
DEPARTAMENTO DE CIENCIA DA COMPUTA<:;,'AO 

Relat6rio Tecnico 

RT-MAC-2013-02 
AN ADAPT/YE ENACTMENT ENGINE FOR COMl'LEX 

SEnncE COMPOSITIONS ON THE CLOUD 

LEONARDO LBITE, NELSON LAGO, THIAOO FURTADO, 
CARLOS EDUARDO MOREIRA, 

DANIEL. CORDEIRO, DANIEL BATISTA, MARCO 
AUR~t.1O GEROSA, AND FABIO KON 

Fevereiro de 2013 



An Adaptive Enactment Engine for Complex Service 
Compositions on the Cloud 

Technical Report# RT-MAC-2013-02 

Leonardo Leite, Nelson Lago, Thiago Furtado, Carlos Eduardo Moreira, 
Daniel Cordeiro, Daniel Batista, Marco Aurelio Gerosa, and Fabio Kon 

5 de julho de 2013 

Department of Computer Science 
Institute of Mathematics and Statistics 

University of Sao Paulo 

You may cite this document as: 
Leonardo Leite, Nelson Lago, Thiago Furtado, Carlos Eduardo Moreira, Daniel Cor­

deiro, Daniel Batista, Marco Aurelio Gerosa, and Fabio Kon. An Adaptive Enactment 
Engine for Complex Service Compositions on the Cloud. Technical Report# RT-MAC-
2013-02, Department of Computer Science, University of Sao Paulo, july, 2013. 

1 



Abstract. Software developers have today the unprecedented ability to 
combine different computational resources geographically spread around 
the globe into a powerful large-scale distributed computing platform. 
Service-oriented computing is an interesting approach for such platforms 
since it eases the development of very large-scale distributed systems, en­
abling the development of cross-organizational business processes based 
on the composition of multiple web services. Enabling the deployment 
of such large-scale web service compositions on a very large number of 
computational resources requires specific mechanisms for automation, 
reliability, and adaptability. 
In this paper, we present the CHOReOS Enactment Engine, a novel, ex­
tensible, open source middleware system that provides a platform for the 
automation of distributed deployment of complex web service composi­
tions on hybrid cloud computing environments. The Enactment Engine 
also supports auto-scaling and autonomic cloud resource management. 
We show how the Enactment Engine enables the deployment of ser­
vice compositions in an automated, scalable and reproducible way, even 
in the presence of failures in the cloud infrastructure. Our experiments 
show that the Enactment Engine scales well when there is an increase in 
the number of services to be deployed and it is capable of providing to 
applications a large amount of cloud resources efficiently. 

Keywords: cloud computing, adaptive systems, web service composi­
tions, automated deployment 

1 Introduction 

Services are autonomous, platform-independent entities that can be described, 
published, discovered, and loosely coupled in novel ways to realize sophisticated 
business processes (l]. The composition model where a centralized coordinator 
manages all the interactions among the services is called orchestration (the co­
ordinator is called orchestrator) (2]. On the other hand, choreography (3] is the 
composition model where the knowledge about the control flow is distributed 
among the participants, i.e., each service acts autonomously and knows when to 
execute its operations and with whom to interact. 

The current trend in the evolution of the Internet is leading us to a scenario 
in which systems will be composed of a large number of distributed services run­
ning on heterogeneous platforms hosted on a variety of mobile and cloud-based 
infrastructures. To illustrate such an environment, let us imagine a scenario in 
which a Future Airport is completely automated with the help of sophisticated 
service compositions. 

First, in such a complex and large-scale scenario, it would not be reasonable 
to have a centralized point of control, thus a choreography model would be desir­
able. These choreographies would implement distributed business processes with 



2 

multiple participating organizations (airport authority, airlines, travel agencies, 
etc.). Many of the services provided within the airport could be automated ac­
cording to the passengers personal information, specially their flight information. 
Examples of possible automations suggested by companies with expertise in the 
airport domain [4] include: (1) the parking service may indicate the parking lot 
which is the nearest to the boarding gate (2) catering services may prioritize 
meals to passengers with earlier flight times, (3) airline companies may schedule 
automatically hotel and taxi services to passengers when a flight is canceled, 
and (4) all airlines may be informed at once by Air Traffic Control about flight 
cancellations due to bad weather at destiuations. 

This airport scenario turns into a large-scale choreography if we consider, for 
example, the actual numbers involved in airports, such as Heathrow1 in London, 
which deals with more than 80 airlines, 190,000 passengers per day (peaks of 
230,000), 6,000 employees, 1,000 take-offs and landings per day and 40 cater­
ing services. As all these businesses are automated and the devices carried by 
these people run services that are integrated in a very large service choreography, 
we will be approaching the landscape depicted in vision of the Future Internet, 
where millions of resources, people, and things will be online all the time estab­
lishing ad-hoc connections to compose several complex service compositions [5]. 
The current understanding of the industrial and research community is that the 
current Internet is not well equipped to address the Future Internet require­
ments [6]. Thus, it is necessary to devise mechanisms that work, scale, and can 
efficiently implement collaborations within large-scale distributed systems (7] 
like, for example, large-scale, complex, service choreographies. 

The deployment process of large-sea.le choreographies is the particular chal­
lenge of the Future Internet this paper addresses. The large number of services 
and the distribution of them among several nodes increase the difficulties present 
in any deployment process, which usually is a time-consuming and error-prone 
activity [8]. To avoid such difficulties, researchers and practitioners advocate the 
use of automated deployment processes (8, 9). 

The current trend to deploy large-scale systems is the usage of scalable re­
sources provided by cloud computing services. Cloud computing enables auto­
mated provision of resources retrieved from shared pools [10]. The use of virtu­
alized resources provided by the cloud service leverages the automation of the 
deployment process (9]. The Infrastructure as a Service (IaaS) model, e.g., Ama­
zon EC22 , provides programmatic access to virtualized resources such as virtual 
machines [11]. The creation of new application-dedicated virtual machines is 
what enables the deployment process to be automated and reproducible. On the 
other hand, in the Platform as a Service (PaaS) model, e.g., Google App Engine3 , 

application developers do not need to handle the virtualized environment, but 
only the application itself. Main features of PaaS providers are the automated 

1 http://www.heathrowairport.com 
2 http://www.arna:ron.com/ec2 
3 http://cloud.google.com/appengine 



deployment of applications and transparent auto-scaling of underlying resources 
according to the application demand [11]. 

