
DEPARTAMENTO DE CIBNCIA DA COMPUTA<;:A.O

Relat6rio Tecnico

RT-MAC-2004-01

BEING EXTREME IN 1HE CLASSROOM:
EXPERIENCES TEAClllNG XP

ALFRKDOGoLDUAN. FmoKON, PAUWJ. s. SILVA

-AN[)' JoEi'ODE](-

Janeiro de 2004

Being Extreme in the Classroom:
Experiences Teaching XP

Alfredo Goldman Fabio Kon Paulo J. S. Silva
Department of Computer Science
University of Sao Paulo, Brazil

{gold,kon,rsilva}Oime.usp.br
http://vw.ime.usp.br/-xp

Joe Yoder
The Refactory, Inc. and

Department of Computer Science
University of fllinois at Urbana-Champaign

joeyoderOjoeyoder.com
http://www.refactory.com

Abstract

Agile Methodologies propose a new way of lookiug at software development that que5tions
many of the beliefs of conventional Software Engineering. Agile methods such as Extreme
Programming (XP) have proved to be very effective in producing high-quality software in real­
world projects with strict time constraints.

Nevertheless, m08t university courem and indll8trial training programs are still baaed on
old-aty}e heavyweight methodologiee. Thie article, based on our 8XJ)eriencai teaching XP in
academic and industrial envirownents, p~nta effective way,, of teaching students and pro­
fessionals on how to develop high-quality software following the principles of agile software
development . . We also discuss related work in the area, describe real-world caaa, and diBcwls
open problems not yet resolved.

1 Introduction
In the last few yean,, agile software development methodologies have become widely known and
have been successfully adopted by hundreds of organizations worldwide. Agile methodologies such
as XP [Bec99], Scrum (SBOl], and Crystal (Coc02] are now used in small, medium, and large
companies, universities, research institutes, and governmental agencies. However, the large majority
of organizations have a long history of using old-style, heavyweight methodologies and most of their
programmers and managers are educated to develop software in a bureaucratic way in which software
quality is usually not the top priority.

The Manifesto for Agile Software Development (B+o1] indicated the four most important as­
pects of agile methodologies that differentiate them from conventional software development. Agile
methods value:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

While the items on the left (in bold face) are the core principles of a successful agile software
development project, most programmers and managers are educated in a culture that values more
the items on the right.

After participating in agile software development projects, a large number of academic and
industrial software developers have come to the conclusion that agile methodologies is the most
effective way for developing high-quality software in timEH:Onstrained projects. There are plenty
of examples of successful agile projects. However, there is still a lot of work to do in the field of
teaching agility. Most undergraduate Computer Science courses and training courses for industry
are based on conventional methods that focus on tools, documentation, contracts, and following
plans.

What CS education needs is a reality shock! We need to modernize our courses to show students
that personal communication, working software, customer collaboration, and dynamic adaptation
are, at least, as important as the traditional values that we are used to teach.

In this article, we present our findings in agile methodology education from our experiences in
teaching Extreme Programming (XP) in academic and industrial environments. In Section 2 we
describe a few related works in this area. In Section 3 we give a brief overview of XP and discuss the
points in favor and against XP, addressing when one should and should not use this methodology.
In Section 4, we describe the adaptations that must be made in order to carry out an XP project in
an educational environment. In Section 5 we describe some of our experiences in teaching XP both
in the university and in the industry and in Section 6 we discuss problems that are still unresolved.
Finally, in Section, 7 we present our conclusions.

2 Related Work

Many new articles have recently emerged in the literature on the subject of teaching XP or some
of its practices. Even though both approaches may seem clOllely related, there are good reasons to
treat them separated. XP is clearly based on the synergistic result of 12 practices working together
- this is one of the aspects of the "extreme" word in the methodology name. Therefore, the net
result of teaching isolated practices deserves careful reflection. Among the individual practices, two
emerge as being beneficial even when detached from the others: pair programming and test-driven
development.

Pair programming has been extensively studied by Williams et. al. In [WKOO, CWOO, WK02)
the authors show that pair programming is highly efficient. Working in pairs, programmers work
twice as fast and think of more than twice as many solutions to a problem as two programmers
working alone, while attaining higher defect prevention. The result can be faster code with higher
quality. The experiments were performed with senior-level students in a Software Engineering course
at the University of Utah and confirmed previo1111 anecdotal evidence.

In [NWW+03) the authors focus on the pedagogical benefits of pair programming. It stimulates
cooperation, which is highly regarded in the working environment but somehow neglected in the
academic setting. Pair programming can lead to improved success rates, that is the rate of students
that complete the course with grade of C or better, and the future performance of the paired
students is about the same as the solo ones. This last observation addresses the concerns of some
instructors that some paired students might pass the workload to his/her partner and not learn
the course material. Another interesting benefit of pair lab sessions is that the students solve, with
their partners, most of the simple questions, alleviating the lab instructors workload. Finally, the
authors give some suggestions on how to use pair programming effectively in the teaching lab. For
example, they suggest that the instructors must constantly emphasize the different roles in the pair
(driver and navigator) and encourage role and pair changes. Another interesting advice is to use
some kind of peer evaluation to avoid the "free ride" on the partner's work.

2

Test-driven development is another practice that fits easily in many different development
methodologies and, hence, can be taught detached from the other practices. A good book on
this subject is [Bec02b] . Actually, test-driven development should be taught before debugging tech­
niques, as a better way to avoid and catch errors. The instructor must be prepared to face resistance
from many students that feel that tests are a waste of time. Here some good anecdotal stories may
be beneficial, such as McBreen's testimony that he moved from daily debugging sections to only
three or four sessions a year after adopting XP style unit tests [McB03) .

Finally, another practice that may be beneficial to teach to advanced students is refactor­
ing [MS99). However, caution has to be taken since this practice is closely related to other XP
ideas such as incremental development, not planning for the future, tests, and continuous integra­
tion. Another report on teaching and using just a few practices is given in [ADWOl).

Other works describe experiences on teaching full XP. In [Tom02], Tomek presents his experience
on teaching XP in two Computer Science courses and proposes several reco=endations. According
to his experience, it is very important to provide a very agile environment, so he used VisualWorks
Smalltalk and its IDE. In his first course, Tomek used two projects, a first one to get the feeling of
XP followed by a more realistic one. During the second course, he focused on a single project with
a real customer.

Wilson's experience [WilOl] is similar, although he used Java instead of Smalltalk. The course
project wa., to improve a prototype Java IDE. Finally, Lappo taught an eXtreme Programming
course to a group of Masters students that spent 12 weeks working full-time to produce a Weir
based resource management application with Java technologies. In all these cases, the instructors
accumulated the role of mentor, coach, and usually even custumer.

All three experiments presented small problems, such as the lack of real custumers, the overload
of being mentor, coach, and client, the short period that can be dedicated to the project in ordinary
CS courses, and the Jack of adequate space for the XP team.

