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In this work we study some properties of the non-Abelian, classically conformally invariant, three-

dimensional U(N) supersymmetric Chern-Simons coupled to a scalar superfield in the fundamental
representation of U(N), in the large N limit. In leading order in 1/N we show that the theory has two
phases: one in which it remains conformally invariant, and other where the superconformal symmetry is
broken and masses for the matter fields are generated.
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I. INTRODUCTION

The AdS/CFT correspondence [1] is an exact duality
between quantum theory of gravity containing the anti—de
Sitter space AdS,,; and conformal field theories in d
dimensions. Despite the fact that we know how to translate
the calculation from one side to the other in the corre-
spondence, the most difficult point is to find which
quantum gravity theory is dual to the corresponding
conformal field theory, since one or both of them could
be strongly coupled. The large N limit of O(N) and U(N)
Chern-Simons theory coupled to scalar fields in the
fundamental representation is conjectured to be dual to
Vasiliev’s higher spin gravity theory on AdS, [2,3], and in
this case both sides of the correspondence are weakly
coupled. This fact has attracted the attention on the large N
limit of Chern-Simons theories [4—11] coupled to matter
fields, both scalars or fermions. More recently, spontaneous
breaking of the conformal symmetry was studied in differ-
ent models containing a nonsupersymmetric Chern-Simons
term [12—14], and in a supersymmetric (SUSY) version for
a truncated large N limit or perturbative expansions in
[15-17].

In this work we study the possibility of a dynamical
breaking of the superconformal symmetry in a SUSY
(N =1) non-Abelian Chern-Simons theory coupled to
scalar superfields. We work directly in superfield formal-
ism, which means that each supergraph contains all
possible contributions of the component fields when we
integrate the Grassmann coordinates.

This work is organized as follows: In Sec. II the model is
presented in terms of superfields and following the methods
of [18] in its supersymmetric version, several components
of the fields are shifted in a classical background superfield
and a quantum part. After obtaining the leading contribu-
tion for the classical action in the 1 /N expansion, in Sec. I1I
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we determine the one-loop part, obtaining a surprisingly
simple result in such limit, similar to the one obtained in
[19] for a nonsupersymmetric electrodynamics. In Sec. IV,
following standard methods of D algebra [20,21], we write
down the superfield propagators and we determine the
remaining contributions at leading order in N and up to
order g%. We obtain the effective potential, which is exact in
/ (the marginal coupling constant) and up to order O(g?)
and leading order in N. In Sec. V we solve the “gap
equations,” analyzing the possibility of dynamical breaking
of superconformal symmetry, finding a nonbreaking phase,
where no masses are generated for any of the fields, and a
massive phase, where superconformal symmetry is broken.
Finally the last section is devoted to the discussion and
conclusions.

II. THE N =1 SUSY CHERN-SIMONS-MATTER
MODEL

The N =1 three-dimensional U(N) SUSY Chern-
Simons (SCS) model is defined by the classical action
(see [22]):
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SCS = / dSZtr{F( Wa + m {F( , Fﬁ}DﬁFa

2
9 (a1
+ 12N{F D }{Fa,l“ﬂ}}

1 ig
= dztrd = =T, DPDTy, — —Z_T°T’D,[
/ Zr{ 2 ¢ P3N A

7

2
DTy = Ty 69—N rarﬁrarﬂ}

(1)

where the fields and notations are given in Egs. (3)—(7),
below. We are interested in the study of the possible super-
conformal invariance breaking and mass generation of the
SCS interacting with the massless and self-interacting
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matter field, so we introduce the following matter
Lagrangian:

Swa = [ @ =@y o)+ S @rer) @
where

Ve =pr—id_re,

D, =08, +i00,, ap=1.2,
VN pa %P

(3)
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T = 7 = 0"B — i0pAP* — 02(2p" — i0x),  (5)

[ =T9T,, T,€u(N) A=1,2...N>, (6)

O = % + 0y% — F*> a=1,2...N. (7)

Our metric is g,, = diag(—,+,+) and the spinorial
indices (a, f =1, 2) are raised and lowered by Cop =
—C* = 1, (the second Pauli matrix), to know I'* = C*T
and ", =IC sq- The spinorial derivative d, is defined by
9, = 59 and ° = 16°0,.