In this paper, we present the CHOReOS Enactment Engine, a novel, ex­
tensible, open source middleware system that provides a PaaS service for the 
deployment of complex service compositions. It enables a fully automated de­
ployment process, including the preparation of the target environment and the 
scaling of resources as needed. The automated provisioning of new environments 
is built on top of third-party IaaS infrastructures. The Enactment Engine uses 
the IaaS service to support the deployment of choreographies, which can be pro­
vided in the Software as a Service (SaaS) model to end-users. This relationship 
between the cloud models and our architecture is depicted in Fig. l. The Enact­
ment Engine also provides features to enable services replication, which is used to 
adapt to dynamic fluctuations in the load. Finally, another useful feature is the 
automated deployment of middleware components on the cloud nodes to enable 
the easy execution of rniddleware services such as monitoring and ESB-based 
communication. 

Saas i..... 

PaaS i..... 

IaaS ~ 

.....i Choreographies 

.....i Enactment Engine 

.....i EC2 / OpenStack 

Fig. 1. Relationship between cloud computing models and our architecture 

Unlike current PaaS solutions, the Enactment Engine is designed to support 
service compositions rather than web applications. Another difference is that 
the Enactment Engine is designed with an extensible architecture to overcome 
current limitations of PaaS solutions that restrict application developers' tech­
nological choices, such as IaaS provider and application programming language. 
Our solution also leverages past research results on deployment of distributed 
component-based systems, but adapting them to current environments by con­
sidering cloud-deployment and large-scale requirements. The most important 
cloud requirement is a flexible configuration model for services that takes into 
consideration the dynamic nature of the cloud [12], which results in the require­
ment that services should not know the exact address (URJ) of their dependen­
cies at design time. With regard to large-scale deployment, a central concern is 
related to properly handling failures - which are routine in Cloud environments 
- and unpredictable latencies in third-party components [13, 14]. In our case, the 
main third-party component with variant behavior is the laaS provider, whose 
provisioning of virtual machines may take vastly different times for completion 
at each new request and even fail sometimes. 



4 

In this paper, we introduce the generic CHOReOS Enactment Engine ar­
chitecture and detail its implementation, giving empirical evidences of its per­
formance when deploying large-scale choreographies. In Section 2, we discuss 
related work on automated deployment of component-based systems and on 
current PaaS solutions. In Section 3, we explain the Enactment Engine architec­
ture and its functionalities, while implementation details in a concrete context 
are showed in Section 4. In Section 5, we discuss the Enactment Engine per­
formance and scalability when deploying large-scale choreographies. Finally, our 
conclusions are drawn in Section 6. 

2 Related work 

The current state of the art in distributed computational platforms enables the 
unprecedented ability to combine large amounts of computational resources (pos­
sibly geographically dispersed) into a powerful supercomputing platform. Grid 
and cloud computing platforms can now offer such ability to any developer in 
the world and are effectively being used to execute applications on a wide variety 
of domains. 

It rapidly became clear that in order to support such variety of domains, 
the platform should provide full control over the provisioning and configuration 
of the computational nodes. The developer should be able not only to control 
the kind of hardware that will be provisioned for its application, but also to 
control the entire software stack: from the underlying opera.ting system up to 
the application. 

Early research aiming to automate the deployment process did not offered 
the possibility to customize the operating system. They were focused on the 
automated deployment, configuration, and loa.d balancing of the components to 
be deployed on the available computing nodes. Usually conceived to manage 
a. few hundreds of nodes, they basically work by ta.king applications described 
using a procedural [8] or a declarative [15, 16] language description. 

The use of procedural language, i.e. scripts, is the most flexible method to 
configure and deploy applications. Software systems like Tak'Tuk [I 7], Chef', 
Capistrano5 or Nix (8] provide script languages tha.t can be used to configure 
each node, deploy the application, and a.lso test and build the applications on the 
nodes. Although flexible, the use of scripts is more error-prone. The scripts must 
be developed with the same rigor and accuracy used to develop the application 
itself. 

Tak1\ik (I 7] is an open-source tool developed to execute interactive paral­
lel tasks (such as cluster administration, or parallel application debugging and 
tuning) on a potentially large set of both homogeneous and heterogeneous re­
mote machines. It is able to spread itself using an adaptive algorithm and sets 
up a.n interconnection network to transport commands a.nd perform 1/0 mul­
tiplexing/demultiplexing. The TakTuk mechanics dynamically adapts itself to 

4 http://www.opscode.com/chef 
5 http://capistranorb.com 



5 

the environment (machine performance and current load, network contention) 
by using a reactive work-stealing algorithm that mixes local parallelization and 
work distribution. 

Chef is a popular configuration management tool used by cloud computing 
practitioners. It provides a domain-specific language that facilitates the creation 
of the configuration scripts (also called "recipes" and "cookbooks", see more 
details at Section 3). It is implemented using a client/server architecture, where 
the information is propagated using a "pull" model: each node queries the server 
for the most recent configuration details, such as recipes, templates, and file 
distributions and performs most of the configuration work itself. The use of a 
pull model helps to keep the node configurations always up to date and can scale 
efficiently when used with a replicated NoSQL database. 

The complexity of scripts written using procedural language systems like 
Tak'l\ik and Chef can quickly increase when deploying large applications. The 
Enactment Engine was designed to deploy applications described as business 
processes. It uses a notation based on a declarative language (more details on 
Section 3). Declarative languages for automated deployment (15, 18] describe the 
application to be deployed in terms of its components and how they are struc­
tured. The idea is that a richer model of the application can help the deployment 
system to optimize the available platform by making a more informed choice of 
the nodes and allowing the optimization of the configuration process. 

Quema et al. [19] conducted an empirical study about the performance and 
scalability of the deployment process of component-based applications. They 
propose a decentralized, fault-tolerant mechanism that deploys the application 
using an hierarchical approach based on the application's architecture. This ap­
proach enabled an asynchronous and parallel execution of the components that 
defines the application. However, the hierarchical approach, as proposed by the 
authors, can only be applied to business processes whose communications can 
be modeled as trees. 

