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 A B S T R A C T

This paper introduces a comprehensive methodology for determining the effective piezo-electromechanical 
properties considering viscoelastic effects in the composite material. The methodology uses finite element (FE) 
analysis and homogenisation. By formulating the FE solution as a dynamic equilibrium problem, the proposed 
approach effectively couples linear elastic piezoelectric fibres within a linear viscoelastic matrix. This couples 
both complex constitutive behaviours into a single representative cell for time-dependent quasi-static load 
cases. A virtual stress relaxation test is conducted on a Representative Volume Element (RVE) with periodic 
boundary conditions. The methodology disregards inertial effects to represent quasi-static loading conditions. 
It assumes a polymeric matrix phase with only mechanical degrees of freedom. The computed effective time-
dependent constitutive coefficients are compared with analytical solutions derived from effective field and 
asymptotic homogenisation methods for a circular piezoelectric fibre in a viscoelastic polymeric matrix. Despite 
the simplifying assumption for the polymer matrix, the usage of a time-independent Halpin–Tsai model for 
effective electric permittivity, coupled with the proposed FE approach, accurately predicts time-dependent 
behaviour of elastic, piezoelectric and dielectric effective coefficients for different fibre volume ratios. Thus, 
the proposed approach provides a robust and versatile framework for characterising effective piezoviscoelastic 
properties. This makes a contribution to the field of micromechanical piezoelectric simulation, paving the way 
for future research into dynamic effects, more complex material constitutive models, and intricate geometric 

features.
1. Introduction

The usage of smart structures with embedded sensors, actuators, 
and energy harvesting capabilities has been a topic of interest for 
structural designers, particularly those involved in designs that ac-
count for damage tolerance, instability attenuation, and self-powered 
electrical components. Most commonly, piezoelectric crystals such as 
lead zirconate titanate (PZT) are embedded on polymeric thermoset 
or thermoplastic matrices, constituting a composite component [1–3]. 
Alternatively, cellular polymeric films act as piezoelectric sensors upon 
deformation of charged voids, being called as piezoelectret [4]. Ow-
ing to the viscoelastic constitutive behaviour of polymeric matrices, 
the effective mechanical, electrical, and piezoelectric characteristics 
of these sensors are time-dependent, being relevant for the optimal 
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design of structural smart systems. Experimental constitutive charac-
terisation of these piezoelectric components requires not only multiple 
tests due to the anisotropy introduced by the composite material, but 
also testing under different strain rates. Thus, testing campaigns often 
lead to time-consuming and expensive activities. Therefore, analytical 
and numerical methods are commonly employed to describe the effec-
tive homogenised constitutive response of piezoelectric materials at a 
microscopic scale.

Researchers have extensively investigated the time-dependent char-
acteristics of composite materials. Li et al. [5] studied the creep re-
sponse of carbon nanotube-reinforced polymer composites, using lin-
ear viscoelasticity coupled with the Laplace-Carson transform and the 
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Mori–Tanaka method. Extending that approach, Muliana [6] devel-
oped a micromechanical model for the time dependency of piezo-
composites, incorporating matrix viscoelasticity using a Prony series, 
where a decreasing trend for the time-dependent piezoelectric constant 
was achieved as fibre volume ratio increased. Similarly, Li and Zhang 
[7] applied a Prony series model to fibre-reinforced composites, focus-
ing on matrix viscoelasticity and comparing a semi-analytical model to 
finite element analysis using Representative Volume Elements (RVEs) 
and numerical homogenisation results. Zhai et al. [8] developed a 
time-domain asymptotic homogenisation method to directly compute 
effective viscoelastic properties, without Laplace transforms, using an 
integral form of the Kelvin–Voigt model and a single characteristic 
displacement tensor. The proposed methodology was compared with 
finite element analysis, showing accurate results for unidirectional and 
woven composites.

Recent works on viscoelastic composites frequently use unit cell 
models and homogenisation. Berger et al. [9] and Cruz-González et al. 
[10] developed unit cell models to compute the effective properties and 
understand the microscale response of fibrous and three-dimensional 
viscoelastic composites, respectively. Otero et al. [11] and Rodríguez-
Ramos et al. [12] further explored this, applying asymptotic and nu-
merical homogenisation, to determine effective constitutive properties 
under stress relaxation. In addition, Azrar et al. [13] provided analyti-
cal solutions for the frequency and time-dependent electro-mechanical 
properties of piezoelectric composites. Vogel et al. [14] and Li et al. 
[15] contributed to understanding viscous electro-active polymers and 
the viscoelastic effects on soft piezoelectric nanocomposites through 
both simulation and experimental studies. Otero et al. [16] explored 
homogenisation for fractional visco-piezoelectric fibrous composites, 
highlighting ongoing research into complex material laws. These stud-
ies collectively provide a solid basis for analytical homogenisation 
procedures that account for viscoelasticity and piezoelectricity. Within 
the analytical homogenisation methods, the Halpin–Tsai [17] predic-
tion of the elastic moduli of composite materials [18,19] allows for 
broader applications on electric and thermal properties characterisa-
tion. For instance, McCullough [20] showed how similar rules can 
predict transport properties such as electrical conductivity, thermal 
conductivity, dielectric constants, and diffusion coefficients in hetero-
geneous media. Additionally, studies on porous piezoelectric materi-
als by Martínez-Ayuso et al. [21] and functionally graded graphene-
reinforced piezoelectric composites by Adhikari et al. [22] show ap-
plications in characterising complex electromechanical behaviour and 
determining effective properties. These examples highlight the Halpin–
Tsai method’s robust theoretical basis, making it adaptable for various 
physical phenomena beyond just elastic behaviour.