The spinorial gauge superfield I'* is in the adjoint
representation of the group and the scalar matter superfield
® = [¢] with a =1,2...N is in the fundamental repre-
sentation. The spinorial superfield I', is composed, in the
Wess-Zumino gauge, by the gauge potential A¥ =
—%(y")aﬁA“ﬂ (where y# are Dirac matrices, a, =1, 2
are spinorial indices and u, v =0, 1, 2 are space-time
indices) and the gaugino p,. In a SUSY covariant gauge (in
which we will work) it has yet the auxiliary fields y* and B.
The vector superfield ®, is composed by the scalar matter
field ¢,, the spinorial field % and the auxiliary field F,.

The two parameters g and A are dimensionless and the
model is classically conformally invariant. To favor the
study of the model in the 1/N expansion, we introduce, in
the way of Coleman et al. [18], the extra term

Saux = —/dSZ% {z - \/%I)T@}z (8)

where X is a real, scalar, U(N) singlet superfield. This
added term does not affect the dynamics of the original
theory, since after functionally integrating over X (a trivial
Gaussian integral), it gives an irrelevant constant multi-
plying the original generating functional. Note that (8)
eliminates the quartic term in (2). The consequence of this
is the reduction of the infinite number of diagrams
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FIG. 1. Vacuum bubbles contributing at order N.

contributing at leading order and involving ®“ loops
(Fig. 1) to a single one-loop diagram.

To fix the gauge, we introduce the following (SUSY
covariant) gauge fixing and Faddeev-Popov (FP) ghost
actions

1
S(]f = - / d5Z2—tr{DaFaDﬂF/)’}v (9)
9, a
. g
Spp = dsztr{cTch —1 c'[DT,. ¢
P / 2V/N | |
9
—1 c Faa Dac ’ 10
2v/N [ ]} 1o

where the FP ghost fields are in adjoint representation of
the group ¢ = cAT# with A =1, ..., N2,

The effective potential defined by V(b 0.)=
—(1/L3)Se(b., 0.), where S is the effective action for
classical constant fields, and L3 is the volume of the space-
time, can be calculated by the functional method of Jackiw
[23] (see also [24]). This requires us to shift the superfields

as follows:
N
P =g+ \[3. (1)

oYX+ \/gac, (12)

P - ¢ k=2.3---N, (13)

I — I, (14)

with b, and o, being real constant (in x*) classical back-
ground superfields: b, = b, — #’b, and 6. = 6, — 6%6,.T
and T are Hermitian quantum fields and ¢ and ¢* are
complex quantum fields chosen to have zero expectation
value, at any order of approximation. From the effective
potential V (b, 6..) obtained by this method, the potential
Ve (b,) of the original theory can be obtained by solving
the auxiliary field equation of motion: OV /do,. = 0.
The calculation of these effective potentials, by the
functional method, requires the shift of the quantum fields
by their possible non-null, classical expectation values,
including components in the direction 6> (¢, and b,, in our
case). These components explicitly break supersymmetry
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which makes the calculations with superfields very
involved. A formalism of superfields in the presence of
broken SUSY, for 2 4+ 1 D, was developed in [25] for scalar
fields and extended to gauge fields in [26]. One example of
a calculation using this method can be seen in [27], for the
2 4+ 1 D Wess-Zumino model. Happily, in order to study the
possibility of conformal symmetry breaking and mass
generation, it is enough to calculate the effective potential
up to linear dependence in the > components (o, and b,, in
the present paper) [17,28,29]. The result obtained in this
way is called the Kihler effective potential [21]. In super-
field formalism, this approximation can be achieved by
throwing away terms in D,b. and D,o. [30], in the
calculation of the radiative corrections, which means to
use the rules D,6. = 6.D, and D,b. = b.D,, even if not
taking b, and o, equal to zero in b, and o..

