nonnegative Curvature and Flat Points

In this section, we assume that the parametrization domain Ω ⊂ R2 of S is
relatively compact and that K > 0 on Ω except at finitely many points p1, · · · pn
at which both principal curvatures vanish. We assume throughout that K vanishes
uniformly only to a finite order at each flat point pj (see (3.1) below)). We prove
that such a surface S admits nontrivial infinitesimal bendings of any order. The
idea is to use the complex vector field of asymptotic directions (see [M1], [M4]) to
reduce the study of the bending equations into solving Bers-Vekua type equations
(see also [AU] and [U] for the local deformation of surfaces near flat points).

Let S be given by (2.1) and e, f , g, the coefficients of its second fundamental
form. We assume throughout this section the existence of p1, · · · pn ∈ Ω such that

K(p) > 0 ∀p ∈ Ω \ {p1, · · · , pn} and

orderpj (K) = 2 orderpj (e) = 2 orderpj (g) ∀j ∈ {1, · · · , n} ,
(3.1)

where orderp(F ) denotes the order of vanishing of the function F at the point p.
The field of asymptotic directions is given by

L = g(s, t)
∂

∂s
+ λ(s, t)

∂

∂t
where λ = −f + i

√
eg − f2. (3.2)

Proposition 3.1. Let S be a surface with nonnegative curvature given by (2.1)
and L be the vector field of asymptotic directions given by (3.2). For a solution
U j = (uj , vj , wj) of (2.4) with j ∈ N, the C-valued function hj = LR · U j satisfies
the equation

CLhj = Ahj −Bh
j
+ C

[
g2F j + gλGj + λ2Hj

]
, (3.3)

where
A = (LR× LR)(L2R× LR), B = (LR× LR)(L2R× LR),

C = (LR× LR)(LR× LR).
(3.4)

Proof. Define functions φj and ψj by

φj = Rs · U j = xsu
j + ysv

j + zsw
j , (3.5)

ψj = Rt · U j = xtu
j + ytv

j + ztw
j . (3.6)

Then

φj
s = Rss · U j + F j = xssu

j + yssv
j + zssw

j + F j , (3.7)

ψj
t = Rtt · U j +Hj = xttu

j + yttv
j + zttw

j +Hj , (3.8)

φj
t + ψj

s = 2Rst · U j +Gj = 2
[
xstu

j + ystv
j + zstw

j
]
+Gj . (3.9)
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Let Rs ×Rt = (α1, α2, α3) and α = ∥Rs ×Rt∥. It follows from (3.5) and (3.6) that

α3u
j = α1w

j + φjyt − ψjys,

α3v
j = α2w

j − φjxt + ψjxs.

By using these expressions, we can rewrite (3.7), (3.8) and (3.9) as

α3φ
j
s =

∣∣∣∣xss yss
xt yt

∣∣∣∣φj −
∣∣∣∣xss yss
xs ys

∣∣∣∣ψj + αewj + α3F
j

α3ψ
j
t =

∣∣∣∣xtt ytt
xt yt

∣∣∣∣φj −
∣∣∣∣xtt ytt
xs ys

∣∣∣∣ψj + αgwj + α3H
j

α3(φ
j
t + ψj

s) =

∣∣∣∣xst yst
xt yt

∣∣∣∣ 2φj −
∣∣∣∣xst yst
xs ys

∣∣∣∣ 2ψj + 2αfwj + α3G
j .

We can eliminate the function wj in the system above (using Lemma 3.1 of [M2]
and canceling α3) and reduce it to the following system for φj and ψj :

gφj
s − eψj

t = − [Rt · (Rss ×Rtt)]

α
φj +

[Rs · (Rss ×Rtt)]

α
ψj +

(
gF j − eHj

)
,

f(φj
s + ψj

t )−
e+ g

2
(φj

t + ψj
s) =

[Rt · (Rst × (Rss +Rtt)]

α
φj + f(F j +Hj)−

− [Rs · (Rst × (Rss +Rtt)]

α
ψj − e+ g

2
Gj .

We rewrite the system in a matrix form as(
g 0
f − e+g

2

)(
φj

ψj

)
s

−
(

0 e
e+g
2 −f

)(
φj

ψj

)
t

=

(
ξ11 ξ12
ξ21 ξ22

)
︸ ︷︷ ︸

Ξ

(
φj

ψj

)
+

+

(
gF j − eHj

f(F j +Hj)− e+ g

2
Gj

)
.

This system can be reduced further after multiplication by
2

(e+ g)

(
−e+ g

2
0

−f g

)
into

− g

(
φj

ψj

)
s

−
(
0 −e
g −2f

)(
φj

ψj

)
t

= Λ

(
φj

ψj

)
+

(
eHj − gF j

2fHj − gGj

)
, (3.10)

where Λ =
2

(e+ g)

(
−e+ g

2
0

−f g

)
Ξ.

Note that λ is an eigenvalue for the transpose of

(
0 −e
g −2f

)
with eigenvector

η =

(
g
λ

)
. After multiplying (3.10) by ηt and using λ2 + 2fλ+ eg = 0, we get

g(gφj
s + λψj

s) + λ(gφj
t + λψj

t ) = −ηtΛ
(
φj

ψj

)
+ g2F j + gλGj + λ2Hj . (3.11)
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Observe that ηt
(
φj

ψj

)
= gφj + λψj = hj , so that hjs = ηt

(
φj

ψj

)
s

+ ηts

(
φj

ψj

)
,

hjt = ηt
(
φj

ψj

)
t

+ ηtt

(
φj

ψj

)
and (3.11) becomes

ghjs + λhjt = gηts

(
φj

ψj

)
+ ληtt

(
φj

ψj

)
− ηtΛ

(
φj

ψj

)
+ g2F j + gλGj + λ2Hj . (3.12)

Since g is a real function,

(λ− λ)gφj = λh
j − λhj , (λ− λ)ψj = hj − h

j
. (3.13)

Hence after multiplying (3.12) by g(λ− λ), we get

g(λ− λ)Lh = Ph+Qh+ g(λ− λ)
(
g2F j + gλGj + λ2Hj

)
, (3.14)

where the coefficients P and Q are given by.