Finite Element (FE) homogenisation procedures are widely used to 
analyse the microscale response of complex piezoelectric and viscoelas-
tic materials based on their microstructural properties. For piezoelectric 
materials, these methods enable the accurate determination of ef-
fective elastic, piezoelectric, and dielectric constants, even for cases 
with complex geometric features [23]. Malakooti and Sodano [24] 
demonstrated, via FE homogenisation the effective electric properties 
of composites containing multiple inclusion phases. Longo et al. [25] 
recently introduced a combined numerical and analytical methodology 
for analysing hybrid laminates with multi-oriented piezoelectric and 
structural layers. Araújo et al. [26] addressed the computation of 
piezoelectric and viscoelastic properties in thin laminates subjected 
to free vibration using gradient-based optimisation techniques. Naik 
et al. [27] applied micromechanical approaches to characterise the 
viscoelastic behaviour of fibrous composites with various RVE config-
urations. Bouhala et al. [28] integrated numerical and experimental 
methods to predict the mechanical properties of carbon fibre woven 
composite. Multi-scale finite element models, ranging from micro to 
macro scales, were developed using TexGen software for textile RVE 
generation and Abaqus/Standard, accounting for resin voids. Three-
point bending tests confirmed strong agreement between simulation 
and experimental results.
2 
As discussed by Tian et al. [29], the evaluation of effective mechan-
ical properties of composites with complex microstructures requires 
appropriate periodic boundary conditions to be enforced. Furthermore, 
the viscoelastic behaviour of components, such as in dielectric elas-
tomers, can be effectively captured through continuum mechanical for-
mulations and their FE implementation, as demonstrated by Bueschel 
et al. [30]. However, the coupling of linear viscoelasticity and linear 
piezoelectric material behaviour is usually not enabled within com-
mercial finite element codes. Furthermore, a time-dependent solution 
scheme is required for the viscoelastic response, thus preventing the 
usage of conventional linear static numerical solvers. Therefore, the 
accurate simulation of time-dependent piezoelectricity for smart ma-
terials leads to complex, non-linear equilibrium analysis within a FE 
framework.

This paper proposes a comprehensive methodology for determining 
the effective piezo-electromechanical properties considering viscoelas-
tic effects in the composite material. The novelty of the work lies in 
the dynamic equilibrium enforced over the RVE so that both viscoelas-
tic and piezoelectric elements are implemented in a time-dependent 
solution scheme. Inertial effects were disregarded, and a virtual stress 
relaxation test was performed, ensuring that viscoelasticity is the only 
time-dependent behaviour introduced. Periodic boundary conditions 
were enforced using the node-to-node method [25,29], followed by the 
post-processing of volume-averaged stress and strains. Effective time-
dependent constitutive coefficients were computed throughout time 
and compared to asymptotic homogenisation analytical methods for a 
circular piezoelectric fibre in a viscoelastic matrix. The proposed FE-
based homogenisation procedure was able to predict time-dependent 
behaviour for elastic, piezoelectric and dielectric effective coefficients 
for different fibre volume ratios. This methodology provides a ver-
satile and accurate modelling approach for FE-based homogenisation 
procedures, while using commercial finite element codes.

2. Methodology

This study addresses the formulation of a finite element framework 
for modelling a polymer matrix phase with a piezoelectric embed-
ded fibre, as shown in Fig.  1. Therefore, the piezoelectric material 
microstructure consists of a periodic RVE throughout the domain. 
This work focuses on such RVE, representative of a square/circular 
fibre packing, as squares and circles describe the cross-section of the 
geometry. Commonly used as matrix constituents, epoxy resins display 
viscoelastic behaviour and small dielectric constants without piezoelec-
tricity effects. Therefore, the proposed model assumes the matrix as a 
domain with mechanical Degrees of Freedom (DOF) only, coupled with 
a piezoelectric fibre.

Within a displacement-based FE framework, dynamic equilibrium 
is evaluated according to the system of equations in Eq. (1) for a 
piezoelectric domain, as implemented by Araújo et al. [26], 
[

𝑀 0
0 0

]{

{𝑢̈}(𝑡)
𝜙̈(𝑡)

}

+
{

{𝐼(𝑡)}
𝑞(𝑡)

}

=
{

{𝑃 (𝑡)}
𝑄(𝑡)

}

, (1)

where 𝑢̈(𝑡), 𝜙̈, 𝐼(𝑡), 𝑞(𝑡), 𝑃 (𝑡) and 𝑄(𝑡) represent the generalised accel-
erations, electric potential second time derivative, internal mechanical 
load, internal electric charge, external mechanical load and external 
electric charge, respectively, as functions of time 𝑡. In Eq. (1), the 
electric potential 𝜙 represents a scalar nodal field. Using displacement 
interpolation functions [𝑁], evaluated for each position 𝑋, the finite 
element mass matrix is computed from Eq. (2), as, 

[𝑀] = ∫𝑉
𝜌[𝑁]𝑇 [𝑁]𝑑𝑉 . (2)

where 𝜌 represents the density of the material in the volume 𝑑𝑉 .
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Fig. 1. Square/circular RVE.
2.1. Viscoelasticity modelling

Under linear viscoelasticity, stresses can be evaluated by the as-
sumption of infinitesimal increases in the strain rate 𝜀̇𝑘𝑙 integrated over 
a constitutive tensor of relaxation 𝑅𝑖𝑗𝑘𝑙, as in Eq. (3). In the equation, 
time 𝑡 represents the current instant while 𝜏 is the instant of each 
infinitesimal strain increment, 

𝜎𝑖𝑗 (𝑡) = ∫

𝑡

0
𝑅𝑖𝑗𝑘𝑙(𝑡 − 𝜏)

𝑑𝜀𝑘𝑙 (𝑡)
𝑑𝜏

𝑑𝜏. (3)

For linear viscoelastic, isotropic materials, the relaxation constitutive 
tensor 𝑅𝑖𝑗𝑘𝑙 is often described in terms of shear and bulk moduli, so 
that, 