An observation is in order. For non-Abelian gauge
theories, the number of Feynman graphs involved in the
leading order of 1/N, in the R; gauges is infinity (all the
planar diagrams), as first advanced by 't Hooft [31]. So, by
following Kang [19], we will consider the extra approxi-
mation g < 1, stopping the calculations at order ¢g*> (no
restriction is needed with respect to the order of the self-
coupling constant A). In this approximation we will have
contribution of diagrams until to two loops. For light-cone
gauge calculations see for example [10,11,32].

After shifting the fields as in Egs. (11)—(14) the action
results in the sum of (i) the classical term

1 1
Cl—N/dS < - D%_.D,b, 4~ o—bz—27 2), (15)

and (ii) the quadratic part (in the quantum fields) given by

S, :/dsz{(‘lﬂ)T(D2 +0,)P?
1 9*b?
+5Th <®"/” + ca/’> I
2b2 5
crp(op 2, )

! 9
+ 5T HulY + i~ 5 bl Yy (Duy = Dut’)
+ iz\—ﬁ (T Dag’ = TiDa(¢)")

A 1
+ \[zbcz(<p+<p') —522+CTD2C}, (16)
where a = 1,...,N and i,j,k=2,...,N. We also wrote

I =177 in convenient places, (iii) the interaction trilinear
terms
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g g
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An action linear in the quantum fields, not involved in
the calculations, was omitted. For later use we define

O=D+o, (19)
o — —pipe -2 L;D . (20)
n —e% 4 7 4b c, (1)

Sy 2b ce. (22)

For future use, we must observe that by integrating the
quadratic Lagrangian S,, in the anticommuting dimensions
6 we can verify that the ¢' fermionic and bosonic
component fields have mass parameters m3 = (lo;)?
and m% = (lo,)? — Ao, respectively.

III. ONE-LOOP CONTRIBUTIONS TO THE
KAHLERIAN EFFECTIVE POTENTIAL

From the expression (16) we can read directly the inverse
propagator matrices for the superfields. The first one is
given by

1

00 e
where i, j > 2. The corresponding one-loop contribution to
the effective action will be (the minus sign comes from the
integration in the fermionic fields I")

N —1)?
(V=17 log det ©,, (23)

which is a term of order N2, but independent of the
background fields, and therefore an irrelevant additive
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constant contribution to the effective potential. Another N2
order term is given by the one-loop contribution of the
ghost fields:

8%, = —iN*logdet D?, (24)

which is again an irrelevant constant. The following term is
of order N and mixes the fields I" and P,

5ik0 2\/—gb 51Dﬂ)<¢k>
o /kD a o il Ha/} Fﬁ '

@ (L
2\/_ ¢ J
25

If we call M this quadratic operator we have (see
Appendix A)

det M = det(5;,0) det(5;11,5) det(C,” — I, D, 0" D).
(26)

The determinant of Il,; is given by

1
detl_[aﬂ =det EC“ﬂC}'&HwH&ﬁ}

=det|@,,0" +(gh,)*0, += (gb ) ]

=det D—F%(a—1)(gbc)2D2—éa(gbc)4}. (27)

For simplicity we work in the Landau gauge, a — 0.
In this gauge, unless for multiplicative irrelevant constants,
we have

1
detTl,; = det [DZ -3 (gbc)z} . (28)

As we can see from the result for Indet O, below [by
doing the substitution 6. — (gb,.)?], this contribution starts
at order (gb,)* and is so, out of the approximation that we
are considering.