P = g(λ− λ)
(L2R× LR) · (LR× LR)

(LR× LR) · (LR× LR)
= g(λ− λ)

A

C
,

Q = −g(λ− λ)
(L2R× LR) · (LR× LR)

(LR× LR) · (LR× LR)
= g(λ− λ)

B

C

(see [M2] for details). This completes the proof of the proposition. □

Remark 3.1. A direct calculation gives

L2R× LR = (λ · Lg − g · Lλ)(Rs ×Rt) + g3(Rss ×Rs) + λ3(Rtt ×Rt)+

+ g2λ [(Rss ×Rt) + 2(Rst ×Rs)] + gλ2 [2(Rst ×Rt) + (Rtt ×Rs)] ,

L2R× LR = (λ · Lg − g · Lλ)(Rs ×Rt) + g3(Rss ×Rs) + λ|λ|2(Rtt ×Rt)+

+ g2λ(Rss ×Rt) + 2g2λ(Rst ×Rs) + 2g|λ|2(Rst ×Rt) + gλ2(Rtt ×Rs),

LR× LR = −g(λ− λ)(Rs ×Rt),

(3.15)

which implies that C = −4g2(eg − f2) ∥Rs ×Rt∥2 .

To continue, we need to understand the behavior of the coefficients A, B and C
at the flat points p1, . . . , pn. Since the order of contact of the surface S with the
tangent plane at the flat points pj is mj ≥ 3, by proceeding as in [M1] we can find
local polar coordinates (r, θ) centered in pj such that

e = rmj−2ej1(θ) + rmj−1ej2(r, θ), f = rmj−2f j1 (θ) + rmj−1f j2 (r, θ),

g = rmj−2gj1(θ) + rmj−1gj2(r, θ).
(3.16)

The hypothesis (3.1) implies that ej1(θ)g
j
1(θ)− f j1 (θ)

2 > 0 for all θ ∈ R. This fact,
associated to (3.2), implies that

λ = rmj−2λj1(θ) + rmj−1λj2(r, θ). (3.17)

Furthermore the vector field L can be normalized and written as

L = Ξ(r, θ)rmj−3

(
µj

∂

∂θ
− ir

∂

∂r

)
, (3.18)

where µj > 0 is an invariant attached to L and Ξ ̸= 0 everywhere.
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In these coordinates we have

Lg = Ξ(r, θ)r2mj−5ζj1(θ) + r2mj−4ζj2(r, θ);

Lλ = Ξ(r, θ)r2mj−5ϑj1(θ) + r2mj−4ϑj2(r, θ).
(3.19)

Using (3.15), (3.16), (3.17) and (3.19), we deduce that

L2R× LR = Ξ(r, θ)r3mj−7ςj1(θ)(Rs ×Rt) + r3mj−6ςj2(r, θ);

L2R× LR = Ξ(r, θ)r3mj−7κj
1(θ)(Rs ×Rt) + r3mj−6κj

2(r, θ);

LR× LR = r2mj−4κj1(θ)(Rs ×Rt) + r2mj−3κj2(r, θ).

Hence A, B, and C can be written as:

A = (L2R× LR)(LR× LR) = Ξ(r, θ)r5mj−11ϱj1(θ) ∥Rs ×Rt∥2 + r5mj−10ϱj2(r, θ);

B = (L2R× LR)(LR× LR) = Ξ(r, θ)r5mj−11νj
1(θ) ∥Rs ×Rt∥2 + r5mj−10νj

2(r, θ);

C = (LR× LR)(LR× LR) = r4mj−8µj
1(θ) ∥Rs ×Rt∥2 + r4mj−9µj

2(r, θ).
(3.20)

Since ∥Rs ×Rt∥2 is always strictly positive, we infer from (3.20) that

A

C
(r, θ) = Ξ(r, θ)rmj−3aj1(θ) + rmj−2aj2(r, θ);

B

C
(r, θ) = Ξ(r, θ)rmj−3bj1(θ) + rmj−2bj2(r, θ).

(3.21)

The following result about the first integral of L (proved in [M1]) will be used.

Lemma 3.1. [M1] There exists an injective function Z : Ω → C satisfying the
following conditions:

(1) Z is C∞ on Ω \ {p1, p2, . . . , pn}.
(2) LZ = 0 on Ω.
(3) For every j = 1, 2, , . . . , n, there exists µj > 0 and polar coordinates (r, θ)

centered at pj such that

Z(r, θ) = Z(0, 0) + rµj · eiθ +O(r2µj ) (3.22)

in a neighborhood of pj.

We use the first integral Z of L given by (3.22) to transform the equation (3.3)
to a Bers-Vekua type equation. The following notation will be used: for each
ℓ ∈ {1, 2, . . . , n}, let ζℓ = Z(pℓ) and D(ζ) =

∏n
ℓ=1(ζ − ζℓ). The pushforward via Z

of a function f defined in Ω will be denoted f̃ : f̃ = f ◦ Z−1.

Proposition 3.2. Let Z as in Lemma 3.1. A function hj is a solution of (3.3) in

Ω if and only if its Z-pushforward h̃j satisfies the following equation in Z(Ω):

∂h̃j

∂ζ
=
P (ζ)

D(ζ)
h̃j +

Q(ζ)

D(ζ)
h̃
j

+
1

D(ζ)

(
S1(ζ)F̃

j + S2(ζ)G̃
j + S3(ζ)H̃

j
)
, (3.23)

with the following conditions being satisfied:

1) P,Q ∈ L∞(Z(Ω)) ∩ C∞ (Z(Ω) \ {ζ1, ζ2 . . . , ζn}); morevoer, we are able to write
in a small neighborhood of each ζj the coefficients as

P (ζ) = χ1,j(σ) + ρϵjκ1j (ρ, σ), Q(ζ) = χ2,j(σ) + ρϵjκ2j (ρ, σ),

where ζ = ρeiσ, both χ1,j and χ2,j are 2π-periodic and ϵj > 0, for every j.
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2) S1, S2, S3 are bounded in Z(Ω) and vanish to order
mℓ − 1

µℓ
at ζℓ, for every ℓ,

where mℓ and µℓ are the positive numbers associated with the point pℓ.