At this point, we can point out a few suggestions: students like meaningful projects that have
real 115e, students should be relatively advanced to be able to get the m06t out of the course, it
would be ideal to provide .11. dedie.t1.ted room for the XP class, .11.nd it might be interesting to provide.
the students with an implemented core of the application. Wilson suggests that this prototype can
work to give unity to the end result substituting the metaphor, which is one of the m06t difficult
practices to teach.

The courses also revealed some problems in trying to follow all XP practices. In some cases pair
programming was partially neglected, even by the instructor that refactored the code alone. Other
problems were the lack of a real client, the absence of a metaphor, . and some slips in the release
schedule. Interestingly, it seems like test-first development was quickly assimilated by the students,
who learned to appreciate its advantages.

In Sections 4 and 5 we show how to avoid many of the problems described above. In particular,
we show effective ways to teach XP, putting into practice most, or even all, of the practices in both
industrial and academic environments, giving a complete XP experience to students.

3 Overview of Extreme Programming
The Extreme Programming methodology was formulated by Kent Beck based on his long experience
in object-oriented software development ip:· Smalltalk together with Ward Cunningham. XP is
composed of a collection of practices that, in isolation, have been well known and used widely
for many yea.rs. The main contribution of XP is the conjunction of these practices in a cohesive
methodology, which fosters the synergistic effects of this mixture.

3

3.1 The 12 Practices

When the methodology was first introduced in 1999 {Bec99], it consisted of 12 practiees: Plan­
ning Game, Small Releases, Metaphor, Simple Design, Testing, Refactoring, Pair Programming,
Collective Code Ownership, Continuous Integration, 40-hour Week, On-site Customer, and Coding
Standards. A few years later, the 40-hour Week practice was renamed to Sustainable Pace and a
new rule was added: Fix XP When It Breaks. We will now describe briefly each of these practices,
for more detailed descriptions see (Bec99) and wwv. extremeprogramming. org.

Planning Game. A project starts with a short exploratory phase in which the customer expresses
the requirements (through user stories written in atory carda) and the development team, together
with the customer, creates a release plan specifying which story cards should be implemented for
each system release. The team negotiates, with the customer, dates for each release based on
business priorities and technical estimates. However, the most important point here is that the plan
is just a plan, i.e., the team and the customer know that it is not the reality that they will face.
AB reality overtakes the plan, the plan must be updated. So, rather than being completed upfront,
in XP, planning is an everyday activity. A good XP team must know how to adapt dynamically to
changes at any moment in the development process.

Small Releases. Rather than developing big pieres of eoftware at a time, the team should im­
plement a very small piece of working software first and then enhance it incrementally. Ideally, the
team should deliver new releases of working software every few weeks or, in some cases, days. The
time between releases cannot be a few months or more.

In each release the team implements a set of story cards. Each story CSJ"d is assigned to a
specific programmer who becomes responsible for its completion (although it does receive help from
its colleagues to achieve that). Stories that are more important to the customer receive a higher
priority and are implemented in the first releases. Developers and customer may negotiate during
development to move cards from one release to the other or to create, remove or modify them as
the team learns new things and business requirements evolve.

A key rule of incremental development in XP is; do not code for the future, do not anticipate
requirements. This spirit is usually expressed in the sentence do the simple.st thing that could po.ssibly
work. This implies that one should not add flexibility that is not needed to complete the current
task. H you think that a little more flexibility will be valuable in a couple of weeks, don't do it now;
wait until it is really needed and then refactor the code to add the required flexibility.

Metaphor. A simple story of how the system works should be shared by all the stake holders in
the project. This helps all the participants to understand the basic elements and their relationships
and may improve communication.

Simple Design. The system should always have the simplest possible design at any moment. If
extra complexity is found, it must be removed as soon as possible. And again: do the simple.st thing
that could po.ssibly work.

Testing. Programmers write unit tests for all system components so their confidence in the correct
behavior of the system becomes part of the system itself. In a more recent book [Bec02b], Beck
describes Test-Driven Development in which the unit tests are written even before the code to be
tested, which is also called Test-Pint Programming.

Customers write functional (acceptance) tests demonstrating that the required features ere im­
plemented correctly. If the customer is not a programmer, one of the developers pairs with the
customer to write the tests.

4

Refactoring. Using techniques such as the ones described in [Fow99], programmers restructure
the system continuously to improve it without changing its behavior. Possible improvements include
simplifications, optimizations, enhancing clarity, adding flexibility, etc.

Pair Programming. Each line of production code is written with two programmers simulta­
neously at a single machine. As explained in Section 2, pair programming improves code quality
greatly without impacting the speed of development. Communication will flow better across team
members if the pairs change frequently (e.g., every day). The pairs are selected based not only
on availability but also in expertise. For example, if it is necessary to build a Web interface to a
database, one could select a pair in which one of the programmers is an expert in databases while
the other is an expert in frameworks for building Web interfaces.

Collective Code Ownership. Any developer can change any piece of code in the system at any
time without requesting permission. This introduces a high level of agility in the team. Since there
are unit tests for each component, programmers are less likely to break each other's code.

Continuous Integration. The source code must be kept in a shared repository and every time a
task is completed, the new code must be built, tested, and, if correct, integrated into the repository.

Sustainable Pace. The team should work in a pace that it can sustain without harming its
participants, for example, 40 hours per week. A team that is physically or intellectually tired is very
likely to produce low-quality software. Working overtime in a certain, special week is acceptable;
however, if the team is asked to work overtime two or more weeks in a row, this is a sign that there
is something very wrong with the project.

On-site Customer. A real user of the system should be included in the team and be available
full-time for answering questions. No matter what happens to the project (good or bad), it will
never be a big surprise to the customer since he/she is following the development daily.

Coding Standards. In the initial phase, all the developers must agree on a common set of rules
enforcing how the system must be coded. This facilitates communication and enable groups of many
programmers to produce consistent code. Recent tools such as the Eclipse Check3tyle plug-in (see
eclipse-cs. sourceforge .net) can help automating part of the process.

It is important to emphasize that the value of XP is in applying all the practices in conjunction.
Applying a subset of the practices, without careful consideration, can even be harmful. For example,
applying aggressive refactoring without a good collection of unit tests may lead to disastrous results
as the programmers cannot verify if their changes are breaking the code or not. Adopting the
planning game, changing the plan dynamically, without a close contact with the customer may lead
the team to build a system that is not the one the customer wants.

3.2 Adapting XP

Teams that are new to XP should try to follow all 12 practices as rigorously as possible. More
experienced XP developers, however, will notice that this may not be possible, or even desirable,
in all situations. When this happens you may need to adapt XP by applying the Fix XP When It
Break& rule.