𝝈(𝑡) = ∫

𝑡

0
2𝐺(𝑡 − 𝜏)

𝑑𝒆 (𝑡)
𝑑𝜏

𝑑𝜏 + 𝐈∫
𝑡

0
𝐾(𝑡 − 𝜏)

𝑑∆ (𝑡)
𝑑𝜏

𝑑𝜏, (4)

where 𝐺 and 𝐾 are the shear and bulk relaxation moduli, while 𝒆
and ∆ are the deviatoric and volumetric strains, respectively and 𝐈
represents the second-order identity tensor. As the relaxation modulus 
𝑅𝑖𝑗𝑘𝑙 is a function of time, the corresponding constitutive behaviour 
can be analysed using an exponential function applied over the time-
independent elasticity tensor 𝑅0

𝑖𝑗𝑘𝑙. A Prony series expansion is shown 
in Eq. (5) for the shear elastic modulus 𝐺(𝑡) and is usually employed 
for mechanical viscoelastic constitutive behaviour, where 𝑔𝑘 are the 
relaxation coefficients corresponding to time 𝜏𝑘. Similarly, Eq. (6) 
shows a Prony series expansion for the Bulk modulus 𝐾(𝑡), 

𝐺(𝑡) = 𝐺0

[

1 −
𝑛
∑

𝑘=1
𝑔𝑘

(

1 − 𝑒
− 𝑡

𝜏𝑘

)

]

, (5)

𝐾(𝑡) = 𝐾0

[

1 −
𝑛
∑

𝑘=1
𝑘𝑘

(

1 − 𝑒
− 𝑡

𝜏𝑘

)

]

. (6)

Therefore, the internal load vector at any given instant 𝑡 for a 
viscoelastic material is computed from both the initial response at the 
initial time 𝑢(0) as well as the time-dependent displacement history 
𝑢(𝑡), as displayed in Eq. (7) and implemented in Wang et al. [31]. In 
the equation, [𝐵] represents the spatial derivative of the interpolation 
functions 𝑁 while 𝑅(𝑡) is the time-dependent relaxation modulus. 

{𝐼(𝑡)} =
[

∫𝑉
[𝐵]𝑇 [𝑅(𝑡)][𝐵]𝑑𝑉

]{

𝑢(0)
}

+

∫

𝑡

0 ∫𝑉
[𝐵]𝑇 [𝑅(𝑡 − 𝜏)][𝐵]𝑑𝑉 𝑑

𝑑𝜏

{

𝑢(𝑡)
}

𝑑𝜏.
(7)

Equivalent external nodal loads are calculated using Eq. (8) from body 
loads 𝑃𝑣 and traction 𝑃𝑆 , distributed over volume 𝑉  and surfaces 𝑆, in 
addition to concentrated loads 𝑃𝑐 , 

{𝑃 (𝑡)} = [𝑁]𝑇 {𝑃𝑣}𝑑𝑉 + [𝑁]𝑇 {𝑃𝑆}𝑑𝑉 + 𝑃𝑐 . (8)
∫𝑉 ∫𝑆

3 
For the proposed FE model, the viscoelastic constituent displays only 
mechanical degrees of freedom, so that, for the piezoelectric fibres: 
{𝑞(𝑡)} = {0}. (9)

Therefore, Eqs. (7), (8) and (9) represent the finite element vector 
contributions for the viscoelastic matrix on the discrete equilibrium, 
which will be shown by Eq. (17).

2.2. Piezoelectric modelling

Piezoelectric materials usually display linear elastic mechanical 
behaviour associated with an electric coupling. Therefore, the piezo-
electric modelling used in this work assumes linear piezo-electricity, as 
represented by Eq. (10) where stress tensor 𝜎𝑖𝑗 is a function of both 
the strains 𝜀𝑘𝑙 as well as the electric field 𝐸𝑘, with indices 𝑖, 𝑗, 𝑘 and 
𝑙 varying from 1 to 3. Similarly, the charge density 𝐷𝑖 in Eq. (11) 
is a function of strains as well as the electric field. In Eqs. (10) 
and (11), 𝐶𝑖𝑗𝑘𝑙 is a fourth-order elasticity tensor, 𝑒𝑖𝑘𝑙 is a third-order 
piezoelectricity tensor representing the electric/mechanical coupling, 
and 𝜂𝑖𝑗 is a second-order dielectric tensor, 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘, (10)

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝜂𝑖𝑗𝐸𝑗 . (11)

However, the microscopic arrangement of piezoelectric crystals shows 
some influence on the effective constitutive behaviour. In this analysis, 
an orthotropic piezoelectric material is assumed for the piezoelec-
tric fibre, as discussed in Berger et al. [9], Rodríguez-Ramos et al. 
[12], Otero et al. [11] and Otero et al. [16]. For the FE framework, 
with displacement and electric potential interpolation functions, the 
generalised internal load vector yields 
{

{𝐼(𝑡)}
𝑞(𝑡)

}

=

[

𝑘𝑢𝑢 𝑘𝑢𝜙
𝑘𝑢𝜙 𝑘𝜙𝜙

]

{

{𝑢(𝑡)}
𝜙(𝑡)

}

, (12)

where: 

[𝑘𝑢𝑢] = ∫𝑉
[𝐵]𝑇 [𝐶][𝐵]𝑑𝑉 , (13)

[𝑘𝑢𝜙] = ∫𝑉
[𝐵]𝑇 [𝑒][𝐵]𝑑𝑉 , (14)

and 

[𝑘𝜙𝜙] = ∫𝑉
[𝐵]𝑇 [𝜂][𝐵]𝑑𝑉 . (15)

External loads are also obtained from the consistent generalised nodal 
load vector from Eq. (16), with 𝑄 , 𝑄  and 𝑄  representing body, 
𝑣 𝑆 𝑐
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surface and concentrated external charges, 
{

