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In this work we study some properties of the non-Abelian, classically conformally invariant, three-
dimensional UðNÞ supersymmetric Chern-Simons coupled to a scalar superfield in the fundamental
representation of UðNÞ, in the large N limit. In leading order in 1=N we show that the theory has two
phases: one in which it remains conformally invariant, and other where the superconformal symmetry is
broken and masses for the matter fields are generated.
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I. INTRODUCTION

The AdS=CFT correspondence [1] is an exact duality
between quantum theory of gravity containing the anti–de
Sitter space AdSdþ1 and conformal field theories in d
dimensions. Despite the fact that we know how to translate
the calculation from one side to the other in the corre-
spondence, the most difficult point is to find which
quantum gravity theory is dual to the corresponding
conformal field theory, since one or both of them could
be strongly coupled. The large N limit of OðNÞ and UðNÞ
Chern-Simons theory coupled to scalar fields in the
fundamental representation is conjectured to be dual to
Vasiliev’s higher spin gravity theory on AdS4 [2,3], and in
this case both sides of the correspondence are weakly
coupled. This fact has attracted the attention on the large N
limit of Chern-Simons theories [4–11] coupled to matter
fields, both scalars or fermions. More recently, spontaneous
breaking of the conformal symmetry was studied in differ-
ent models containing a nonsupersymmetric Chern-Simons
term [12–14], and in a supersymmetric (SUSY) version for
a truncated large N limit or perturbative expansions in
[15–17].
In this work we study the possibility of a dynamical

breaking of the superconformal symmetry in a SUSY
(N ¼ 1) non-Abelian Chern-Simons theory coupled to
scalar superfields. We work directly in superfield formal-
ism, which means that each supergraph contains all
possible contributions of the component fields when we
integrate the Grassmann coordinates.
This work is organized as follows: In Sec. II the model is

presented in terms of superfields and following the methods
of [18] in its supersymmetric version, several components
of the fields are shifted in a classical background superfield
and a quantum part. After obtaining the leading contribu-
tion for the classical action in the 1=N expansion, in Sec. III

we determine the one-loop part, obtaining a surprisingly
simple result in such limit, similar to the one obtained in
[19] for a nonsupersymmetric electrodynamics. In Sec. IV,
following standard methods of D algebra [20,21], we write
down the superfield propagators and we determine the
remaining contributions at leading order in N and up to
order g2. We obtain the effective potential, which is exact in
λ (the marginal coupling constant) and up to order Oðg2Þ
and leading order in N. In Sec. V we solve the “gap
equations,” analyzing the possibility of dynamical breaking
of superconformal symmetry, finding a nonbreaking phase,
where no masses are generated for any of the fields, and a
massive phase, where superconformal symmetry is broken.
Finally the last section is devoted to the discussion and
conclusions.

II. THE N = 1 SUSY CHERN-SIMONS-MATTER
MODEL

The N ¼ 1 three-dimensional UðNÞ SUSY Chern-
Simons (SCS) model is defined by the classical action
(see [22]):

SCS ¼
Z

d5ztr

�
ΓαWα þ

ig

6
ffiffiffiffi
N

p fΓα;ΓβgDβΓα

þ g2

12N
fΓα;ΓβgfΓα;Γβg

�

¼
Z

d5ztr

�
−
1

2
ΓαDβDαΓβ −

ig

3
ffiffiffiffi
N

p ΓαΓβDβΓα

−
ig

3
ffiffiffiffi
N

p ΓαΓβDαΓβ−
g2

6N
ΓαΓαΓβΓβ−

g2

6N
ΓαΓβΓαΓβ

�

ð1Þ

where the fields and notations are given in Eqs. (3)–(7),
below. We are interested in the study of the possible super-
conformal invariance breaking and mass generation of the
SCS interacting with the massless and self-interacting
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matter field, so we introduce the following matter
Lagrangian:

Smat ¼
Z

d5z

�
−
1

2
ð∇αΦÞ†ð∇αΦÞ þ

λ

2N
ðΦ†ΦÞ2

�
ð2Þ

where

∇α ¼ Dα − i
gffiffiffiffi
N

p Γα; Dα ¼ ∂α þ iθβ∂βα α; β ¼ 1; 2;

ð3Þ

Wα ¼
1

2
DβDαΓβ −

ig

2
ffiffiffiffi
N

p ½Γβ; DβΓα� −
g
6N

½Γβ; fΓβ;Γαg�;

ð4Þ

Γα ¼ χα − θαB − iθβAβα − θ2ð2ρα − i∂αβχβÞ; ð5Þ

Γα ¼ Γα
ATA; TA ∈ uðNÞ A ¼ 1; 2…N2; ð6Þ

Φa ¼ ϕa þ θαψa
α − Faθ2 a ¼ 1; 2…N: ð7Þ

Our metric is gμν ¼ diagð−;þ;þÞ and the spinorial
indices (α, β ¼ 1, 2) are raised and lowered by Cαβ ¼
−Cαβ ¼ τ2 (the second Pauli matrix), to know Γα ¼ CαβΓβ

and Γα ¼ ΓβCβα. The spinorial derivative ∂α is defined by
∂α ¼ ∂

∂θα, and θ2 ¼ 1
2
θαθα.