We present an example to illustrate this rule. An experienced XP developer, Klaus Wuestefeld,
working in a project for a cable-TV scheduling system realized that he would not be able to have
an on-site customer since the company contracting their services was located in another state. The
solution was to adapt XP introducing the concept of Customer Proxy. Klaus acted as a customer by

5

answering programmer questions immediately. He would then call the real customers on the phone
or email them later with the questions verifying his response, Most of the times the proxy's guesses
were correct and the development evolved quickly. The few times that he made the wrong guess,
he simply came back to the programmers and said: "I changed my mind", which is completely
acceptable within the rules of XP.

Another possibility is to select analysts that have worked closely with the customers to become
the customer proxy. This adaptation has been reported by Martin Fowler in projects carried out
by Thoughtworks.

In another project, Klaus noticed that developers were worried too much about the story cards
assigned to them and were not always willing to help their colleagues by pair programming with
them1

• The solution he adopted in that case was to create a new role: the Libero. One of the
programmers, called the Libero, was not assigned any story card; his task was simply to pair
program with the others helping them finish their cards.

A limitation of XP is that, since it requires direct communication among all team members, it
does not scale well for groups with much more than 10 developers. To overcome this limitation,
practitioners have extended the methodology to work with larger projects of up to 100 developers.
This was achieved by dividing the team in sub-groups of at most 10 people and integrating peri­
odically the software produced by each of the groups. Ron Crocker has worked many years with
larg~scale agile projects for Motorola. His extension of XP is called the Grizzly method and a new
book on the BUbject is coming out in 2004 (Cro04].

As a last example, sometimes teams allow for more individual spike solutions to be developed.
Then, these solutions are released into the main code base only after test cases are developed and
a pair of eyes looks over the solution. This can be a solution when pair programming is not always
possible.

A few more examples of interesting adaptations of XP can be found in (TFOO].

3.3 When not to use XP

There are some situations when using XP should be avoided. The possible pitfalls for XP adoption
fall in three categories: resistance from the development team to embrace XP, resistance from the
organization that houses the XP team or from the client to accept XP corollaries, and inadequacies
inherent to the software that have to be developed. McBreen has recently written an interesting
book on this subject called Questioning Extreme Progrommin9 [McB03].

The resistance from the development team may be associated with habits acquired during the
team members' life as programmers. At a first view, even pair programming may be odd, test-driven
development a burden, and simple design an excuse from lazy minds. After an adaptation phase,
however, many developers learn to appreciate the practices and the agile development environment.
On the other hand, the resistance from the development team may be associated with one of XP
most profound facets: XP is a subversive methodology, in the seruie that it requires a completely
new organization of the team. In traditional water-fall methodologies there are distinct and well
defined roles for the team members such as requirement analysts, system analysts, programmers,
testers, and so on. In XP, all team members play all these roles, they are all developer,. This
creates a completely new balance of power within the team that may face great resistance. In order
to adopt XP, the team must feel comfortable with the idea of working together as a group with the
single goal of delivering high-quality software in time.

To overcome this resistance, the XP instructor or mentor should pick as members for the first
XP experiment a group of people that is naturally inclined to experiment with new ideas and that
are self-confident enough not to feel threatened by the new balance of power. To achieve this in the
industry, it is essential to have the support of the management level of the company, which will help
the mentor to identify good candidates. In the university setting, this is better achieved by using

1Thls ia actually not very common in XP projects; uaually, programmeni negotiate among themaelvw to help each
other Implementing their cards.

6

elective courses. After the first successful XP experience, the word of mouth of the participants will
spread the news and it will be much easier to introduce XP into the entire organization or to make
the course mandatory for all students.

Examples of resistance from the organization and/or the client are the lack of commitment of
the client in participating actively in the development process, a requirement for long and formal
descriptions of the product to be developed before it is developed, the need to have a single person to
blame should anything go wrong2

, the need for a long, detailed documentation for the maintenance
phase. All these XP consequences must be clearly stated and understood both by managers and
developers before starting the first XP project in an organization.

Finally XP is not meant for all software development projects. Certain aspects of the software
to be developed may conflict with basic XP assumptions. Does the project require a very large team
(e.g., more than 20 people)? Does the edit-compile-run cycle take too long to complete? Do the
tests demand several minutes to run? Is it possible to find an on-site customer that will faithfully
represent the future users of the system? If the answer to any of these questions is yes, than XP is
probably not a good choice for this project or the methodology will need to be adapted significantly.

4 Adapting XP for the Classroom

In an educational environment, not all of the aspects of a real production environment are present.
Thus, when teaching XP in the university or in corporate training, some adaptations are required.

Differently from most academic courses, an XP course must focus on practice rather than on
theory. Students must spend most of the time programming in the lab, not attending lectures. We
identified two types of courses that can produce good results: short courses and long courses.

In an academic environment, a long course would typically be a full-semester course in which the
students attend, initially, a few lectures describing the methodology and then spend 3 to 4 months
working in the lab, 2 to 4 sessions per week. A short course can range from a full-day, 6 hour
workshop in which the students are exposed to both theoretical and practical aspects of XP up to
a one-month Summer course in which more details can be covered.

In industrial environments, the long "course" takes the form of mentoring. In this case, an
experienced XP consultant spends several hours per week working in a real project of interest to
the company, acting as the team coach. The role of the coach is not to guide the development but
to make sure that all XP practices are being followed and to use its experience to resolve conflicts
and show the group how XP can help overcoming the difficulties that arise. After a few months, the
role of coach can be handed over to one of the developers and the consultant becomes a meta-coach,
gradually decreasing his/her responsibilities. It is often said that the job of an XP consultant is to
put himself out of business in the long run by empowering the team to work by itself using XP.

Short courses in industrial environments typically take the form of immersion workshops in which
developers spend 2 to 4 days working full-time in a simple project going through all the steps of an
XP project, producing a few releases of working software.

Except from the mentoring case, which can mimic a production environment perfectly, the other
cases may require some adaptations. The time span of the courses are very different from a real
software development project. There might not .be a real customer available. The same person (e.g.,
instructor or professor) may need to play the role of both coach and customer, which is probably
not a good idea.

All these issues must be analyzed carefully by the instructor to enable the course participants to
have an XP experience as real as possible so that they will be capable of applying the methodology
in real life afterwards.

Our experience shows that, with proper planning, it is possible to overcome all these difficulties
and provide a real XP experience to students. In the next section we describe some of the long and
short curses we carried out in both academic and industrial environments.

2That does not go well with collective code ownership.

7

5 Experiences Teaching XP

Over the last few years we had experiences in teaching the XP methodology at the University of
Illinois at Urbana-Champaign, at the University of Sao Paulo, and in work as consultants both in
the United States and in Brazil. This wide variety of previous experiences let us have a broad view
of what is teaching the methodology to different people inserted in different cultures.

