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Multidimensional elephant random walk with coupled memory
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The elephant random walk (ERW) is a microscopic, one-dimensional, discrete-time, non-Markovian random
walk, which can lead to anomalous diffusion due to memory effects. In this study, I propose a multidimensional
generalization in which the probability of taking a step in a certain direction depends on the previous steps in
other directions. The original model is generalized in a straightforward manner by introducing coefficients that
couple the probability of moving in one direction with the previous steps in all directions. I motivate the model
by first introducing a two-elephant system and then elucidating it with a specific coupling. With the explicit
calculation of the first moments, I show the existence of two newsworthy relative movement behaviors: one
in which one elephant follows the other and another in which they go in opposite directions. With the aid of
a Fokker-Planck equation, the second moment is evaluated and two superdiffusion regimes appear, not found
in other ERWs. Then, I reinterpret the equations as a bidimensional elephant random walk model, and further
generalize it to N dimensions. I argue that the introduction of coupling coefficients is a way of extending any
one-dimensional ERW to many dimensions.
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I. INTRODUCTION

The term random walk (RW) was coined by the statistician
Karl Pearson in a brief letter to Nature in 1905 [1] and is
now an important and widely used tool in the modeling of a
myriad of stochastic processes found in biological systems,
finance, and physical processes [2–5]. The simplest kind
of RW considers no dependence of the future steps on the
previous ones of the walk. This absence of memory is the
Markovian property, i.e., a process is called Markovian if the
probability of the next state depends only on the present state.
However, in some cases of interest, such as the growth of
a polymer diluted in appropriate solvents [6], neglecting the
past is a remarkable mistake, since a growing molecule cannot
polymerize over itself. Self-avoiding walks appeared in this
context as a non-Markovian process that prohibits visiting a
site more than once [6]. In the past decade, a new class of
non-Markovian random walks was introduced and studied.
In these systems, the walker has a memory mechanism so
that the probability of taking a step forward or backward
depends somehow on the previous steps. This differs from the
self-avoiding walk because the past movements do not forbid
a site to be revisited but influence the decision about the next
step.

The first microscopic RW of this new class, which is
referred to as elephant random walks (ERW), was proposed
and analytically solved by Schütz and Trimper in 2004 [7].
In this model, a one-dimensional elephant takes steps to the
right or to the left and the probability of each step depends
on the whole history of the elephant. The memory effect is
due to a single parameter p ∈ [0, 1] that can lead to differing
diffusion behavior. Here, p is the probability of mimicking a
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randomly chosen previous step. If p < 1/2, the walker’s mean
displacement tends to zero as the number of steps increases,
while it tends to infinity if p > 1/2. The latter is said to
be a traditionalist elephant and the former a reformer one.
For p = 1/2, the walk is Markovian and it equates a simple
random walk. If p < 3/4, the walk is normal diffusive and, if
p > 3/4, the walk is superdiffusive.

Many variations of the ERW have been proposed [8–13],
and a lot of mathematical results [14–17] and physical prop-
erties [18–21] were found in this kind of non-Markovian
random walk. In this paper, I present a multidimensional
extension of the ERW in which the probability of taking a
step in any direction might depend on the previous steps taken
in any direction. By introducing coupling coefficients, the
model makes the walker look back to all directions in order
to decide to move forward or backward in each dimension
at the next step, taking one unit step per direction, per time
unit step. This model can also be understood as a stochastic
rule to walk a single step of size d1/2 in a suitably chosen
d-dimensional hypercubic lattice. The walker in this model
is also similar to the original elephant, but it remembers not
only its own steps, but also the steps of another elephant,
and as such the next step will take into account all walking
histories. Under this perspective, two different regimes from
two memory-coupled individuals emerge: a chasing behavior
and a distancing one. In addition, the lowest-order Fokker-
Planck equation equivalent to this process is computed by
means of the usual continuous limit approach in order to
present a continuous analog which exhibits the same diffusion
behavior found in the discrete model, besides the two regimes
listed above. Also, this continuous approach allows for the
calculation of the second moment, which is difficult to be
done in the discrete case. Two anomalous diffusion behavioral
patterns appear.
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In Sec. II, I introduce a two-elephant model, motivated
by the following question: what would happen if an elephant
could also remember the past of another elephant? Here, the
coupling coefficients appear as a probability distribution of
an elephant choosing to mimic its own past or the past of
the other elephant. I explicitly show a recursion formula for
the first moment and how to calculate recursion formulas for
the higher-order moments. In Sec. III, the model is elucidated
with a specific coupling, called the cow-and-ox model, a
coupling that allows only one walker (the ox) to remember the
past of the other (the cow). This situation is introduced in [22]
in order to derive a model to quantify autism, but not with the
same formalism or analytical results. The first moment evalu-
ation comes up with two noteworthy behavioral patterns: one
in which one walker chases the other, and another in which the
walkers separate from each other (both regimes on average).
I also show that superdiffusion can still occur for a specific
parameters regime. A continuous limit approach is presented
in Sec. IV, where the two elephants now represent two differ-
ent directions of a single elephant. Considering a walk on a
square lattice, the jump equation is calculated by introducing
the complex characteristic functions of two directions, and
then it is approximated to a two-dimensional Fokker-Planck
equation, which is an approximation to a long-time limit.
This equation is useful to calculate the second moment, which
exhibits two anomalous diffusions: one faster marginally su-
perdiffusive and one superdiffusive slightly faster than those
found in the original ERW. I conclude by extending the
two-elephant model to an N-dimensional one, giving appro-
priate rules to the multidimensional steps. Evidently, the N-
dimensional model can also be interpreted as a model of N
interacting elephants.

