INFINITESIMAL BENDINGS FOR CLASSES OF TWO
DIMENSIONAL SURFACES.

B. DE LESSA VICTOR AND ABDELHAMID MEZIANI

ABSTRACT. Infinitesimal bendings for classes of two-dimensional surfaces in
R3 are investigated. The techniques used to construct the bending fields in-
clude reduction to solvability of Bers-Vekua type equations and systems of
differential equations with periodic coefficients.

1. INTRODUCTION

This paper deals with infinitesimal bendings for classes of orientable surfaces.
We consider a smooth surface S C R? given by a position vector R over a region
Q) C R2. Thus

S = {R(s,t) € R (s,t) € Q},
where R € C*°(2,R?). A one parameter deformation surface S, (¢ € R) given by
the position vector

R.(s,t) = R(s,t) + 2 Zerj(s, t),
j=1
with U; € C*(Q,R?) (k € Z1), is an infinitesimal bending of S of order m € Z* if
the metrics of S and S, coincide to order m as € — 0. That is,

dR?(s,t) = dR*(s,t) + o(¢™) as e — 0.

The study of infinitesimal bendings of surfaces has a long and rich history and has
many physical applications (see [N], [P], and [R]). For a complete overview we refer
to the survey article by Sabitov [S] and the extensive references within.

The results of this paper are generalizations of those contained in [MI], [M3]
that deal with infinitesimal bendings of surfaces with nonnegative curvature. For
a surface with positive Gaussian curvature except at a finite number of planar
points, we use the (complex) vector field of asymptotic directions and an associated
Bers-Vekua type equation to construct non trivial infinitesimal bendings of any
finite order (Theorem [3.2]). For surfaces with nonnegative curvature given as a
graph of a homogeneous function: R(s,t) = (s,t,2(s,t)) with z a homogeneous
function, we construct infinitesimal bendings of higher orders through the solvability
of associated systems of periodic differential equations, provided that two numbers
attached to the surface satisfy a number theoretic condition (Theorems and

13).
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In the final section, we consider a special class of surfaces defined as a graphs of
function s™T24¢"*2 (a model for surfaces defined as graphs of functions f(s)+g(t)).
We show (Theorem that the space of real analytic infinitesimal bendings on
the rectangle |s| < p,[t| < p with 0 < p < oo, is isomorphic to the space A(p)?,
where A(p) is the space of convergent power series of one variable with radius of
convergence p.

2. DEFINITIONS AND EQUATIONS FOR BENDING FIELDS

Let S be a C* surface in R? over a domain €2 C R? given by

S =A{R(s,t) = (x(s,1),y(s,t),2(s,1)); (s,t) € Q}, (2.1)
and S; a deformation of .S, given by
Se = {Re(s,t) = R(s,t) + 2U"(s,t) + ... +2c"U™(s,1)}, (2.2)

where U7 : Q — R? is a C* function for j € {1,2,...,m}, for some k € N. The
deformation S. is an infinitesimal bending of S of order m if its first fundamental
form dR? satisfies the following condition:

dR? = dR? 4+ o(c™), as ¢ — 0.

Since

m m—1
dR? = dR* + 4z (dR - dU") + » _4e7 <dR U7 4+ Ut dUm‘i> +o(e™),
j=2 i=1
then S; is an infinitesimal bending of order m if and only if
j—1
dR-dU"' =0 and dR-dU? = =Y "dU"-dU’™", j=2,3,...,m. (2.3)
i=1
For each j € {1,2,...,m}, set U7(s,t) = (u/(s,t),v7(s,t),w!(s,t)). Equation (2.3)
can be written as
Tsul + ysvd + zowd = FJ,
wul +ysv] + zw] + mud + gl + 2wl = GI, (2.4)
ziup + ypvf + zwy = HY,
with F! = G' = H' = 0 and, when j > 2,
j—1
Fi=— Z (w7l + vl ! 4+ wl Tl
i=1

GJ

7j—1
i, j—1 i, J—1 i, J—1 i, j—i i, j—i i, j—i
—E (usut +olv] T wiw! T Fupuel T 4 vpol T 4+ wiw! )7 (2.5)

i=1

Jj—1

2 : J=i,i J=i, i J—i, i
- (ut u; + vy v +wy wt).
i=1

HI

The trivial bendings of S are those generated through the rigid motions of the
underlying space R3. In particular, the first order trivial infinitesimal bendings of S
are given by S4B = {R}P(s,t) = R(s,t) + £ (A x R(s,t) + B)}, where A, B are
constants in R? and x denotes the vector product in R3. A surface S is said to be
rigid under infinitesimal bendings if it admits only trivial infinitesimal bendings.
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RSXRt

Let N be the normal unit vector to S given by m
S t

and e, f, g, the
coefficients of the second fundamental form of S:
e:Rss'Nv f:Rst'Nv g:Rtt'N- (26)

The Gaussian curvature of S is:
g2
K(s,t) = 6577‘/:2.
[ Rs x Ryl

Throughout this work, except for the last section, we will assume that the Gaussian
curvature of S is nonnegative: K(s,t) > 0, for all (s,t) € Q.

(2.7)

3. SURFACES WITH NONNEGATIVE CURVATURE AND FLAT POINTS

In this section, we assume that the parametrization domain Q C R? of S is
relatively compact and that K > 0 on  except at finitely many points pq, -+ pn
at which both principal curvatures vanish. We assume throughout that K vanishes
uniformly only to a finite order at each flat point p; (see below)). We prove
that such a surface S admits nontrivial infinitesimal bendings of any order. The
idea is to use the complex vector field of asymptotic directions (see [M1], [M4]) to
reduce the study of the bending equations into solving Bers-Vekua type equations
(see also [AU] and [U] for the local deformation of surfaces near flat points).

