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Abstract:Tailor made enzymatic preparation must be design to hydrolyze efficiently plant 

biomass, once that each plant biomass possesses a distinct cell wall composition. Most of 

actinomycetes used for plant cell wall degradation are focused on the cellulases and 

xylanases production. However, a wide range of enzymes must be produced for an efficient 

degradation of lignocellulose materials. During the last decade several unusual 

environments were studied to obtain strains that produce glycohydrolases with innovator 

characteristics. In this context, the present work concerned the selection of endophytic 

actinomycetes as producers of hemicellulases and related enzymes with different enzymatic 

profiles, for use in the deconstruction of lignocellulosic biomass.  A total of 45 Brazilian 

HIGHLIGHTS 

 

• Selection of endophytic actinomycetes as producers of hemicellulases and 

related enzymes  

 

• Actinomycetes strains present different glycohydrolases profiles  

 

• The strains produce enzymes against a wide range of plant biomass substrates 
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actinomycetes previously isolated from plants (endophytics) and soil were prospected for 

hemicellulases and β-glucosidase production. Four strains highlighted for hemicellulase 

production (DR61, DR63, DR69 and DR66) and were selected for cultivation under other 

inductors substrates (xylan and pectin). All strains belong to Streptomyces genera and have 

their extracts tested for degradation of several hemicellulolytic substrates. The strains 

presented different glicohydrolyse enzymes profiles mainly for xylans and glucans that can 

be used for specific formulations of enzymes applied on the biomass deconstruction, 

principally on sugar cane bagasse. 
Keywords: Endophytic actinomycetes; hemicellulases; accessory enzymes 

 

INTRODUCTION  

In biofuels area, the competition to obtain glycohydrolases, mainly cellulases, that 

hydrolyze  efficiently plant biomass cell wall has been extensively studied. Over the years, 

it has become clear that tailor made enzymatic preparation must be design to hydrolyze 

efficiently plant biomass, once that each plant biomass possess a distinct cell wall 

composition [1].   

In nature, the lignocellulose materials are decomposed by several microbial 

glycohydrolases that act on a synergist approach, once that these materials are a 

recalcitrant substrate. For this reason combinations of enzymes from different sources and 

types, helped to balance the ideal enzymatic proportion for an efficient hydrolysis. 

Combinations of cellulolytic enzymes with others glycohydrolases such as xylanases, 

pectinases, arabinofuranosidase and β-glucosidase are able to increase the hydrolysis 

yields in several plant biomass [2-5]. 

The screening of microorganisms is based on the capacity of bacteria and fungi to 

produce several compounds with industrial application, e.g enzymes. During the last decade 

several unusual environments were studied to obtain strains that produce glycohydrolases 

with different characteristics in plant biomass degradation. Delabona et al. [6] isolated fungi 

from Amazon forest that produce high activity cellulases and xylanase. Robledo et al.  [7] 

isolated thermophilic fungal strains from maize silage capable to produce thermostable 

xylanase. Robl et al. [8] screened endophytic fungi strains with a wide range of hydrolytic 

enzyme profiles to lignocellulose deconstruction.  

Endophytic microorganisms showed interest potential for the production of substances 

with industrial interest such as phytohormones [9],  antibiotics [10, 11], antiprotozoal and 

antitumor molecules [12]. This organism also produce several enzymes such as proteases, 

amylases, phenol oxidases, lipases, laccases [13-15], and recently it has been shown their 

potential  as lignocellulolytic enzyme producers, e.g cellulases and hemicellulases  [4, 5, 

8, 16].  

Endophytic microorganisms are ubiquitous in a mutualistic relation [17]. These 

microorganisms are present within plant tissues and may be able to initiate plant material 

decomposition process before it becomes dominated by saprophytic species [18, 19]. The 

hydrolytic enzyme production by these microorganisms might be important for nutrition 

during the endophytic stage, but also to compete for substrate during saprophytic stage [8]. 

Most of the actinomycetes used for plant cell wall degradation are focused on the 

cellulases and xylanases production [20, 21]. Although a wide range of enzymes must be 

produced for an efficient degradation of lignocellulose materials in nature. In this context, the 

present work concerns the selection of endophytic actinomycetes as producers of 

hemicellulases and related enzymes with different enzymatic profiles, for use in the 

deconstruction of lignocellulosic biomass. 
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MATERIAL AND METHODS  

Actinomycetes strains  

Prospection of hemicellulase and related enzymes for plant biomass degradation was 

performed using an actinomycetes culture collection maintained at the Bioproducts 

Laboratory (ICB/USP). A total of 45 Brazilian actinomycetes were selected, isolated from 

Citrus reticulate, Citrus sinensis, Theobroma cacao, Saccharum officinarum, Catharanthus 

roseus and soil. 