Proof. The Z-pushforward of (3.3) gives(̃
LZ
) ∂h̃j
∂ζ

=
Ã

C̃
h̃j − B̃

C̃
h̃j + M̃, (3.24)

where
M = g2F j + gλGj + λ2Hj . (3.25)

Since the vector field L is elliptic outside the points ζj and C does not vanish
outside these points, (3.24) has the form (3.23) in Z(Ω)\{ζ1, · · · , ζn}. Let us verify
the proposition near each point ζj . It follows from (3.18) and (3.22) that

LZ = −2iΞ(r, θ)
[
rmj−3+µje−iθ + rmj−3O(r2µj )

]
(3.26)

The next step is to understand how composition with Z−1 acts over each term.
By assuming that Z(0, 0) = 0 and setting ρ = |Z|, it follows from (3.22) that we

are able to write ρ(r, θ) = rµj

(
1 + rµjJj

1 (r, θ)
)1/2

, where Jj
1 (r, θ) is a continuous

and bounded function. By the binomial theorem, if r is sufficiently small we have

ρ(r, θ) = rµj

(
1 + rµjJj

2 (r, θ)
)
= rµj + r2µjJj

2 (r, θ) = y + y2Jj
3 (y, θ),

if we denote y = rµj . As a consequence of the proof of Lemma 3.1, Z is a C1

function in terms of y and θ. Thus, by possibly taking r even smaller we are able
to solve ρ in terms of y, which allows us to deduce that rµj = ρ+ ρ2K1(ρ, θ), with
K1 continuous and bounded. This implies that

r = ρ1/µj

(
1 + ρKj

1(ρ, θ)
)1/µj

= ρ1/µj + ρ1+1/µjKj
2(ρ, θ). (3.27)

We deduce from (3.16), 3.17, (3.21), (3.25) and (3.27) that, for some εj > 0,

M̃(ρ, σ) = Ξ̃(ρ, σ)

[
ρ

2mj−4

µj γ1(ρ, σ)F̃ j + ρ
2mj−4

µj γ2(ρ, σ)G̃j + ρ
2mj−4

µj γ3(ρ, σ)H̃j

]
,

Ã

C̃
(ρ, σ) = Ξ̃(ρ, σ)

[
ρ

mj−3

µj αj
1(σ) + ρ

mj−3

µj
+εj

αj
2(ρ, σ)

]
,

B̃

C̃
(ρ, σ) = Ξ̃(ρ, σ)

[
ρ

mj−3

µj βj
1(σ) + ρ

mj−3

µj
+εj

βj
2(ρ, σ)

]
.

(3.28)

By using expression (3.27) in (3.26), we obtain

L̃Z(ρ, σ) = Ξ̃(ρ, σ)

[
ρ

mj−3

µj
+1
ψj
1(σ) + ρ

mj−3

µj
+2
ψj
2(ρ, θ)

]
. (3.29)

It follows from (3.28) and (3.29) that (3.24) can be rewritten as

∂h̃j

∂ζ
=

[(
χj
1(σ) + ρϵjχj

2(ρ, θ)

ρeiσ

)
h̃j +

(
κj1(σ) + ρϵjκj2(ρ, θ)

ρeiσ

)
h̃j

]
+

+

ρmj−1

µj ιj1(ρ, σ)F̃
j

ρeiσ
+
ρ

mj−1

µj ιj2(ρ, σ)G̃
j

ρeiσ
+
ρ

mj−1

µj ιj3(ρ, σ)H̃
j

ρeiσ

 , (3.30)
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where ϵj = min {εj , 1}. Observe that ρeiσ = ζ − ζj . Hence, in order to obtain
an expression as in (3.23), it is sufficient to multiply both the numerator and the

denominator of each term in the right hand-side of (3.30) byDj(ζ) =
∏

ℓ=1,...,n
ℓ ̸=j

(ζ−ζℓ),

which finalizes the proof. □

We can now proceed to the main result of the section.

Theorem 3.2. Let S ⊂ R3 be a smooth surface given by (2.1) with curvature K
satisfying (3.1). For every k,m ∈ N, there exist functions

U1, U2, . . . , Um : Ω → R3 with U j ∈ Ck(Ω) ∩ C∞(Ω \ {p1, p2, . . . , pn}),

such that each U j vanishes to order ≥ k at each point p1, · · · pn and such that the
deformation surface Sϵ given by (2.2) is a nontrivial infinitesimal bending of S of
order m.

Proof. We prove this result by induction on the order m; in general the idea is to

solve (3.23) and show it has a solution h̃j that vanishes, to any prescribed order,

at the points ζ1, · · · , ζn. Then use hj = h̃j ◦ Z to recover the field U j through
hj = LR · U j (Proposition 3.1).

Let j = 1; then F 1 = G1 = H1 = 0, which turns the expression (3.23) into

∂h̃1

∂ζ
=
P (ζ)

D(ζ)
h̃1 +

Q(ζ)

D(ζ)
h̃
1

. (3.31)

Applying Theorem 2.3 of [LVM], for any l ∈ N we are able to find a non-trivial
solution for (3.31) in Cl(Z(Ω)) ∩ C∞(Z(Ω)\{ζ1, · · · , ζn}), such that it vanishes to
order ≥ l at each point ζ1, · · · ζn. Therefore, as a consequence of Proposition 3.2,

h1 = h̃1 ◦ Z solves (3.3) and vanishes to order lµi at the points p1, . . . , pn.
Next we construct the field U1 from h1. As a consequence of (3.13), we have

φ1 =
λh

1 − λh1

(λ− λ)g
and ψ1 =

h1 − h
1

(λ− λ)
. These functions would be well defined at the

flat points p1, · · · , pn provided that h1 vanishes to higher orders than those the
vanishing of the denominators. This is indeed the case when (l ·µi)− (mi − 2) ≥ 0,
since both g and λ− λ have order of vanishing mi − 2 at pi (see 3.16 and 3.17).

The field U1 = (u1, v1, w1) is related to φ1 and ψ1 via relations (3.5), (3.6) and
(3.7), which form the systemφ1

ψ1

φ1
s

 =

 xs ys zs
xt yt zt
xss yss zss

u1v1
w1

 =M(s, t)

u1v1
w1

 .

The determinant of the matrix M is given by Rss · (Rs ×Rt) = ∥Rs ×Rt∥ e. Thus

u1 =
1

∥Rs ×Rt∥ e

(
ψ1

∣∣∣∣ ys zs
yss zss

∣∣∣∣− φ1

∣∣∣∣ yt zt
yss zss

∣∣∣∣+ φ1
s

∣∣∣∣ys zs
yt zt

∣∣∣∣) ,
v1 =

1

∥Rs ×Rt∥ e

(
−φ1

∣∣∣∣ xt zt
xss zss

∣∣∣∣+ ψ1

∣∣∣∣ xs zs
xss zss

∣∣∣∣− φ1
s

∣∣∣∣xs zs
xt zt

∣∣∣∣) ,
w1 =

1

∥Rs ×Rt∥ e

(
φ1

∣∣∣∣ xt yt
xss yss

∣∣∣∣− ψ1

∣∣∣∣ xs ys
xss yss

∣∣∣∣+ φ1
s

∣∣∣∣xs ys
xt yt

∣∣∣∣) .
(3.32)
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These functions are well defined if φ1, ψ1, φ1
s vanish to an order greater than mi−2

at each pi. In this case u1, v1, and w1 vanish to order

[lµi − (mi − 1)]− (mi − 2) = lµi − 2mi + 3. (3.33)

Now consider m⋆ = max {mi, i = 1, . . . , n} and µ⋆ = min {µi, i = 1, . . . , n} .