II. TWO-ELEPHANT MODEL

In the original ERW model, the position of the walker at
time t + 1, Xt+1, is given by

Xt+1 = Xt + σt+1, (1)

where σt+1 = ±1 with probabilities given as follows.
(1) At time t + 1, a time t ′ is chosen randomly from the set

{1, . . . , t} with uniform probability 1/t .
(2) p is the probability of following the step taken at t ′,

i.e., with probability p, σt+1 = σt ′ , and with probability 1 − p,
σt+1 = −σt ′ . This probability can be written as

P[σt+1 = ±σt ′] = 1
2 [1 + (2p − 1)σt+1σt ′]. (2)

(3) At the first step, σ1 = +1 with probability q and σ1 =
−1 with probability 1 − q, i.e.,

P[σ1 = ±1] = 1
2

[
1 + (2q − 1)σ1

]
. (3)

Now, two elephants are assumed to walk on the same line.
The first elephant, whose position will be denoted by X 1

t ,
might remember not only its own past, but the whole past of
the other elephant as well, X 2

t . Then, the random walk can be
constructed as

X i
t+1 = X i

t + σ i
t+1, (4)

with i = 1, 2. The rules of this RW are the following.

(1) At time t + 1, elephant i chooses an elephant k = 1, 2
with probability γ i

k , (γ i
1 + γ i

2 = 1).
(2) Then, a time t ′ is randomly chosen from the set

{1, . . . , t} with uniform probability.
(3) Now, the step σ i

t+1 of elephant i will be

σ i
t+1 =

{ + σ k
t ′ , with probability pi

k,

− σ k
t ′ , with probability 1 − pi

k,

i.e.,

P
[
σ i

t+1 = ±σ k
t ′
∣∣σ k

t ′
] = 1

2

[
1 + (

2pi
k − 1

)
σ i

t+1σ
k
t ′
]
. (5)

(4) Lastly, the first step is taken with probability

P
[
σ i

1 = ±1
∣∣direction k

] = 1
2

[
1 + (

2qi
k − 1

)
σ i

1

]
, (6)

in which I choose the dependence on k simply to keep a
symmetric notation.

With these rules, the probability of the step σ i
t+1 = σ , given

the chosen steps {σ 1
t ′ , σ

2
t ′ }, is

P
[
σ i

t+1 = σ
∣∣σ 1,2

t ′
] =

2∑
k=1

1

2

[
1 + (

2pi
k − 1

)
σσ k

t ′
]
γ i

k . (7)

Comparing this equation with Eq. (2), γ i
k can be viewed as the

coupling coefficient of elephant i on elephant k. In addition,
the first step is given with probability

P
[
σ i

1 = σ
] =

2∑
k=1

1

2

[
1 + (

2qi
k − 1

)
σ
]
γ i

k . (8)

By using Eq. (7), one can calculate the conditional probability
P[σ i

t+1 = σ |σ 1
1 , . . . , σ 1

t ; σ 2
1 , . . . , σ 2

t ] as being

P
[
σ i

t+1 = σ
∣∣{σ 1,2

1,...,t

}] = 1

2
+ σ

2∑
k=1

xk
t α

i
kγ

i
k

2t
, (9)

with αi
k = 2pi

k − 1 and xk
t = X k

t − X k
0 being the displacement

of elephant i. The conditional mean increment of each ele-
phant is〈

σ i
t+1 = σ

∣∣{σ 1,2
1,...,t

}〉 = ∑
σ=±1

σP
[
σ i

t+1 = σ
∣∣{σ 1,2

1,...,t

}]

=
2∑

k=1

xk
t α

i
kγ

i
k

t
. (10)

The application of Eq. (10) results in the recursion formula
for the first moment of each displacement

〈
xi

t+1

〉 = 2∑
k=1

(
δki + γ i

kα
i
k

t

)〈
xk

t

〉
(11)

and, by defining another shifted parameter β i
k = 2qi

k − 1, one
can get

〈
xi

1

〉 = 2∑
k=1

β i
kγ

i
k . (12)
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For higher-order displacement moments, we take

n∏
j=1

x
i j

t+1 =
n∏

j=1

(
x

i j
t + σ

i j

t+1

)
, (13)

where i j = 1, 2 and n is the order of the moment considered.
Then, we first take the conditional average given a specific
history of both elephants, and finally take the average over all
possible histories. In general, the recursion relations to higher-
order moments are all of the form