In this section, we describe our experiences in a full-semester course at the University of Sao
Paulo, in consulting for the Illinois Department of Public Health, and in a shor-term course for a
private company.

5.1 University of Sao Paulo

We started to disseminate the use of XP in Brazil in early 2001 with a series of lectures about
different aspects of XP including an overview of the methodology, refactoring, debugging, testing,
and coding style3• Besides these individual lectures, we hold an annual 4-month course cal.led
Extreme Programming Laboratory. This course is for undergraduate students in the 3rd and 4th
year of the Bachelors program in Computer Science. Course attendance is limited to 20 students and
they are divided in groups with 6 to 10 students. This is per st something new for the students since
they usually never have an opportunity to work in such a large group in which all the participants
actually work. In fact, most courses discourage students working together. The rest of this section
will describe the most important aspects that must be addressed when implementing such a course.

Workload. The students were required to be in the lab during two weekly sessions lasting 2 to
3 hoUI'B. We found that 3-hour 11888ion11 are much more productive in general. However, due to
schedule restrictions, we were forced to have 2-hour sessions in some cases. A good way of keeping
the students for a longer period in the lab was to provide a modest lunch in the lab. Thus the
students could stay focused on programming for longer periods holding their sandwiches while pair
programming. Having food around a software development lab is considered important by many
researchers who say that people become more relaxed and communicate better while eating.

Besides these two mandatory sessions, it was suggested to the students that they should come
to the lab 2 to 4 additional hours per week for pair programming or to learn about the technologies
used in the project. These additional hours were not verified by the instructors.

Development site. The laboratory in which the project is developed followed some guidelines
which enabled a large level of osmotic communication (Coc02) among the members of the same
team and a few, smaller, communication channels across teams. Alistair Cockburn has studied and
experimented with many different room layouts and identified their ad.vantages and drawbacks (see
(Coc02], Chapter 3, Communicating, Cooperating Teams).

The University of Sao Paulo lab where the XP courses are carried out was reorganized to follow
these guidelines. As shown in Figure 1, the workstations are set so there is space for two people
siting in front of each one and all the members of the team sit facing each other. This contrasts with
many laboratories where the developers face a wall or in which workstations are separated by divides
or enclosed in cubicles. The two groups working in the same lab are partially separated from each
other by two whiteboards, one for each group, which they use to draw UML diagrams, notes, etc. as
shown in Figure 2. Whiteboards act as what Cockburn cal.ls information radiators (Coc02) that can
be aeen and accessed easily by anyone entering the room. A large wall space is reserved for another
kind of information radiator: posters taped to the wall showing information posted by the trackers
(see below) about project progress (see Figure 3). The type of information posted was chosen by
the students themselves and it includes a list of story cards and related information, grapha showing

3Slid•, in Po.-tup-, available at http://11111r.1Ae.up.brr;r;p.

8

Figure 1: XP students in the lab

number of unit tests written and number of user stories implemented, and subjective evaluations of
source-code quality and team productivity.

Coaching. We learned that choosing a good coach is very important for the success of an XP
course. Over the years, we tried three different options for coach: a professor knowledgeable in XP,
a graduate student that had attended the sa.me course years before, and one of the students taking
the course and being a novice in XP. We found that the best experience happened when the coach
had both an authority over the students and were knowledgeable in XP. The conjunction of these
two factors happened only when the professor was the coach. Nevertheless, we do believe that the
other cases are also viable and, with proper care, can lead to good results; one must make sure that
the two requirements are met (authority and knowledge of the methodology).

Customer. In the two initial years, the role of the customer was also played by CS professors.
They were available during the two mandatory BeSl!ions and would be real users of the system
to be built. In 2003, we developed a library management system so we invited a professor from
another area and some staff members of our university library to act as customers. The experience
was effective and very enlightening since the students realized that they had to use & completely
different language to communicate with people that were not educated in CS.

Choosing the system. The choice of which system to build is very important: it must motivate
the students, it must be interesting from a technological point of view, and it must be so that we can
find real future users that can act as customers. To meet all these requirements, we chose systems
that the university needed to manage its resources and people.

We started with a Web-based system for managing course selection; the students could to use
it to express which elective courses they would like to take and the professors could express which
courses they were able to teach and which one they would like to teach. The system then collected
the results and were supposed to use optimization techniques to create a course schedule for the
following year. The system is now online at mico . area . ime. usp. br and is used every year.

9

Figure 2: Whiteboard dividing the space

Figure 3: Information radiators maintained by the tracker

Tracker. In XP, the tracker is one of the developers who is responsible for collecting statistica
about the performance of the team and act aa it.a coll8cience, evaluating the progress of the project.
Asking one student from each team to volunteer to be the tracker showed to be a very successful
approach. By doing this we U8Ually got people that were really motivated for this task.
. After the trackers are selected they are asked to read a few articles and book chapters on tracking

and try to come up with creative ways of capturing team progress. Most of the times, the tracker
chose to keep a copy of the story cards in a Web site4 so that team members could easily access them
from any location at any time. The trackers are also responsible for maintaining the information
radiators posted to the walls as we mentioned before.

Technologies. For developing the projects, students utilize the latest real-world technologies,
which is very valuable for their future professional life. Most students consider this challenge moti­
vating and work hard to learn the new tools.

The professors teaching the course do not specify any speciiic tool, language or environment
for the system to be developed. All the decisions are made by the team itself during the initial
exploratory phase.

The systems were developed using mostly modern free software tools such as Java, Eclipse, CVS,
ant, Apache, Tomcat, JSP /Struts, PostgreSQL, and Checkstyle. For unit testing, JUnit has been
used in all our projects. User acceptance tests verifying the correct behavior of Web interfaces were
carried out using HHTPUnit. Server-side Java code, such as Servlets, EJBs, and Tug Libs, has been
tested UBing Cactus.

Student grading. Grades in Brazil are a numeric value between O and 10. We chose not to apply
any exam during the XP course. So, the grades are calculated, at the end of the semester, based
on four weighted criteria: attendance (30%), commitment to the XP methodology (35%), quality
of the 50ftware produced {25%), and self-evaluation (10%).

The weights show that what is more important for us is that the students do come to all
prograniming _;_ons and that the XP methodology be applied. Simply developing a good eoftware
system without using XP is not the objective of the course and this is made clear since the beginning
of the course.

5.2 Illinois Department of Public Health

In 1998 and 1999, The Refactory, Inc. provided a team to the Illinois Department of Public Health
(IDPH) in order to assist with the development of medical software. Many applications at the
Illinois Department of Public Health manage information about patient.a and people close to the
patient, such 1111 parents, children, and doctors. The programs vary in the kind of information (and
the repr-ntation) they manage. However, there are core pieces of information that are common
among the applications and can be shared among applications.