Taking into account the expression for the propagators of
the superfields (34)—(36) it can be shown that the last term
in the expression of det M has the form

det(C,/ — 11, D, 0" D)

2p2 2p2\ -1
g8 Ctr((Dz - a%) (D* - Gc)_1>

+O((gb)")). (29)

In the Landau gauge, o — 0, the contribution to
IndetIl,; is zero up to the order g*. So, the only
contribution of det M to the effective action reduces to
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ST = i(N = 1)logdet(D* + 5,)
= i(N = 1)trlog(D? + o.) (30)

t/dwf

which, in the (Kéhlerian) approximation D,o. = ¢.D,,
results in

NL3
Sllp :—g/dgeﬂc(o'g)l/z

loy|os
A7

(O1(xllp)(p|In(D*+0)[x)|0)  (31)

—L’N——=+40(g*) + O(N°).  (32)
This simple form for the one-loop large N potential occurs
also in nonsupersymmetric gauge theories (see [19] for
example). It can also be seen that this result is the first
(linear) term in the expansion, of the exact one-loop
calculation [27] in powers of o,.

The last quadratic operator involving the remaining
fields is given by

-1 V22b, 0
%(z o T9)| V2ib, 20 ~iv/2b.Dy
0 -iv2b.Dy Ty
)
x| @' (33)
I

but as can be seen, its contribution will be of subleading
order in the 1/N expansion.

IV. TWO-LOOP CONTRIBUTIONS TO THE
KAHLERIAN EFFECTIVE POTENTIAL

Following standard procedures and identities for the
inversion of block matrix operators (see Appendix A), we
can compute the superfield propagators:

i / D’ -0, @) y
(T®;(k.0)®(—k.0')) = —ib;—— e —39(0-0)
+O(a(gb C) ) Po-0). (34)
i DyD, + aD,D
<TF%(k’ Q)Ffl(—k, 9/)> == 15i15kj {%}
x 82 (0-9), (35)
. i _ [DsD,+aD,Dy
(TTif Y (k. 0) = o, [ P22
x 820 -0). (36)
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FIG. 2. Two-loop diagrams. (a), (b) and (d) are O(g*

In order to classify the possible vacuum diagrams
contributing to the effective potential we must take into
account the following observations:

Observation 1: Beyond two loops all diagrams contribute
at order at least g*; so, up to order ¢, it is enough to analyze
two-loop diagrams.

Observation 2: Nonplanar diagrams are suppressed by
factors of 1/N? [31,33], and therefore it is only necessary to
analyze the planar ones.

Let us start by analyzing the set of diagrams in Fig. 2,
where i, j,k,l =2, ..., N, and the double line notation of 't
Hooft [31] for the gauge fields is used (see Fig. 3).

Using the expression for the superfield propagators (34)—
(36) we get the following results: Figure 2(a): O(¢?) and
O(N), vanishing contribution in dimensional regulariza-
tion. Figure 2(b): O(g?) and O(N?), vanishing contribution
in dimensional regularization. Figure 2(c): O(g*) and
O(N), we will disregard it. Figure 2(d): O(¢?) and
O(N), vanishing contribution in dimensional regulariza-
tion. Figure 2(e): O(g*) and O(N), we will disregard it.

The remaining diagrams to analyze are depicted in
Fig. 4. Figure 4(b) is of order N°; so, the only nonvanishing
contribution to the effective potential is given by Fig. 4(a)
(for details see Appendix B),

BPkd®p 2 4k
I\"/J2 2 2 662—'_ pZ 2
(27)° (K +02)(p* +02)(p + k)

+ O(NY). (37)

The integral in the momenta is divergent. By using
dimensional reduction [34], through the substitution
d =3 —¢, and introducing an arbitrary mass scale, by
the substitution d*k/(2x)*> — u¢d?k/(2x)?, we obtain
2

2
3y g~ oc
L7N71Sy, = /4129647[27

[P (38)
3-d 7ET g47t/42 )
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]

) diagrams. (c) and (e) are O(g*) diagrams.