The spinorial gauge superfield Γα is in the adjoint
representation of the group and the scalar matter superfield
Φ ¼ ½ϕa� with a ¼ 1; 2.::N is in the fundamental repre-
sentation. The spinorial superfield Γα is composed, in the
Wess-Zumino gauge, by the gauge potential Aμ ¼
− 1

2
ðγμÞαβAαβ (where γμ are Dirac matrices, α, β ¼ 1, 2

are spinorial indices and μ, ν ¼ 0, 1, 2 are space-time
indices) and the gaugino ρα. In a SUSY covariant gauge (in
which we will work) it has yet the auxiliary fields χα and B.
The vector superfield Φa is composed by the scalar matter
field ϕa, the spinorial field ψα

a and the auxiliary field Fa.
The two parameters g and λ are dimensionless and the

model is classically conformally invariant. To favor the
study of the model in the 1=N expansion, we introduce, in
the way of Coleman et al. [18], the extra term

Saux ¼ −
Z

d5z
1

2

�
Σ −

ffiffiffiffi
λ

N

r
Φ†Φ

�2

ð8Þ

where Σ is a real, scalar, UðNÞ singlet superfield. This
added term does not affect the dynamics of the original
theory, since after functionally integrating over Σ (a trivial
Gaussian integral), it gives an irrelevant constant multi-
plying the original generating functional. Note that (8)
eliminates the quartic term in (2). The consequence of this
is the reduction of the infinite number of diagrams

contributing at leading order and involving Φa loops
(Fig. 1) to a single one-loop diagram.
To fix the gauge, we introduce the following (SUSY

covariant) gauge fixing and Faddeev-Popov (FP) ghost
actions

Sgf ¼ −
Z

d5z
1

2α
trfDαΓαDβΓβg; ð9Þ

SFP ¼
Z

d5ztr

�
c†D2c − i

g

2
ffiffiffiffi
N

p c†½DαΓα; c�

− i
g

2
ffiffiffiffi
N

p c†½Γα; Dαc�
�
; ð10Þ

where the FP ghost fields are in adjoint representation of
the group c ¼ cATA with A ¼ 1;…; N2.
The effective potential defined by Veffðbc; σcÞ≡

−ð1=L3ÞSeffðbc; σcÞ, where Seff is the effective action for
classical constant fields, and L3 is the volume of the space-
time, can be calculated by the functional method of Jackiw
[23] (see also [24]). This requires us to shift the superfields
as follows:

ϕ1 → φþ
ffiffiffiffi
N
2

r
bc; ð11Þ

Σ → Σþ
ffiffiffiffi
N
λ

r
σc; ð12Þ

ϕk → ϕk k ¼ 2; 3 � � �N; ð13Þ

Γα → Γα; ð14Þ

with bc and σc being real constant (in xμ) classical back-
ground superfields: bc ¼ b1 − θ2b2 and σc ¼ σ1 − θ2σ2. Γ
and Σ are Hermitian quantum fields and φ and ϕk are
complex quantum fields chosen to have zero expectation
value, at any order of approximation. From the effective
potential Veffðbc; σcÞ obtained by this method, the potential
VeffðbcÞ of the original theory can be obtained by solving
the auxiliary field equation of motion: ∂Veff=∂σc ¼ 0.
The calculation of these effective potentials, by the

functional method, requires the shift of the quantum fields
by their possible non-null, classical expectation values,
including components in the direction θ2 (σ2 and b2, in our
case). These components explicitly break supersymmetry

...........

FIG. 1. Vacuum bubbles contributing at order N.
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which makes the calculations with superfields very
involved. A formalism of superfields in the presence of
broken SUSY, for 2þ 1 D, was developed in [25] for scalar
fields and extended to gauge fields in [26]. One example of
a calculation using this method can be seen in [27], for the
2þ 1DWess-Zumino model. Happily, in order to study the
possibility of conformal symmetry breaking and mass
generation, it is enough to calculate the effective potential
up to linear dependence in the θ2 components (σ2 and b2, in
the present paper) [17,28,29]. The result obtained in this
way is called the Kähler effective potential [21]. In super-
field formalism, this approximation can be achieved by
throwing away terms in Dαbc and Dασc [30], in the
calculation of the radiative corrections, which means to
use the rules Dασc ¼ σcDα and Dαbc ¼ bcDα, even if not
taking b2 and σ2 equal to zero in bc and σc.
An observation is in order. For non-Abelian gauge