 

Agro-industrial waste materials 

The liquor (HL) used was derived from the hydrothermal pretreatment of sugar cane 

bagasse and was obtained from Robl et. al [8] study. The sugar cane bagasse was obtained 

from a local mill (Usina Vale do Rosário, Orlândia, SP, Brazil)The hydrothermal 

pretreatment sugar cane bagasse process consisted of suspending an amount of bagasse 

(10% w/w, dry basis) in water and loading it into a laboratory-scale reactor (7.5 L total 

volume, Model 4554, Parr, USA). The temperature was raised from room temperature (25 

ºC) to 190ºC, over a period of 1 h. After 10 minutes, the reactor was cooled to ambient 

temperature and the pentose-rich liquor (HL) was collected with the aid of a laboratory-scale 

screen filter (Nutsche filter, POPE Scientific, USA). The soybean bran (SB) was obtained 

from Agricola (São Carlos, Brazil) and was characterized by Rodriguez-Zuniga et al. [22]. 

 

Hemicellulolytic plate assay  

The selection of hemicellulolytic strains was performed by cultivation on solid medium as 

described by Kasana et al. [23] containing 0.2% beechwood xylan (Sigma) or  liquor 25% 

(v/v). The bacteria strains were first grown on Tryptic Soy Agar (TSA) for 7 days at 29 °C and 

then inoculated onto the test media and incubated for 72 h at 29°C. The pH was adjusted to 

7.0. The hydrolysis halos were revealed by application of Congo Red (1%) for 15 minutes, 

followed by washing with 1 M NaCl for 10 minutes [23]. The hydrolysis rates were calculated 

by dividing the diameters of the hydrolysis halos by the diameters of the colony halos.  

 

β-glucosidase plate assay 

The strains were grown for 5 days in liquid medium [24] with carboxymethylcellulose 

(CMC, 1%) as sole carbon source, in 10 mL tubes (200 rpm, 29°C, pH 7.0). The biomass 

was separated by centrifugation, and the extract was subjected to an esculin gel diffusion 

assay (EGDA), as described by Saqib and Whitney [25], for 5 h at 37°C. The plate was then 

placed on ice, and measurement was made of the dark brown zone formed by the action of 

β-glucosidase on esculin. 

 

Shake flask cultures 

The composition of the main culture medium was used the medium described by 

Nascimento et al. [26] : 1 g/L de proteose peptone; 0.1% (v/v) de tween 80; NaNO3 1.2 g/L; 

KH2PO4 3.0 g/L; K2HPO4 6.0 g/L; MgSO4.7H2O 0.2 g/L; CaCl2 0.05 g/L; MnSO4.7H20 0.01 

g/L; ZnSO4.7H2O 0.001 g/L; 10 g/L carbon source.  As carbon source, it was used 10 g/L of 

pretreated delignified sugar cane bagasse (DEB) plus SB, at a 3:1 ratio, once that has been 

show a potential composition for glycohydrolase liquid prospection [8]. DEB was prepared 

and characterized by Rocha et al. [27]. The previously selected strains were grown on TSA 

for 3 days at 29°C, after which one 0.5 cm diameter disc was removed from each colony 

edge, transferred to an Erlenmeyer flask containing 20 mL of medium, and incubated for 144 

h at 29°C and 200 rpm. The best four strains were selected for growth using the same 

conditions and same medium described above, but with the carbon source changed to citrus 

pectin or beechwood xylan. Samples were removed daily for determination of enzyme 

activities as described below. The glycohydrolase profile was performed with the enzymatic 

extracts from the time point that showed the highest glycohydrolase activity over time of 

culture. 
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Enzymatic assays 

Measurement of enzymatic activities (in International Units, IU) was performed using 

different substrates in order to determine global and single activities. Filter paper activity 

(FPase) was determined as described by Xiao et al. [28]. 