(a) (b)

FIG. 3. (a) represents the superfield propagator (I';(k,.0)
r fl(—k,e’» while (b) represents the propagator (®;(k,®)

D! (—k.0)).
(b)

(@)

FIG. 4. Nonvanishing two-loop diagram (a) and nonvanishing
subleading two-loop diagram (b).

Now by adding (15), (32) and (38) we have

1 o.b2  o.(c2)/?
L3N-'S = [ d*6|—- ele _Zelel
/ { 47 Tetale Ty 87 }
(39)
o2 1 4 1
d*0—=< |- Sl ly—-re+2
+/ 2{ o 64;:2(3 a" et
e
—log 471/42) ] (40)

where we called 4; and g, the unrenormalized coupling
constants.

V. RENORMALIZATION

First of all, we can rewrite the effective potential in
component fields by integrating over d’6 (taking the

025019-5



J.M. QUEIRUGA and A.J. DA SILVA

Grassmannian measure normalized as f d?00* = —1). The
connection between the effective action and the Kéhlerian
effective potential is givenby § = — [ 7K ; the effective
potential is, by definition V4 = f d’*0K . After integra-
tion in @ we get

N~ (01,05, b1, by)

1 1 1 |O'1|02
:—Eb%—i(ﬁzb%-f—zb]bzo'l)+/1—06162+ 471_
5 0102 1 ol
- 1-1
+O(g* ) + O(1/N). (41)

Before solving the gap equations, we need to renorm-
alize the effective potential. Up to O(g?), the gauge
coupling g, does not need an infinite renormalization
and for simplicity we choose the finite renormalized gauge
coupling as g = gy; the finite renormalized A is chosen as

11 @[ 1
o 1 =75+ log(4 4
1 g 6ar |32 d+ e +log4n)|. (42)

With these choices the renormalized effective potential
has the following form

N~'VE: (61,05, by, by)
|01 |02
Az

1 1
= —Eb% —Eﬂzb% _bleUI -+

610, 2 2
+T+64 2010210g +O(1/N)+O( )

(43)

As the gauge coupling constant g (related to the CS level
parameter by the substitution I'* — ¢~!/2I'*) does not need
an infinity renormalization; it does not run with the energy
scale, in agreement with other authors’ results [34]. For the
matter superfield self-coupling, 4, we can see from the
expression (43) that

0 g\%., 0
2 — 2 —_— pr—
|:/4 8ﬂ2 + <87[> A 8/1:| Vet 0, (44)

from which it immediately follows that

) Ap)
M) = . 45
LRI TRITIT )

This result shows that in the absence of the interaction
with the CS field [that is, in the pure U(N) vector matter
model], 4 does not need an infinite renormalization and
does not run, in agreement with previous authors’ results
[35], in the presence of the interaction with the CS; instead,
it runs with the result A — 0 for 4’ — 0 and has a Landau
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pole for u' /u big enough. If this result remains in the exact
leading 1/N approximation, or is an artifact of the
truncation of the series in O(g?), it can only be decided
by a higher order calculation (work in progress) [32].

An observation is important. The singularity in (43),
when 4 — 0, is an artifact of the way we defined the
auxiliary field X (and their expectation value o,.). Our
choice was convenient to simplify the renormalization of
the coupling constants, not requiring a wave function
renormalization. For A = 0 the introduction of £ and o,
through the addition of the term (8) would not even be
needed at all. To make this fact more explicit, from now on
we will redefine the field o, as o, — Ao, and make an
additional finite renormalization of 1/4 to absorb an extra
(¢4?/64x*) In(A?) factor. In terms of these new fields the
effective potential becomes

N_lfof(O'l, 02, bl’ bz)
b? A 62
= o, —?1 + 0, + Aoy | + §*hoy ln'u—é

b2
5 =Aa1biby + O(1/N) + O(g"), (46)

where we defined 4 = |A|/47 > 0 and §j = g/8x.

