Área: INO

Structural and Spectroscopic Properties of Lanthanide Coordination Polymer (Ln-CPs) with N-phthaloylglycinates and N-(2-carboxybenzoyl)glycinate

Israel F. Costa (PQ),^{1*} Joaldo G. Arruda (PG),² Iana Vitória S. Oliveira (IC),² Tássio Max A. Martins (IC),² Iran F. da Silva (PG),² Wagner M. Faustino (PQ),² José R. Sabino (PQ),³ Albano N. Carneiro Neto (PQ),⁴ Hermi F. Brito (PQ),¹ Rômulo A. Ando (PQ),¹ Ercules E.S. Teotonio.²

israelfc@iq.usp.br;

¹Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo (USP), São Paulo—SP, Brazil. ²Department of Chemistry, Federal University of Paraíba, João Pessoa—PB, Brazil; ³Instituto de Física - Universidade Federal de Goiás-Goiânia-GO, Brazil. ⁴Physics Department and CICECO, University of Aveiro, Aveiro, Portugal.

Keywords: Lanthanide, Luminescence, Energy Transfer, N-phthaloylglycinate, Phenanthroline.

Highlights

New structure of the Ln^{3+} -(N-phthaloylglycinate) coordination polymer and mixed Eu-Tb compounds with efficient ligand to lanthanide (Ligand $\rightarrow Ln^{3+}$) and terbium \rightarrow europium energy transfers.

Resumo/Abstract

Coordination polymers (CPs) designed by lanthanide (Ln3+) ions and organic ligands have attracted great interest for different applications in areas such as tunable luminescence, thermometry, chemical sensing, catalysis, and X-ray scintillator. Herein, structural and spectroscopic properties of the Ln3+ coordination polymers (Ln-CPs) have been synthesized with N-(2-carboxybenzoyl)glycinate (cbgly) and N-phthaloylglycinate (phtgly), {[Tb(phthgly)3(H2O)x]·xH2O}... and $\{[Eu(phthgly)(cbgly)(H_2O)_2](H_2O)\}_{\infty}$ CPs as well as those mixed $[Tb_{1-x}Eu_x(phthgly)(cbgly)(H_2O)_2](H_2O)\}_{\infty}$ (x = 0.25, 0.50 and 0.75) are discussed. Structural data revealed that the shortest distances between Ln3+ ions in these CPs are find between 4.0 and 5.3 Å (Figure 1a). Based on the PL spectra of the Ln-CPs, we can suggest that the ligand absorption via S₀→S₁ transitions produces intense luminescence from the Tb³⁺ (CP1 and CP2) and Eu³⁺ (CP6) material respectively (Figure 1b). Additionally, in the mixed system $Tb_{1-x}Eu_x - CPs$, x = 0.25, 0.50 and 0.75 (CP3-CP5), as can be observed in the photoluminescence (Figure 1c) and X-ray excited optical luminescence (XEOL) (Figure 1d) spectra of the mixed Tb-Eu coordination polymer, the intensities of the bands arising to the ${}^5D_0 \rightarrow {}^7F_J$ (Eu³⁺) are significantly higher than those ones from ${}^5D_4 \rightarrow {}^7F_J$ (Tb³⁺) transitions even at low concentration of the "dopant" ion. This behavior can be explained by the high efficiency in the energy transfer from Tb³+ to Eu³+ ion. The Tb³+→Eu³+ energy transfer process was also investigated from the luminescence decay curves, the lifetime value for ⁵D₄ level for Tb-CPs (τ = 1.177 ms) decreases deeply to 0.134 ms for x = 0.25 in (CP3), indicating a very efficient luminescence quenching of the Tb³⁺ ion by the Eu³⁺ ions close to emitting metal. In this way, the transfer efficiency Tb³⁺ \rightarrow Eu³⁺ of $\eta_{ET} \approx 90\%$ were determined.

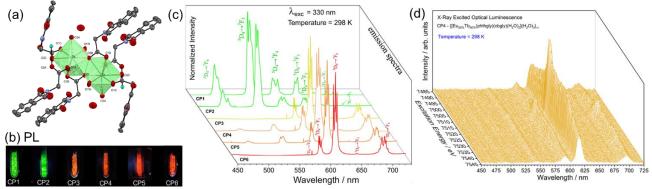


Figura 1. a) Structure of the Tb^{3+} coordination polymer CP-1. b) Photographs of the CP1 to CP6 (under 330 nm UV light) compounds, c) PL spectra of de CP1 to CP6 at 300 K, and XEOL spectra of the $[Tb_{0.5}Eu_{0.5}(phthgly)(cbgly)(H2O)_2](H_2O)_{\odot}$ at 300 K.

Reference

[1] Arteaga, Ana, Lulich, Alice, Nyman, May, Surbella, Robert G. CrystEngComm, 2023,25, 4496-4502.

Agradecimentos/Acknowledgments

This work was supported by FAPESP, CNPQ and CAPES.