Given k ∈ N, by choosing l ≥ 2m⋆ − 3 + k

µ⋆
, we have lµi − 2mi + 3 ≥ k for each

i ∈ {1, 2, . . . , n}. This implies (from (3.33)) that U1 = (u1, v1, w1) vanishes to order
greater than k at each pi. Hence U1 ∈ Ck(Ω) ∩ C∞(Ω \ {p1, p2, . . . , pn}).

It remains to show that U1 is not trivial. Suppose by contradiction that

U1 = A×R(s, t) +B, A,B ∈ R3.

Then U1
s (p1) = A × Rs(p1) = 0 and U1

t (p1) = A × Rt(p1) = 0, which implies that
A = 0. Since U1 vanishes at p0, then B = 0 and U1 ≡ 0, which ends the first case.

Suppose next that the statement holds to order up to j−1; then for every ℓ ∈ N
there exist functions U1, U2, . . . , U j−1 ∈ C∞(Ω \ {p1, · · · , pn},R3) ∩ Cℓ(Ω,R3),
such that each field Ur vanishes to order ℓ at each point pi and

Rj−1
ϵ (s, t) = R(s, t) + 2

j−1∑
r=1

ϵrUr(s, t)

is an infinitesimal bending of order j − 1 of S.
Since U1, · · · , U j−1 vanish to order ℓ at the points pi, the functions F

r, Gr, and

Hr given by (2.5) vanish to order 2ℓ− 2. Hence their Z-Pushforwards F̃ r, G̃r, and

H̃r vanish to order
2ℓ− 2

µi
at the points ζi = Z(pi). Thus (by Proposition 3.2) the

nonhomogeneous term of equation (3.23) vanishes to order ρi =
2ℓ+mi − 3

µi
− 1 at

ζi.
By taking ℓ sufficiently large and applying Theorem 2.1 of [LVM], we obtain a

solution h̃j of (3.23) that vanishes to order q at each point ζ1, · · · , ζn, for some q

that will be chosen later. Therefore hj = h̃j ◦ Z solves (3.3) and vanishes to order
qµi at the point pi, for every i = 1, · · · , n. Now we construct the field U j from

hj . Once again φj =
λh

j − λhj

(λ− λ)g
, ψj =

hj − h
j

(λ− λ)
and these functions would be well

defined if qµi − (mi − 2) ≥ 0. Once again the field U j = (uj , vj , wj) is related to
φj and ψj via relations (3.5), (3.6) ,(3.7) and in this case

uj =
1

∥Rs ×Rt∥ e

(
ψj

∣∣∣∣ ys zs
yss zss

∣∣∣∣− φj

∣∣∣∣ yt zt
yss zss

∣∣∣∣+ (φj
s − F j)

∣∣∣∣ys zs
yt zt

∣∣∣∣) ,
vj =

1

∥Rs ×Rt∥ e

(
−φj

∣∣∣∣ xt zt
xss zss

∣∣∣∣+ ψj

∣∣∣∣ xs zs
xss zss

∣∣∣∣− (φj
s − F j)

∣∣∣∣xs zs
xt zt

∣∣∣∣) ,
wj =

1

∥Rs ×Rt∥ e

(
φj

∣∣∣∣ xt yt
xss yss

∣∣∣∣− ψj

∣∣∣∣ xs ys
xss yss

∣∣∣∣+ (φj
s − F j)

∣∣∣∣xs ys
xt yt

∣∣∣∣) .
These functions will be well defined if φj , ψj , φj

s and F j vanish to an order greater
than mi − 2 at each pi. In this situation uj , vj , and wj vanish to order

ri = min {[qµi − (mi − 1)], 2ℓ− 2} − (mi − 2). (3.34)
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Let m⋆ and µ⋆ as in the previous case. Given k ∈ N, take ℓ large enough so

2ℓ ≥ k +m⋆ and q ≥ k + 2m⋆ − 3

µ⋆
.

It follows from (3.34) that for such choices of ℓ and q, we have ri ≥ k for each i
and the field U j = (uj , vj , wj) vanishes to order k at each pi. This completes the
proof. □

4. Infinitesimal Bendings of Graphs of Homogeneous Functions

In this section we study infinitesimal bendings of surfaces given as graphs of
homogeneous functions. We prove that any such generic surface with nonnega-
tive curvature has nontrivial infinitesimal bendings of high orders. The surfaces
considered here are given by

S =
{
R(s, t) = (s, t, z(s, t)) ; (s, t) ∈ R2

}
, (4.1)

where z is a nonnegative homogeneous function of order m ≥ 2 (with m not neces-
sarily an integer), such that z ∈ C∞(R2 \ {0}). We assume that S has nonnegative
curvature and no asymptotic curves. The Gaussian curvature of S is

K(s, t) =
zssztt − z2st

(1 + z2s + z2t )
2
.

It is more convenient here to use polar coordinates s = r cos θ, t = r sin θ, so
that z = rmP (θ), with P (θ) ∈ C∞(S1). The assumption that S has no asymptotic
curves implies that P (θ) > 0 for all θ (if P (θ0) = 0, then the ray θ = θ0 would be
an asymptotic curve). The second derivatives of z in polar coordinates are:

zss = rm−2
[
(m− 1)m cos2 θP − 2(m− 1) sin θ cos θP ′ +m sin2 θP + P ′′ sin2 θ

]
,

zst = rm−2 [(m− 2)m sin θ cos θP + (m− 1) cos(2θ)P ′ − P ′′ sin θ cos θ] ,

ztt = rm−2
[
(m− 1)m sin2 θP + 2(m− 1) sin θ cos θP ′ +m cos2 θP + P ′′ cos2 θ

]
.

It follows that

zssztt − z2st = r2m−4(m− 1)
[
m2P 2(θ) +mP (θ)P ′′(θ)− (m− 1)P ′(θ)2

]
.