Let S be given by and e, f, g, the coefficients of its second fundamental

form. We assume throughout this section the existence of p1, --- p, € € such that
order, (K) = 2order,, (e) = 2order,,(g) Vj e {1,---,n}, .

where order,(F') denotes the order of vanishing of the function F' at the point p.
The field of asymptotic directions is given by

L= g(s,t)% + /\(s,t)% where A = —f +iv/eg — f2. (3.2)

Proposition 3.1. Let S be a surface with nonnegative curvature given by
and L be the vector field of asymptotic directions given by . For a solution
Ul = (u,v7,w) of with j € N, the C-valued function b/ = LR - U7 satisfies
the equation

CLW = AlY — BR + C [¢°F/ + gAG? + \2HY] (3.3)
where
A= (LR x LR)(L*R x LR), B = (LRxLR)(L*R x LR), (3.4
C = (LR x LR)(LR x LR).
Proof. Define functions ¢’ and ¥’ by
¢ =Ry UJ =z 0! + yv! + zgu?,
1/Jj =R;- U’ = ftuj +ytvj + thj~
Then
@l = Ryy - UV + FI = zgu? + y, 07 + zgow’ + F7, (3.7)
1/){ = Ry - U7 + HI = zyu? + ypv’ + 2w’ + H | (3.8)

50{ + wg —2Ry U+ G/ =2 [xstuj + ysv) + zstwj] +GI. (3.9)
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Let Ry x Ry = (a1, a0, 3) and a = ||Rs X Ry||. It follows from (3.5)) and (3.6)) that
agu! = aqw’ + @y, — Py,
azv! = aouw! — Qlay + .

By using these expressions, we can rewrite (3.7)), (3.8) and (3.9) as

J — Tss  Yss J Tss Yss 7 j j
Q3P Xy i 2 Ts 5 d) + aew’ + OZ3F
Jo_ Tt Y| g [Tt Yit| g j j
sy 2w Ze Us P + agw’ + asH
asll +ud) = [0 Bt — (T 9y 4 2afud + 0.

We can eliminate the function w’ in the system above (using Lemma 3.1 of [M2]
and canceling a3) and reduce it to the following system for 7 and 97:

[Rt . (Rss X Rtt)]goj i [RS . (Rss X Rtt)]

(% (&%

gl — eyl = -

P+ (gFj - eHj) ,

F(o0 + ) — 6"‘79(90{ +opd) = [Re - (Rst X (Rss + Ri)]

5 @j +f(FJ +Hj)_

(
(6]
[Rs . (Rst X (Rss + Rtt)}ql)] _ e+ gGJ
o 2

& 20
o1 &o2) \ WY
h:/_/

gFI — eHI
+ f(Fj+Hj),e+ngj )

e+g
2 _
This system can be reduced further after multiplication by ﬁ ( 2 0)
€Ty -/ 9

_ QOJ _ 0 —e (pJ _ ij €Hj.— gFj'
g (QZ}])S (g _2f) (’Q[Jj)t =A (1/}]) + (2fH] _ng> I (310)

e+g
where A = 2 T o 0 =.
(eta) \ —-F g4

Note that A is an eigenvalue for the transpose of (2 —_26f> with eigenvector

We rewrite the system in a matrix form as

() ()~ (& )
o))\ ) W),

into

n= <§\> After multiplying (3.10) by 7" and using A2 + 2f\ 4 eg = 0, we get

g(g@? + M) 4+ Nge] +  pl) = —n'A @j) + ¢?F7 + g\G’ + N\2HI.  (3.11)
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Observe that n' ((‘DJ> = gol + \p? = RI, so that bl = nt (‘P]) ot <90J>
w] ’ S s )
. . S
J_ ot SOJ_ t SOJ_
hy =mn b + 7y b and (3.11) becomes
t

. . J J J ) . )
gh? + b = gn! (“" ) +n} (‘P ) — A (“" ) + PF 4+ gA\GT + N2HY. (3.12)

0 0 0
Since g is a real function,
(A=Ngp’ = N =i, (A= = — 7. (3.13)
Hence after multiplying (3.12)) by g(A — \), we get
g(A—=X)Lh = Ph+ Qh + g(A — X) (¢°F7 + gA\G? + N> H7) (3.14)
where the coefficients P and @ are given by.
— (L2 LR) - (L L — A
pogr- R LR LRXLR) _ oy 54
(LR x LR) - (LR x LR) C
~ (L?Rx LR) - (LR x LR - B
Q=g - NI 58
(LR x LR) - (LR x LR) C
(see [M2] for details). This completes the proof of the proposition. O

Remark 3.1. A direct calculation gives
L?Rx LR = (A-Lg—g-L\(Rs x R)) + g°(Rss X Rs) + X3 (Ry X Ry)+

+ P M (Res ¥ Ry) +2(Rat X Ry)] 4+ 9N\ [2(Rst x Ry) + (Ryy x Ry)],
L’RxLR=(X\-Lg—g-L\(Rs x R) + g°(Rss X Rs) + MM (Ry x Ry)+

+ °AMRys ¥ Ry) +29° XM Ryt X Ry) +29|\*(Rst x Ry) + g \*(Ry x Ry),

LR x LR = —g(A — \)(Rs x Ry),
(3.15)

which implies that C = —4¢2(eg — f2)||Rs x Ry|*.

To continue, we need to understand the behavior of the coefficients A, B and C
at the flat points py,...,p,. Since the order of contact of the surface S with the
tangent plane at the flat points p; is m; > 3, by proceeding as in [M1] we can find
local polar coordinates (r,#) centered in p; such that

e = ™2} (0) + e (r0), f =" (0) + ™ (),
g= rmf_Qg{(G) + rmf_lg%(r, 0).

The hypothesis (3.1)) implies that e (0)g? (0) — f{(#) > 0 for all § € R. This fact,
associated to (3.2]), implies that

(3.16)

A =72 (0) 4+ ™I (r, 6). (3.17)
Furthermore the vector field L can be normalized and written as
0 0
[ =% m;—3 e Nl
(r,0)r™i (uj 50 ZT8T> , (3.18)

where p; > 0 is an invariant attached to L and = # 0 everywhere.
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In these coordinates we have
Lg = Z(r,0)r®™75¢] (0) + r>™ =4 (r, 0);
LA = Z(r, 0)r?™i =593 (0) + r2™ =495 (r, 6).
Using (3.15)), (3-16), (3-17) and (3.19), we deduce that
L?’R x LR =Z(r,0)r*™ "7l (0)(Rs x Ry) + ™% (r, 0);
L?R x LR =E(r,0)r®™ "3 (0)(Rs x Ry) + 1°™ %5 (r, 6);
LR X LR =r*"4k(0)(Rs x Ry) +r>™i 3k (r,6).

(3.19)

Hence A, B, and C can be written as:
A = (L*R x LR)(LR x ER) =E(r, G)Tsmﬂ'_ng{(ﬂ) |Rs x Re||® + r5mf_log%(r, 0);
B =(L’Rx LR)(LR x LR) = E(r,0)r>™ """ (0) || Rs X Re||* + r®™ =1 (r, 6);
C = (LR xLR)(LR x LR) =r*i=8,7(0) |Rs x Re|* 4+ r*™5 =21 (r, 6).