{𝑃 (𝑡)}
𝑄(𝑡)

}

=

{

∫𝑉 [𝑁]𝑇 {𝑃𝑣}𝑑𝑉 + ∫𝑆 [𝑁]𝑇 {𝑃𝑆}𝑑𝑉 + {𝑃𝑐}

∫𝑉 [𝑁]𝑇𝑄𝑣𝑑𝑉 + ∫𝑆 [𝑁]𝑇𝑄𝑆𝑑𝑉 +𝑄𝑐

}

. (16)

Therefore, Eqs. (12) and (16) represent the FE load vector contri-
butions for the piezoelectric fibre, on the discrete equilibrium, which 
will be shown by Eq. (17). Different from the matrix, the piezoelectric 
fibres show contributions on both mechanical and electric degrees of 
freedom.

2.3. Equilibrium equations

Finite element solutions over time can be achieved through an 
incremental approach over the simulation time span. Therefore, an 
implicit time-integration scheme is employed as 
𝜆[𝐌]{𝐮̈𝐭+∆𝐭} + (1 + 𝛼)

(

{𝐈𝐭+∆𝐭} + {𝐏𝐭+∆𝐭}
)

− 𝛼
(

{𝐈𝐭} + {𝐏𝐭}
)

= 0, (17)

where 𝛼 is a dynamic relaxation parameter to improve convergence 
within a time increment and 𝜆 is an inertial load reduction parameter, 
that can either eliminate or attenuate the inertial effects, as 0 ≤ 𝜆 ≤ 1. 
In Eq. (17), {𝐮̈𝐭}, {𝑰 𝒕} and {𝐏𝐭} represent the generalised acceleration, 
internal and external load vectors, evaluated at time 𝑡, while 𝜆[𝐌] is the 
generalised mass Matrix. In Eq. (17), the inertial, internal, and external 
loads are displayed as the generalised load vectors accounting for 
electric and mechanical time-dependent nodal loads. To represent the 
time-dependent effects of viscoelasticity only, FE models were imple-
mented using Abaqus/Standard, without inertial effects (𝜆 = 0). Under 
these conditions, the solution scheme implemented is a backward Euler 
method applied to the implicit discrete equilibrium equations.

2.4. Finite element homogenisation

The coupling of piezoelectric and viscoelastic materials results in 
time-dependent piezoelectric and dielectric components. Therefore, a 
virtual stress relaxation test is introduced, where a uniaxial strain field 
history is prescribed for each analysis, as represented by the Heaviside 
function 𝐻(𝑡)

𝜀𝑖𝑗 (𝑡) = 𝜀0𝑖𝑗 𝐻(𝑡), (18)

where 𝜀0𝑖𝑗 represents the prescribed strain tensor component and
stresses 𝜎𝑖𝑗 can be computed as 

𝜎𝑖𝑗 (𝑡) = 𝐶𝑖𝑗𝑘𝑙(𝑡)𝜀𝑖𝑗 (𝑡). (19)

Each load case was applied using prescribed displacements and electric 
potential fields using a time-dependent amplitude that represents the 
Heaviside function. However, it is essential to note that the Heaviside 
function is only applicable when a static solution is required, as it leads 
to unbound accelerations for the initial increment. Therefore, in the 
presence of inertial effects (𝜆 ≠ 0), the step function might result in 
additional oscillations in stress magnitudes.

Considering finite element analysis, stress and strain values are 
computed for each 𝑚𝑡ℎ element at the corresponding 𝑛𝑡ℎ integration 
point ranging from 1 to 𝑛𝑒 for the number of elements, and 1 to 𝑛𝑖𝑝
for the number of integration points. Therefore, the average stresses 
(𝜎𝑖𝑗), strains (𝜖𝑖𝑗), electric potentials (𝐸𝑖) and electric charge densities 
(𝐷𝑖), are computed for each integration point and averaged over the 
representative volume element (𝑉 ) as 

𝜎𝑖𝑗 =
1
𝑉

𝑛𝑒
∑

𝑚

𝑛𝑖𝑝
∑

𝑛
𝜎𝑚,𝑛𝑖𝑗 𝛥𝑉 , (20)

𝜀𝑖𝑗 =
1
𝑉

𝑛𝑒
∑

𝑚

𝑛𝑖𝑝
∑

𝑛
𝜀𝑚,𝑛𝑖𝑗 𝛥𝑉 , (21)

𝐸𝑖 =
1

𝑛𝑒
∑

𝑛𝑖𝑝
∑

𝐸𝑚,𝑛
𝑖 𝛥𝑉 (22)
𝑉 𝑚 𝑛

4 
and 

𝐷𝑖 =
1
𝑉

𝑛𝑒
∑

𝑚

𝑛𝑖𝑝
∑

𝑛
𝐷𝑚,𝑛

𝑖 𝛥𝑉 . (23)

Therefore, under stress relaxation, the effective instantaneous con-
stitutive relation of the homogenised RVE is also time-dependent. 
Assuming a circular piezoelectric fibre embedded in a cube matrix 
region, the symmetry of the RVE results in the following effective time-
dependent relation (see the Eq.  (24) in Box  I) where an orthotropic 
combined with a transversely isotropic effective behaviour is assumed. 
In Eq. (24) fifteen effective constitutive parameters are required for the 
characterisation of the homogenised medium.