One of the first large-scale platforms to support total control of the software 
stack (including the operating system) was Grid'5000 [20]. Its Kadeploy [20, 21] 
OS provisioning system has been designed not only to help system administra­
tors install and manage clusters, but also to provide users with a flexible way 
to deploy their own operating systems (at runtime) on nodes for their experi­
mentation needs. According to Jeanvoine et al. [21], the key features to achieve 
scalability when deploying and configuring thousands of computing nodes are: (i) 
the ability to execute parallel commands; (ii) an efficient file broadcast system; 
and (iii) windowed operations, to prevent resource intensive operations to be ex­
ecuted all at once (for example, rebooting a large number of nodes in the same 
room can generate electrical hazard}. In Grid'5000, these features are achieved 
using Kadeploy in conjunction with Tak'l\ik. The Enactment Engine achieves a 
similar result using the information about the application being deployed, the 
automatically generated Chef scripts and the underlying cloud computing IaaS 
platforms. 



6 

The Enactment Engine offers to developers access to hybrid cloud platforms 
using a PaaS model. Cloud computing offered as a PaaS eases the development 
of applications, by providing a set of tools and libraries that must be used by 
the developer. An application developed using this standardized model can be 
more easily deployed on the cloud computing platform. All the underlying details 
about the deployment, provisioning of resources, automatic load balancing, mon­
itoring, etc. are responsibility of the platform provider. There are several cloud 
computing providers that offer access to their resources using a PaaS model, such 
as the Amazon Web Services (AWS) Elastic Beanstalk6 • the Google AppEngine, 
or the Microsoft 'Windows Azure7. 

A problem with applications developed to use the PaaS model is that the 
software becomes dependent on the tools and libraries provided by the chosen 
cloud computing provider. This dependency might lead to vendor lock-in and 
can become a problem if the developer first chooses the vendor and, afterwards, 
choose to use a different (or more than one) cloud computing provider. Two 
PaaS platforms offer services to support the execution of business processes: the 
Amazon Simple Workflow Service8 and the Force.com Visual Process Manager9 . 

Both platforms offer a simple coordination mechanism to control the order which 
each activity of a business process should be executed, i.e., an orchestrator. 

The use of open source frameworks can help to mitigate the vendor lock-in 
problem. The Cloud Foundry10 provides an open-source PaaS framework that 
can be deployed on a variety of cloud computing platforms {including AWS, 
VMware vSphere11 and OpenStack12). The CompatibleOne (22] is an initiative 
to develop an energy-efficient open source cloud broker. The framework can 
manage any type of cloud services, which can be provided by heterogeneous 
service providers selected according to a Service Level Agreement {SLA). 

3 Architecture 

According to the OMG (23), the deployment process of component-based dis­
tributed applications consists of the following phases: installation: bringing soft­
ware components packages under the deployer's control (e.g., by purchasing); 
configuration: editing configuration files of software components; planning: defin­
ing in which infrastructure node each component must run; preparation: mov­
ing components and rniddleware packages to the the target environment, so 
the software is ready to be executed; and launch: finally running the software. 
The first two phases are usually handled manually by the deployers, since they 
are less suited to be automated {for instance, setting security credentials). The 

6 http://aws.amazon.com/elasticbeanstalk 
7 http://www.windowsazure.com 
8 http://aws.amazon.com/swf 
9 http://www.salesforce.com/platform/process 

10 http://www.cloudfoundry.org 
11 http://www.vmware.com/products/vsphere 
12 http://www.openstack.org 



7 

CHOReOS Enactment Engine focuses on the last phases and provides a Pa.a.S 
platform for the deployment of complex service compositions, enabling the au­
tomation of the planning, preparation, and launching phases, considering that 
the installation and part of the configuration phases were already performed. 

Fig. 2 illustrates the global view of the Enactment Engine. The deployer 
sends to the Enactment Engine a declarative description of the composition 
(e.g., a complex choreography) to be deployed, including the locations and types 
of the service packages. The Enactment Engine deploys these packages in one 
or more cloud environments and sends back, to the client, data describing the 
services URls and the nodes on which each service was deployed. The choreog­
raphy description can be either manually written by the deployer, or generated 
in a more automated way, as performed in the context of the CHOReOS project 
and depicted in the top of the Fig. 2; in this latter case, an automated Synthe­
sis Process (24] reads a high-level choreography specification and generates the 
input to the Enactment Engine. The Enactment Engine also provides facilities 
to modify an already running choreography by accepting an updated choreogra­
phy description. This allows the creation of automated mechanisms to deal with 
scaling the choreography according to the demand. 

_ _Q_ I .artifact» O 
~ writes BPMN2 

Domain ex~Choreography 
"'" j Specification 

* writes 
Deployer 

Input 

f~fflPonent• ·- ~ l 
• Synthesis 
! Process 

_]-~~=-
«artifact» 

. XML 
!Choreography 
l Specification 

D 
input 

Cloud 

deploys 
choreography on 

«compon~~;· f ]I 
· Enactment : 

Engine J 

Fig. 2. Global view of the Enactment Engine 



8 

3.1 Enactment Engine components 

Fig. 3 shows the Enactment Engine components. The Service Composition De­
ployer and the Deployment Manager are components provided by the Enactment 
Engine, whereas the Chef components and the Cloud Gateway are third-party 
software used by the Enactment Engine. 

1..· 
/ / 

l~pontnt> DI 
Service I 

Composition i 
I Deployer · 

/ ,_. 
/ 

Organization 

REST . / 
Cloud 

✓ 

REST I •compon,nt» n . 
1· Cloud 

1 / ; Gateway • 
-

I «component» 
·511 
,,,_, 

SSH 
Deployment 

I er.a ... Manager 

l REST . . 

' 
./ / 

Node 
/ I coomponont» tJ! I «component> ~ RES ~ Configuration j 
tonflguratlon 

Manager 
I Agent 1 

v · 

Fig. 3. Enactment Engine components 

/ 

I/ 

/ 

V 

iAws. 

I
OpenStack, 
etc. 

Cloud Gateway creates and destroys virtual ma.chines (also called nodes) in 
a cloud computing environment. This component is used by the Deploy­
ment Manager, which decides when create or destroy the nodes. Currently, 
Amazon EC2 and OpenStack are supported as cloud gateways, but the De­
ployment Manager can be easily extended to support other platforms. 

Chef Server stores Chef recipes and associations between recipes and nodes. 
"Recipes" are scripts that implement the process of configuring the operating 



system, installing required middleware, and launching the services. Recipes 
are written in a Domain Specific Language that provides specific features for 
software deployment, such as idempotent actions. 

Chef Client is installed by the Enactment Engine in each managed node. The 
Chef Client uses the Chef Server REST API to retrieve the recipes that are 
associated with the local node and updates the node software configuration 
by executing the retrieved recipes. 