IDPH recruited The Refactory to ll88i.st with the development of an Enterprise framework for
creating these medical applications with the primary goals of 1) achieving reuse, 2) creating easier
and quicker ways to deploy applicatioDB, and 3) to share common data &erOl!S applications.

The primary development environment was Smalltalk, which was used for creating Windows­
based client-server applications that interacted with a relational database running on a UNIX box.
Joseph Yoder wu the main software architect and led a 10-pereon team using XP practices (though
not pure XP). This section will describe the experiences at attempting to integrate XP into IDPH
and will point out some success and problems associated with incorporating XP into industry.

Open Space. IDPH used cubicles for each developer. One of the first thing that we did was to
remove the cubicles and create a shared common space. This common space was for 118 to pair

4See, fw example, http: //vn. 1-. up. br/"a:p/2003/xop■/■torycarda.

11

program and to communicate more openly. We setup our workspaces in the open area to allow two
people to share a single computer, primarily to facilitate pair programming. We put tables in the
middle of our open area where we could gather around and share ideas. We also added a couple of
whiteboards in which we could openly get together for brainstorm or shared design.

By setting up a shared area, we created an environment for good communication &m0ng devel­
opers. When new ideas were presented or new code released, everyone in our area immediately knew
about it. This helped on the integration of new code. Refactoring was also easier since everyone
had immediate access to all of the developers.

However, in general, most of the IDPH staff was uncomfortable with the open space idea. Our
open space was almost too open. We were so open that all people within the IDPH staff could see
what we were doing and hear ua. ThUB, we were t.oo visible. We had some advocates to support
what ""' were doing, but staff members not directly involved with our project were not as open to
what we were doing. This sometimes stirred some inner controversy. For example, people would
hear 1111 talking amongst each other and at times our conversationB would be misinterpreted.

For example, comments would be made about how we might be wasting time talking about
items that were not directly related to our project. It is a common social phenomenon for people
to discuss many items while dialoguing and quite often, people not involved with our project would
complain to management that we were wasting time. They did not see the additional benefit that
was created from the open social environment.

Beca118e of this, the mentor quite often had to protect or defend what the group was doing. In
a sense, the mentor had to isolate or protect the team from the rest of the IDPH staff. It might
have been better if we had isolated our shared space from the rest of IDPH. For example, we could
have been in a separate room rather than in the middle of a large space. This would provide for an
open environment that was still private from the rest of the organization. We could then prove our
concept by our deeds rather than someone judging our procese while in action.

However, everyone that was part of our shared spaced really liked what we were doing. We all
felt that we were more productive in this environment based upon our previous experiences. We felt
that we achieved more and had fun while we were doing it. We do not have empirical data backing
up our feeling but ea.ch of us have had enough development experience to believe strongly that we
produced more higher quality production code in this environment than the old "cubicle" style of
developing software.

Pair Programming, Pa.ir programming was used to develop most of the production code. Pa.ir
programming worked extremely well for us as knowledge about our frameworks was shared. Also,
we all had an understanding of all of the code and we were never dependent on a single individual.
We had people both le&ve the project and join our group. Because of pair programming we had
a group understanding of the code and was able to ad&pt to changes in our development team.
Pa.ir programming also provided new developers with good support for learning how to use our
frameworks, thus becoming more productive in a less amount of time.

We would let individuals develop some spike solutions and what they developed would often be
good enough to be incorporated into the code-base without pa.ir programming. However, this code
was only released with test cases and once the code was released into the the shared repository,
anyone could change the code. Therefore, there was no explicit code-ownership. Everyone "owned"
the code and we worked together to make sure that we never left anything broken.

One thing we did not do was the rotation of the pa.irs. Certain people tended to gravitate together
and worked better together. We also had certain individuals that were very good at working with
the spike solutions and integrating them into the environment. They worked well with the team
but did not want to work in pa.irs.

Testing. Test cases and suites was an are& where we went very "extreme". We generated many
test cases and suites. Our test cases were not always created first but we were very diligent about

12

creating tests to validate our code and also to show how to use our frameworks. We always made
sure to run the test cases at the end of each day.

These tests were invaluable during refactoring and integration. We all became strong believers
when the test cases pointed out problems while we were integrating new functionality. Problems
that would not have normally been found until late in the game were immediately found and fixed.
It also made us comfortable about refactoring the code. We could apply a design pattern such as
applying the Template Method design pattern and know immediately if we broke someone's code.

One of the problems with building an application with our reusable frameworks was that our
frameworks could be hard to understand and use. The tests provided a way to document how to
use them, thus making it easier for developers to see how to use and build applications correctly
with them.

Also, since we were using Smalltalk, we were able to evolve SUnit easily to make it so that we
could create GUI tests. This allowed us to extend our test cases and suites to provide more extensive
functional tests. We could then create complete user acceptance tests, thus ensuring the application
worked according to the prescribed requirements.

Releases. We had regular internal releases and did what it took to keep a working version. This
allowed us to demo the application often and get immediate feedback on what worked and what did
not work. However, IDPH's process for releasing applications did not let us release our applications
to state employees on a regular basis. We could use our working version to meet with users and show
them the application working. However, we did not receive the additional benefits that arise from
regular feedback provided by a real customer using a current released version of the application.

Since our releases were never released to the customer until we were near completion, we did
not receive the benefits of the regular feedback that XP promises. This is one of the XP principles
that can be difficult in industry. Many users may feel that it is a waste of their time dealing with
applications that are not completely functional.

User Stories. We did not create formal user stories. Thill was due to the unfortunate fact that
we did not have direct access to the users. Instead Joseph Yoder worked with the State Analysts to
get the requirements and helped coordinate the team in an XP fashion. This is one of the biggest
problems we had with our process.

For an application called The Refugee System, we had a customer that worked very closely
with us. This helped to ensure that the system we developed was very close to what they needed.
Therefore, when we were ready to go into production, the application pretty much met the needs
of the end users.

However, we worked on another application called Newborn Screening (NBS), which had lots
of problems. We did not have a relationship with the end user until the end of the development
process. Because of the lack of a close relationship to a "real" customer, the system we developed
was quite disparate from what the users needed. This led to many problems and complaints by the
customers and management.

Upon reflection, we can see that a closer relationship with the customer was vital for success.
Only relying on an analyst for the requirements was not good enough and by creating user stories
for all of our applications, we might have been able to minimize some of the problems associated
with NBS. Of course this is not unique to XP.

Assessment. In summary, we always kept things working, we were strongly test-driven, we did
benefit from pair programming and the like. Our open space was invaluable to us though we would
probably have benefited more by creating our open space in a semi-private area

We wish we had pushed XP even further. However, it was hard to even push the principles as
far as we did, given the political structure of a state organization. What we did worked well for us
but our experience tells us that we know it could have worked even better.

13

For example, generating user stories and having regular releases could have helped ensure that
our applications stayed on target. Rotating pairs would have helped shared knowledge more.