A. Gap equations and mass generation

The gap equations corresponding to the above VR are
given by

0:3—:2:—2%%—1—/10'1 |:1+;1€(61)+/1§21HZ—§:|, (47)
0= g—gvl = —Ab\by + Ao, [1 + Je(oy) + A ln:—ﬂ . (48)
0= g—:z = —b, — b0y, (49)

0= g—;/l = —16,by — Acyb,, (50)

where €(o) is the sign of 0.

Our expression (46) for the effective potential has the
form of a perturbative (in the coupling §) correction to the
leading 1/N potential, of the pure SUSY U(N) vector
matter model. As discussed in [36], the solutions of these
gap equations must be chosen as perturbative corrections
(in §?) to that of the pure matter model; this model has been
studied, in the last 30 years, by several authors, by using
different methods, as for example, variational approxima-
tion in [35], 1/N approximation in [37,38] [33, 34] and
functional renormalization group analyses in [39]. Using
Egs. (49) and (50) to eliminate b, and o,, we have the
effective potential:

025019-6



LARGE N LIMIT OF SUPERSYMMETRIC CHERN- ...

2

A
Verr = E"%b% 2 0. (51)

In this expression, o; and b; are related by (50). The
SUSY preserving minima (V. = 0) occur for the direc-
tions 0y = 0 and b; = 0.

The possible phases that the model can have are
(a) For 1= |A|/4x # 1, starting with the line of minima

o1 = 0 (or with b; = 0), as a consequence of the gap
equations, we have o; =0, = by = b, =0. This
solution corresponds to a phase in which SUSY and
U(N) symmetry are preserved.

(b) Besides the solution (a), for 2 =1, we can also have
the solution b; = b, = 0 and 6; = —pu, arbitrary. As a
consequence of the Kihlerian approximation, the
value of o, does not get determined by the gap
equations, but from the fact that the minimum of
the potential is zero (which implies that SUSY is
preserved), its value can be inferred to be 6, = 0. In
this phase, the mass of the fermionic component of the
matter superfield m% = (16,)? and the mass of the
bosonic matter component m% = A7 — Ao, = m% =
u? are equal and non-null. We have mass generation
for the matter fields and breaking of the U(N) and
scale symmetry.

We must observe that for 1 = 1, the solution oy # 0,
arbitrary, is already present in the pure matter model
(g = 0) [35]. The new fact introduced by the coupling to
the CS field is that this value is the scale parameter (u)
introduced in the definition of the dimensional reduction
regularization. If we solve the gap equations (47)—(50) for
g # 0 we obtain again a massless and massive phase. In the
massive phase only o; is nonzero, and, since in our
approximation ¢; must lie around the mass scale y and
¢ small, the value of 2 is constrained to be close to 1.

Bardeen et al. [35] studied the pure matter model using a
variational method and ultraviolet cutoff regularization.
Their model includes also a mass term in the classical
action, whose mass coefficient they call p. Our model
corresponds to their particular case ¢ = 0, in which the
model is classically scale invariant. Our two phases are in
agreement with their results (for the pure matter model), for
this choice of their parameter pu.

VI. THE DILATINO POLE

As we found in the previous section, for g =0 and
A = 4z the scale invariance is spontaneously broken. This
broken phase also appears for g #0 and A~ 4xz. The
condition that A must lie around this critical value arises
from the fact that our calculation is valid at ¢* order. Of
course, one should expect that in the exact calculation in g,
the critical value of A is not necessarily close to 4,
provided that ¢ is sufficiently large. We have also found
that the effective potential has a vanishing value at its

PHYSICAL REVIEW D 95, 025019 (2017)

minimum and therefore, the ground state of the model is
supersymmetric. This implies that the Goldstone boson
associated with this breaking (the dilaton) must be accom-
panied by its supersymmetric partner, a Goldstone fermion
called a dilatino [35]. The dilatino pole must occur at
p? =0 and can be found in the fermion-boson scattering
amplitude. Before calculating this amplitude we need the
explicit form of the action in components. The relevant part
of it, once we eliminated the auxiliary fields, can be written
as follows:

= / dx [ZSW’Tr <A”8DAP - % gAﬂAUAp>
- DAFD, — T Dy — 2T) ) + - } (52)

where the dots stand for terms which do not contribute at
leading order to the fermion-boson scattering. The ampli-
tude can be written as follows (Fig. 5):

22 Pk k — 1
F[PQ]:_"‘M/ 3 PT 2 ﬂz 2 2
(27)° (p + k)> +p* \K* + p

N

xTp?) + - £(p) (53)
3 3

+¢ [ G G kD (54)

where p?> = (Ao)?, and the functions f(p) and h(p,k, 1)
are associated with the last two diagrams in Fig. 5. If we
expand for small p and solve for I'[p?] we obtain

A

r1p?] =y (22 + 2(0) (1= = 74

1 2B -1
+p< —g—>> (55)
2no, 04

where A and B are numerical constants coming from the
expansion in p of the function h(p, k, ), but irrelevant for

FIG. 5. Fermion-boson scattering amplitude at leading order.
Dashed line, fermion; solid line, boson.
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our purposes. For the case g=0, we see from the
denominator of (55), that the pole appears at p*> = 0 for
the critical value A = 4x (;1 = 1). This result is in complete
agreement with the one obtained in [35] for the super-
symmetric % model. The new fact is that for A # 4z, the
pole is still located at p?> = 0 while the constant g takes the

value
7= (1) (56)

(since in our case g is small, A must be close to the critical
value). Now, since the ground state is supersymmetric, the
pole of the dilaton must occur also at p> = 0. Therefore,
even when the gauge coupling is nonzero, we find a dilaton
and dilatino associated with the breaking of scale
invariance.

VII. SUMMARY

In this work we presented a large N expansion of the
non-Abelian SUSY Chern-Simons-matter model. We deter-
mined the superpropagators in the large N limit and order
g” for all the fields. After the shifting of the superfields we
obtained the effective potential in the Kihler approxima-
tion. Such effective potential is exact at leading order in the
1/N expansion, for finite 1 (the marginal coupling con-
stant) and at order ¢* in the gauge coupling.

Once the effective potential was determined we solved
the gap equations. We showed that there exist two phases, a
massless one, where the superconformal symmetry is
preserved and a massive one. The massive phase is
characterized by the marginal coupling constant A, such
that the complex field ¢, and the fermion w§ become
massive for arbitrary A, and the gauge fields remain
massless. In the limit ¢ — 0 the model becomes a free
SUSY Chern-Simons term plus a SUSY ¢° theory in three
dimensions. In this limit we obtained again a massless
phase for all values of the coupling constant 4. But, for the
fixed value 1 = 4z we found also a massive phase where
the superconformal symmetry is broken. In this point the
fields ¢, and w§ can acquire mass, but the gauge fields
remain massless. After integrating over the Grassmann
coordinates and eliminating the auxiliary fields the effec-
tive coupling of the ¢° term is A2 = (4x)? which coincides
with the one obtained in [35,40] for the ¢® model with mass
term and quartic interaction.

The position of the minimum of the effective potential
(51) does not depend on the gauge coupling (or the Chern-

|

(A-BD™'C)™!

—1 —
< -D7'C(A-BD™'C)"'D™!
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Simons level k = 47/g?), but this must be an artifact of the
perturbative expansion in g. An exact calculation in the
gauge coupling must show this dependence even at leading
order in the 1/N expansion.

If we extend the supersymmetry from N =1 to N' = 2
(which corresponds to the constraint 1 = g% /4 [41,42]), the
model possesses a massless phase, but the massive phase is
out of the perturbative regime in the gauge coupling g. We
found also that associated with the breaking of scale
invariance, a massless dilatino appears in the theory as a
¢y state, and due to the supersymmetric invariance of the
ground state, we can ensure that the dilaton is also
massless. This is in complete agreement with the results
obtained in [35] for the supersymmetric ¢® model.