Deployment Manager deploys services in a cloud environment. Through its 
seroices AP/, the Deployment Manager receives a declarative service specifi­
cation and selects the node onto which the service will be deployed, possibly 
considering service non-functional requirements. The Deployment Manager 
converts the received specification to a Chef recipe that implements the ser­
vice preparation and launching processes. Using the nodes AP[ provided by 
the Deployment Manager, one can request the upgrade of a node, which con­
sists of running the Chef Client on the specified node, and thus deploying 
services on the node. Each Deployment Manager is associated with a Chef 
Server and an IaaS account. 

Service Composition Deployer exposes the choreographies API to provide 
support for the automated deployment of service choreographies or orches­
trations (an orchestration here can be seen as a simplified choreography in 
which coordination is centralized). The Service Composition Deployer client 
must provide the choreography declarative specification, which contains the 
choreography architectural description and the locations of service packages. 
Based on this specification, the Service Composition Dcployer coordinates 
invocations to the multiple Deployment Managers belonging to the different 
participant organizations. When services are already running, the Service 
Composition Deployer invokes consumer services, injecting on them the ad­
dresses of their dependencies. 

In addition to the services and their supporting software - such as component 
containers like the Apache Tomcat - the Enactment Engine also installs some 
management infrastructure middleware on nodes. As part of the monitoring sys­
tem used in CHOReOS [25], Ganglia [26] is installed and acts as a collector of 
resource utilization data, such as the amount of free memory and the percentage 
of CPU usage. A daemon provided by the Enactment Engine is responsible for 
collecting measured metrics values that are considered atypical (e.g., because 
they exceed predefined thresholds) . Moreover, to monitor running service com­
positions at the service level, nodes of EasyESB13 , a distributed service bus, 
intercept messages and gather service performance data, such as response time. 

As already mentioned, the choreographies AP/ receives the specification of 
the choreography deployment in a declarative format. Such specification is the ar­
chitectural description of the choreography, which must adhere to the model de­
fined in Fig. 4. A choreography specification provides all the needed information 
to enable the automated deployment of the choreography. After the deployment, 

13 https://research.petalslink.org/display/easyesb 



10 

the Enactment Engine sends back to the requesting client a response with data 
about the deployment status, and information about how the services can be ac­
cessed. This information is also specified according to the data model presented 
in Fig. 4. As shown in the figure, for each service, the specification provides im­
portant information, such as where the service package can be downloaded from 
{LegacyService), or the type of the package {PackageType). For example, if 
the package type is TOMCAT, the Enactment Engine assumes that the package 
is a WAR file and that it must be deployed on a Tomcat instance, which the 
Enactment Engine, then, deploys before deploying the service itself. The service 
specification also informs the initial number of replicas (number0finstances in 
DeployableServiceSpec), so the Enactment Engine will deploy each replica in 
a different node to increase the overall throughput. Another import service at­
tribute is the resource impact (resourcelmpact in DeployableServiceSpec), 
which specifies non-functional requirements of the service and that may be used 
by the Enactment Engine to select a suitable node to host the service. 

Each service in a choreography may consume operations of other services in 
the choreography. Thus, each consumer service must know how to access each 
provider service on which it depends. Components can be bound at a variety of 
times: compilation, assembling, configuration and runtime (27]. When deploy­
ing services in a cloud environment, service binding must be done at runtime, 
since that is when the full addresses of services will be defined. As observed 
by Dearle (27), one option for runtime binding is using the dependency injection 
pattern in a similar way as proposed by Magee et al. (15, 28], in which the compo­
nent receives, from the middleware, the references to its dependencies. However, 
Dearle (27] claims that there is a lack of frameworks for distributed dependency 
injection. In our solution to service binding, it is the role of the Enactment En­
gine to inject the dependencies the on deployed services. Thus, each consumer 
service must implement an operation called setinvocationAddress that is in­
voked by the Enactment Engine for each one of the service dependencies, and 
whose arguments provide the endpoints to the associated dependency. 

Services replication associated with load balancing are common strategies 
nowadays to provide system scalability (12]. The Enactment Engine enables ser­
vices replication within a choreography by potentially deploying multiple in­
stances of given services and informing consumers about all of them when in­
voking the setinvocationAddress operation. 

3.2 Services migration 

Cloud-based large scale systems are expected to self-configure according to de­
mand in order to cope with load peaks (by using more resources) and minimize 
costs (by using less resources). While not a part of the deployment process itself, 
this involves services migration (that is, redeploying a service onto a different 
node), the creation and destruction of virtual nodes, the deployment and re­
moval of services to and from such nodes, and updating the status of consumer 
services (by means of the setinvocationAddress operation). The Enactment 
Engine provides an API to automate such tasks and, accordingly, the Service 



ChoreographyServlceDependency 
1-a,on,ographyServtceSpecName : String 
i-ch0<e09raphyServiceSpetRole : String 

: Siring 

1ChoreographySpec ChoreographyServlce 

1 .. • 

ChoreographyServlceSpec 1 

name : String 
roles : String 

er: Siring 
oup: String 

ServlceSpec 
uld: String 
rvlceType : Servlc:eType 

0

LegacyServlce I 
URJa: String 

DeployableServlce 

.OeployableServlceSpec 

I-package Type: Package Type 
:9ackageUri : String 

, _ 
iPackageType 

ra=JJN• 
~...SV_ESB 

LegacyServlceSpec 
Rls : String 

l:9ort : Integer 
L:;ndpolnlName : String 

[
!-;;umb<!rOflnstanoes : Integer 

version : String 
esourcelmpact 

Servlcelnstance 
nceld: String 

llf.OIC'( 

.............. 
t - ServlceType 

S,:,N' 

IREST 

nativeUri : String 
NodeAdminEndpolnt : String 

BusUrl 
servlceType : ServlceType 
ri : String 

Node 
nodeld : Stmg 
Ip : Siring 

~----,-~, hostnamo : Slring 

Fig. 4. Data model for choreography deployment specification 

11 

Composition Deployer offers the updateChoreography operation. It takes as in­
put an updated choreography description and identifies services to be added 
or removed, as well as modifications in the characteristics of current services, 
such as the number of replicas and the expected resource impact. Based on this 
information, the Service Composition Deployer performs the steps necessary to 



12 

make the running choreography comply with the updated description. Typically, 
this involves issuing calls to the Deployment Manager providing new or updated 
service specifications; the Deployment Manager, in turn, may either remove a 
service (or some replicas of a service), deploy a new service, or redeploy a service 
onto nodes with different configurations (for instance, if the service needs more 
memory to run). 