(3.20)
Since |Rs x Ry||? is always strictly positive, we infer from (3.20) that
A , ,
21.0) = 2, 0)™ al(6) + ™ 2al (r,0);
(3.21)

B IR o
6(7’,9)::(7',0)7" I731(0) + ™ 2l (r, 6).

The following result about the first integral of L (proved in [M1]) will be used.
Lemma 3.1. [MI] There exists an injective function Z : Q — C satisfying the

following conditions:

(1) Z is C*° 0”75\{p17p27~-~,pn}-
(2) LZ =0 on Q.

(3) For every j = 1,2,,...,n, there exists p1; > 0 and polar coordinates (r,0)
centered at p; such that
Z(r,0) = Z(0,0) + 1 - e + O(r?) (3.22)

in a neighborhood of p;.

We use the first integral Z of L given by to transform the equation
to a Bers-Vekua type equation. The following notation will be used: for each
te{1,2,...,n}, let ¢ = Z(ps) and D(¢) = [[,—, (¢ — ¢¢). The pushforward via Z
of a function f defined in Q will be denoted f f: foz= 1.

Proposition 3.2. Let Z as in Lemma . A function h? is a solution of (3.3)) in
Q if and only if its Z-pushforward h’ satisfies the following equation in Z(Q):
on PO~ = 1
o _ PO QO L
¢ D) D(¢) D(C)
with the following conditions being satisfied:

1) P,Qe L>®(Z(Q)NC®(Z(Q)\{¢1,¢2 --.,Cn}); morevoer, we are able to write
in a small neighborhood of each (; the coefficients as

P(¢) = x1,5(0) + p“r}(p,0), Q(C) = x2,5(0) + p“ K3 (p,0),

where ¢ = pe'®, both X1,; and x2,; are 2mw-periodic and €; > 0, for every j.

SUOF + $(QOG + Sy(OFT),  (3.23)
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-1
2) S1,S52,S3 are bounded in Z () and vanish to order mn at (o, for every £,

‘
where my and pgy are the positive numbers associated with the point py.

Proof. The Z-pushforward of (3.3) gives

- J A ~. B = —~
(LZ) —= oh A By M, (3.24)
¢ C C
where
M = g?F7 + g\G? + \?H. (3.25)

Since the vector field L is elliptic outside the points ¢; and C' does not vanish
outside these points, (3.24]) has the form (3.23) in Z(Q2)\{¢1, -, .} Let us verify
the proposition near each point (;. It follows from (3.18) and (3.22) that

LZ = —2i=(r,0) [r™i 3 Hie 4 pmi—30(r?)] (3:26)

The next step is to understand how composition with Z~! acts over each term.
By assuming that Z(0,0) = 0 and setting p = |Z|, it follows from (3.22]) that we

: . - /2 j . :
are able to write p(r, ) = rti (1 +rhi J{ (r, 9)) , where J{(r,0) is a continuous
and bounded function. By the binomial theorem, if r is sufficiently small we have
p(r.0) =t (141 J(r.0)) = 14 420 T (r.0) = y + 4> T (4.0),

if we denote y = r*i. As a consequence of the proof of Lemma Z is a C*
function in terms of y and €. Thus, by possibly taking r even smaller we are able
to solve p in terms of y, which allows us to deduce that 7#i = p + p2 K1 (p, ), with
K continuous and bounded. This implies that

4 1
r— pt/hi (1 + pKi (p, g))
We deduce from (3.16)),(3.17, (3.21), (3.25) and (3.27) that, for some €; > 0,

e

= pl/Hi +p1+1/”jK'2j(07 6). (3.27)

r 2m;—4 2m;—4 2m;—4

M(p,0) =Z(p,0) |p " m(p,0)Fi+p "1 7a(p,0)GI +p *i ~s(p,o)HI

A Tnj73 X m;—3

A ~ i mi=S
5(/),0)15(/),0) p i aq(o)+p t +JO‘§(P,U)},
B ~ : mi=3 M e
E(P’U)=E(p7<f) p i Bilo)+p 3»6’%(/%0)}

(3.28)
By using expression in , we obtain
= =~ i
szmo=:mm>%ﬂz O R (7)) PR CE )
It follows from (3.28]) and ( - ) that (| - can be rewritten as

o m@+ﬁmmm%”, w(0) + 9 r(p,0) \ 75
66 peia peio

+

m;—1 . m;—1 . m—1

p i (p,0)FI L P apo)GI  p v (p o) HY
pew' peia peia

n . (3.30)
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where €¢; = min{e;,1}. Observe that pe’® = ¢ — ¢;. Hence, in order to obtain
an expression as in ([3.23)), it is sufficient to multiply both the numerator and the

denominator of each term in the right hand-side of (3.30) by D;(¢) = H (C—Co),

which finalizes the proof. U

We can now proceed to the main result of the section.

Theorem 3.2. Let S C R? be a smooth surface given by (2.1) with curvature K
satisfying (3.1). For every k,m € N, there exist functions

ULU?,. U™ Q=R with U7 e CHQ) N C®(Q\ {p1,p2,.-,0n}),

such that each U’ vanishes to order > k at each point py, - -- p, and such that the
deformation surface S. given by (2.2) is a nontrivial infinitesimal bending of S of
order m.

Proof. We prove this result by induction on the order m; in general the idea is to
solve and show it has a solution A/ that vanishes, to any prescribed order,
at the points (i, -+, (.. Then use h? = hi o Z to recover the field UY through
hi = LR - U’ (Proposition .

Let j = 1; then F' = G' = H' = 0, which turns the expression into

oh' _ P(Q)51, QT
5 D(Oh + D(Oh . (3.31)

Applying Theorem 2.3 of [LVM], for any I € N we are able to find a non-trivial
solution for in CYZ(Q2)) N C>®(Z(Q)\{C1, -+ ,(n}), such that it vanishes to
order > [ at each point (1, - -+ (,. Therefore, as a consequence of Proposition [3.2
h! = hl o Z solves and vanishes to order lu; at the points p1,...,py.

Next we construct the field U' from h'. As a consequence of 7 we have

71 31 17t

u and ¢! = h _ﬁ . These functions would be well defined at the
(A=Ng (A=X)
flat points pi,--- ,p, provided that h' vanishes to higher orders than those the
vanishing of the denominators. This is indeed the case when (I- ;) — (m; —2) > 0,
since both g and A — X have order of vanishing m; — 2 at p; (see and [3.17)).