 All the polysaccharides were purchased from Sigma Aldrich or Megazyme, and were 

assayed at 0.5% in a 10 minutes reaction. The polysaccharides used were: Beechwood 

xylan; Birchwood xylan; Rye arabinoxylan; Wheat arabinoxylan; Sugar beet arabinan; CMC; 

Barley β-glucan; Tamarind xyloglucan; Icelandic moss lichenan; Laminarin from Laminaria 

digitata; Chitosan from shrimp shells; Konjac glucomannan; Carob galactomannan; 1,4 

β-mannan and citrus pectin. CMC was assayed in a 30 minutes reaction. The enzymatic 

activity was determined from the amount of reducing sugars released from the different 

polysaccharide substrates, using the DNS method [29] with glucose as standard. The 

activities of β-glucosidase, β-xylosidase, β-mannosidase, α-L-arabinofuranosidase, and 

cellobiohydrolase II were measured using the respective p-nitrophenol residues (pNP) 

(Sigma-Aldrich, USA). The assays employed 10 μL of culture supernatant and 90 μL of the 

respective pNP (0.5 mM, diluted in citrate buffer), and the mixtures were incubated for 10 

min at 50°C. The reactions were stopped by adding 100 μL of 1 M Na2CO3, and the 

absorbance was measured at 400 nm using a Tecan Infinite® 200 instrument (Männedorf, 

Switzerland). All the assays utilized an epMotion® 5075 automated pipetting system 

(Eppendorf) and were performed at pH 7.0 with 50 mM phosphate buffer. One unit of 

glycohydrolases activity corresponds to 1 μmol of monosaccharide or pNP released per 

minute. 

 

RESULTS 

Plate screening  

The plate screening assay tested 45 actinomycetes for hemicellulases screening on plate 

assay. Among them 15 strains were not able to grow on media with liquor (25% v/v) and only 

23 grew and produced halos in the presence of this waste. All the bacterial strains were able 

to grow on media containing xylan and 25 hydrolyzed this polysaccharide (Table 1). The 

sugar cane hydrothermal pretreatment liquor showed the following composition (g/L): 

xylo-oligosaccharides (9.98), xylose (4.70), glucose (0.55), arabinose (0.77), cellobiose 

(0.0), furfural (1.05), hydroxymethylfurfural (0.18), acetic acid (1.47), formic acid (0.23), and 

total soluble lignin (3.15). Although this waste present a potential carbon source for 

hemicellulases screening producers microorganisms, 33% of the tested strains were 

inhibited by this substrate. To select actinomycetes that produce β-glucosidase the EGDA 

assay was performed. All the strains were able to grow on CMC as sole carborn source. 

However, when the enzymatic extracts were analyzed, only 11% actinomycetes were 

positive for β-glucosidase production (Table 1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Endophytic actinomycetes as hemicellulases producers  5 

 

Brazilian Archives of Biology and Technology. Vol.62: e19180337, 2019 www.scielo.br/babt 

Table 1 - Results of the selection of actinomycetes strains using the sum of the hydrolysis ratios for 

liquor agar and xylan agar, and calculation of the average halos obtained in the esculin gel diffusion 

assay (EGDA) 

 