theories, the number of Feynman graphs involved in the
leading order of 1=N, in the Rξ gauges is infinity (all the
planar diagrams), as first advanced by ’t Hooft [31]. So, by
following Kang [19], we will consider the extra approxi-
mation g ≪ 1, stopping the calculations at order g2 (no
restriction is needed with respect to the order of the self-
coupling constant λ). In this approximation we will have
contribution of diagrams until to two loops. For light-cone
gauge calculations see for example [10,11,32].
After shifting the fields as in Eqs. (11)–(14) the action

results in the sum of (i) the classical term

Γcl ¼ N
Z

d5z

�
−
1

4
DαbcDαbc þ

1

2
σcb2c −

1

2λ
σ2c

�
; ð15Þ

and (ii) the quadratic part (in the quantum fields) given by

S2 ¼
Z
d5z

�
ðΦaÞ†ðD2 þ σcÞΦa

þ 1

2
Γα
11

�
Θαβ þ g2b2c

2
Cαβ

�
Γβ
11

þ Γ�α
1j

�
Θαβ þ

g2b2c
4

Cαβ

�
Γβ
1j

þ 1

2
Γα
jiΘαβΓ

β
ij þ i

gffiffiffi
2

p bcΓα
11ðDαφ −Dαφ

†Þ

þ i
g

2
ffiffiffi
2

p ðΓα
1jDαϕ

j − Γ�α
1jDαðϕjÞ†Þ

þ
ffiffiffi
λ

2

r
bcΣðφþ φ†Þ − 1

2
Σ2 þ c†D2c

�
; ð16Þ

where a ¼ 1;…; N and i; j; k ¼ 2;…; N. We also wrote
Γα
j1 ¼ Γ�α

1j in convenient places, (iii) the interaction trilinear
terms

S3 ¼
Z

d5z

�
−i

g

2
ffiffiffiffi
N

p ððΦiÞ†Γα
ijDαΦj −DαðΦiÞ†Γα;jiΦjÞ

þ
ffiffiffiffi
λ

N

r
ΣðΦiÞ†Φi þ

ffiffiffiffi
λ

N

r
Σφ†φ − i

g

3
ffiffiffiffi
N

p ΓαΓβDβΓα

þ i
2g

3
ffiffiffiffi
N

p ΓαΓβDαΓβ − i
g

2
ffiffiffiffi
N

p c†½DαΓα; c�

− i
g

2
ffiffiffiffi
N

p c†½Γα; Dαc�
�
; ð17Þ

(iv) and the quadrilinear terms

S4 ¼
Z

d5z

�
−

g2

6N
ΓαΓαΓβΓβ −

g2

6N
ΓαΓβΓαΓβ

þ g2

2N
ΓαΓαðΦiÞ†Φi þ g2

2N
ΓαΓαφ

†φ

�
: ð18Þ

An action linear in the quantum fields, not involved in
the calculations, was omitted. For later use we define

O ¼ D2 þ σc; ð19Þ

Θαβ ¼ −DβDα −
DαDβ

α
; ð20Þ

Παβ ¼ Θαβ þ g2b2c
4

Cαβ; ð21Þ

~Παβ ¼ Θαβ þ g2b2c
2

Cαβ: ð22Þ

For future use, we must observe that by integrating the
quadratic Lagrangian S2, in the anticommuting dimensions
θ we can verify that the ϕ1 fermionic and bosonic
component fields have mass parameters m2

F ¼ ðλσ1Þ2
and m2

B ¼ ðλσ1Þ2 − λσ2, respectively.

III. ONE-LOOP CONTRIBUTIONS TO THE
KÄHLERIAN EFFECTIVE POTENTIAL

From the expression (16) we can read directly the inverse
propagator matrices for the superfields. The first one is
given by

1

2
Γα
ijΘαβδjkδilΓ

β
kl

where i, j ≥ 2. The corresponding one-loop contribution to
the effective action will be (the minus sign comes from the
integration in the fermionic fields Γ)

SΓ1 ¼ −i
ðN − 1Þ2

2
log detΘαβ; ð23Þ

which is a term of order N2, but independent of the
background fields, and therefore an irrelevant additive
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constant contribution to the effective potential. Another N2

order term is given by the one-loop contribution of the
ghost fields:

SC1lp ¼ −iN2 log detD2; ð24Þ

which is again an irrelevant constant. The following term is
of order N and mixes the fields Γ and Φ,

ð ðΦiÞ† Γ�α
j1 Þ

� δikO i
2
ffiffi
2

p gbcδilDβ

− i
2
ffiffi
2

p gbcδjkDα δjlΠαβ

��
Φk

Γβ
l1

�
:

ð25Þ

If we call M this quadratic operator we have (see
Appendix A)

detM ¼ detðδikOÞ detðδjlΠαβÞ detðCα
β − Π−1γ

α DγO−1DβÞ:
ð26Þ

The determinant of Παβ is given by

detΠαβ¼det

�
1

2
CαβCγδΠγαΠδβ

�

¼det

�
ΘγαΘγαþðgbcÞ2Θα

αþ1

2
ðgbcÞ4

�

¼det

�
□þ1

8
ðα−1ÞðgbcÞ2D2−

1

8
αðgbcÞ4

�
: ð27Þ

For simplicity we work in the Landau gauge, α → 0.
In this gauge, unless for multiplicative irrelevant constants,
we have

detΠαβ ¼ det

�
D2 −

1

8
ðgbcÞ2

�
: ð28Þ

As we can see from the result for ln detO, below [by
doing the substitution σc → ðgbcÞ2], this contribution starts
at order ðgbcÞ4 and is so, out of the approximation that we
are considering.
Taking into account the expression for the propagators of

the superfields (34)–(36) it can be shown that the last term
in the expression of detM has the form

detðCα
β − Π−1γ

α DγO−1DβÞ

¼ 1 − α
g2b2c
8

tr

��
D2 − α

g2b2c
8

�
−1
ðD2 − σCÞ−1

�

þOððgbcÞ4ÞÞ: ð29Þ

In the Landau gauge, α → 0, the contribution to
ln detΠαβ is zero up to the order g2. So, the only
contribution of detM to the effective action reduces to

SΦ;Γ1lp ¼ iðN − 1Þ log detðD2 þ σcÞ
¼ iðN − 1Þtr logðD2 þ σcÞ ð30Þ

¼
Z

d2θd3x
d3p
ð2πÞ3 hθjhxjjpihpj lnðD

2þσÞjxijθi ð31Þ

which, in the (Kählerian) approximation Dασc ¼ σcDα,
results in

S1lp ¼ −
NL3

8π

Z
d2θσcðσ2cÞ1=2

¼ −L3N
jσ1jσ2
4π

þOðg4Þ þOðN0Þ: ð32Þ

This simple form for the one-loop large N potential occurs
also in nonsupersymmetric gauge theories (see [19] for
example). It can also be seen that this result is the first
(linear) term in the expansion, of the exact one-loop
calculation [27] in powers of σ2.
The last quadratic operator involving the remaining

fields is given by

1

2
ðΣ φ Γα

11 Þ

0
B@

−1
ffiffiffiffiffi
2λ

p
bc 0ffiffiffiffiffi

2λ
p

bc 2O −i
ffiffiffi
2

p
bcDβ

0 −i
ffiffiffi
2

p
bcDβ

~Παβ

1
CA

×

0
B@

Σ
φ†

Γβ
11

1
CA ð33Þ

but as can be seen, its contribution will be of subleading
order in the 1=N expansion.

IV. TWO-LOOP CONTRIBUTIONS TO THE
KÄHLERIAN EFFECTIVE POTENTIAL

Following standard procedures and identities for the
inversion of block matrix operators (see Appendix A), we
can compute the superfield propagators:

hTΦiðk; θÞΦ†
jð−k; θ0Þi ¼ −iδij

D2 − σc
k2 þ σ2c

δð2Þðθ − θ0Þ

þOðαðgbcÞ2Þδð2Þðθ − θ0Þ; ð34Þ

hTΓα
ijðk; θÞΓβ

klð−k; θ0Þi ¼ −
i
4
δilδkj

�
DβDα þ αDαDβ

k2

�

× δð2Þðθ − θ0Þ; ð35Þ

hTΓ�α
1i ðk; θÞΓβ

1jð−k; θ0Þi ¼ −
i
4
δij

�
DβDα þ αDαDβ

k2

�

× δð2Þðθ − θ0Þ: ð36Þ
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In order to classify the possible vacuum diagrams
contributing to the effective potential we must take into
account the following observations:
Observation 1: Beyond two loops all diagrams contribute

at order at least g3; so, up to order g2, it is enough to analyze
two-loop diagrams.
Observation 2: Nonplanar diagrams are suppressed by

factors of 1=N2 [31,33], and therefore it is only necessary to
analyze the planar ones.
Let us start by analyzing the set of diagrams in Fig. 2,

where i; j; k; l ¼ 2;…; N, and the double line notation of ’t
Hooft [31] for the gauge fields is used (see Fig. 3).
Using the expression for the superfield propagators (34)–

(36) we get the following results: Figure 2(a): Oðg2Þ and
OðNÞ, vanishing contribution in dimensional regulariza-
tion. Figure 2(b):Oðg2Þ andOðN2Þ, vanishing contribution
in dimensional regularization. Figure 2(c): Oðg4Þ and
OðNÞ, we will disregard it. Figure 2(d): Oðg2Þ and
OðNÞ, vanishing contribution in dimensional regulariza-
tion. Figure 2(e): Oðg4Þ and OðNÞ, we will disregard it.
The remaining diagrams to analyze are depicted in

Fig. 4. Figure 4(b) is of order N0; so, the only nonvanishing
contribution to the effective potential is given by Fig. 4(a)
(for details see Appendix B),