The field U = (u!, v, w!) is related to p! and 9! via relations
(3.7), which form the system

Pt =

1 1 1
¥ Ts Ys Zs U u
vl =z v vl | = M(s,t) | vt

1 1 1
Ps Tss Yss Zss w w

The determinant of the matrix M is given by Rss - (Rs X Rt) = ||[Rs X R:|| e. Thus

1
1 1|Ys %s 119 Z 11Ys Zs
uw =" — @ + 2 5
|Rs x Ryl e (w Yss  Zss Yss Zss lye 2 )
1 X z X z X z
1 1 t t 1 s s 1 s s
v —» + — 3.32
||Rs X Rt” e < Tss Zss w Tss  Zss s Ty 2t > ’ ( )
1 X X X
1 1%t Yt 1|%s  Ys 1[Ts  Ys
w = %) - + v .
||R5 X Rt” € < Tss Yss v Tss  Yss Sl e )
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These functions are well defined if ¢!, 9!, ol vanish to an order greater than m; —2
at each p;. In this case u!, v!, and w! vanish to order

i — (my — D] — (my — 2) = lp; — 2m; + 3. (3.33)
Now consider m* = max{m;, i =1,...,n} and gy, = min{p;, i=1,...,n}.
2m* —3+k

Given k € N, by choosing | > ———— we have lu; — 2m; + 3 > k for each

Hx
i €{1,2,...,n}. This implies (from (3.33)) that U! = (u', v, w!) vanishes to order
greater than k at each p;. Hence Ul € C*(Q2) N C®(Q\ {p1,p2,---,Pn})-
It remains to show that U! is not trivial. Suppose by contradiction that

U'=Ax R(s,t)+B, A,BcR>

Then Ul(p1) = A x Ry(p1) = 0 and U}(p1) = A x R(p1) = 0, which implies that
A = 0. Since U! vanishes at py, then B = 0 and U! = 0, which ends the first case.
Suppose next that the statement holds to order up to j — 1; then for every £ € N
there exist functions U, U?,...,U7"Y € C®(Q\ {p1, - ,pn},R?) N CHQ,R3),
such that each field U™ vanishes to order ¢ at each point p; and
j—1
RI7Y(s,t) = R(s,t) +2) €U (s,1)
r=1
is an infinitesimal bending of order j — 1 of S.
Since U, - -, U7~! vanish to order ¢ at the points p;, the functions F", G", and
H" given by vanish to order 2¢ — 2. Hence their Z-Pushforwards F " ér, and

at the points (; = Z(p;). Thus (by Proposition ) the
20 +m; — 3
Hi

H" vanish to order
i

nonhomogeneous term of equation ([3.23)) vanishes to order p; = —1at

Gi-

By taking ¢ sufficiently large and applying Theorem 2.1 of [LVM], we obtain a
solution h? of (3.23) that vanishes to order ¢ at each point (i, - ,(,, for some q
that will be chosen later. Therefore hY = h/ o Z solves (3.3]) and vanishes to order

qui at the point p;, for every i = 1,--- ,n. Now we construct the field U’ from
, R VAV T .

h7. Once again ¢ = —— 7 = — and these functions would be well
(A =Ny (A=A)

defined if qu; — (m; — 2) > 0. Once again the field U’/ = (u/,v’, w?) is related to
¢’ and v’ via relations (3.5), (3.6) ,(3.7) and in this case

. 1 Sy z Yy 2 ; N lYys 2
W= j|Ys s|_ i +(pf — Fiy s =)
HRS X RtH & (w Yss Zss v Yss Zss (QOS ) Yt 2t
. 1 lxe 2 Y z i i |Ts 2
= — = (i NI e e I I N R
HRS X RtH e ( v Tss Zss w Tss Zss (908 ) Ty 2t
; 1 | Tt Yt i|Ts Y j iy |Ts Y
wl = J _ |t S|y (pd — iy [P Is))) .
HRg X RtH e (Sﬂ Tss Yss Tss  Yss (905 ) Ty Yt

These functions will be well defined if (7, ¢j , gqg and F J vanish to an order greater
than m; — 2 at each p;. In this situation u?, v7, and w’ vanish to order

r; = min{[qu; — (m; — 1)],20 — 2} — (m; — 2). (3.34)
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Let m* and py as in the previous case. Given k € N, take ¢ large enough so
k+2m*—3
Hox .

It follows from (3.34)) that for such choices of ¢ and ¢, we have r; > k for each i
and the field U7 = (u’,v’,w’) vanishes to order k at each p;. This completes the
proof. O

20>k+m* and ¢q>

4. INFINITESIMAL BENDINGS OF GRAPHS OF HOMOGENEOUS FUNCTIONS

In this section we study infinitesimal bendings of surfaces given as graphs of
homogeneous functions. We prove that any such generic surface with nonnega-
tive curvature has nontrivial infinitesimal bendings of high orders. The surfaces
considered here are given by

S ={R(s,t) = (s,t,2(s,1)); (s,t) € R*}, (4.1)

where z is a nonnegative homogeneous function of order m > 2 (with m not neces-
sarily an integer), such that z € C*°(R?\ {0}). We assume that S has nonnegative
curvature and no asymptotic curves. The Gaussian curvature of .S is

ZssZtt — Yoy
(1+23+27)°
It is more convenient here to use polar coordinates s = rcosf, t = rsinf, so
that z = r™P(6), with P(f) € C>°(S!). The assumption that S has no asymptotic

curves implies that P(0) > 0 for all 6 (if P(fy) = 0, then the ray 6 = 6y would be
an asymptotic curve). The second derivatives of z in polar coordinates are:

K(s,t) =

zgs =172 [(m — 1)mcos® 0P — 2(m — 1) sin 6 cos 0P’ + msin® P + P" sin> 4] ,
Zgt = 172 [(m — 2)msin @ cos P + (m — 1) cos(20) P’ — P" sin 6 cos 0] ,
ze =172 [(m — )msin® 0P + 2(m — 1) sin 6 cos 0P’ + mcos® P + P" cos 0] .
It follows that
24 (m — 1) [m*P?(0) + mP(0)P"(0) — (m — 1)P'(6)?] .