To experiment with these capabilities, we have integrated the Enactment 
Engine with the CHOReOS Monitoring subsystem [25]. It allows us to monitor 
compositions both at the service and the virtual resources levels and, in turn, 
to detect complex events14 , such as over- or under-loaded services and virtual 
machines, and take appropriate actions to handle them. These actions typically 
involve scaling the resources available for the composition, either by means of 
vertical scaling (moving a service to a more or less powerful node on the cloud) or 
horizontal scaling (creating more or less replicas of a service in different nodes), 
depending on the specific situation. 

4 Implementation 

In this section, we discuss some implementation aspects of the Enactment Engine 
that will help understand how it works, how it can provide a scalable deployment 
process, and how it can leverage scalable service compositions. 

4.1 Extensibility 

Although web services emerged to solve heterogeneity problems among systems 
and organizations, nowadays we have more than one mechanism to implement 
the concept of services. The two main approaches are SOAP services [29] and 
RESTful services [30]. Therefore, supporting heterogeneity is an important re­
quirement of service-based systems. 

The Enactment Engine handles heterogeneity by means of extensibility: al­
though the current version can deploy only SOAP services packaged as JAR or 
WAR files, Enactment Engine users can extend it by writing a few new classes 
and configuration files to support new types of services. The same is true for 
the infrastructure cloud computing layer, since the user can write new classes to 
communicate with new infrastructure providers. The Enactment Engine has one 
more extension point to allow the creation of new policies of services per node 
allocation (corresponding to the planning phase of the deployment process). 

4.2 REST interface 

The Deployment Manager and Service Composition Deployer components pro­
vide their functionalities through a REST AP!. Users interact with the Enact­
ment Engine through the Service Composition Deployer REST API by handling 
14 Complex events are events that are not identified directly, but inferred from observ-

ing their consequences (sets of other events that are identified directly). 



13 

choreographies resources, and the Service Composition Deployer uses the REST 
API provided by the multiple Deployment Manager instances to handle the ser­
vices and nodes resources. 

4.3 Service binding 

As explained in Section 3, each choreography service must provide a setinvocationAddres 
operation to receive from the Enactment Engine the addresses of its dependen-
cies. The setinvocationAddress arguments are the following: 

dependency role: defines the operations provided by the dependency. A ser­
vice may depend on multiple services with different roles, so this argument 
is necessary to the service know how to use the received dependency. It is a 
requirement that the service must to know the available operations of each 
role from which it depends. The role of each service must be also defined in 
the choreography specification, that is the Enactment Engine input. 

dependency name: just a label that the dependent service may use to distin­
guish different available services with the same role. These different services 
are actually different implementations, possibly belonging to different orga­
nizations. 

dependency endpoints: the list of alternative URis to access the dependency. 
It has several URis because a service may have multiple instances to improve 
its scalability. It is expected of the dependent service, but not required, to 
implement some load balancing between the different URis. However, the 
dependent service may simply pick up any one of the received endpoints. 

Dearle (27) alerts that forcing components to comply with the conventions 
of particular middleware may lock users into particular programming languages 
or middleware technologies. We acknowledge that forcing services to adhere the 
setinvocationAddress convention imposed by the middleware would not be 
desirable. However, the problems pointed out by Dearle do not apply in our 
case, since the Enactment Engine can be extended to support the invocation of 
the setinvocationAddress in other services types besides SOAP, and services 
are still reusable in other contexts not related to the Enactment Engine. 

4.4 The pool of idle nodes 

When a new VM is requested to the infrastructure provider, there is a chance 
that provisioning will fail. Moreover, some VMs may take much longer than 
average to be ready. In experiments conducted by us using the Amazon EC2 
service, we verified that failures and long provisioning times may affect nearly 
10% of the requests. Nonetheless, this is not a problem regarding only Amazon 
services. Several authors advocate that components on distributed large-scale 
systems must expect and handle faults of third-party components [13, 14, 31). 
Even if the chance of a failure in each component is small, the large number of 



14 

components and interactions increases the likelihood of failures somewhere in 
the system [31] . 

The Enactment Engine expects faults 011 the IaaS provider and handles this 
issue by using a pool of idle V!Vls. This pool is refilled each time a new VM is 
requested. Also, VMs that have been previously used but are 110 longer necessary 
a.re not immediately destroyed, but instead added to the pool. When a request 
arrives, a node is retrieved from the pool, so the chances of the client being 
affected by IaaS problems is decreased, since some requests will retrieve already 
prepared machines. 

The trade-off of the pool approach is the extra cost to keep VMs running in 
an idle state. However, this problem is treated in the Enactment Engine by a 
distributed management algorithm in each node: if the node is idle for N - l 
minutes. where N is a threshold of time that implies additional cost, the node 
will send to the Enactment Engine a message requesting its deletion. So, after a 
time of inactivity in the Enactment Engine, the pool eventually becomes empty, 
being filled again only when new requests arrive. This distributed approach al­
leviates the need to have the Enactment Engine periodically check the status 
of the machines to decide whether they should be removed. This feature can be 
deactivated in the Enactment Engine when not necessary, as in the case of using 
a reliable private cloud in a controlled environment. 

5 Experimental evaluation 

The Enactment Engine was conceived to support the provisioning, deployment 
and execution of complex service compositions on large-scale distributed com­
puting platforms. We have conducted experiments to evaluate the performance 
and scalability of our prototype in terms of its capability to deploy a significant 
number of choreographies onto a real-world cloud computing platform. 

We have designed synthetic workloads for our experiments. We create work­
loads with different number of choreographies, where each of which will have a 
dedicated cloud resource for each one of its service. The idea is to stress out 
the number of cloud resources that must be provisioned and configured by the 
Enactment Engine. For this reason, the pool of idle nodes is disabled on all 
experiments. 

The choreographies are organized in such a way that the total number of 
services to be deployed will be grouped two by two. Each experiment will de­
ploy and execute concurrently a fixed number of choreographies. Each time a 
service receives a message, a request to another service chosen by the Enactment 
Engine at runtime - using the setinvocationAddress operation described in 
Section 4.3 - is made. 