D3ðaÞ ¼
g2

8
N
Z

d2θ
d3kd3p
ð2πÞ6

σ2c þ kp
ðk2 þ σ2cÞðp2 þ σ2cÞðpþ kÞ2

þOðN0Þ: ð37Þ
The integral in the momenta is divergent. By using

dimensional reduction [34], through the substitution
d ¼ 3 − ϵ, and introducing an arbitrary mass scale, by
the substitution d3k=ð2πÞ3 → μϵddk=ð2πÞd, we obtain

L−3N−1S2lp ¼
Z

d2θ
g2

64π2
σ2c
2

×

�
1

3 − d
þ 2 − γE − log

σ2c
4πμ2

�
: ð38Þ

Now by adding (15), (32) and (38) we have

L−3N−1S ¼
Z

d2θ

�
−
1

4
DαbcDαbc þ

σcb2c
2

−
σcðσ2cÞ1=2

8π

�

ð39Þ
þ
Z

d2θ
σ2c
2

�
−

1

λ0
þ g20
64π2

�
1

3 − d
− γE þ 2

− log
σ2c

4πμ2

��
ð40Þ

where we called λ0 and g0 the unrenormalized coupling
constants.

V. RENORMALIZATION

First of all, we can rewrite the effective potential in
component fields by integrating over d2θ (taking the

i i

j

i
j k

i 1
i j

i j

k

i j

1

(a) (b) (c)

(d) (e)

1

FIG. 2. Two-loop diagrams. (a), (b) and (d) are Oðg2Þ diagrams. (c) and (e) are Oðg4Þ diagrams.

i

j

k

l

i j

(a) (b)

FIG. 3. (a) represents the superfield propagator hΓα
ijðk; :θÞ

Γβ
klð−k; θ0Þi while (b) represents the propagator hΦiðk; θÞ

Φ†
jð−k; θÞi.

i j 1 i

(a) (b)

FIG. 4. Nonvanishing two-loop diagram (a) and nonvanishing
subleading two-loop diagram (b).
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Grassmannian measure normalized as
R
d2θθ2 ¼ −1). The

connection between the effective action and the Kählerian
effective potential is given by S ¼ −

R
d5zKeff ; the effective

potential is, by definition Veff ¼
R
d2θKeff . After integra-

tion in θ we get

N−1Veffðσ1; σ2; b1; b2Þ

¼ −
1

2
b22 −

1

2
ðσ2b21 þ 2b1b2σ1Þ þ

1

λ0
σ1σ2 þ

jσ1jσ2
4π

− g20
σ1σ2
ð8πÞ2

�
1

3 − d
− γE þ 1 − log

σ21
4πμ2

�

þOðg4Þ þOð1=NÞ: ð41Þ

Before solving the gap equations, we need to renorm-
alize the effective potential. Up to Oðg2Þ, the gauge
coupling g0 does not need an infinite renormalization
and for simplicity we choose the finite renormalized gauge
coupling as g ¼ g0; the finite renormalized λ is chosen as

1

λ
¼ 1

λ0
−

g2

64π2

�
1

3 − d
þ 1 − γE þ logð4πÞ

�
: ð42Þ

With these choices the renormalized effective potential
has the following form

N−1VR
effðσ1; σ2; b1; b2Þ

¼ −
1

2
b22 −

1

2
σ2b21 − b1b2σ1 þ

jσ1jσ2
4π

þ σ1σ2
λ

þ g2

64π2
σ1σ2 log

�
σ21
μ2

�
þOð1=NÞ þOðg4Þ:

ð43Þ
As the gauge coupling constant g (related to the CS level

parameter by the substitution Γα → g−1=2Γα) does not need
an infinity renormalization; it does not run with the energy
scale, in agreement with other authors’ results [34]. For the
matter superfield self-coupling, λ, we can see from the
expression (43) that

�
μ2

∂
∂μ2 þ

�
g
8π

�
2

λ2
∂
∂λ

�
Veff ¼ 0; ð44Þ

from which it immediately follows that

λðμ0Þ ¼ λðμÞ
1 − λðμÞð g

8πÞ2 log μ02
μ2

: ð45Þ

This result shows that in the absence of the interaction
with the CS field [that is, in the pure UðNÞ vector matter
model], λ does not need an infinite renormalization and
does not run, in agreement with previous authors’ results
[35], in the presence of the interaction with the CS; instead,
it runs with the result λ → 0 for μ0 → 0 and has a Landau

pole for μ0=μ big enough. If this result remains in the exact
leading 1=N approximation, or is an artifact of the
truncation of the series in Oðg2Þ, it can only be decided
by a higher order calculation (work in progress) [32].
An observation is important. The singularity in (43),

when λ → 0, is an artifact of the way we defined the
auxiliary field Σ (and their expectation value σc). Our
choice was convenient to simplify the renormalization of
the coupling constants, not requiring a wave function
renormalization. For λ ¼ 0 the introduction of Σ and σc
through the addition of the term (8) would not even be
needed at all. To make this fact more explicit, from now on
we will redefine the field σc as σc → λσc and make an
additional finite renormalization of 1=λ to absorb an extra
ðg2=64π2Þ lnðλ2Þ factor. In terms of these new fields the
effective potential becomes

N−1VR
effðσ1; σ2; b1; b2Þ

¼ λσ2

�
−
b21
2
þ σ1 þ λ̂jσ1j þ ĝ2λσ1 ln

σ21
μ2

�

−
b22
2
− λσ1b1b2 þOð1=NÞ þOðg4Þ; ð46Þ

where we defined λ̂≡ jλj=4π > 0 and ĝ≡ g=8π.