ZesZtt — zft =r

From now on we will assume that K > 0 and K vanishes on at most a finite
number of rays § = 6y, --- ,8,. This is equivalent to

[m2P2(9) +mP(0)P"(0) — (m — 1)P'(0)2] >0, VO¢& {61, --,00}. (4.2)

We write in a more convenient form the equation related to the bending fields
UJ = (v/,v7,w?). The functions ¢’ and 17 related to U’ by (3.5) and (3.6]) take
the form

¢ =+ zew?, Y =07 . (4.3)

In this situation equation (3.10]) leads to the following system in polar coordinates
) : FJ
1 (I J .

- <“”j> = A(0) (‘@) +70) | G, (4.4)
r w 0 QZ} I HI
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B 1 Oéu(?", 9) a12(ra 0) i
where A(0) = (m? — m)rm—2P(9) (Ozm(?“, 0) ag(r,0) >’ with

a11(r,0) = (2t — 2ss) sinf cos @ + 2z cos? 0, aq2(r, 0) = —zss,

a1 (r,0) = 2,  oa(r,0) = (20 — 255)sinf cos @ — 2z sin? 0,

: : _ 1 Bu(r,0)  Pa(r,0)  Bs(r,0)
and T'(9) is the matrix T(0) = (mZ = m)r 2P () <’71(7“, 0) 72(r7 9) ’Yi(ﬁ 9)>7

with
B1(r,0) = (—2z54 cos — zy sin ), ~y1(r,0) = —z4 cos b,
Ba2(r,0) = zs5 cos b, Ya(r,0) = —z4 sin 6, (4.5)
B3(rf) = zs5sin 6, v3(r,0) = 255 cOs 0 + 225 8in 6.

Note that it follows from the homogeneity of z that the matrices A and T are
independent of the variable r.
Now we use the change of variable p = rP(6)"/™ to transform (4.4) into

1 (pj Soj " EJ (p,0)
2(2) =r0(5) 10| @ | . (4.6)
’ ? H(p,0)
1 Zs —Zss
where A(6) = (mZ = m)r 2P (0) (Zt: —Zst> has trace 0,
~. j p
T Fipo)\ (" \rwmm?
Hi(p, 0 j
(p,0) HI (oo 9)

Remark 4.1. For j = 1, F! = G' = H! = 0, and the homogenous system (4.6 is
studied in [M3]. It is proved that for every n € N, the surface S has nontrivial first
order infinitesimal bendings fields U € C™(R?) of the form

Ul(r,0) = (r/\Pal(O),r/\Pbl (0),7“’\1““*’”61(9)) , (4.8)
with a', b, ¢! € C>°(S!) and ), an eigenvalue of the system
X'0) = MA(0)X (0). (4.9)

With the first bending U as given by (4.8)), it follows from (2.5) that

F2(7”, 9) _ 7ﬂ2)\p72f1 (0) + T'2>\p72mf2(0),
G*(r,0) = r* " 2g1(0) + 702" gy (0), (4.10)
H?(r,0) = r?72hy (0) + 1r*» 2" hy(6),

where f;, gi, hy € C*°(S') (i = 1,2). For such expressions of F? G? and H?,

equation (4.6) becomes

l (102 — A0 (102 2Xp—2 0 2Xp—2m 0

o) =AO) (o) +p7r T VA(O) +p Va(0), (4.11)
p\¥°/, ey
with Vi, Vo € C>°(S*, R?). We seek solutions of (4.11) in the form

2
@2) = PMTIXL(6) + P2 X (6), (4.12)
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with X1, Xo € C°°(S1,R?). This leads to the following equations for X;, Xo:
P~ o0, — DAOX +VA0) D2 = (20, — 2m + DAG)Xs + Va(0).
(4.13)
It follows from the classical theory of differential equations with periodic coef-
ficients (see Section 2.9 of [YS] for instance) that if V; and V5 are not zero and if
both (2, — 1) and (2, — 2m + 1) are not eigenvalues of the periodic system (4.9),
then has periodic solutions X; and X5 (note that if V; = 0, the correspond-
ing equation has a trivial periodic solution). The next step is to understand the
asymptotic behavior of the spectrum of and show that there exist arbitrarily
large p € N such that (2, — 1) and (2\, — 2m + 1) are indeed not eigenvalues of
[9).

Let J = ( 0 1> and write system (4.9)) in the standard Hamiltonian form

-1 0
JX'(0) = NH(0)X (0), (4.14)
with
hii hi2 _ _ 1 Ztt —Zst
H(®) = <h21 hzz) =JA= (m2 —m)rm=2P(0) <—Zst Zss ) ' (4.15)

The assumption on the curvature K given by implies that the matrix H
is positive except possibly at points 6y, ---, 8, € S'. It follows then from the
Oscillation Theorem (see Theorem V in [YS] pg. 766) that the spectrum (or
equivalently ) consists of a sequence

AL SA <A AT <A <A P < (4.16)

with lim )\;t = 00. To get the asymptotic behavior of )\;t we introduce the following
Jj—o0
functions:

b(0) = /AL () = m)lrmfz BV e — (4.17)

and
@) —h b e dlos)
N e
(4.18)
@) - h e dlog()

b hoy  \/2i2es — 2%, do

Proposition 4.1. Let b, ¢c; and co be as in (4.17), (4.18)) and suppose that c1, co
are elements of L*([0,2n]). Let

27 1 27
by — 0/ D)0 and by =~ O/ (cr(6) — ca(0)) db. (4.19)

The eigenvalues (4.16]) of (4.9) have the following asymptotic behavior as j — oo:

fooo 2 ~. 4.2
N = +b1+0(j> (4.20)
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Proof. Note that b(0) > 0 for 6 £ 6;, i =1, --- | £; this implies by > 0. For ¢ > 0,
consider the Hamiltonian H.(0) = H(0) + <l = faite . Since 2z and
hor  hos +e

Zss are nonnegative, then hi; + ¢ and hoo + € are strictly positive and
Det(H.) = Det(H) + eTrace(H) +¢* >0, VO cR.
Thus matrix H. is positive for every ¢ > 0 and the asymptotic behavior of the
spectrum of the equation
JX! = H.(0)X. (4.21)
is given by (see p.776 [YS])
jm b5 1
Ai-=++0<‘ ,
s b J
where

27 27
-1 hiz 11 92
¢ = [ \/Det(H. 5= — :
b3 / et(H.)df and b5 1 /Det(Hs) ( de
0

h11+€_h22+5
0

Moreover, the hypothesis ¢;, c; € L' and the Dominated Convergence Theorem

imply that by = lim b7 and by = lim b5. Finally, since the monodromy matrix of
e—0t e—0+

(4.21)) is analytic with respect to e, it follows that for j large, )\;E = lim )\fj and

e—0t

the asymptotic expansion (4.20) follows. |
Now we can prove the main results of this section.