From now on we will assume that K ≥ 0 and K vanishes on at most a finite
number of rays θ = θ1, · · · , θℓ. This is equivalent to[

m2P 2(θ) +mP (θ)P ′′(θ)− (m− 1)P ′(θ)2
]
> 0, ∀θ /∈ {θ1, · · · , θℓ}. (4.2)

We write in a more convenient form the equation related to the bending fields
U j = (uj , vj , wj). The functions φj and ψj related to U j by (3.5) and (3.6) take
the form

φj = uj + zsw
j , ψj = vj + ztw

j . (4.3)

In this situation equation (3.10) leads to the following system in polar coordinates

1

r

(
φj

ψj

)
θ

= A(θ)

(
φj

ψj

)
r

+ T (θ)

F j

Gj

Hj

 , (4.4)
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where A(θ) =
1

(m2 −m)rm−2P (θ)

(
α11(r, θ) α12(r, θ)
α21(r, θ) α22(r, θ)

)
, with

α11(r, θ) = (ztt − zss) sin θ cos θ + 2zst cos
2 θ, α12(r, θ) = −zss,

α21(r, θ) = ztt, α22(r, θ) = (ztt − zss) sin θ cos θ − 2zst sin
2 θ,

and T (θ) is the matrix T (θ) =
1

(m2 −m)rm−2P (θ)

(
β1(r, θ) β2(r, θ) β3(r, θ)
γ1(r, θ) γ2(r, θ) γ3(r, θ)

)
,

with

β1(r, θ) = (−2zst cos θ − ztt sin θ), γ1(r, θ) = −ztt cos θ,
β2(r, θ) = zss cos θ, γ2(r, θ) = −ztt sin θ,
β3(rθ) = zss sin θ, γ3(r, θ) = zss cos θ + 2zst sin θ.

(4.5)

Note that it follows from the homogeneity of z that the matrices A and T are
independent of the variable r.

Now we use the change of variable ρ = rP (θ)1/m to transform (4.4) into

1

ρ

(
φj

ψj

)
θ

= Λ(θ)

(
φj

ψj

)
ρ

+ T̃ (θ)

F̃ j(ρ, θ)

G̃j(ρ, θ)

H̃j(ρ, θ)

 , (4.6)

where Λ(θ) =
1

(m2 −m)rm−2P (θ)

(
zst −zss
ztt −zst

)
has trace 0,

T̃ (θ) =
T (θ)

P (θ)1/m
and

F̃ j(ρ, θ)

G̃j(ρ, θ)

H̃j(ρ, θ)

 =


F j
(

ρ
P (θ)1/m

, θ
)

Gj
(

ρ
P (θ)1/m

, θ
)

Hj
(

ρ
P (θ)1/m

, θ
)
 . (4.7)

Remark 4.1. For j = 1, F 1 = G1 = H1 = 0, and the homogenous system (4.6) is
studied in [M3]. It is proved that for every n ∈ N, the surface S has nontrivial first
order infinitesimal bendings fields U1 ∈ Cn(R2) of the form

U1(r, θ) =
(
rλpa1(θ), rλpb1(θ), rλp+1−mc1(θ)

)
, (4.8)

with a1, b1, c1 ∈ C∞(S1) and λp an eigenvalue of the system

X ′θ) = λΛ(θ)X(θ). (4.9)

With the first bending U1 as given by (4.8), it follows from (2.5) that

F 2(r, θ) = r2λp−2f1(θ) + r2λp−2mf2(θ),

G2(r, θ) = r2λp−2g1(θ) + r2λp−2mg2(θ),

H2(r, θ) = r2λp−2h1(θ) + r2λp−2mh2(θ),

(4.10)

where fi, gi, hi ∈ C∞(S1) ( i = 1, 2). For such expressions of F 2, G2 and H2,
equation (4.6) becomes

1

ρ

(
φ2

ψ2

)
θ

= Λ(θ)

(
φ2

ψ2

)
ρ

+ ρ2λp−2V1(θ) + ρ2λp−2mV2(θ), (4.11)

with V1, V2 ∈ C∞(S1,R2). We seek solutions of (4.11) in the form(
φ2

ψ2

)
= ρ2λp−1X1(θ) + ρ2λp−2m+1X2(θ), (4.12)



12 B. DE LESSA VICTOR AND ABDELHAMID MEZIANI

with X1, X2 ∈ C∞(S1,R2). This leads to the following equations for X1, X2:

dX1

dθ
= (2λp − 1)Λ(θ)X1 + V1(θ)

dX2

dθ
= (2λp − 2m+ 1)Λ(θ)X2 + V2(θ) .

(4.13)
It follows from the classical theory of differential equations with periodic coef-

ficients (see Section 2.9 of [YS] for instance) that if V1 and V2 are not zero and if
both (2λp − 1) and (2λp − 2m+1) are not eigenvalues of the periodic system (4.9),
then (4.13) has periodic solutions X1 and X2 (note that if Vi = 0, the correspond-
ing equation has a trivial periodic solution). The next step is to understand the
asymptotic behavior of the spectrum of (4.9) and show that there exist arbitrarily
large p ∈ N such that (2λp − 1) and (2λp − 2m + 1) are indeed not eigenvalues of
(4.9).

Let J =

(
0 1
−1 0

)
and write system (4.9) in the standard Hamiltonian form

JX ′(θ) = λH(θ)X(θ), (4.14)

with

H(θ) =

(
h11 h12
h21 h22

)
= JΛ =

1

(m2 −m)rm−2P (θ)

(
ztt −zst
−zst zss

)
. (4.15)

The assumption on the curvature K given by (4.2) implies that the matrix H
is positive except possibly at points θ1, · · · , θℓ ∈ S1. It follows then from the
Oscillation Theorem (see Theorem V in [YS] pg. 766) that the spectrum (4.14) (or
equivalently (4.9)) consists of a sequence

λ−1 ≤ λ+1 < λ−2 ≤ λ+2 < . . . λ−j ≤ λ+j < . . . , (4.16)

with lim
j→∞

λ±j = ∞. To get the asymptotic behavior of λ±j we introduce the following

functions:

b(θ) =
√
det(H(θ)) =

1

(m2 −m)rm−2P (θ)

√
zttzss − z2st , (4.17)

and

c1(θ) =
−h21
b

h′11
h11

=
zst√

zttzss − z2st

d log(ztt)

dθ

c2(θ) =
−h21
b

h′22
h22

=
zst√

zttzss − z2st

d log(zss)

dθ
.

(4.18)

Proposition 4.1. Let b, c1 and c2 be as in (4.17), (4.18) and suppose that c1, c2
are elements of L1([0, 2π]). Let

b1 =

2π∫
0

b(θ)dθ and b2 = −1

4

2π∫
0

(c1(θ)− c2(θ)) dθ. (4.19)

The eigenvalues (4.16) of (4.9) have the following asymptotic behavior as j → ∞:

λ±j =
jπ

b1
+
b2
b1

+O

(
1

j

)
. (4.20)
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Proof. Note that b(θ) > 0 for θ ̸= θi, i = 1, · · · , ℓ; this implies b1 > 0. For ε > 0,

consider the Hamiltonian Hε(θ) = H(θ) + εI =

(
h11 + ε h12
h21 h22 + ε

)
. Since ztt and

zss are nonnegative, then h11 + ε and h22 + ε are strictly positive and

Det(Hε) = Det(H) + εTrace(H) + ε2 > 0 , ∀θ ∈ R .