2.5. Halpin–Tsai formulation

As the proposed methodology neglects electric potential and charge 
DOFs for the matrix constituent, external faces of the RVE do not allow 
for electric boundary conditions to be prescribed. Therefore, the 7th 
and 8th lines in Eq. (24) would be eliminated for the effective piezo-
viscoelastic homogenised material. However, constant 𝑒15 represents a 
piezoelectric coupling between electric flux 𝐷1 and shear strains 𝛾13 as 
well as 𝐷2 and 𝛾23. Therefore, for the load cases with these scenarios 
(non-zero 𝛾13 and 𝛾23), the electric potential gradients 𝐸1 and 𝐸2 are 
assumed arbitrary so that 
𝐷1(𝑡) = 𝑒𝑒𝑓𝑓15 (𝑡)𝛾13 + 𝜂𝑒𝑓𝑓11 (𝑡)𝐸1(𝑡), (25)

and 
𝐷2(𝑡) = 𝑒𝑒𝑓𝑓15 (𝑡)𝛾23 + 𝜂𝑒𝑓𝑓11 (𝑡)𝐸2(𝑡). (26)

Therefore, piezoelectric coefficient can be extracted from either Eq.
(25) or (26), given that the effective dielectric constant 𝜂𝑒𝑓𝑓11 (𝑡) is 
known. To overcome the limitation in the proposed methodology, the 
dielectric constant is assumed as constant over time and calculated 
using the Halpin–Tsai analytical formulation for square/circular fibre 
packing, 

𝜑 = 2
( 𝑙
𝑑

)

. (27)

𝜒 =

𝜂𝑓11
𝜂𝑚11

− 1

𝜂𝑓11
𝜂𝑚11

+ 𝜑
, (28)

as a function of the dielectric constants 𝜂𝑚11 and 𝜂
𝑓
11 for the fibre and the 

matrix, respectively. For the computation of the effective permittivity, 
the microstructure form factor 𝜑 is computed from the length 𝑙 to 
diameter ratio 𝑑 in Eq. (27), yielding a value of 𝜑 = 2 for the 
square/circular geometry. The ratio between dielectric properties is 
evaluated from Eq. (28) so that the effective parameter for a given fibre 
volume ratio 𝑉𝑓  is 

𝜂𝑒𝑓𝑓11 =
1 + 𝜒𝜑𝑉𝑓
1 − 𝜒𝑉𝑓

. (29)

Finally, with the known effective dielectric constant, the effective 
piezoelectric coupling coefficient 𝑒𝑒𝑓𝑓15 (𝑡) is calculated from Eq. (25) and 
elastic shear modulus 𝐶𝑒𝑓𝑓

44 (𝑡) is obtained from Eq. (30). 

𝜎23(𝑡) = 𝐶𝑒𝑓𝑓
44 (𝑡)𝛾23 − 𝑒15(𝑡)𝐸2(𝑡). (30)

2.6. Geometry and finite element model

The FE implementation was conducted using Abaqus/Standard FE 
code, using the dynamic equilibrium with implicit time integration 
solver (Dynamic/ Implicit). Second-order three-dimensional continuum 
elements (C3D20) were used for the viscoelastic matrix, while second-
order three-dimensional piezoelectric elements (C3D20E) were used for 
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Box I. 
 
 

 
 
 
 
 
 

 

 
 
 

 
 
 
 

 
 
 
 

 

 
 
 

 

 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 

 

 

Fig. 2. Square/circular RVE.

the piezoelectric fibre. Compatibility between fibre and matrix was nat-
urally enforced through the generation of a single mesh using geometry
partitions, therefore not requiring complex interaction constraints at
the interfaces (see Fig.  2).

To better represent the constraints acting on the RVE, Periodic
Boundary Conditions (PBCs) were enforced over external surfaces. A
node-by-node PBC algorithm was employed using the methodology
proposed by [29] and further explored by [25]. Displacement of nodes
on opposite faces of the RVE is related to each other, thus satisfying
the boundary conditions. Assuming displacement component 𝑖 between
opposite faces 𝑘+ and 𝑘−, displacements are 

𝑢𝑘+𝑖 − 𝑢𝑘−𝑖 = 𝜀𝑖𝑗
(

𝑥𝑘+𝑗 − 𝑥𝑘−𝑗
)

, (31)

where 𝜀𝑖𝑗 is the prescribed strain while 𝑥𝑘+𝑗  and 𝑥𝑘−𝑗  are the 𝑗𝑡ℎ com-
ponent of the position vector of each nodes. Within the FE framework,
PBCs are enforced only over the displacement field as traction continu-
ity is naturally satisfied. However, for a piezoelectric element, electric
potentials 𝜙 are represented as part of the generalised displacement
vector. Therefore, the distinction between displacements and potentials
is made here, so that PBCs for the electric degrees of freedom become 
𝜙𝑘+
𝑖 − 𝜙𝑘−

𝑖 = 𝐸𝑖(𝑥𝑘+𝑗 − 𝑥𝑘−𝑗 ). (32)

In addition to the PBCs, displacements were prescribed in the
model, producing uniaxial strain fields required for the numerical
homogenisation procedure employed. The prescribed displacement and
corresponding strains were enforced as a step function and maintained
constant during the analysis. For the simulated scenarios, a total time
 

5 
𝑡 = 200 s was chosen. Similar to the methodology presented in Berger
et al. [9], multiple load cases were prescribed and effective constitutive
coefficients computed throughout time. In total, five load cases were
implemented to produce the following uniaxial fields: 𝜀11, 𝜀33, 𝛾23, 𝛾12,
and 𝐸3.

2.7. Asymptotic homogenisation method considering viscoelastic effects

The asymptotic homogenisation method is a powerful analytical-
numerical technique used to determine the effective properties of
heterogeneous materials with periodic or quasi-periodic microstruc-
tures [32]. This method enables the derivation of averaged, or ho-
mogenised, physical properties such as elastic moduli, thermal con-
ductivities, or diffusivities from the detailed behaviour of the material
at the micro-scale. By leveraging multi-scale expansion based on a
small parameter that characterises the scale separation between the
microstructure and the material behaviour, the method provides an ac-
curate approximation of the effective behaviour of media with rapidly
oscillating material coefficients. The homogenised properties are ob-
tained from the knowledge of the local constitutive laws, the intrinsic
properties of the constituent phases, their volume fractions, and the
geometric configuration of the microstructural inclusions or reinforce-
ments [33,34]. This approach is especially useful in engineering and
materials science, where it offers significant computational advantages
over direct numerical simulations of the full heterogeneous domain,
while still capturing essential features of the microstructure in the
macroscopic response.