There are a couple variations on XP that might have helped more such as possibly creating a
proxy customer and using this proxy to generate the user stories. For example, we know of one
organization that has successfully U8ed analysts that worked very cloeely with the customer as a
user proxy. Then user stories were created as part of the XP process [TFOO).

5.3 Recife Short Course

In August 2003, a company called Qualiti located in Recife presented a short XP course for industry
professionals taught by Joseph Yoder. This section will outline how the course was presented along
with some learning experiences.

Course Desaiption The course waa taught on site at Qualiti in Recife. We had 12 attendees
which were from various areas of industry. The course duration WBS three four-hour days and its
description was as follows:

Evolving and adapting to changing requirements has become a crucial part of the
design and programming process. Agile methods such as eXtreme Programming (XP)
empowers all those that have an investment in the software being created. This ranges
from the manager to the developer and end-user.

This short course will teach attendees the basic premise of Agile methods and will
explore the details of the XP process. The course will consist of a mixture of lectures,
reading groups, dialogs, and labs. The attendees will read some online materials, discu•
the details of the techniques, and apply them in a group setting.

The thr~ay course was broken down by presenting, on the first day, &n overview of the XP
proa!SS followed by two days of hand.on experiences actually working with the XP process.

Overview of XP. The first day really focll8ed on ensuring that the students understood the
main principles of XP and how the process worked. The first day overview presented: What is XP;
Why XP; Principles of XP; The XP Process. This four-hour session emphasized issues such as the
Customer Bill of Rights, the Programmer Bill of Rights, Rules and Practices of XP, and the overall
process which included a detailed description of the iteration cycles and releases. We concluded this
section with an introduction to the hand.on example that was worked on for the rest of the course.

Hands-on Example. The only way to really learn the principles of XP is by actually working
with them. This is why any short course should have at least part of the course force students to
actually try and work through some of the principles. The students were broken down into two
six-person teams working through the XP process. We would meet at regular intervals to comp8l'e
notes and to learn from each other.

The primary goal of this task was to put into practice some of the principles of XP. Some of the
main principles of XP, that were described on the first day, included items such as:

• Get user stories from the customer

• Create acceptance tests

• Create spike solutiollll to understand the problem

• Create a system metaphor

• Work with the customer to create a release plan

14

• Do small iterations

- Iterations include doing an iteration plan

- Break the stories up into 1-3 day tasks

- Do informal design such as CRC cards

- Do test-driven development.

The example problem for practicing with XP dealt with the early design of a Conference Paper
Submission System. The instructor knew this problem well and could thus work as the coach and
customer; he ultimately really wants to build such a system to use for the Patterns Languages of
Programming (PLoP) conferences.

The task included creating user stories, generating acceptance tests, outlining an architectural
spike to get a system metaphor, creating a release plan, and working through the start of an iteration
where they broke the story up into small 1-3 day tasks. They, then, did some initial design and
outlined the unit tests for validating that the system would work properly. Rough requirements for
the system were presented. This should be no surprise as this quite often happens in the real world.
So, part of the task was to get better user stories from the user to make better estimates.

Analysis, Forcing the students to work through the process really emphasized how XP worked.
The instructor could easily present a detailed overview of XP but many items were not understood
until the students worked through the process. There was also a huge benefit from the students
interacting with one another, specifically when we came together and compared the results of the
two groups.

One thing that was noted from the students was that using CRC cards for the design was
difficult. Many of the students already knew UML well e.nd they could draw class diagrams more
easily than trying to learn a new way to describe their objects. The course did not dictate CRC but
most students wanted to try it so that they could underste.nd it and compare it to methods they
were familiar with. XP does not dictate CRC and encourage developers to use whatever works well
for them as long as they do not over design.

The main problem that the students had was trying to limit their designs. The students that
attended the course were all very sharp developers from industry that had quite a lot of experience
developing production systems. Thus, when they would work on an iteration, the temptation would
be to go ahead and add some extra complexity or over design knowing what some of the next
iterations would need. This was when refactoring and keeping it simple was emphasized and it is
a difficult point to make to experienced developers. It goes against what they have learned in the
past and they will probably not be convinced until they see the results by working many months on
a successful XP project. From this, we can conclude that short courses are useful for introducing
the concepts in industrial settings. However, this should be followed up by a long-term mentoring
process where a coach works a few days a month on-site with the XP team.

6 Open Problems

Perhaps the most difficult XP practice to teach is Metaphor. Although it usually does not receive
the deserved attention, a good metaphor can be very important to improve the communication. We
were not yet able to use the Metaphor practice consistently at the University of Sao Paulo courses,
for example. A possible way of introducing the use of metaphors in an organization it to give a talk
presenting some examples of good and bad metaphors and emphasizing its benefits. The keynote
speech given by Kent Beck at OOPSLA 2002 (Bec02a) could be used as a starting point.

In e.n academic environment, another problem is related to the students motivation. Even if
there is a selection of the more interested students in the beginning, this may change over the
semester. For example, in our experience, problems related to other courses (midterm and final

15

exams, exercisee, etc.), personal problems, caused important interference in the development of
eome XP projects. Maybe this can be 110lved with shorter courses. However, since similar problems
will also occur in real-life projects, it may be a good thing that they appear in the academic setting
so that the participants learn to deal with them.

Finally, a problem that is often mentioned is the difficulty of performing unit tests in stand-alone
applications based on GUis. However, this problem will probably not last too long since the tools
for t.esting graphical interfaces have been improving significantly in the last years.

7 Conclusions

Agile software development methodologies, such as XP, are gradually being adopted by hundreds of
organizations in the five continents. Nevertheless, the spirit of agile development is still not present
m most of the organizations developing 110ftware. A new culture of agility and adaptation to change
must be developed and educators have a major role to play in this regard.

In this article, we have described our experiences in teaching XP in both academic and industrial
environments and have discussed how one can be effective in teaching and implementing XP in an
organization.

We have observed that, although there may be a priori fears of the consequences and effec­
tiveness of XP, once developers and managers have real contact with a well-run XP project, the
fears quickly dissipate. XP has proved to be a very attractive methodology both in academic and
corporate environments due to the lack of surprises for customers and developers (thanks to the on­
site customer practice) and to the high-quality of the software produced. Besides, the environment
created is optimal for the developers who feel free to put all their energy in producing high~uality
working code without the distractions required hy bureaucratic processes that focus on tools and
documents.

Within the next few years we expect that XP and agile methodologies will become part of
the curriculum in many more universities around the world (at least as elective courses) and that
industrial training and mentoring in XP will become more frequent. It is the role of educators and
researchers to enable this leap forward.