In conclusion we found that the dynamical breakdown of
superconformal symmetry can occur in the ' = 1 large N
limit of the Chern-Simons-matter theory. The superfield
formalism provides a nice framework for the study of
effective potentials, adding both, bosonic and fermionic
contributions in a single superfield. Further investigations
of the SCS model (e.g., V' = 2 model, subleading correc-
tion in the large N expansion to the effective potential, etc.)
will be pursued in future works.

ACKNOWLEDGMENTS

The work of J.M. Q. is supported by Fundacdo de
Amparo a Pesquisa do Estado de Sdo Paulo (FAPESP).
The work of A.J.S. is partially supported by Conselho
Nacional de Desenvolvimento Cientifico e
Tecnoldgico (CNPq).

APPENDIX A: SOME USEFUL IDENTITIES

Let A, B, C, D, X, Y be operators and € € R. Let M be
the following matrix operator

v=(c »)

det M = det[A] det[D — BA~'C] = det[A] det[D]
x det[l — D~'BA-\C],

We have

(A1)
det[X + Y] = det[X](1 — tr[X_lY]e) + (9(52), (A2)
and for the inverse matrix

—(A-BD7'C)"'BD™! )
+D~'C(A-BD'C)"'BD™' )
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LARGE N LIMIT OF SUPERSYMMETRIC CHERN- ...
APPENDIX B: TWO-LOOP SUPERGRAPH

Let us call the contribution of the Fig. 3(a), G3(,). In
terms of superfields and superderivatives can be read
directly from Fig. 3(a) and have the following structure

o =5 /QIA/ J

Qaﬂ(lgp 02) 2 (01)2Z5(6,)

Alp. k.o, B

where V stands for the volume of space-time and
Q(6,.0,) = (I*(0,)I7(62)). (B2)
2,(01) = D1,27(01)2(0,) = 27(0,)D1,2(6,),  (B3)
A(p.k.o.) =(p* +02)(K* +02)(p + k)*. (B4)

The superfields ® are understood to be the &¢,
a=1,....,N. The term X,X; is contracted into super-
propagators
24(01)Z4(02) = —(P(0,) D@7 (6,))(P(6,) D, 7 (6)))

+ ((0,)97(6,))(Ds®(62) D, 27(6)))
— ((Dp®(6,) D@7 (6,))(®(6,)27(6,))
+(Da®(6,)P7(6,))(Ds®(6,)P7(61)).
(

B5)

After integration by parts in the integral (B1) we can
isolate the last Dirac delta in the numerator, and integrate
over #,. By using the following D-algebra identities,
CaﬂD 1 (p )2 ’

Dig(p)Dip(p) = Pap = (B6)

PHYSICAL REVIEW D 95, 025019 (2017)

D(p)D14(p)Diy(p) =0, (B7)
{D1(p). Di(p)} =0, (BS)
812D1(p)d1n = L, (B9)
812D14(p)o12 = 0. (B10)

Finally we can rewrite the contribution of the diagram in
terms of usual momenta,

G _ 1 ZMV M
O Y Alp ko,
91 P k (pa 70-0)

Now using the regularized integrals [d°k/(27)® —
ped'k/(2z)7):

(B11)

1(’"1, my, m3)

/ddkdd 1
(27)* (k* +m3)(p* +m3)((p + k)* + m3)

1 (1 (my + my + m3)?
—9—— 1-1 .
T3 { vet Og[ 4y’

(B12)

J(mh my, m3)

ze/ddkddp kp
= —H
(27)* (k2 4 m3)(p* + m3)((p + k)* + m3)

1

:@(mlmZ

— mpms3 — m1m3)

1
+ 5 (mi +mj

: (B13)

- m%)l(ml,mz,m3),

we arrive at the expression (38).
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