Strain  Identification Source 

Hydrolysis 

ratio using 

liquor 

agarb,c 

Hydrolysis 

ratio using 

xylan 

agarb,c 

Ratio 

sumb,c 

EGDA 

halo 

average 

(mm)d,e 

DR59 Streptomyces galileus Soil 4.80 3.37 8.17 - 

DR60 Streptomyces sp.  Theobroma cacao 4.57 3.27 7.84 - 

DR61 Streptomyce globisporus C. roseus 4.22 3.21 7.43 - 

DR62 Streptomyces sp.  C. sinensis 3.60 3.20 6.80 - 

DR63 Streptomyces sp.  Unknown  2.36 4.27 6.63 - 

DR64 Streptomyces sp.  C. sinensis 3.24 3.25 6.49 - 

B6P4 Streptomyces sp.  S. officinarum 2.64 3.83 6.48 - 

H4P4 Streptomyces sp.  S. officinarum 2.31 3.83 6.15 - 

A10 Streptomyces sampsonii  C. reticulata 3.40 2.73 6.13 - 

A82 Streptomyces pseudogriseolus  S. officinarum 3.67 2.31 5.97 - 

A12,1(31) Streptomyces sp.  S. officinarum 1.94 3.21 5.16 - 

A25 Streptomyces sp.  C. sinensis 2.71 2.35 5.07 - 

H4.3 / C7.3 Streptomyces sp.  S. officinarum 1.94 2.77 4.72 - 

G1P1 S. pseudogriseolus  S. officinarum 1.88 2.77 4.66 - 

A01 Streptomyces sp.  C. reticulata 2.00 2.56 4.56 - 

DR71 Streptomyces capoamus Unknown  2.00 2.40 4.40 - 

DR69 Streptomyces roseochromogenus C. roseus 1.50 2.80 4.30 12.00 

DR66 Streptomyces olindenses Soil 2.00 2.22 4.22 + 

ATCC 

31267 
Streptomyces avermitilis Solo 1.20 3.00 4.20 - 

A07 Nocardiopsis sp.  C. sinensis 1.00 3.13 4.13 - 

G10P4 Streptomyces macrosporeus  S. officinarum 1.40 2.10 3.50 - 

A28 Streptomyces sp.  C. sinensis 2.44 1.00 3.44 - 

A18 Streptomyces sp.  C. sinensis 0.00 3.25 3.25 - 

A03 Nocardiopsis sp.  C. reticulata 0.00 3.00 3.00 - 

A12P2 Streptomyces sp.  S. officinarum 0.00 2.93 2.93 - 

DR67 Streptomyces lividans Soil 0.00 2.86 2.86 - 

DSM46458 Streptomyces chartresuts Unknown  1.60 1.00 2.60 - 

CCT2398 Streptomyces rimosus  Unknown  1.33 1.00 2.33 - 

A04 Nocardiopsis sp.  C. reticulata 0.00 2.27 2.27 - 

A30 Streptomyces verne  C. sinensis 0.00 2.05 2.05 - 

A11P2 S. macrosporeus  S. officinarum 1.00 1.00 2.00 - 

DR65 Streptomyces sp.  C. sinensis 1.00 1.00 2.00 + 

H4.3 C7.3 Streptomyces sp.  S. officinarum 1.00 1.00 2.00 - 

A08 Streptomyces sp.  C. reticulata 1.00 1.00 2.00 - 

A09 Streptomyces sp.  C. sinensis 1.00 1.00 2.00 - 

A11 Nocardiopsis sp.  C. sinensis 0.00 1.56 1.56 - 

DR70 Nocardiopsis sp.  C. sinensis 0.00 1.55 1.55 14.50 

DR68 Nocardiopsis sp.  C. sinensis 0.00 1.00 1.00 + 

A16 Nocardiopsis sp.  C. sinensis 0.00 1.00 1.00 - 

A23 Streptomyces sp.  C. sinensis 1.00 1.00 1.00 - 

A32 Streptomyces sp.  C. sinensis 0.00 1.00 1.00 - 

A3P1 Streptomyces albus  S. officinarum 0.00 1.00 1.00 - 

A4P1 Streptomyces pulveraceus  S. officinarum 0.00 1.00 1.00 - 

F7P4 Streptomyces akiyoshiensis S. officinarum 0.00 1.00 1.00 - 

H4P3 Streptomyces tsukiyonensis  S. officinarum 0.00 1.00 1.00 - 

b0.00 = No growth; c1.00 = Growth and absence of hydrolysis halo; d+ = Positive unmeasured halo; e- = No halo. 
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Shake flask culturing  

Twelve strains were chosen for shake flask cultivations selection. Eight strains were 

chosen based on the highest hydrolysis ratio sum and four based on EGDA activity. The 

DEB was composed of 77.89% cellulose, 7.09% hemicellulose, and 16.22% lignin. The SB 

consisted of 34% cellulose, 18.13% hemicellulose, 9.78% lignin, and 43.22% protein. The 

media prepared using these waste materials can provide a suitable ratio of cellulose and 

hemicellulose for the synthesis of glycohydrolases, as well as a good source of nitrogen. 

This composition could induce the production of cellulolytic and hemicellulytic enzymes in 

several endophytic fungi [8]. All actinomycetes strains presented  grow on DEB+SB media 

at 29ºC, 200rpm, pH 7.0 and enzymatic activities are shown in Figure 1. Low titration of 

β-glucosidase, FPase, CMCase and pectinase were detected during 48 and 96 h of 

cultivations for all the strains. The low β-glucosidase production was already present on 

plate assay. Among 45 strains, 5 showed β-glucosidase activity and four strains highlighted 

to xylanase production, DR6, DR66 and DR69, at 48h, and DR63 at 96h. 

 

 
Figure 1 Enzymatic activities of actinomycetes pre-selected strains, grown in shake flasks with 

DEB+SB (3:1), after 48 h (A) and 96 h (B). 