A. Gap equations and mass generation

The gap equations corresponding to the above VR
eff are

given by

0 ¼ ∂V
∂σ2 ¼ −λ

b21
2
þ λσ1

�
1þ λ̂ϵðσ1Þ þ λĝ2 ln

σ21
μ2

�
; ð47Þ

0 ¼ ∂V
∂σ1 ¼ −λb1b2 þ λσ2

�
1þ λ̂ϵðσ1Þ þ λĝ2 ln

σ21
μ2

�
; ð48Þ

0 ¼ ∂V
∂b2 ¼ −b2 − λb1σ1; ð49Þ

0 ¼ ∂V
∂b1 ¼ −λσ1b2 − λσ2b1; ð50Þ

where ϵðσ1Þ is the sign of σ1.
Our expression (46) for the effective potential has the

form of a perturbative (in the coupling ĝ) correction to the
leading 1=N potential, of the pure SUSY UðNÞ vector
matter model. As discussed in [36], the solutions of these
gap equations must be chosen as perturbative corrections
(in ĝ2) to that of the pure matter model; this model has been
studied, in the last 30 years, by several authors, by using
different methods, as for example, variational approxima-
tion in [35], 1=N approximation in [37,38] [33, 34] and
functional renormalization group analyses in [39]. Using
Eqs. (49) and (50) to eliminate b2 and σ2, we have the
effective potential:

J. M. QUEIRUGA and A. J. DA SILVA PHYSICAL REVIEW D 95, 025019 (2017)

025019-6



Veff ¼
λ2

2
σ21b

2
1 ≥ 0: ð51Þ

In this expression, σ1 and b1 are related by (50). The
SUSY preserving minima (Veff ¼ 0) occur for the direc-
tions σ1 ¼ 0 and b1 ¼ 0.
The possible phases that the model can have are

(a) For λ̂≡ jλj=4π ≠ 1, starting with the line of minima
σ1 ¼ 0 (or with b1 ¼ 0), as a consequence of the gap
equations, we have σ1 ¼ σ2 ¼ b1 ¼ b2 ¼ 0. This
solution corresponds to a phase in which SUSY and
UðNÞ symmetry are preserved.

(b) Besides the solution (a), for λ̂ ¼ 1, we can also have
the solution b1 ¼ b2 ¼ 0 and σ1 ¼ −μ, arbitrary. As a
consequence of the Kählerian approximation, the
value of σ2 does not get determined by the gap
equations, but from the fact that the minimum of
the potential is zero (which implies that SUSY is
preserved), its value can be inferred to be σ2 ¼ 0. In
this phase, the mass of the fermionic component of the
matter superfield m2

F ¼ ðλσ1Þ2 and the mass of the
bosonic matter component m2

B ¼ λ2σ21 − λσ2 ¼ m2
F ¼

μ2 are equal and non-null. We have mass generation
for the matter fields and breaking of the UðNÞ and
scale symmetry.

We must observe that for λ̂ ¼ 1, the solution σ1 ≠ 0,
arbitrary, is already present in the pure matter model
(g ¼ 0) [35]. The new fact introduced by the coupling to
the CS field is that this value is the scale parameter (μ)
introduced in the definition of the dimensional reduction
regularization. If we solve the gap equations (47)–(50) for
g ≠ 0 we obtain again a massless and massive phase. In the
massive phase only σ1 is nonzero, and, since in our
approximation σ1 must lie around the mass scale μ and
ĝ small, the value of λ̂ is constrained to be close to 1.
Bardeen et al. [35] studied the pure matter model using a

variational method and ultraviolet cutoff regularization.
Their model includes also a mass term in the classical
action, whose mass coefficient they call μ. Our model
corresponds to their particular case μ ¼ 0, in which the
model is classically scale invariant. Our two phases are in
agreement with their results (for the pure matter model), for
this choice of their parameter μ.