The expressions for the effective coefficients previously reported
in Guinovart-Díaz et al. [35], Guinovart-Díaz et al. [36], and Bravo-
Castillero et al. [37], derived using the asymptotic homogenisation
method, were extended to the case presented previously, where a
piezoelectric fibre is embedded in a viscoelastic matrix. These effective
properties are calculated for a two-phase composite material consisting
of cylindrical fibres aligned along the 𝑥3-axis and embedded within a
continuous matrix. The spatial arrangement of the fibres allows the con-
sideration of both square and hexagonal periodic unit cells, reflecting
typical microstructural configurations found in engineering composites.
In this extended framework, the matrix is assumed to be an isotropic
viscoelastic material, while reinforcements may exhibit piezoelectric
behaviour. The asymptotic homogenisation technique enables the sys-
tematic substitution of the local material properties into the cell prob-
lems, leading to closed-form expressions or numerically explicit formu-
las for the effective (homogenised) coefficients. Specifically, appropri-
ate constitutive relationships and time-dependent material parameters
are incorporated into the homogenisation scheme, and the correspond-
ing viscoelastic and piezoelectric contributions are accounted for. To
implement this extension, material tensors and field variables corre-
sponding to the piezoviscoelastic behaviour are introduced into the
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Table 1
Constituents’ mechanical, piezoelectric and dielectric properties for static 
analysis [9].
 Fibre Matrix  
 𝐶11 (GPa) 121 3.86  
 𝐶12 (GPa) 75.4 2.57  
 𝐶13 (GPa) 75.2 2.57  
 𝐶33 (GPa) 111.1 3.86  
 𝐶44 (GPa) 21.1 0.64  
 𝐶66 (GPa) 22.8 0.64  
 𝑒15 (C∕m2) 12.3 –  
 𝑒13 (C∕m2) −5.4 –  
 𝑒33 (C∕m2) 15.8 –  
 𝜂11 (nF∕m) 8.11 0.007965 
 𝜂33 (nF∕m) 7.35 0.007965 

existing formulations. These modified expressions are then substituted 
into the homogenisation framework developed in the [35–37], thereby 
enabling the evaluation of the macroscopic response of the composite 
material under coupled mechanical and electrical loading conditions. It 
is assumed that the matrix is an isotropic viscoelastic material, and the 
following expressions are substituted into the corresponding formulas 
reported in the above references, 

𝐶m
11 = 𝐶m

33 = 𝐾0 +
4
3
𝜇0(𝑝),

𝐶m
12 = 𝐶m

13 = 𝐾0 −
2
3
𝜇0(𝑝),

𝐶m
44 = 𝐶m

66 = 𝜇0(𝑝),

(33)

where 𝐾0 and 𝜇0 represent the instantaneous bulk and shear moduli of 
the matrix material, evaluated at the initial instant. Also, it is possible 
to define: 
𝜇0(𝑝) = 𝜇0

(

1 + 𝜆
𝛽 + 𝑝1−𝛼

)

. (34)

If the matrix is isotropic, it is possible denotes the bulk 𝐾0 and shear 
𝜇0 elastic moduli. Moreover, 

𝛽 = 1
𝜏1−𝛼

, 𝜆 = 𝛽
(

1 − 𝜀max
)

=
𝜇∞ − 𝜇0

𝜇0
𝛽, (35)

where 0 ≤ 𝛼 ≤ 1, 𝜏 is relaxation time, 𝜇∞ is the shear modulus at 
𝜏 → ∞, 𝜇0 is instantaneous shear modulus, and 𝜀max is maximal shear 
strain. Thus, viscoelastic shear behaviour of a material is described by 
four parameters: 𝜇0, 𝛼, 𝛽 (or 𝜏), and 𝜆. Further details are provided 
in Otero et al. [16].

Finally, the inverse Laplace-Carson transform is applied to the ex-
pressions of the effective coefficients in the Laplace-Carson space de-
noted by the variable 𝑝, and the time behaviour of the effective coeffi-
cients is obtained [11,12].

2.8. Application of the methodology

The application of the proposed methodology was carried out in 
two scenarios. First, the static response of linear piezoelectric composite 
materials with different fibre volume ratios was compared to the analyt-
ical and finite element results extracted from Berger et al. [9], using a 
square/circular fibre packing configuration. However, the methodology 
proposed here, disregards electric degrees of freedom for the matrix, 
uses a node-to-node PBC scheme, and computes effective constitutive 
properties at the first increment of the dynamic equilibrium solution. 
The constituent properties used in this validation are displayed in Table 
1.

Following the validation of the proposed procedure on a static 
load case, viscoelastic effective properties were computed using the 
finite element homogenisation procedure, over time, and compared to 
effective field results. Table  2 displays the elastic, piezoelectric and 
dielectric properties of the materials for each constituent.
6 
Table 2
Constituents’ elastic, piezoelectric and dielectric properties for time-dependent 
analysis.
 Fibre Matrix  
 𝐶11 (GPa) 150.4 7.73  
 𝐶12 (GPa) 65.63 5.15  
 𝐶13 (GPa) 65.94 5.15  
 𝐶33 (GPa) 145.5 7.73  
 𝐶44 (GPa) 43.86 1.29  
 𝐶66 (GPa) 42.385 1.29  
 𝑒15 (C∕m2) 11.4 –  
 𝑒13 (C∕m2) −4.32 –  
 𝑒33 (C∕m2) 17.4 –  
 𝜂11 (nF∕m) 12.8 0.0443 
 𝜂33 (nF∕m) 12.8 0.0443 

Table 3
Prony series coefficients for viscoelastic matrix.
 𝑡 [s] 9.6 372 9887  
 𝑔𝑘[–] 0.03807 0.0458 0.0668 
 𝑘𝑘[–] 0 0 0  

In addition, Prony series coefficients for the viscoelastic matrix are 
displayed in Table  3, so that only the deviatoric part of the strain tensor 
contributes to the viscoelastic behaviour. This is representative of an 
epoxy matrix, commonly used in Macro Fibre Composite (MFC) and 
smart sensors [3].