We have chosen to evaluate the Enactment Engine scalability using the Ama­
zon EC2 IaaS platform as the Cloud Gateway. We execute our services on up 
to fifty general purpose ml. small instances, each of which with 1. 7 GiB of 
RAM, one core with processing power equivalent to 1.0-1.2 GHz (one Ama­
zon EC2 Compute Unity), and a. standard Amazon virtual machine image with 



15 

the Ubuntu 12.04 GNU/Linux distribution. The Enactment Engine components 
(Deployment Manager and Service Composition Deployer) were executed on a 
local machine with 8 GB of RAM, an Intel Core i7 CPU with 2.7 GHz and 
GNU/Linux kernel 3.6.7. 

Fig. 5 present the average completion time of the deployment the deployment 
of all choreographies for each workload. The figure present the average of ten 
executions for each experiment. 

600,---~--~->'======:::;i I- Deploymenttime! 

500 

400 

200 

5 10 15 20 25 
#Choreographies 

Fig. 5. Average completion time of each choreography deployment 

The results suggest that Enactment Engine scales well in terms of the number 
of choreographies being deployed. An increase of 25 times on the number of 
choreographies and, therefore, an increase also of 25 times on the number of 
computational resources provisioned and configured by Enactment Engine, only 
doubled the average deployment time of the choreographies. 

The workloads were designed in such a way that number of services per 
node was constant. However, the average completion time of the choreographies 
increased instead of be constant. Further investigation showed that this behav­
ior can be partially explained by differences on the provisioning time and the 
occurrence of faults on the IaaS provider side. 

The probability of the occurrence of delays and faults increases with the 
amount of computational resources concurrently requested to the IaaS provider. 
New experiments showed that after 1,000 requests for new nodes, 5.8% of the 
nodes presented an abnormal delay on the provisioning time and 0.2% had some 
kind of failure on the provisioning process when fifty nodes were concurrently 
requested over twenty iterations. 



16 

6 Conclusions 

Sophisticated distributed applications of the Future Internet will be composed of 
a large number of highly-distributed services executing on heterogeneous mobile­
and cloud-based environments, interacting at runtime time with millions of users. 
To enable the easy deployment and execution of such complex service composi­
tions, flexible, robust, and adaptive middleware systems will need to be devised. 
In this paper, we introduced a novel middleware infrastructure supporting the 
adaptive enactment of complex service compositions on the cloud. This middle­
ware highly facilitates the deployment of large-scale service choreographies on 
the cloud and provides runtime support for monitoring and adaptation of the 
service compositions. 

Experimental results demonstrate that the proposed architecture is feasible 
and that acceptable performance can be obtained, although a few optimizations 
are still under way. Our source code is publicly available as open source software 
15 and other researchers are welcome to contact us either to collaborate with 
the project or to carry out related experiments and research based on our code 
base. 

6.1 Ongoing and Future Work 

Our work in the Enactment Engine is currently geared to address the specific 
needs of the CHOReOS project; however, it already offers new research opportu­
nities iu several areas. The current implementation depends on the scalability of 
the Chef server; we intend to investigate means of leveraging the chef-solo tool 
(part of the Chef suite) to bypass the server, making the deployment process 
(almost) entirely distributed. We have also considered modifying both the Ser­
vice Composition Deployer and the Deployment Manager to make them able to 
split their workloads among multiple replicas, either in terms of load-balancing 
requests or by creating ''worker" machines to handle the actual deployment task. 
One interesting possibility would be to modify the Enactment Engine in order 
to distribute data about nodes, services, and choreographies among the cloud 
nodes themselves, using some sort of distributed, peer-to-peer data store (such 
as distributed hash tables). 

We would also like to experiment with different and more sophisticated VM 
pool algorithlllS as well as to adaptively modify the size of the pool in order to 
strike different types of balance between deployment time and additional cost for 
the extra VMs according to user-defined policies and runtime status. Research 
on resource allocation algorithlllS might also benefit from using the Enactment 
Engine's Node Selector interface as a testbed, allowing researchers to more easily 
perform actual experiments with such algorithlllS on top of large-scale cloud 
environments. 

In the current Enactment Engine implementation, modifying a composition 
that is already running works correctly only in the case of stateless services or 

15 http://forge.ow2.org/projects/choreos 



17 

services that share state. Some business processes, however, may benefit from 
stronger transaction semantics. We would like to investigate how Enactment 
Engine could be modified to empower developers and researchers to implement 
different strategies to handle stateful services and interactions. This mechanism 
should make it easy to define new policies and algorithms to handle state, such as 
supporting "hot" migration, forcing transaction rollbacks, or waiting for ongoing 
transactions to finish before deleting services. 

When multiple replicas of a service are available, the Enactment Engine 
informs the consumer services of all available replicas and it is up to the consumer 
services to balance the load among them. The setlnvocationAddress operation 
might be enhanced to permit different weights to be denned for each replica. 
A more interesting proposition would be to have the Enactment Engine itself 
inform each consumer about only a subset of the available replicas of a provider 
service to each consumer in order to split the load on them independently from 
the consumer services. 

As mentioned, we handle dynamic adaptation by using the CHOReOS mon­
itoring subsystem. We intend to explore the different kinds of event to detect, 
as well as different approaches to resource allocation while taking into account 
QoS parameters. Initially, we intend to do this by exploring custom rules writ­
ten for the rules engine bundled within the CHOReOS monitoring system, but 
other approaches, such as the use of machine learning techniques and the auto­
matic optimization and adaptation of the middleware itself may be tackled in 
the future. 

References 

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com­
puting: State of the art and research challenges. Computer 40(11) (2007) 38--45 

2. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web 
services. In: Proceedings of the 19th annual ACM SIGPLAN conference on object 
oriented programming, systems, languages, and applications (OOPSLA '04), ACM 
(2004) 170--187 

3. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. IEEE 
Transactions on Services Computing 2(2) (2009) 152-166 

4. Chatel, P., Leger, A., Lockerbie, J.: Deliverable D6.1. Requirements 
and scenarios for the "Passenger-friendly airport" . Available online at: 
http://choreos.eu/bin/Download/Deliverables (October 2011) 

5. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., 
Gerosa, M., Hamida, A.: Service-oriented middlewarc for the future internet: state 
of the art and research directions. Journal of Internet Services and Applications 
2(1) (2011) 23-45 

6. Zahariadis, T., Papadirnitriou, D., Tschofenig, H., Haller, S., Daras, P., Starnoulis, 
G., Hauswirth, M.: Towards a future internet architecture. In: The Future Internet. 
Volume 6656 of Lecture Notes in Computer Science. Springer {2011) 7-18 

7. Steen, M., Pierre, G., Voulgaris, S.: Challenges in very large distributed systems. 
Journal of Internet Services and Applications 3(1) (2012) 59-66 



18 

8. Dolstra, E., Bravenboer, M., Visser, E.: Service configuration management. In: 
Proceedings of the 12th international workshop on Software configuration manage­
ment (SCM '05}, ACM {2005} 83-98 

9. Humble, J., Farley, D.: Continuous Delivery. Addison-Wesly {2011) 
10. Mell, P., Grance, T .: The NIST definition of cloud computing. NIST Special 

Publication SP 800-145, National Institute of Standard and Technology (NIST) 
(September 2011} http://csrc.nist.gov/publications/PubsSPs.html#800-l45. 

11. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research 
challenges. Journal of Internet Services and Applications 1(1} (2010) 7-18 

12. Tavis, M., Fitzsimons, P.: Web Application Hosting in the AWS Cloud: Best 
Practices. Technical report, Amazon (September 2012) 

13. Hamilton, J .: On designing and deploying internet-scale services. In: Proceedings of 
the 21st Large Installation System Administration Conference (LISA '07), USENIX 
( 2007) 231-242 

14. Helland, P., Campbell, D.: Building on quicksand. CoRR abs/0909.1788 {2009) 
15. Magee, J ., Kramer, J .: Dynamic structure in software architectures. In: Proceedings 

of the 4th ACM SIGSOFT symposium on Fowidations of software engineering 
{SIGSOFT '96), ACM (1996) 3-14 

16. Balter, R., Bellissard, L., Boyer, F., Riveill, M., Vion-Dury, J.Y.: Architecturing 
and configuring distributed application with Olan. In: Proceedings of the IFIP 
International Conference on Distributed Systems Platforms and Open Distributed 
Processing (Middleware '98), Springer {1998) 241-256 

17. Claude(, B., Huard, G., Richard, 0.: TakTuk, adaptive deployment of remote 
executions. In: Proceedings of the 18th ACM international symposium on High 
performance distributed computing. HPDC '09, New York, NY, USA, ACM {2009) 
91-100 

18. Magee, J., Tseng, A., Kramer, J.: Composing distributed objects in CORBA. In: 
Proceedings of the Third International Symposium on Autonomous Decentralized 
Systems, 1997. ISADS 97. (1997) 257-263 

19. Quema, V., Balter, R., Bellissard, L., Feliot, D., Freyssinet, A., Lacourte, S.: Asyn­
chronous, hierarchical, and scalable deployment of component-based applications. 
In: Component Deployment. Volume 3083 of Lecture Notes in Computer Science. 
Springer (2004) 5o-64 

20. Bolze, R., Cappello, F., Caron, E., Dayde, M., Desprez, F ., Jeannot, E., Jegou, 
Y., Lanteri, S., Leduc, J ., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, 
B., Richard, 0., Talbi, E.G., Touche, I.: Grid'5000: A large scale and highly re­
configurable experimental grid testbed. International Journal of High Performance 
Computing Applications 20{4) {2006) 481-494 

21. Jeanvoine, E., Sarzyniec, L., Nussbaum, L.: Kadeploy3: Efficient and scalable 
operating system provisioning. USENIX ;login: 38(1) (February 2013) 38-44 

22. Carpentier, J., Gelas, J.P., Lefevre, L., Morel, M., Mornard, 0., Laisne, J.P.: Com­
patibleOne: Designing an energy efficient open source cloud broker. In: Proceed­
ings of the Second International Conference on Cloud and Green Computing, IEEE 
(November 2012) 199-205 

23. OMG: Deployment and configuration of component-based distributed applications 
(DEPL) (April 2006) http://www.omg.org/spec/DEPL. 

24. Autilli, M., di Ruscio, D., di Selle, A., Inverardi, P., Tivoli, M.: A model-based 
synthesis process for choreography realizability enforcement. In: 16th International 
Conference on Fundamental Approaches to Software Engineering (FASE). {2013) 



19 

25. Ben Hamida, A., Bertolino, A., Calabro, A., Angelis, G., Lago, N., Lesbegueries, 
J .: Monitoring service choreographies from multiple sources. In Avgeriou, P., 
ed.: Software Engineering for Resilient Systems (SERENE 2012). Volume 7527 of 
Lecture Notes in Computer Science. Springer {2012) 134-149 

26. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni­
toring with Ganglia. In: Proceedings of the 2003 IEEE International Conference 
on Cluster Computing, IEEE {2003) 289-298 

27. Dearle, A.: Software deployment, past, present and future. In: Proceedings of 
Future of Software Engineering. FOSE '07, IEEE (May 2007) 269-284 

28. Magee, J., Dulay, N., Kramer, J.: A constructive development environment for 
parallel and distributed programs. In: Proceedings of 2nd International Workshop 
on Configurable Distributed Systems, 1994. (1994) 4-14 

29. W3C: Web services architecture (February 2004) http://www.w3.org/TR/ws-arch. 
30. Fielding, R.T.: Architectural styles and the design of network-based software ar­

chitectures. PhD thesis, University of California (2000) 
31. Pollak, B., ed.: Ultra-Large-Scale Systems: The Software Challenge of the Future. 

Software Engineering Institute, Carnegie Mellon University (June 2006) 



RT-MAC-I ME-USP 

RELAT6RIOS TECNICOS 

DEPARTAMENTO DE CIENCIA. D~ COMPUTA<;:AO 

Instituto de Matematica e Estatistica dfl USP 

A listagem contendo os relat6rios tecnicos anteriores a 2009 podera ser consultada ou 
solicitada a Secretaria do Depar1arnento, pessoalmente, por carta ou e-mail 
(mac@ime.usp.br). 

VANESSA SABINO E FABIO KON 

L/CEN<;AS DE SOFTWARE LIVRE HIST6RJA E CARACTERISTICAS* 
RT-MAC-2009-01 - Marya 2009, 40 pp. 

ALEXANDRE NOMA, ANA B . V. GRACIANO, ROBERTO M. CESAR JR., LUIS A. 
CONSULARO AND !SA BELLE BLOCH 

INEXACT GRAPH MATCHING FOR SEGMENTATION AND RECOGNITION OF 
OBJECT PARTS 
RT-MAC-2009-02 - Mar~o 2009, 31 pp. 

CLAUDIA J. ABRO DE ARAJO AND FL>,VIO S. CORREA DA SILVA 

GOVERNMENTAL VIRTUAL INSTITUTIONS 
RT-MAC-2009-03 - junho 2009, 19 pp. 