VI. THE DILATINO POLE

As we found in the previous section, for g ¼ 0 and
λ ¼ 4π the scale invariance is spontaneously broken. This
broken phase also appears for g ≠ 0 and λ ∼ 4π. The
condition that λ must lie around this critical value arises
from the fact that our calculation is valid at g2 order. Of
course, one should expect that in the exact calculation in g,
the critical value of λ is not necessarily close to 4π,
provided that g is sufficiently large. We have also found
that the effective potential has a vanishing value at its

minimum and therefore, the ground state of the model is
supersymmetric. This implies that the Goldstone boson
associated with this breaking (the dilaton) must be accom-
panied by its supersymmetric partner, a Goldstone fermion
called a dilatino [35]. The dilatino pole must occur at
p2 ¼ 0 and can be found in the fermion-boson scattering
amplitude. Before calculating this amplitude we need the
explicit form of the action in components. The relevant part
of it, once we eliminated the auxiliary fields, can be written
as follows:

S ¼
Z

d3x

�
2ϵμνρTr

�
Aμ∂νAρ −

2i
3
gAμAνAρ

�

þDμϕDμϕ − ψγμDμψ − λðψϕÞðϕψÞ þ � � �
�

ð52Þ

where the dots stand for terms which do not contribute at
leading order to the fermion-boson scattering. The ampli-
tude can be written as follows (Fig. 5):

Γ½p2� ¼ 2λ

N
þ 2λ

Z
d3k
ð2πÞ3

pþ k − μ

ðpþ kÞ2 þ μ2

�
1

k2 þ μ2

�

× Γ½p2� þ g2

N
fðpÞ ð53Þ

þ g2
Z

d3k
ð2πÞ3

d3l
ð2πÞ3 hðp; k; lÞΓ½p

2� ð54Þ

where μ2 ¼ ðλσ1Þ2, and the functions fðpÞ and hðp; k; lÞ
are associated with the last two diagrams in Fig. 5. If we
expand for small p and solve for Γ½p2� we obtain

Γ½p2� ¼ 1

N
ð2λþ g2fðpÞÞ

�
1 −

λ

4π
− g2A

þ p
�

1

2πσ1
−
g2B
σ1

��
−1

ð55Þ

where A and B are numerical constants coming from the
expansion in p of the function hðp; k; lÞ, but irrelevant for

= +

+ + +

+

+. . .

FIG. 5. Fermion-boson scattering amplitude at leading order.
Dashed line, fermion; solid line, boson.
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our purposes. For the case g ¼ 0, we see from the
denominator of (55), that the pole appears at p2 ¼ 0 for
the critical value λ ¼ 4π (λ̂ ¼ 1). This result is in complete
agreement with the one obtained in [35] for the super-
symmetric φ6 model. The new fact is that for λ ≠ 4π, the
pole is still located at p2 ¼ 0 while the constant g takes the
value

g2 ¼ 1

A

�
λ

4π
− 1

�
ð56Þ

(since in our case g is small, λ must be close to the critical
value). Now, since the ground state is supersymmetric, the
pole of the dilaton must occur also at p2 ¼ 0. Therefore,
even when the gauge coupling is nonzero, we find a dilaton
and dilatino associated with the breaking of scale
invariance.

VII. SUMMARY

In this work we presented a large N expansion of the
non-Abelian SUSY Chern-Simons-matter model. We deter-
mined the superpropagators in the large N limit and order
g2 for all the fields. After the shifting of the superfields we
obtained the effective potential in the Kähler approxima-
tion. Such effective potential is exact at leading order in the
1=N expansion, for finite λ (the marginal coupling con-
stant) and at order g2 in the gauge coupling.
Once the effective potential was determined we solved

the gap equations. We showed that there exist two phases, a
massless one, where the superconformal symmetry is
preserved and a massive one. The massive phase is
characterized by the marginal coupling constant λ, such
that the complex field ϕa and the fermion ψa

α become
massive for arbitrary λ, and the gauge fields remain
massless. In the limit g → 0 the model becomes a free
SUSY Chern-Simons term plus a SUSY φ6 theory in three
dimensions. In this limit we obtained again a massless
phase for all values of the coupling constant λ. But, for the
fixed value λ ¼ 4π we found also a massive phase where
the superconformal symmetry is broken. In this point the
fields ϕa and ψa

α can acquire mass, but the gauge fields
remain massless. After integrating over the Grassmann
coordinates and eliminating the auxiliary fields the effec-
tive coupling of the φ6 term is λ2c ¼ ð4πÞ2 which coincides
with the one obtained in [35,40] for the φ6 model with mass
term and quartic interaction.
The position of the minimum of the effective potential

(51) does not depend on the gauge coupling (or the Chern-

Simons level κ ¼ 4π=g2), but this must be an artifact of the
perturbative expansion in g. An exact calculation in the
gauge coupling must show this dependence even at leading
order in the 1=N expansion.
If we extend the supersymmetry from N ¼ 1 to N ¼ 2