Theorem 4.2. Let S C R3 be the graph of a homogeneous function z(s,t) of order
m > 2 and satisfying (4.2). Suppose that conditions in Proposition hold and

b1, by given by satisfy
by —by ¢ 7Z and (2m —1)by —be ¢ 7Z. (4.22)
Then for every k € N, there exist U, U? € C*(R2,R®) such that the deformation
of S given by the position vector
R(s,t) + 2eU(s,t) + 2U?(s,1)
is a nontrivial infinitesimal bending of order 2.

Proof. Let k € N; we already have the first field U' € C* given by ([&.8) (with

p € N large enough). Now we construct U? = (u?,v?,w?) through the functions

©?, % given by ([4.12)) and satisfying ([4.11]). Let

d1 = min g—|—b—2—1,aEZ , 02 = min ﬂ—|—b—2—|—1—2m,a€Z
by b by b

and ¢ = min {01, d2}. It follows from (4.22) that § > 0. Thanks to the asymptotic
expansion (4.20]), we can choose p large enough so that

b
A= 72—7; g (4.23)

)
with |rp| < 3 Now we show that there is no ¢ € N such that

+ _\E
2AF —1=2F
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It follows from (4.20) that

’/T b2
2A;tflf)\qi:(2pfq)a+f*

b 1427, — 7.

)
We can assume with no loss of generality that ¢ > p and thus |ry| < rt This
implies that
s b2
b b
A similar argument shows that there is no g € N such that
+ _
2 —2m 41 =\F.
As a consequence, the periodic system (4.13)) has solutions X;(6), X2(6). We have
2
therefore <52> a solution of (4.11)) in the form (4.12)). Using (3.7)), (3.8), and (3.9),

we get

B
2AE —1- M| > |(2p—q) — 1= [2rp =gl 2 5> 0.

2 2 _ F2 _ H2
U)2 _ w5 + ,(/}t _ T2)\p—m
Zss T 2t
and then from (4.3) and (4.24)) we obtain
u2 _ 7“2)\1’_1&1(9) + 7“2)\p_2m+1042(6),

’U2 _ 7'2)\17_151(9) + ,r2)\p—2m,—',-162(0)7

71(0) + P30 (6), (4.24)

(4.25)

with «;, Bi, 7 € C*(S1) for i = 1,2. By taking p € N large enough, we get
U, U? € CF(R?,R?). O

Theorem 4.3. Let S C R? be the graph of a homogeneous function z(s,t) of order
m > 2 and satisfying (4.2)). Suppose that conditions in Proposition hold and

b1, by given by (4.19) satisfy
(boN+01Z) N (mb1N+ 7Z) = 0. (4.26)

Then for every k,l € N, there exist U', --- ,U" € C*(R2?,R?) such that the defor-
mation of S given by the position vector

R(s,t) + 2eU(s,t) 4 --- 2! U (s, 1)
is a nontrivial infinitesimal bending of order [.

Proof. We use an induction argument on the order [. Suppose that there exist
Ut -, U=t € CF(R%,R?) such that

R(s,t) +2eU(s,t) + - - - 271U (s, 1)

is a nontrivial infinitesimal bending of order | — 1 and for ¢ € {1,---,1 — 1},
Ui(r,0) = (ui(r,0),v(r,0), wi(r,0)), with
wl(r,0) = rPemitiig (0) 4 ... pdre Mo the o (),
VI(r,0) = PTG (0) 4 T B (), (4.27)
wQ(r’ 9) — Tqufm(V1+1)+;L1+1,.yl (0) et rq)\pfm(ua+1)+yg+1,yo_(9) ,
where o, v1, 1, -+ , Vs, liy are integers that depend only on the index g,
a, Biyvi € C(S!) for i = 1,---,0, and where \, is a spectral value of the

equation (4.10) that can be chosen arbitrarily large. Note that the components of
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the bending fields U' and U? constructed in the proof of Theorem [4.2] have the

form given in (L27) (see (L), (23), and (L25)).
It follows from (4.27) that the functions F', G!, and H' defined by (2.5) have
the form

Flr,0) = rPemmsthfy (0) 4o 4 pfhemmertie £(0),

Gl(r,0) = rPommorttig (9) 4o pPemertieg(g), (4.28)
H'(r,0) =rPemmeatiipy (g) 4o 4 pPhommerticn, (),
where 7, s1, t1, -+, Sr, t; are integers that depend only on the index [, and where

fis gi, hy € C®(SY) fori=1,--- 7. With F', G', and H' as in ([4.28)), we construct
the next bending field U! = (u',v', w') through the functions ' and ' given by
(4.3). In this situation equation, (4.6 becomes

1 <Pl le IAp— +t INp— +t
= AO) (o) ATV o pN V() (429)
0 p

p \¥'
with Vy,---,V, € C*(S!,R?). We seek solutions of (4.29)) in the form
!
<il> _ plAp—msl+t1+1X1(0) N pl)\p—msf—i—t.,.—o—lXT(o)’ (430)

with X, -, X, € C*(S' R?). This leads to the following periodic differential
equations for the X;’s:

X10) = (1N, —ms; +t; + 1) A(0) X;(0) + V;(0). (4.31)

By using the asymptotic expansion of the spectral value A\, (with r, arbi-
trarily small for p large enough), an argument similar to that used in the proof of
Theorem @ shows that for p large enough, I\, —ms, +1t, +1 cannot be a spectral
value. Indeed, if there were arbitrarily large p € N such that

Ny —mse +1o +1= Xy,
then necessarily
(I =1Dba + (to + 1)by = mbi5s + (q — Ip)T +7p g,

with r, o — 0 when p,q — oo, which contradicts hypothesis (4.26). This implies
that the system of equations (4.31]) has a periodic solution and so there exist ¢!, !

l _ Fl _ Hl
as in ([4.30) satisfying (4.29)). Since w' = Pa TV n , then it follows from
Zss 2tt
() and (E30) that
l
w = Z rl)\me(sj+l)+tj+2,yj(9) 7
j=1
l
Py — QPl _ stl _ Zrl)\pfmsj+tj+1aj(0) ,
j=1
l
PY— wl _ thl _ Zrl)\pfmstrthrlﬂj(e) )
j=1

Thus for a given k € N, if p is large enough, U' = (u!,v',w') as in ([4.27) is in
1
C*(R2,R?) and R(s,t) + 2 Z /U7 (s,t) is an infinitesimal bending of order I. [
j=1
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Remark 4.4. When m € N, condition (4.26]) reduces to (boN + b Z)N7Z = (.