CRISTINA GOMES FERNANDES AND RAFAEL CRIVELLARI SALIBA SCHOUERY 

ALGORITMOS DE APROXIMA<;AO E PROBLEMAS COM SEQOENCIAS 
RT-MAC-2009-04 - agosto 2009, 38 pp. 

MARCELO FINGER E GLAUBER DE BONA 

UMA CONJECTURA REFUTADA SOBRE SAT/SFAZIBILIDADE PROBABILIST/CA 
RT-MAC-2009-05 - dezembro 2009, 1 8 pp. 

ALEXANDRE MATOS ARRUDA E MARCELO FINGER 

CARACTERIZA<;AO DA INDEPENDENCIA CONDIC/ONAL EM L6GICA MODAL 
RT-MAC-2010-01-Janeiro 2010, 9 pp. 

FLAVIO SOARES CORREA DA SILVA 

JAM SESSION - KNOWLEDGE-BASED INTERACT/ON PROTOCOLS FOR 
INTELLIGENT INTERACTIVE ENVIRONMENTS 
RT-MAC-2010-02 -Fevereiro 2010, 23 pp. 

FLAVIO SOARES CORREA DA SILVA, CLAUDIA J. A . DE ARAUJO, LISNEY ALBERTI, ROSA 

ALARCON, CARLA V AIRETTI AND JESUS BELLIDO 

TIMESAVER - VIRTUAL WORLDS AND ACTIVE WORK.FLOWS TO DELIVER 
FRIENDLY PUBLIC SERVICES 
RT-MAC- 2010-03 - Fevereiro 2010, 17 pp 



RT-MAC-IME-USP 

FLA VIO SOARES CORREA DA SILVA 

NESTED INSTITUTIONS - AN ORGANIZATIONAL DESIGN PA7TERN TO 
OPTIMIZE DISTRIBUTED WOKFLOWS IN ELETRONIC GOVERNMENT 
RT-MAC- 2010-04-Fevereiro 2010, 20 pp. 

FELIPE M. BESSON, PEDRO M.B. LEAL AND FABIO KON 

TOWARDS VERIFICATION AND VALIDATION OF CHOREOGRAPHIES 
RT-MAC-2011-01 -Janeiro 2011, 20 pp. 

GUSTAVO ANSALDI OLIVA, FERNANDO HATTORl,LEONARDO ALEXANDRE FERREIRA 

LEITE AND MARCO AURELIO GEROSA 

WEB SERV/CESCHOREOGRAPHJESADAPTATION: A SYSTEMATIC REVIEW 
RT-MAC-2011-02 -Janeiro 2011, 59 pp. 

KELLY ROSA BRAGHETTO, JOAO EDUARDO FERREIRA AND JEAN-MARC VINCENT 

FROM BUSINESS PROCESS MODEL AND NOTATION TO STOCHASTIC 
AUTOMATA NETWORK 
RT-MAC-2011-03 - Fevereiro 2011, 22 pp. 

CLAUDIO ANTONIO PEANHO, HENRIQUE STAGNI AND FLAVIO SOARES CORREA DA 

SILVA 

SEMANTIC INFORMATION EXTRACTION FROM SCANNED IMAGES OF 
COMPLEX DOCUMENTS 
RT-MAC-2011-04- junho 2011,19 pp. 

FELIPE M. BESSON AND FABIO KON 

"REHEARSAL: A FRAMEWORK FOR AUTOMATED TESTING OF 
CHOREOGRAPHIES" 
RT-MAC-2011-05-dezembro2011, 43 pp. 

PAULO H. FLORIANO, LUCIANA ARANTES AND ALFREDO GOLDMAN 

CONDl(;OES DE CONECTIV/DADE DE ALGORJTMOS DE EXCLVSAO MUTUA 
EM REDES DINAMICAS 
RT-MAC-2012-01 - fevereiro 2012, 21 pp. 

VIVIA NE SANTOS AND ALFREDO GOLDMAN 

FOSTERING INTER-TEAM KNOWLEDGE SHARING EFFECTIVENESS IN AGILE 
SOFTWARE DEVELOPMENT 
RT-MAC-2012-02-abril 2012, 42 pp. 

CLAUDIA DE 0. MELO; VIVIANE A. SANTOS; HUGO CORBUCCI; EDUARDO KATAYAMA; 

ALFREDO GOLDMAN; FABIO KON. 

METODOS AGEIS NO BRASIL: ESTADO DA PMTICA EM TIMES E 
ORGANIZA(;OES 
RT-MAC-2012-03 -maio 2012, 13 pp. 

2 



RT-MAC-IME-USP 

MIRTHA LINA FERNANDEZ VENERO AND FLAVIO SOARES CORREA DA SILVA 

STUDYING THE BEHAVIOR OF JAMSESSJON INTERACTION PROTOCOI.s 

USING SPIN• 
RT-MAC-2012-04-junho 2012-27pp. 

MIRTHA LINA FERNANDEZ VENERO AND FLAVIO SOARES CORREA DA SILVA 

A FORMAL SEMANTICS FOR THE JAMSESSION COORDINATION PLATFORM 
RT-MAC-2012-05 -junho 2012-27pp. 

VIVIANE ALMEIDA DOS SANTOS, ALFREDO GOLDMAN VEL LEJBMAN, DEBORA 

VASCONCELOS MARTINS, HERNESTO N6BREGA BORGES FILHO E MARIELA INES 

CORTES. 
COMPARTILHAMENTO DE CONHECIMENTO ENTRE EQUIP ES AGEIS: FATORES 
/NFLUENCJADORES 
RT-MAC-2012-06-agosto 2012- 14pp. 

FLA VIO SOARES CORREA DA SILVA, DAVID S. ROBERTSON AND WAMBERTO 
VASCONCELOS 

EXPERIMENTAL INTERACTION SCIENCE 
RT-MAC-2013-01 - fevereiro 2013 - 13 pp. 

LEONARDO LEITE, NELSON LAGO, THIAGO FURTADO, CARLOS EDUARDO MOREIRA, 

DANIEL CORDEIRO, DANIEL BATISTA, MARCO AURELIO GEROSA, AND FABIO KON 

AN ADAPTIVE ENACTMENT ENGINE FOR COMPLEX SERVICE COMPOSITIONS ON THE CLOUD 
RT-MAC-2013-02- fevereiro 2013 - 23pp. 

3 