3. Results and discussion

In this section, results obtained through the proposed FE-based ho-
mogenisation are compared to analytical solutions using effective field 
and asymptotic homogenisation methods (AHM) for piezoviscoelastic 
composite materials. In this work, the validations are performed using 
the AHM reported in Otero et al. [11], for the elastic case (𝑡 = 0), and 
a comparison is also made with the effective field presented in Otero 
et al. [16].

3.1. Linear elastic results

For a uniaxial strain field 𝜀33, obtained through displacements pre-
scribed along the fibre direction, different stress values are expected for 
each constituent. Fig.  3(a) shows the predicted stress field under this 
condition, at a given instant for a fibre volume ratio 𝑉𝑓 = 0.4, assuming 
zero electric potential at all faces of the RVE.

As expected, due to the constitutive stiffness mismatch between the 
constituents, the fibre exhibits greater stresses compared to the matrix. 
Additionally, due to the constraint on electric potential, electric flux 𝐷3
develops, as shown in Fig.  3(b). From the image, it becomes clear that 
the proposed approach assumes an insulating matrix without electric 
degrees of freedom.

Similarly, under a non-zero shear strain field 𝛾23, different stress 
magnitudes are predicted for each material, as displayed in Fig.  4(a). 
However, a strong piezoelectric coupling is expected under such condi-
tions. As the proposed methodology does not allow for electric potential 
gradients to be prescribed for either 𝐸1 and 𝐸2, such fields were 
assumed as arbitrary and taken into account for the post-processing of 
effective constitutive properties. Fig.  4(b) displays the non-zero electric 
potential gradient field 𝐸2 for the shear load case, at the same instant 
from Fig.  4(a).

Correlation between the effective constitutive coefficients obtained 
by the proposed model and analytical results is displayed in Fig.  5, for 
elastic and piezoelectric parameters 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44, 𝐶66, 𝑒15, 𝑒13, 
and 𝑒33. The predictions are also compared to Finite Element Method 
(FEM) results reported in [9], considering linear elastic piezoelectric 
elements in a linear static analysis, disregarding viscoelastic effects.
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(a) Normal stress 𝜎33 in N/m2.

  
(b) Electric flux 𝐷3 in C/m2.

 

Fig. 3. Stress and electric flux fields for non-zero 𝜀33 - 𝑉𝑓 = 0.4.
 
(a) Shear stress 𝜎23 in N/m2.

  
(b) Electric potential gradient 𝐸2 in V/m.

 

Fig. 4. Stress and electric potential gradient fields for non-zero 𝛾23 - 𝑉𝑓 = 0.4.
Different from the conventional methodology, the proposed method 
prescribed PBC’s using a node-to-node formulation and yielded results 
in accordance with AHM analytical solutions. Therefore, the proposed 
methodology can capture static results even with a time-dependent 
solution methodology coupled with an insulating matrix behaviour. 
Moreover, even for static responses, evaluated at 𝑡 = 0, there are 
differences between FE based and analytical homogenisation results, 
as seen for grater fibre volume ratios 𝑉𝑓  for components 𝐶11, 𝐶12, 𝐶44, 
𝐶66 and 𝑒15, where the viscoelastic effects can influence not only the 
mechanical coefficients, but also the piezoelectric coefficient related to 
shear strains.

3.2. Viscoelastic results

At any given instant, effective constitutive coefficients were com-
puted for the time-dependent matrix material behaviour. As the strain 
and electric potential gradient fields were prescribed over time, stress 
and electric flux fields also showed time-dependent behaviour. Fig.  6 
shows stresses 𝜎11 (a) for uniaxial field 𝜀11, 𝜎33 (b) and 𝐷3 (e) for 𝜀33, 
𝜎23 (c) and 𝐸2 (e) for 𝛾23 and 𝜎12 (d) for non-zero 𝛾12 at the final time 
𝑡 = 200 s.

A mesh independence analysis was performed to ensure that the 
viscoelastic response is not affected by the finite element mesh density 
throughout the simulation time. Therefore, five different global element 
size values were evaluated, yielding discretisations with 40, 80, 224, 
1360, and 2490 elements, respectively. Fig.  7 shows the effective 
coefficients 𝐶44 and 𝑒15 computed for the volume fraction of 20%, 
where the viscoelastic effect is higher. The analysis showed that for 
7 
models with 𝑁𝑒𝑙 ≥ 1360, convergence was achieved for the piezoelectric 
coupling constant 𝑒15. Therefore, all the following results are displayed 
for meshes with 1360 elements, as they provided accurate results at a 
lower computational cost.

When analysing the FE predictions at the first increment at 𝑡 = 0, 
static solutions are obtained, similarly to solutions discussed in Sec-
tion 3. Fig.  8 shows the comparison between analytical results obtained 
through effective field homogenisation and the proposed methodology 
as a function of fibre volume ratio 𝑉𝑓 . Results showed a similar depen-
dency on fibre volume ratio, with small differences for higher values of 
𝑉𝑓  only.