5. ANALYTIC INFINITESIMAL BENDINGS OF A CLASS OF SURFACES

We describe here the structure of all analytic infinitesimal bendings of a par-
ticular class of surfaces given as the graph of functions of the form s™*2 £ ¢"+2
with m, n positive integers. We show that the space of such infinitesimal bendings
is generated by four arbitrary analytic functions of one real variable. The basic
ingredient needed is the equation in R? given by

" Wyy + Y Wy =0, e=1or —1. (5.1)
To describe the analytic solutions of (5.1]) we will need some technical lemmas.

(m+ k)!

2
7 > XEY™ is uniformly convergent
m! k!

Lemma 5.1. The double series Z (
m,k>0
in the bidisc | X| < 1/4 and |Y| < 1/4.
(m+k)!
m!k!

2
> (W) IXPF Y™ < > (X))t

m,k>0 m,k>0

Proof. Note that < 2m*+k - Therefore

and the conclusion follows. O

1 d?
We will use the following notations: D stands for the operator D = —- el
z™m dz
where z denotes a complex or real variable; and for o, 8 € Z7,

8 B
A3 = [[Ik(a +2) = 1k(a +2)] and Bg = []k(a+2)]k(a+2) +1].
k=1 k=1

We will also denote A§ =1 and B§ = 1.

Lemma 5.2. Let h(z) be a holomorphic function in the disc D(0,R) and let
M(X,Y) be the function defined by

j=0

where

%Dj [R(X™+2)] .

Hy(X™2) =

There exists a positive constant C = C(m,n) that depends only on m,n such that
the function M is holomorphic for |X| < CRY™* and |Y| < CRY"2 . I
particular, if h is an entire function in C, then M is an entire function in C2.

Proof. First note that for ¢ > 0, D(X‘I(m+2)) = [¢(m+2)] [¢(m~+2)— 1}X(q—1)(m+2)
and it is easily verified that for j <g¢
D7 (om0 = A a—ime2)

m
q9=7J
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Let 0 < p < R be arbitrary. For j > 0 and | X|™*2 < p we have

1

D’ [h(XmH)] = o |g\:ph(oDj (C—;(m“) dg

D] (Xx9m+2)y g4

ZWZZ/C pC1+q ) C

_ 1 p+J/ (Xm+2) dg
271'2 I¢|= p<1+J ¢ )

’D][ X7rz+2 ‘< ||h|| Z P+J <|X|m+2> 7

p>0 p P

Thus

where ||h|| denotes the maximum of A in the disc. It follows that

IM(X,Y)| <) [H(X™2)| [y 2
3>0

DI p+g (|X|m+2>p (|Y|”+2)j | (5.2)

j>0p>0 P P P

p+J

Now we estimate the coefficient . For o, B € Z*, we have

P ]

B
= (a+2)* ] ¥* (1 - k(1> < (a+2)%(p)?,

Pt o+ 2)

Ag > 22ﬁﬁk2 1 ! = 2)? 1)P(81)?
2 2 [T (1 gy ) = 2 e 07600

A

™R

=

These inequalities imply that

Am p 2 J A1\ 2

WZZJr]n < (m—i—?) ( (m +2) ) ((p':_{)> ] (5.3)
A A” m+1 (n+2)(n+1) plj!
It follows from estimates and . that

p_,_])) m+2|X|m+2 p (m+2)2 |Y|n+2 J
|M (X, Y)|<||h||z (ph)2 ()2 [m—|—1 p ] [(n+2)(n—|—l) p ] ’

Jp

(5.4)
Finally the conclusion follows from ({5.4) and Lemma where the constant C can
be taken as

o [(%)1/(%2)7 (W)l/(nw} | 655

O

Then we have the following proposition
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Proposition 5.1. Let R > 0 and C given in (5.5). A function w is an analytic
solution of (5.1)) for |z|, |y| < R if and only if there exist h*, h?, h* and h* analytic

R m—+2 R n+2
functions of one real variable t in the interval |t| < min (C> , <C)

such that

w(e,y) = Y [Hy(@™2) + e Hy (2™ 2) + y B (@) + ayHy (o™ 2)] g2,
p=0

(5.6)
where )
Hl (™) = (;{2 DP (h'(z™*?)) fori=1, 2;
(5.7)

i(,.m (_5)1) if.m .
Hp(z +2) = TgDp (h (z +2)) fori=3, 4,

In particular, w is analytic on R? if and only if hi, ha, hs and hy are analytic on
R.

Proof. Suppose that w(z,y) is an analytic solution of (5.1)). We expand w with

respect to y as:
=D o)y’ (5.8)
j=0

where the o are real analytic functions of . Equation (5.1 leads to

n—1
> G +2)G + Damagpa(x)y’ + Z [ +2)(j + Da"aypa(x) + eaff_, ()] v’ = 0.
j=0
Therefore,

ar(z) =0 fork=2,---,n+1,

—€ 5.9

ag(z) = mDak_(n+2) fork>n+2, (5.9)
where D is the operator defined above. It follows at once by induction from (5.9)
that o, = 0 whenever k£ and k — 1 ¢ (n+2)Z7*.