(which corresponds to the constraint λ ¼ g2=4 [41,42]), the
model possesses a massless phase, but the massive phase is
out of the perturbative regime in the gauge coupling g. We
found also that associated with the breaking of scale
invariance, a massless dilatino appears in the theory as a
ϕψ state, and due to the supersymmetric invariance of the
ground state, we can ensure that the dilaton is also
massless. This is in complete agreement with the results
obtained in [35] for the supersymmetric φ6 model.
In conclusion we found that the dynamical breakdown of

superconformal symmetry can occur in the N ¼ 1 large N
limit of the Chern-Simons-matter theory. The superfield
formalism provides a nice framework for the study of
effective potentials, adding both, bosonic and fermionic
contributions in a single superfield. Further investigations
of the SCS model (e.g., N ¼ 2 model, subleading correc-
tion in the large N expansion to the effective potential, etc.)
will be pursued in future works.
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APPENDIX A: SOME USEFUL IDENTITIES

Let A, B, C, D, X, Y be operators and ϵ ∈ R. Let M be
the following matrix operator

M ¼
�
A B

C D

�
:

We have

detM ¼ det½A� det½D − BA−1C� ¼ det½A� det½D�
× det½I −D−1BA−1C�; ðA1Þ

det½X þ ϵY� ¼ det½X�ð1 − tr½X−1Y�ϵÞ þOðϵ2Þ; ðA2Þ

and for the inverse matrix

M−1 ¼
� ðA − BD−1CÞ−1 −ðA − BD−1CÞ−1BD−1

−D−1CðA − BD−1CÞ−1D−1 þD−1CðA − BD−1CÞ−1BD−1

�
:
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APPENDIX B: TWO-LOOP SUPERGRAPH

Let us call the contribution of the Fig. 3(a), G3ðaÞ. In
terms of superfields and superderivatives can be read
directly from Fig. 3(a) and have the following structure

G3ðaÞ ¼ −
g2

8

ðN − 1Þ2
N

V
Z
θ1

Z
θ2

Z
p

Z
k

×
Ωαβðθ1; θ2ÞΣαðθ1ÞΣβðθ2Þ

Δðp; k; σcÞ
ðB1Þ

where V stands for the volume of space-time and

Ωαβðθ1; θ2Þ ¼ hΓαðθ1ÞΓβðθ2Þi; ðB2Þ

Σαðθ1Þ ¼ D1αΦ†ðθ1ÞΦðθ1Þ − Φ†ðθ1ÞD1αΦðθ1Þ; ðB3Þ

Δðp; k; σcÞ ¼ðp2 þ σ2cÞðk2 þ σ2cÞðpþ kÞ2: ðB4Þ

The superfields Φ are understood to be the Φa,
a ¼ 1;…; N. The term ΣαΣβ is contracted into super-
propagators

Σαðθ1ÞΣβðθ2Þ ¼ −hΦðθ1ÞDβΦ†ðθ2ÞihΦðθ2ÞDαΦ†ðθ1Þi
þ hΦðθ1ÞΦ†ðθ2ÞihDβΦðθ2ÞDαΦ†ðθ1Þi
− hhDβΦðθ1ÞDαΦ†ðθ2ÞihΦðθ2ÞΦ†ðθ1Þi
þ hDαΦðθ1ÞΦ†ðθ2ÞihDβΦðθ2ÞΦ†ðθ1Þi:

ðB5Þ

After integration by parts in the integral (B1) we can
isolate the last Dirac delta in the numerator, and integrate
over θ2. By using the following D-algebra identities,

D1αðpÞD1βðpÞ ¼ pαβ − CαβD1ðpÞ2; ðB6Þ

Dβ
1ðpÞD1αðpÞD1βðpÞ ¼ 0; ðB7Þ

fD1αðpÞ; D2
1ðpÞg ¼ 0; ðB8Þ

δ12D2
1ðpÞδ12 ¼ 1; ðB9Þ

δ12D1αðpÞδ12 ¼ 0: ðB10Þ

Finally we can rewrite the contribution of the diagram in
terms of usual momenta,

G3ðaÞ ¼ −
1

8
g2

ðN − 1Þ2
N

V
Z
θ1

Z
p

Z
k

pkþ σ2c
Δðp; k; σcÞ

: ðB11Þ

Now using the regularized integrals ½d3k=ð2πÞ3 →
μϵddk=ð2πÞd�:

Iðm1; m2; m3Þ

¼ μ2ϵ
Z

ddkddp
ð2πÞ2d

1

ðk2 þm2
1Þðp2 þm2

2Þððpþ kÞ2 þm2
3Þ

¼ 1

32π2

�
1

ϵ
− γE þ 1 − log

�ðm1 þm2 þm3Þ2
4πμ2

��
;

ðB12Þ

Jðm1; m2; m3Þ

¼ −μ2ϵ
Z

ddkddp
ð2πÞ2d

kp
ðk2 þm2

1Þðp2 þm2
2Þððpþ kÞ2 þm2

3Þ
¼ 1

32π2
ðm1m2 −m2m3 −m1m3Þ

þ 1

2
ðm2

1 þm2
2 −m2

3ÞIðm1; m2; m3Þ; ðB13Þ

we arrive at the expression (38).
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