Thus matrix Hε is positive for every ε > 0 and the asymptotic behavior of the
spectrum of the equation

JX ′
ε = λHε(θ)Xε (4.21)

is given by (see p.776 [YS])

λ±εj =
jπ

bε1
+
bε2
bε1

+O

(
1

j

)
,

where

bε1 =

2π∫
0

√
Det(Hε) dθ and bε2 =

−1

4

2π∫
0

h12
Det(Hε)

(
h′11

h11 + ε
− h′22
h22 + ε

)
dθ .

Moreover, the hypothesis c1, c2 ∈ L1 and the Dominated Convergence Theorem
imply that b1 = lim

ε→0+
bε1 and b2 = lim

ε→0+
bε2. Finally, since the monodromy matrix of

(4.21) is analytic with respect to ε, it follows that for j large, λ±j = lim
ε→0+

λ±εj and

the asymptotic expansion (4.20) follows. □

Now we can prove the main results of this section.

Theorem 4.2. Let S ⊂ R3 be the graph of a homogeneous function z(s, t) of order
m ≥ 2 and satisfying (4.2). Suppose that conditions in Proposition 4.1 hold and
b1, b2 given by (4.19) satisfy

b1 − b2 /∈ πZ and (2m− 1)b1 − b2 /∈ πZ . (4.22)

Then for every k ∈ N, there exist U1, U2 ∈ Ck(R2,R3) such that the deformation
of S given by the position vector

R(s, t) + 2ϵU1(s, t) + ϵ2U2(s, t)

is a nontrivial infinitesimal bending of order 2.

Proof. Let k ∈ N; we already have the first field U1 ∈ Ck given by (4.8) (with
p ∈ N large enough). Now we construct U2 = (u2, v2, w2) through the functions
φ2, ψ2 given by (4.12) and satisfying (4.11). Let

δ1 = min

{∣∣∣∣aπb1 +
b2
b1

− 1

∣∣∣∣ , a ∈ Z
}
, δ2 = min

{∣∣∣∣aπb1 +
b2
b1

+ 1− 2m

∣∣∣∣ , a ∈ Z
}

and δ = min {δ1, δ2}. It follows from (4.22) that δ > 0. Thanks to the asymptotic
expansion (4.20), we can choose p large enough so that

λ±p =
pπ

b1
+
b2
b1

+ rp, (4.23)

with |rp| <
δ

6
. Now we show that there is no q ∈ N such that

2λ±p − 1 = λ±q .
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It follows from (4.20) that

2λ±p − 1− λ±q = (2p− q)
π

b1
+
b2
b1

− 1 + 2rp − rq.

We can assume with no loss of generality that q > p and thus |rq| <
δ

6
. This

implies that∣∣2λ±p − 1− λ±q
∣∣ ≥ ∣∣∣∣(2p− q)

π

b1
+
b2
b1

− 1

∣∣∣∣− |2rp − rq| ≥
δ

2
> 0 .

A similar argument shows that there is no q ∈ N such that

2λ±p − 2m+ 1 = λ±q .

As a consequence, the periodic system (4.13) has solutions X1(θ), X2(θ). We have

therefore

(
φ2

ψ2

)
a solution of (4.11) in the form (4.12). Using (3.7), (3.8), and (3.9),

we get

w2 =
φ2
s + ψ2

t − F 2 −H2

zss + ztt
= r2λp−mγ1(θ) + r2λp−3m+2γ2(θ), (4.24)

and then from (4.3) and (4.24) we obtain

u2 = r2λp−1α1(θ) + r2λp−2m+1α2(θ),

v2 = r2λp−1β1(θ) + r2λp−2m+1β2(θ),
(4.25)

with αi, βi, γi ∈ C∞(S1) for i = 1, 2. By taking p ∈ N large enough, we get
U1, U2 ∈ Ck(R2,R3). □

Theorem 4.3. Let S ⊂ R3 be the graph of a homogeneous function z(s, t) of order
m ≥ 2 and satisfying (4.2). Suppose that conditions in Proposition 4.1 hold and
b1, b2 given by (4.19) satisfy

(b2N+ b1Z) ∩ (mb1N+ πZ) = ∅. (4.26)

Then for every k, l ∈ N, there exist U1, · · · , U l ∈ Ck(R2,R3) such that the defor-
mation of S given by the position vector

R(s, t) + 2ϵU1(s, t) + · · · 2ϵlU l(s, t)

is a nontrivial infinitesimal bending of order l.

Proof. We use an induction argument on the order l. Suppose that there exist
U1, · · · , U l−1 ∈ Ck(R2,R3) such that

R(s, t) + 2ϵU1(s, t) + · · · 2ϵl−1U l−1(s, t)

is a nontrivial infinitesimal bending of order l − 1 and for q ∈ {1, · · · , l − 1},
Uq(r, θ) = (uq(r, θ), vq(r, θ), wq(r, θ)), with

uq(r, θ) = rqλp−mν1+µ1α1(θ) + · · ·+ rqλp−mνσ+µσασ(θ),
vq(r, θ) = rqλp−mν1+µ1β1(θ) + · · ·+ rqλp−mνσ+µσβσ(θ),
wq(r, θ) = rqλp−m(ν1+1)+µ1+1γ1(θ) + · · ·+ rqλp−m(νσ+1)+µσ+1γσ(θ) ,

(4.27)

where σ, ν1, µ1, · · · , νσ, µσ are integers that depend only on the index q,
αi, βi, γi ∈ C∞(S1) for i = 1, · · · , σ, and where λp is a spectral value of the
equation (4.10) that can be chosen arbitrarily large. Note that the components of
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the bending fields U1 and U2 constructed in the proof of Theorem 4.2 have the
form given in (4.27) (see (4.8), (4.24), and (4.25)).