For k = n + 2, we have ay, 42 = A—Dao and then for k = 2(n 4 2) we get
1
—¢ (—2)? 2
DT Do) Rmt2) -1 T Ay
An induction shows that
Qp(n+2) = (A") DPag,  apmizy+1 = (B”) DPay . (5.10)

Since each 42y and vy, 4-2)41 is an analytic function of x, then (5.10) imposes

restrictions on the power series representations ag(z E aj:c] and al( ) =

Z bjxj . Indeed, we have

—€ = . . (m
Oga(z) = AnDao( x) = FZ;(;-QWJ (m+2)
1 ]:2
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and so ag = -+ = am4+1 = 0. This gives
_E 0
any2(2) = o Y [k+ (m+ 2k + m+ D]t miz)2®
1 k=m+42

By repeating the above argument and an induction on the relation o, y1)(nt2) =
M Davy 42y (with M nonzero constant), we can prove that

a; =01if j #q(m+2) and j #q(m+2)+1 withge Z.
We have then

OZQ(.’L‘) = Z ar(m+2)$r(m+2) + Z ar(m+2)+1xr(m+2)+1 )

r=0 r=0
Let hl(t) = Zar(m+2)tr and h2(t) = Zar(mH)HtT. Then
r=0 r=0
ao(x) = h' (z™2) + zh? (2™ T2) . (5.11)

Similar arguments show that there exist analytic functions h3(¢) and h*(t) such
that

oy (x) = h3 (™) + xht(z™T?). (5.12)

Expression (5.6) of the proposition follows from (5.8), (5.9), (5.10), (5.11), and
(5.12) and the convergence follows from Lemma Conversely, given analytic

functions h', k%, h3 and h* as in the statement of the proposition, it is clear that
the function w(x,y) defined by (j5.6)) is an analytic solution of the (5.1)) O

For m,n € Z*, let S, ,, C R3 be the surface given by
Smon = {(s,t,s7n+2 —|—5t”+2), (s,t) € RQ} .

Denote by IB,,, »(p) the space of real analytic infinitesimal bendings of Sy, ,, in the
square |s| < p, [t| < p, with 0 < p < oo, and by A(p) the space of R-valued real
analytic functions in the interval (—p, p). Then we have the following theorem.

Theorem 5.1. IB,, ,(p) is isomorphic to A(p)*.
Proof. Let U(s,t) = (u(s,t),v(s,t),w(s,t)) € IB,,n(p). In this particular case the
system of equations becomes
us + (m+2)s™w, =0
ug 4 vs + (m+2)s" M wy +e(n + 2" w, =0
v +e(n+ 2)t"+1wt =0
As in [V] we can reduce this system into a single equation for w to obtain
(m+2)(m+1)s"wy +e(n+2)(n+ 1)t"wss =0, (5.13)

and any solution of (5.13]) gives rise to an infinitesimal bending U. Equation ({5.13]
is equivalent to (5.1)) through the linear change of variables x = Ps and y = Qt

where
2

= [(m+2)(m + 1)]7= [(n +2)(n + 1)} 71 |

P
Q = [(n +2)(n+ 1)) [(m + 2)(m + 1)) 77
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when mn # 4. When mn = 4, another simple linear change of variables transforms

equation (5.13)) to (5.1). Proposition establish an isomorphism between real
analytic solutions of (5.13) and A(CpH*)* (for some C and p positive) and thus

between 1B, ,,(p) and A(Cp*)* . Finally, since A(Cp*) is clearly isomorphic to
A(p), this completes the proof. O

Remark 5.2. Tt should be noted that surfaces given as graphs of functions of the
form f(s) + g(t) are bendable and some bendings are given in [D]. However, the
above theorem characterizes all real analytic infinitesimal bendings.

Acknowledgements. Part of this work was done when the first author was vis-
iting the Department of Mathematics & Statistics at FIU (Florida International
University). He would like to thank the members of the institution for the support
provided during his visit.

REFERENCES

[AU] Achil'diev, A. 1., & Usmanov, Z. D., Rigidity of a surface with a point of flattening,
Matematicheskii Sbornik, 115(1)(1967), 89-96.

D] Dorfman, A. G., Solution of the Bending Equation for Certain Classes of Surfaces,
Uspekhi Matematicheskikh Nauk, 12(2)(1957), 147-150.

[LVM] de Lessa Victor, B., & Meziani, A., A Generalized CR equation with isolated singularities,
preprint (2021).

M1] Meziani, A., Nonrigidity of a class of two dimensional surfaces with positive curvature
and planar points., Proceedings of the American Mathematical Society, 141.6 (2013),
2137-2143.

M2] Meziani, A., Infinitesimal Bendings of Surfaces With Nonnegative Curvature, Recent
Progress on Some Problems in Several Complex Variables and Partial Differential Equa-
tions: International Conference, Partial Differential Equations and Several Complex Vari-
ables, Wuhan University, Wuhan, China, June 9-13, 2004 [and] International Conference,
Complex Geometry and Related Fields, East China Normal University, Shanghai, China,
June 2-24, 2004, Vol. 400, American Mathematical Soc., 2006.

[M3] Meziani, A., Infinitesimal bendings of homogeneous surfaces with nonnegative curvature,
Communications in Analysis and Geometry, 11(4) (2003), 697-719.

[M4] Meziani, A., Solvability of planar complex vector fields with applications to deformation
of surfaces, Complex Analysis, Birkhauser Basel (2010), 263-278.

[N] Niordson, F. I. Shell Theory, North-Holland Series Appl. Math. and Mechanics, Vol. 29,
Amesterdam, (1985).

[P] Pogorelov, A. V. Bendings of surfaces and stability of shells, Nauka, Moscow: Engl.
Transl. AMS, Providence, R.I. (1988).

R] Rozendorn, E. R. Surfaces of negative curvature, Geometry III, Springer, Berlin, Heidel-
berg, (1992), 87-178.

[S] Sabitov, I. K. Local theory of bendings of surfaces, Geometry I1I, Springer, Berlin, Hei-
delberg, (1992), 179-250.

U] Usmanov, Z. D., On infinitesimal deformations of surfaces of positive curvature with an
isolated flat point, Mathematics of the USSR-Sbornik, 12(4) (1970), 595-614.

V] Vekua, I.N., Generalized Analytic Functions, Pergamon Press, (1962).

[YS] Takubovich, V. A., & Starzhinskii, V. M., Linear Differential Equations with Periodic
Coefficients, Wiley, (1975).

DEPARTAMENTO DE MATEMATICA, INSTITUTO DE CIENCIAS MATEMATICAS E DE
CoMPUTAGAO (ICMC), UNIVERSIDADE DE SAO PAULO (USP), SA0 CARLOS (SP), BRAZIL.
Email address: brunodelessa@gmail.com

DEPARTMENT OF MATHEMATICS, FLORIDA INTERNATIONAL UNIVERSITY, Miami, FL,
33199, USA.

Email address: meziani@fiu.edu



	1. Introduction
	2. Definitions and Equations for Bending Fields
	3. Surfaces with Nonnegative Curvature and Flat Points
	4. Infinitesimal Bendings of Graphs of Homogeneous Functions
	5. Analytic Infinitesimal Bendings of a Class of Surfaces
	References