The effect of different fibre volume ratios on the constitutive com-
ponent 𝐶33 is shown in Fig.  9 throughout time, where dots represent 
the FE results and lines represent the AHM analytical response. From 
the image, it is clear that approximately no time-dependent behaviour 
occurs under these conditions, as the deviatoric strain components are 
negligible, thus inhibiting stress relaxation. Similarly, Fig.  10 shows 
that the effective piezoelectric constant 𝑒33 is also not time-dependent 
for normal strain fields.

Piezoelectric coupling for extension along direction 3, 𝑒13 also 
showed negligible time-dependency, as displayed in Fig.  11. A small 
viscoelastic effect is observable for small 𝑉𝑓  values, as the matrix is 
the only viscoelastic constituent for the composite RVE. This behaviour 
is observed as the Prony series parameters for time-dependent bulk 
modulus 𝑘𝑘 are all prescribed as zero. Therefore, time-dependency is 
higher for components related to shear stresses and deviatoric strain 
components.
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Fig. 5. Fibre volume ratio dependency at 𝑡 = 0 s compared for static solutions: Proposed Methodology vs. AHM vs. FEM results.
Fig. 6. Mechanical and electric fields at a given instant.
When analysing the effective constitutive properties under shear 
strains, time dependency is observed, as displayed in Fig.  12 for the 
case with non-zero 𝛾12. As shown in the plot (Fig.  12), the proposed 
methodology was able to accurately represent viscoelastic behaviour 
when compared to the analytical methodology. This load case leads to 
a mechanical-only response, as piezoelectric coupling coefficient does 
not play a significant role.
8 
Differently, Figs.  13 and 14 show the effective constitutive coeffi-
cients 𝐶44 and 𝑒15, which are computed from the same self-interacting 
electric/mechanical load case. Shear stiffness coefficient 𝐶44 predicted 
by the proposed FE methodology showed results in agreement with 
AHM procedure for smaller fibre volume fractions. As 𝑉𝑓  increases, a 
larger discrepancy is observed between the methods, similar to linear 
elastic piezoelectric results presented in Section 3.1.
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Fig. 7. Mesh dependency for effective coefficients 𝐶44 and 𝑒15.

Fig. 8. Fibre volume ratio dependency at 𝑡 = 0 s: Proposed methodology vs. AHM with viscoelastic effects.

Composites Part C: Open Access 18 (2025) 100663 
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Fig. 9. Effect of different 𝑉𝑓  on effective time-dependent constant 𝐶33: Proposed methodology vs. AHM with viscoelastic effects.

Fig. 10. Effect of different 𝑉𝑓  on effective time-dependent constant 𝑒33: Proposed methodology vs. AHM with viscoelastic effects.

Fig. 11. Effect of different 𝑉𝑓  on effective time-dependent constant 𝑒13: Proposed methodology vs. AHM with viscoelastic effects.

Composites Part C: Open Access 18 (2025) 100663 
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Fig. 12. Effect of different 𝑉𝑓  on effective time-dependent constant 𝐶66: Proposed methodology vs. AHM with viscoelastic effects.
Fig. 13. Effect of different 𝑉𝑓  on effective time-dependent constant 𝑐44: Proposed methodology vs. AHM with viscoelastic effects.
Despite the assumption of an insulating matrix without electric 
degrees of freedom along the external faces of the RVE, post-processing 
of piezoelectric coupling 𝑒15 resulted in similar results when compared 
to the effective field predictions. This coefficient showed a noticeable 
viscoelastic response, even for higher fibre volume ratios. The proposed 
methodology, using the Halpin–Tsai model to compute a constant 𝜂𝑒𝑓𝑓11 , 
resulted in a valid approximation for the piezoelectric constant with 
an over-prediction at lower 𝑉𝑓  and an under-prediction at greater 𝑉𝑓
values. This indicates that different analytical methods for estimating 
𝜂𝑒𝑓𝑓11  as time-dependent dielectric properties enable the improvement 
of the accuracy in the proposed FE homogenisation procedure.

4. Conclusions

This work successfully introduced and evaluated a novel FE-based 
homogenisation methodology for determining the effective constitutive 
and piezoelectric properties of viscoelastic composite materials. By for-
mulating the finite element solution as a dynamic equilibrium problem, 
the methodology consistently captured the coupled response of linear 
elastic piezoelectric fibres embedded in a viscoelastic matrix, thereby 
accounting for the inherent time-dependent behaviour of such systems.

The proposed approach demonstrated strong agreement with ana-
lytical predictions from effective field and asymptotic homogenisation 
11 
methods, even under the simplifying assumption of an insulating ma-
trix with purely mechanical degrees of freedom. Moreover, by inte-
grating the Halpin–Tsai model for effective dielectric behaviour, the 
methodology provided accurate estimations of complex piezoelectric 
coupling coefficients, particularly 𝑒15, across a wide range of fibre 
volume fractions.

Beyond validating its predictive capability, this study highlights 
the robustness and versatility of the framework for addressing multi-
scale piezo-electromechanical problems in smart materials and adap-
tive structures. The formulation is compatible with commercial FE 
codes, which broadens its applicability for engineering practice and 
accelerates its potential transfer to industrial contexts.

Nevertheless, some limitations remain, particularly the restriction 
to linear viscoelasticity and the assumption of a non-polarisable poly-
meric matrix. Future work should address these aspects by extend-
ing the methodology to nonlinear viscoelastic behaviour, temperature-
dependent properties, and multi-fibre configurations, as well as explor-
ing experimental validation for real composite systems.

In summary, this contribution establishes a solid foundation for 
FE-based micromechanical simulations of piezoviscoelastic composites 
and opens new avenues for the design and optimisation of advanced 
multifunctional materials and devices.
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Fig. 14. Effect of different 𝑉𝑓  on effective time-dependent constant 𝑒15: Proposed methodology vs. AHM with viscoelastic effects.
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