It follows from (4.27) that the functions F l, Gl, and H l defined by (2.5) have
the form

F l(r, θ) = rlλp−ms1+t1f1(θ) + · · ·+ rlλp−msτ+tτ fτ (θ),
Gl(r, θ) = rlλp−ms1+t1g1(θ) + · · ·+ rlλp−msτ+tτ gτ (θ),
H l(r, θ) = rlλp−ms1+t1h1(θ) + · · ·+ rlλp−msτ+tτhτ (θ),

(4.28)

where τ, s1, t1, · · · , sτ , tτ are integers that depend only on the index l, and where
fi, gi, hi ∈ C∞(S1) for i = 1, · · · , τ . With F l, Gl, andH l as in (4.28), we construct
the next bending field U l = (ul, vl, wl) through the functions φl and ψl given by
(4.3). In this situation equation, (4.6) becomes

1

ρ

(
φl

ψl

)
θ

= Λ(θ)

(
φl

ψl

)
ρ

+ ρlλp−ms1+t1V1(θ) + · · ·+ ρlλp−msτ+tτVτ (θ) , (4.29)

with V1, · · · , Vτ ∈ C∞(S1,R2). We seek solutions of (4.29) in the form(
φl

ψl

)
= ρlλp−ms1+t1+1X1(θ) + · · ·+ ρlλp−msτ+tτ+1Xτ (θ), (4.30)

with X1, · · · , Xτ ∈ C∞(S1,R2). This leads to the following periodic differential
equations for the Xi’s:

X ′
i(θ) = (lλp −msi + ti + 1) Λ(θ)Xi(θ) + Vi(θ) . (4.31)

By using the asymptotic expansion (4.23) of the spectral value λp (with rp arbi-
trarily small for p large enough), an argument similar to that used in the proof of
Theorem 4.2 shows that for p large enough, lλp−msσ+ tσ+1 cannot be a spectral
value. Indeed, if there were arbitrarily large p ∈ N such that

lλp −msσ + tσ + 1 = λq ,

then necessarily

(l − 1)b2 + (tσ + 1)b1 = mb1sσ + (q − lp)π + rp,q,

with rp,q → 0 when p, q → ∞, which contradicts hypothesis (4.26). This implies
that the system of equations (4.31) has a periodic solution and so there exist φl, ψl

as in (4.30) satisfying (4.29). Since wl =
φl
s + ψl

t − F l −H l

zss + ztt
, then it follows from

(4.28) and (4.30) that

wl =

l∑
j=1

rlλp−m(sj+1)+tj+2γj(θ) ,

ul = φl − zsw
l =

l∑
j=1

rlλp−msj+tj+1αj(θ) ,

vl = ψl − ztw
l =

l∑
j=1

rlλp−msj+tj+1βj(θ) .

Thus for a given k ∈ N, if p is large enough, U l = (ul, vl, wl) as in (4.27) is in

Ck(R2,R3) and R(s, t) + 2

l∑
j=1

ϵjU j(s, t) is an infinitesimal bending of order l. □
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Remark 4.4. When m ∈ N, condition (4.26) reduces to (b2N+ b1Z) ∩ πZ = ∅ .

5. Analytic Infinitesimal Bendings of a Class of Surfaces

We describe here the structure of all analytic infinitesimal bendings of a par-
ticular class of surfaces given as the graph of functions of the form sm+2 ± tn+2,
with m,n positive integers. We show that the space of such infinitesimal bendings
is generated by four arbitrary analytic functions of one real variable. The basic
ingredient needed is the equation in R2 given by

xmwyy + εynwxx = 0, ε = 1 or − 1 . (5.1)

To describe the analytic solutions of (5.1) we will need some technical lemmas.

Lemma 5.1. The double series
∑

m,k≥0

(
(m+ k)!

m! k!

)2

XkY m is uniformly convergent

in the bidisc |X| < 1/4 and |Y | < 1/4.

Proof. Note that
(m+ k)!

m! k!
≤ 2m+k. Therefore

∑
m,k≥0

(
(m+ k)!

m! k!

)2

|X|k|Y |m ≤
∑

m,k≥0

(4|X|)m(4|Y |)k

and the conclusion follows. □

We will use the following notations: D stands for the operator D =
1

zm
d2

dz2
where z denotes a complex or real variable; and for α, β ∈ Z+,

Aα
β =

β∏
k=1

[k(α+ 2)− 1][k(α+ 2)] and Bα
β =

β∏
k=1

[k(α+ 2)][k(α+ 2) + 1] .

We will also denote Aα
0 = 1 and Bα

0 = 1.

Lemma 5.2. Let h(z) be a holomorphic function in the disc D(0, R) and let
M(X,Y ) be the function defined by

M(X,Y ) =
∑
j≥0

Hj(X
m+2)Y j(n+2) ,

where

Hj(X
m+2) =

1

An
j

Dj
[
h(Xm+2)

]
.

There exists a positive constant C = C(m,n) that depends only on m,n such that

the function M is holomorphic for |X| < CR1/(m+2) and |Y | < CR1/(n+2). In
particular, if h is an entire function in C, then M is an entire function in C2.

Proof. First note that for q ≥ 0, D(Xq(m+2)) = [q(m+2)] [q(m+2)−1]X(q−1)(m+2)

and it is easily verified that for j ≤ q

Dj
(
Xq(m+2)

)
=

Am
q

Am
q−j

X(q−j)(m+2) .
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Let 0 < ρ < R be arbitrary. For j ≥ 0 and |X|m+2 < ρ we have

Dj
[
h(Xm+2)

]
=

1

2πi

∫
|ζ|=ρ

h(ζ)Dj

(
1

ζ −Xm+2

)
dζ

=
1

2πi

∑
q≥j

∫
|ζ|=ρ

h(ζ)

ζ1+q
Dj(Xq(m+2)) dζ

=
1

2πi

∑
p≥0

Am
p+j

Am
p

∫
|ζ|=ρ

h(ζ)

ζ1+j

(
Xm+2

ζ

)p

dζ .

Thus ∣∣Dj
[
h(Xm+2)

]∣∣ ≤ ||h||
∑
p≥0

Am
p+j

Am
p

1

ρj

(
|X|m+2

ρ

)p

,

where ||h|| denotes the maximum of h in the disc. It follows that

|M(X,Y )| ≤
∑
j≥0

|Hj(X
m+2)| |Y n+2|j

≤ ||h||
∑
j≥0

∑
p≥0

Am
p+j

Am
p A

n
j

(
|X|m+2

ρ

)p( |Y |n+2

ρ

)j

.
(5.2)

Now we estimate the coefficient
Am

p+j

Am
p A

n
j

. For α, β ∈ Z+, we have

Aα
β = (α+ 2)2β

β∏
k=1

k2
(
1− 1

k(α+ 2)

)
≤ (α+ 2)2β(β!)2,

Aα
β ≥ (α+ 2)2β

β∏
k=1

k2
(
1− 1

(α+ 2)

)
= (α+ 2)β(α+ 1)β(β!)2 .

These inequalities imply that

Am
p+j

Am
p A

n
j

≤
(
m+ 2

m+ 1

)p (
(m+ 2)2

(n+ 2)(n+ 1)

)j (
(p+ j)!

p! j!