Acknowledgments The authors gratefully acknowledge the energy, excitement and great ideas
provided by all the students and profe58ionals that participated in our courses and mentoring
projects. We thank Carlos Eduardo Ferreira for being a good customer and coach, Klaus Wueste­
feld for all the ideas shared with us and Eduardo Seiti Teruiya for driving out fear and embracing
change. We also thank Paulo Borba, Ralph Johnson, Steven Wingo. Alfredo Goldman, Fabio Kon
and Paulo J. S. Silva were supported by CNPq under the grants 303246/2002-2, 302455/2003-5, and
304691/2002-0.

References

(ADW0l] 0. Astrachan, R. Duvall, and E. Wallingford. Bringing extreme programming to the
classroom. In Procuding1 of XP Univer,e £001, Raleigh, NC, USA, 2001.

[B+o1] Kent Beck et al. Manifesto for Agile Software Development. Home page: http://
agilemanifesto.org, 2001.

[Bec99] Kent Beck. Extreme Programming Explained.- Embrace Change. Addison-Wesley, 1999.

[Bec02a] Kent Beck. The metaphor metaphor. Keynote speech- ACM OOPSLA'02, November
2002.

(Bec02b) Kent. Beck. Teat-Driven Development: By Example. Addison-Wesley, 2002.

16

[Coc02)

[Cro04]

[CWOO]

[Fow99)

[McB03]

[MS99]

Alistair Cockburn. Agile Software Development. Addison-Wesley Longman, 2002.

Ron Crocker. Large-Seo.le Agile Software Development. Addison-Wesley, 2004.

A. Cockburn and L. Williams. The coets and benefits of pair programming. In Pro­
ceedings of the First International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP£000}, Cagliari, Sardinia., Ita.ly, June 2000.

Martin Fowler. Refactoring: Improving the Design of Eristing Code. Addison-Wesley,
1999.

P. McBreen. Questioning Extreme Programming. Addison Wesley, 2003.

K. Maruyama. a.nd K. Shima.. Automatic method refactoring using weighted dependence
graphs. In Procudings of the flst international conference on Software engineering,
pages 236--245. IEEE Computer Society Press, 1999.

[NWW+03] N. Nagappa.n, L. Willia.ms, E. Wiebe, C. Miller, S. Ba.ilk, M. Ferzli, a.nd M. Petlick.

[S801]

[TFOO]

[Tom02]

[Wi!Ol]

[WKOO)

[WK02]

Pair learning: With an eye toward future success. In Extreme Programming and Agile
Method$ - XP / Agile Univer.se eoos, volume 2753 / 2003 of Lecture Notes in Comp1.1ter
Science, pages 185 - 198. Springer-Verlag Heidelberg, September 2003.

Ken Schwa.her and Mike Beedle. Agile Software Development with SCRUM. Prentice
Hall, 2001.

C. Taber and M. Fowler. An iteration in the life on an XP project. Cutter IT journal,
13(11), November 2000. Updated eletronic version: http://vvv.iaartinfowler.c0111/
articles/planningXpiteration.html.

I. Tomek. What i learned teaching XP. In Procudings of the ACM OOPSLA Educators
S!lfflposium, pages 39-46, Seattle, Washington, USA, November 2002.

D. Wilson. Teaching XP: a case study. In Proceedings of XP Universe 2001, Raleigh,
NC, USA, 2001.

L. A. Williams and R. R. Kessler. All I really need to know about pair programming I
learned in kindergarten. Communications of the ACM, 43(5):108-114, May 2000.

L. Williams and R. Kessler. Pair Programming nluminated. Addison-Wesley, 2002.

17

RELAT6RIOSllCNICOS

DEPARTAMENTO DE CltNCIA DA COMPUTA4;AO
Instituto de Matematica e Estatistica da USP

A listagem contendo os relat6rios tecnicos anteriores a 2000 podcra ser consultada ou
solicitada a Secretaria do Departamcnto, pessoalmente, por carta ou e-mail
(mac@i.me.usp.br).

Marcelo Finger and W anberto Vasconcelos
SHARING RESOURCE-SENSITIVE KNOWLEDGE USING COMBINATOR LOGICS
RT- MAC-2000-01, maJyo 2000, l3pp.

Marcos Alves e Markus Endler
PARTICTONAMENTO TRANSPARENTE DE AMBIENTES VIRTUAIS DISTRIBUiDOS
RT- MAC-2000-02, abril 2000, 21pp.

Paulo Silva, Marcelo Queiroz and Carlos Humes Junior
A NOTE ON "STABILITY OF CLEARING OPEN LOOP POUCIES IN
MANUFACTURING SYSTEMS"
RT- MAC-2000-03, abril 2000, 12 pp.

Carlos Alberto de Bragan~a Pereira and Julio Michael Stem
FUU BAYESIAN SIGNIFICANCE TEST: THE BEHRENS-FISHER AND
COEFFICTENTS OF VARIATION PROBLEMS
RT-MAC-2000-04, agosto 2000, 20 pp.

Telba Zalkind Irony, Marcelo Laurctto, Carlos Alberto de Bragan~a Pereira and Julio
Michael Stem
A WEIBULL WEAROUT TEST: FUU BAYESIAN APPROACH
RT-MAC-2000-05, agosto 2000, 18 pp.

Carlos Alberto de Bragan~a Pereira and Julio Michael Stem
INTRINSIC REGULARJZ.ATION IN MODEL SELECTION USING THE FUU
BAYESIAN SIGNIFICANCE TEST
RT-MAC-2000-06, outubro 2000, 18 pp.

Douglas Moreto and Markus Endler
EVALUATING COMPOSITE EVENTS USING SHARED TREES
RT-MAC-2001-01,janeiro 2001, 26 pp.

Vera Nagamura and Markus Endler
COORDINATING MOBILE AGENTS THROUGH THE BROADCAST CHANNEL
RT-MAC-2001-02,janeiro 2001, 21 pp.

Julio Michael Stem
THE FUUY BAYESIAN SIGNIFICANCE TEST FOR THE COVARIANCE PROBLEM
RT-MAC-2001-03, fevereiro 2001, 15 pp.

Marcelo Finger and Renata Wassennann
TABLEAUX FOR APPROXIMATE REASONING
RT- MAC-2001-04, mar~o 2001, 22 pp.

Julio Michael Stem
FUU BAYESIAN SIGNIFICANCE TESTS FOR MULTIVARIATE NORMAL
STRUCTURE MODELS
RT-MAC-2001-05,junho 2001, 20 pp.

Paulo Sergio Naddeo Dias Lopes and Hernan Astudillo
VIEWPOINTS IN REQUIREMENTS ENGINEERING
RT-MAC-2001-06,julho 2001, 19 pp.

Fabio Kon
0 SOFTWARE ABERTO EA QUESTA-0 SOCIAL
RT- MAC-2001-07, setembro 2001, 15 pp.

Isabel Cristina Italiano, Jo!o Eduardo Ferreira and Osvaldo Kotaro Takai
ASPECTOS CONCEITUAIS EM DATA WAREHOUSE
RT - MAC-2001-08, setembro 2001, 65 pp.