 

Glicohydrolyse profile 

In accordance with previous results 4 strains that presented potential for xylanase 

production (DR61, DR63, DR69 and DR66), for this reason these strains were selected for 

cultivation under other inductors substrates (xylan and pectin). These strains belong to 

Streptomyces genera and have their extracts tested for degradation of several 

hemicellulolytic substrates (Table 2). It was used the extract from the time point that showed 
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the highest glycohidrolase activity over time of culture. Low production of cellulose was 

visualized for the four strains and corroborate with the selection performed. In this way, the 

absence of β-glucosidase and cellobiohydrolase activities may be correlated low cellulase 

production.  

High levels of xylanase activity were detected for the 4 strains, although the strains DR63 

(19.26 U/mL) and DR69 (14.68 U/mL) produced highest titrations. The xylanase production 

was associated with xylan presence in the media (Table 2) and on hydrolysis a higher 

hydrolysis against beechwood xylan was presented, probably due to the selection on xylan 

agar plates. Between branched xylan, rye arabionoxylan was more hydrolyzed for induced 

xylan enzymes extracts then wheat arabionoxylan. 

Some strains, such as DR66 e DR69 were able to produce enzymes with activity to 

β-D-glucosil-(1→4)-β-D-glucose links from different substrates (β-glucan, lichenan and 

CMC), but low affinity on branched glucan (xyloglucan) was visualized. Xylan was also able 

to induce in the DR63 and DR61 the production of enzymes with activity to 

β-D-glucosil-(1→3)-β-D-glucose links from laminarin. Pectin presented the same effect in 

the DR69 strain. 

All endophytic strains produced pectinases and its production presented no differences 

between xylan and pectin used as carbon source for cultivation. The strains DR66 was able 

to produced enzymes against glucomanan and DR63 produced hydrolytic activity against 

hetero/homo mannan. No expressive levels of α-arabinofuranosidase, β-xylosidase, 

β-manosidase and cellobiohydrolase II were presented under the conditions tested.  

 

.  
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Table 2 Glycohydrolases activities (U/mL) of six selected actinomycetes strains grown on pectin, xylan and DEB.  1 

Strain 
DR61  

 
DR63 DR66  DR69  

Carbon source BED+FS Pectin Xylan BED+FS Pectin Xylan BED+FS Pectin Xylan BED+FS Pectin Xylan 

Time (h) 144 96 144 144 144 144 144 96 144 96 144 144 

Birchwood xylan 0.73 0.53 4.66 1.22 1.00 10.99 0.76 0.53 2.56 3.16 2.52 9.98 

Beechwood xylan 1.51 0.89 8.60 1.96 1.20 19.26 1.33 0.66 4.36 3.48 1.82 14.68 

Rye arabinoxylan 0.99 0.28 2.26 1.31 1.70 3.74 1.18 0.53 2.15 1.80 2.05 3.27 

Wheat arabinoxylan 0.69 0.44 0.27 0.67 0.18 0.00 0.61 0.47 0.24 0.65 0.60 0.48 

Arabinan 0.38 0.52 0.93 0.40 0.11 0.41 0.41 0.41 0.40 0.35 1.09 1.27 

CMC 0.51 0.69 1.02 0.46 0.56 0.93 1.61 0.60 1.01 0.84 0.77 1.01 

β-glucan 0.48 0.44 0.82 0.37 0.30 0.31 1.89 0.54 0.95 2.18 1.30 0.57 

Xyloglucan 0.53 0.42 0.59 0.36 0.24 0.37 0.83 0.58 0.38 0.35 1.05 0.41 

Lichenan 0.67 0.65 1.44 0.46 0.64 1.27 2.45 0.62 1.48 2.26 1.52 0.81 

Laminarin 0.43 0.50 1.16 0.41 0.73 2.39 0.47 0.43 0.40 0.40 2.22 0.62 

1,4 β-mannan 0.38 0.31 0.79 0.38 0.54 0.71 0.64 0.39 0.40 0.39 0.48 0.77 

Glucomannan 0.36 0.66 0.57 0.49 1.10 0.44 1.03 0.61 0.78 0.65 0.87 0.93 

Galactomannan 0.36 0.52 0.77 0.41 0.50 0.75 0.67 0.39 0.37 0.36 0.46 0.08 

Pectin 0.68 0.64 0.91 0.69 0.82 1.01 0.75 0.72 0.74 0.66 0.74 0.98 

pNP β-D-xylopyranoside 0.01 0.03 0.01 0.02 0.03 0.02 0.03 0.05 0.03 0.02 0.03 0.01 
pNP 
β-D-mannopyranoside 0.05 0.04 0.02 0.02 0.03 0.03 0.04 0.04 0.02 0.02 0.04 0.01 