)2

. (5.3)

It follows from estimates (5.2) and (5.3) that

|M(X,Y )| ≤ ||h||
∑
j,p

((p+ j)!)2

(p!)2 (j!)2

[
m+ 2

m+ 1

|X|m+2

ρ

]p [
(m+ 2)2

(n+ 2)(n+ 1)

|Y |n+2

ρ

]j
.

(5.4)
Finally the conclusion follows from (5.4) and Lemma 5.1 where the constant C can
be taken as

C = min

[(
m+ 1

4(m+ 2)

)1/(m+2)

,

(
(n+ 2)(n+ 1)

4(m+ 2)2

)1/(n+2)
]
. (5.5)

□

Then we have the following proposition
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Proposition 5.1. Let R > 0 and C given in (5.5). A function w is an analytic
solution of (5.1) for |x|, |y| < R if and only if there exist h1, h2, h3 and h4 analytic

functions of one real variable t in the interval |t| < min

{(
R

C

)m+2

,

(
R

C

)n+2
}

such that

w(x, y) =

∞∑
p=0

[
H1

p (x
m+2) + xH2

p (x
m+2) + yH3

p (x
m+2) + xyH4

p (x
m+2)

]
yp(n+2) ,

(5.6)
where

Hi
p(x

m+2) =
(−ε)p

An
p

Dp
(
hi(xm+2)

)
for i = 1, 2 ;

Hi
p(x

m+2) =
(−ε)p

Bn
p

Dp
(
hi(xm+2)

)
for i = 3, 4 ,

(5.7)

In particular, w is analytic on R2 if and only if h1, h2, h3 and h4 are analytic on
R.

Proof. Suppose that w(x, y) is an analytic solution of (5.1). We expand w with
respect to y as:

w(x, y) =

∞∑
j=0

αj(x)y
j , (5.8)

where the αj are real analytic functions of x. Equation (5.1) leads to

n−1∑
j=0

(j + 2)(j + 1)xmαj+2(x)y
j +

∞∑
j=n

[
(j + 2)(j + 1)xmαj+2(x) + εα′′

j−n(x)
]
yj = 0.

Therefore,  αk(x) = 0 for k = 2, · · · , n+ 1 ,

αk(x) =
−ε

k(k − 1)
Dαk−(n+2) for k ≥ n+ 2 ,

(5.9)

where D is the operator defined above. It follows at once by induction from (5.9)
that αk = 0 whenever k and k − 1 /∈ (n+ 2)Z+.

For k = n+ 2, we have αn+2 =
−ε
A1

Dα0 and then for k = 2(n+ 2) we get

α2(n+2) =
−ε

[2(n+ 2)][2(n+ 2)− 1]
Dαn+2 =

(−ε)2

A2
D2α0 .

An induction shows that

αp(n+2) =
(−ε)p

An
p

Dpα0 , αp(n+2)+1 =
(−ε)p

Bn
p

Dpα1 . (5.10)

Since each αp(n+2) and αp(n+2)+1 is an analytic function of x, then (5.10) imposes

restrictions on the power series representations α0(x) =
∑

ajx
j and α1(x) =∑

bjx
j . Indeed, we have

αn+2(x) =
−ε
An

1

Dα0(x) =
−ε
An

1

∞∑
j=2

j(j − 1)ajx
j−(m+2),
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and so a2 = · · · = am+1 = 0. This gives

an+2(x) =
−ε
An

1

∞∑
k=m+2

[k + (m+ 2)] [k + (m+ 1)] ak+(m+2)x
k .

By repeating the above argument and an induction on the relation α(p+1)(n+2) =
MDαp(n+2) (with M nonzero constant), we can prove that

aj = 0 if j ̸= q(m+ 2) and j ̸= q(m+ 2) + 1 with q ∈ Z .

We have then

α0(x) =

∞∑
r=0

ar(m+2)x
r(m+2) +

∞∑
r=0

ar(m+2)+1x
r(m+2)+1 .

Let h1(t) =

∞∑
r=0

ar(m+2)t
r and h2(t) =

∞∑
r=0

ar(m+2)+1t
r. Then

α0(x) = h1(xm+2) + xh2(xm+2) . (5.11)

Similar arguments show that there exist analytic functions h3(t) and h4(t) such
that

α1(x) = h3(xm+2) + xh4(xm+2) . (5.12)

Expression (5.6) of the proposition follows from (5.8), (5.9), (5.10), (5.11), and
(5.12) and the convergence follows from Lemma 5.2. Conversely, given analytic
functions h1, h2, h3 and h4 as in the statement of the proposition, it is clear that
the function w(x, y) defined by (5.6) is an analytic solution of the (5.1) □

For m,n ∈ Z+, let Sm,n ⊂ R3 be the surface given by

Sm,n =
{
(s, t, sm+2 + εtn+2), (s, t) ∈ R2

}
.

Denote by IBm,n(ρ) the space of real analytic infinitesimal bendings of Sm,n in the
square |s| < ρ, |t| < ρ, with 0 < ρ ≤ ∞, and by A(ρ) the space of R-valued real
analytic functions in the interval (−ρ , ρ). Then we have the following theorem.

Theorem 5.1. IBm,n(ρ) is isomorphic to A(ρ)4.

Proof. Let U(s, t) = (u(s, t), v(s, t), w(s, t)) ∈ IBm,n(ρ). In this particular case the
system of equations (2.4) becomes

us + (m+ 2)sm+1ws = 0

ut + vs + (m+ 2)sm+1wt + ε(n+ 2)tn+1ws = 0

vt + ε(n+ 2)tn+1wt = 0

As in [V] we can reduce this system into a single equation for w to obtain

(m+ 2)(m+ 1)smwtt + ε(n+ 2)(n+ 1)tnwss = 0 , (5.13)

and any solution of (5.13) gives rise to an infinitesimal bending U . Equation (5.13)
is equivalent to (5.1) through the linear change of variables x = Ps and y = Qt
where

P = [(m+ 2)(m+ 1)]
n

mn−4 [(n+ 2)(n+ 1)]
2

mn−4 ,

Q = [(n+ 2)(n+ 1)]
m

mn−4 [(m+ 2)(m+ 1)]
2

mn−4 ,
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when mn ̸= 4. When mn = 4, another simple linear change of variables transforms
equation (5.13) to (5.1). Proposition 5.1 establish an isomorphism between real
analytic solutions of (5.13) and A(Cρµ)4 (for some C and µ positive) and thus
between IBm,n(ρ) and A(Cρµ)4 . Finally, since A(Cρµ) is clearly isomorphic to
A(ρ), this completes the proof. □

Remark 5.2. It should be noted that surfaces given as graphs of functions of the
form f(s) + g(t) are bendable and some bendings are given in [D]. However, the
above theorem characterizes all real analytic infinitesimal bendings.
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