Marcelo Queiroz , Carlos Humes Junior and Joaquim Judice
ON FINDING GLOBAL OPTIMA FOR THE HINGE FITTING PROBLEM
RT- MAC-2001-09, novembro 2001, 39 pp.

Marcelo Queiroz , Joaquim Judice and Carlos Humes Junior
THE SYMMETRIC EIGENVALUE COMPLEMENTARITY PROBLEM
RT- MAC-2001-10, novembro 2001, 33 pp.

Marcelo Finger, and Fernando Antonio Mac Cracken Cezar
BANCO DE DADOS OBSOLESCENTES E UMA PROPOSTA DE IMPLEMENTA<:;A-0.
RT- MAC - 2001-11- novembro 2001, 90 pp.

Flavio Soares Correa da Silva
TOWARDS A LOGIC OF PERISHABLE PROPOSIDONS
RT-MAC- 2001-12- novembro 2001, 15 pp.

Alan M. Durham
0 DESENVOLVIMENTO DE UM INTERPRETADOR ORJENTADO A OBJETOS PARA
ENS/NO DE LINGUAGENS
RT-MAC-2001-13 -dezembro 2001, 21 pp.

Alan M. Durham
A CONNECTIONLESS PROTOCOL FOR MOBILE AGENTS
RT-MAC-2001-14-dezembro 2001, 12 pp.

Eugenio Akihiro Nassu e Marcelo Finger
0 SIGNIFICADO DE "AQUI" EM SISTEMAS TRANSACIONAIS MOVEIS
RT-MAC-2001-15 - dezembro 2001, 22 pp.

Carlos Humes Junior, Paulo J. S. Silva e Benar F. Svaiter
SOME INEXACT HYBRID PROXIMAL AUGMENTED LAGRANGIAN ALGORmlMS
RT-MAC-2002-01 - Janeiro 2002, 17 pp.

Roberto Speicys Cardoso e Fabio Kon
APUCACAO DE AGENTES MOVEIS EM AMBIENTES DE COMPUTACAO UBiQUA.
RT-MAC-2002-02- Fcvcrciro 2002, 26 pp.

Julio Stern and Zacks
TESTING mE INDEPENDENCE OF POISSON VAR/ATES UNDER mE HOLGATE
BIVARIATE DISTRIBUTION: THE POWER OF A NEW EVIDENCE TEST.
RT- MAC-2002-03 -Abril 2002, 18 pp.

E. N. Caceres, S. W. Song and J. L. Szwarcfiter
A PARALLEL ALGORITHM FOR TRANSITIVE CLOSURE
RT-MAC-2002-04-Abril 2002, 11 pp.

Regina S. Burachik, Suzana Scheimberg, and Paulo J. S. Silva
A NOTE ON THE EXISTENCE OF ZEROES OF CONVEXLY REGULARIZED SUMS
OF MAXIMAL MONOTONE OPERATORS
RT- MAC 2002-05 - Maio 2002, 14 pp.

C.E.R Alves, E.N. Caceres, F. Dehne and S. W. Song
A PARAMETERIZED PARALLEL ALGORITHM FOR EFFICIENT BIOLOGICAL
SEQUENCE COMPARISON
RT-MAC-2002-06 -Agosto 2002, 11 pp.

Julio Michael Stern
SIGNIFICANCE TESTS, BEUEF CALCULI, AND BURDEN OF PROOF IN LEGAL
AND SCIENTIFIC DISCOURSE
RT- MAC - 2002-07 - Setembro 2002, 20pp.

Andrei Goldchleger, Fabio Kon, Alfredo Goldman vel Lejbman, Marcelo Finger and
Siang Wun Song.
INTEGRADE: RUMO A UM SISTEMA DE COMPUTA<;AO EM GRADE PARA
APROVEITAMENTO DE RECURSOS OCIOSOS EM MAQUINAS COMPARTILHADAS.
RT-MAC - 2002-08 - Outubro 2002, 27pp.

Flavio Protasio Ribeiro
OITERLIB -A C LIBRARY FOR THEOREM PROVING
RT- MAC - 2002-09 - Dezembro 2002 , 28pp.

Cristina G. Fernandes, Edward L. Green and Arnaldo Mandel
FROM MONOMIALS TO WORDS TO GRAPHS
RT-MAC - 2003-01 - fevereiro 2003, 33pp.

Andrei Goldchleger, Marcio Rodrigo de Freitas Carneiro e Fabio Kon
GRADE: UM PADRAO ARQUITETURAL
RT- MAC-2003-02-m3.1yo 2003, 19pp.

C. E. R. Alves, E. N. Caceres and S. W. Song
SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE ALL-SUBSTRINGS
LONGEST COMMON SUBSEQUENCE PROBLEM
RT- MAC - 2003-03 - abril 2003, 53 pp.

Said Sadiquc Adi and Carlos Eduardo Ferreira
A GENE PREDICTION ALGORITHM USING THE SPLICED ALIGNMENT PROBLEM
RT- MAC- 2003-04 - maio 2003, 17pp.

Eduardo Laber, Renato Canno, and Yosbiharu Kohayakawa
QUERYING PRICED INFORMATION IN DATABASES: THE CONJUNTIVE CASE
RT-MAC - 2003-05 - julho 2003, 19pp.

E. N. Caceres, F. Dehne, H. Mongelli, S. W. Song and J.L. Szwarcfiter
A COARSE-GRAINED PARALLEL ALGORITHM FOR SPANNING TREE AND
CONNECTED COMPONENTS
RT-MAC - 2003-06- agosto 2003, 15pp.

E. N. Caceres, S. W. Song and J.L. Szwarcfiter
PARALLEL ALGORITMS FOR MAXIMAL CLIQUES IN CIRCLE GRAPHS AND
UNRESTRICTED DEPTH SEARCH
RT-MAC -2003-07-agosto 2003, 24pp.

Julio Michael Stem
PARACONSISTENT SENSITIVITY ANALYSIS FOR BAYESIAN SIGNIFICANCE TESTS
RT-MAC - 2003-08 -dezembro 2003, 15pp.

Lourival Paulino da Silva e Flavio Soares Correa da Silva
A FORMAL MODEL FOR THE FIFTH DISCIPLINE
RT ·MAC-2003·09 - dezembro 2003, 75pp.

S. Zacks and J. M. Stern
SEQUENTIAL ESTIMA.TION OF RATIOS, WFlll APPUCATION TO BAYESIAN

ANALYSIS
RT-MAC- 2003-10 - dezembro 2003, l 7pp.

Alfredo Goldman, Fabio Kon, Paulo J. S. Silva and Joe Yoder
BEING EXTREME IN THE CLASSROOM: EXPERIENCES TEACHING XP
RT-MAC- 2004-01-janeiro 2004, 18pp.