pNP β-D-cellobioside 0.01 0.04 0.01 0.01 0.04 0.07 0.03 0.04 0.04 0.03 0.06 0.07 
pNP 
α-L-arabinofuranoside 0.04 0.07 0.02 0.02 0.06 0.01 0.05 0.07 0.07 0.02 0.05 0.02 

pNP β-D-glucopyranoside 0.01 0.00 0.01 0.01 0.02 0.02 0.08 0.00 0.03 0.02 0.02 0.03 

 2 
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DISCUSSION 

Actinomycetes is an important class of bacteria with industrial interest. The strains used 

in this work were previously identified by sequencing of 16S DNAr region by Andrielli [30]. 

Among the 4 strains, only DR66 was isolated from soil and belongs to Streptomyces 

olindensis species. The strains DR60 and DR69 are endophytics of C. roseus and were 

identified as Streptomyces globisporus and Streptomyces roseochromogenus, respectively. 

Only the strain DR63 is from an unknown origin and identified as Streptomyces sp.. Even 

though S. olindensis is capable to produce the antitumor cosmomycin D [31], S. globisporus 

is known as a producer of N-Acetylmuramidase [32] and S. roseochromogenus of the 

antibiotic roseomycin [33], none of these species have been described as producer of plant 

biomass degradation enzymes.  

The selection of hemicelullase producer actinomycetes based on plate and liquid were 

efficient once that it was possible to select strains with different hemicellulolytic profiles. 

Enzymatic profiles suggested that endophytic strains produced high hemicelullase titration 

then the soil strain (DR66) and that endophytic strains possess a similar pattern. This 

corroborate with Book et al. [34], that suggested that free-living soil Streptomyces have not 

evolved the capacity to rapidly utilize all the components of plant biomass degradation but  

phytopathogenic strains present CAZy gene content similar to cellulolytic strains which 

contributes to phytopathogenesis. Even though, endophytic strains does not causes plant 

diseases, these microorganisms  may initiate plant material decomposition process before 

it becomes dominated by saprophytic species [18, 19].  

The production of β-glucosidase is widespread in Streptomyces species [34, 35]. 

However, the screening for β-glucosidase production using de EDGA method lead for false 

positive selection, once that none of the strains were able to produce detectable amounts of 

β-glucosidase by pNP method. Robl et al. [8] used successfully this plate method for fungi 

β-glucosidase screening and the plate data corroborated with β-glucosidase liquid activity. 

The formulation of enzymatic cocktails aiming an efficient plant biomass degradation 

must focus on plant cell wall composition. The mainly component that varies greatly 

between crops is hemicellulose and lignin. Sugar cane presented mainly  xyloglucan and 

arabinoxylan closely associated with cellulose, whereas pectins, mixed-linkage-β-glucan 

(BG), and less branched xylans are strongly bound to cellulose [36]. For this reason this 

authors proposed an enzymatic hierarchical order to attacked sugar cane cell wall until 

naked cellulose fiber to become accessible to cellulases. In our work several enzymatic 

extracts presented potential on the sugar cane cell wall degradation. Bacterial extracts rich 

in lichenase, β-glucan, laminarin and pectinase would be useful in the first step to remove 

the matrix of pectin and β-glucan. Further extracts rich in endoxylanase activity would be 

necessary to degraded arabionoxylan. Finally, extracts rich in xyloglucanase would remove 

the xyloglucan that together with phenolic compounds involves microfibrils of cellulose into 

macrofibrils. Some enzymes activities were not detected and would be needed to a 

complete biomass deconstruction, such as α-arabinofuranosidase, β-galactosidase, feruloyl 

esterase. However, the addition of others microbial enzymatic extracts or recombinant 

enzymes could overcome this absence.   

CONCLUSION 

The present work demonstrated that it is possible to select endophytic strains that can 

produce glycohydrolases with activities against a wide range of plant biomass substrates. 

However, biochemical characterization of new reported glycohydrolases producer strains, 

as well as a bioprocess development of the selected strains in large scale, must be 

conducted to evaluate the enzyme applicability on the biomass deconstruction, principally 

on sugar cane bagasse. 
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