Mt+1 = Ht + GtMt , (14)

where Mt and Ht are column matrices, Mt represents the nth
moment matrix, and Gt is a square matrix. The number of en-
tries of Mt matrix is the number of moments of the considered
order, given by n + 1. A solution can be encountered from the
following formula:

Mt =
(

1∏
k=t−1

Gk

)
M1 +

t−2∑
i=1

(
i+1∏

k=t−1

Gk

)
Hi + Ht−1. (15)

III. COW-AND-OX MODEL

In order to clarify the model I have introduced, now I
present the case in which the first elephant (said to be the cow)
does not depend on the second (said to be the ox), but the ox
depends on the cow, so the coupling coefficients are provided
as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

γ 1
1 = 1,

γ 1
2 = 0,

γ 2
1 = γ �= 0,

γ 2
2 = 1 − γ ,

(16)

and so one can calculate the first moment(〈
x1

t+1

〉〈
x2

t+1

〉
)

= 1

t

(
t + α1

1 0

γα2
1 t + (1 − γ )α2

2

)(〈
x1

t

〉〈
x2

t

〉
)

, (17)

which has the solution

〈
x1

t

〉 = �
(
t + α1

1

)
�(t )�

(
α1

1 + 1
) 〈x1

1

〉
, (18)

〈
x2

t

〉 = γα2
1

{
�
(
t − 1 + α1

1

)
�(t )�

(
α1

1 + 1
) + �

[
t + (1 − γ )α2

2

]
�(t )�

[
(1 − γ )α2

2 + 2
]

+ �
[
t + (1 − γ )α2

2

]
�(t )�

(
α1

1 + 1
) t−3∑

k=1

�
(
t − k − 1 + α1

1

)
�
[
t − k + (1 − γ )α2

2

]
}〈

x1
1

〉

+ �
[
t + (1 − γ )α2

2

]
�(t )�

[
(1 − γ )α2

2 + 1
] 〈x2

1

〉
, (19)

and from Eq. (12), 〈
x1

1

〉 = β1
1 , (20)〈

x2
1

〉 = γ
(
β2

1 − β2
2

) + β2
2 . (21)

The asymptotic behavior (t � 1) of the solution is

〈
x1

t

〉 ∼ tα1
1

�
(
α1

1 + 1
) 〈x1

1

〉
, (22)

and for α1
1 �= (1 − γ )α2

2 ,

〈
x2

t

〉 ∼
[

γα2
1

〈
x1

1

〉
�
(
α1

1 + 1
)[

α1
1 − (1 − γ )α2

2

]
]

tα1
1

+ t (1−γ )α2
2

[ 〈
x2

1

〉
�
[
1 + (1 − γ )α2

2

]
+ γα2

1

〈
x1

1

〉( 1

�
[
2 + (1 − γ )α2

2

]
− �

(
2 + α1

1

)
/�

[
2 + (1 − γ )α2

2

]
[
α1

1 − (1 − γ )α2
2

]
�
(
α1

1 + 1
)
)]

. (23)

The behavior of the cow is elephantlike, as expected,
because it is not dependent on the ox. The cow is a reformer
elephant if α1

1 < 0 and it is a tradionalist elephant if α1
1 > 0.

However, to complete the asymptotic behavior analysis of
the ox, we need to compare the exponents α1

1 and (1 − γ )α2
2 .

Three different behavioral patterns are possible: the first one
is when

(i) α1
1 > (1 − γ )α2

2, (24)

i.e., the probability of the cow following its own past is greater
than the importance that the ox gives in following its own past.
Under this condition, the asymptotic solution becomes

〈
x2

t

〉 ∼ γα2
1

〈
x1

t

〉
α1

1 − (1 − γ )α2
2

, (25)

so that on average the ox and the cow behave in the same way.
Thus there are four regimes: (i.a) α2

1 > 0 and α2
1 < α1

1 − (1 −
γ )α2

2 in which the ox behaves like a detective—it follows the
cow while always staying some steps behind [23]; (i.b) α2

1 >

0 and α2
1 > α1

1 − (1 − γ )α2
2 , in which the ox goes the same

direction as the cow, but some steps ahead; (i.c) α2
1 < 0,

in which the ox and the cow go on opposite directions;
(i.d ) α2

1 = 0, in which 〈x2
t 〉 ∼ t (1−γ )α2

2 , as can be seen from
Eq. (19), which means that the ox behaves independently. This
happens because it has a Markovian dependence on the cow,
as in the limit case p = 1/2 in the ERW [7]. In other words,
the ox has no dependence on the cow.

The second behavioral pattern is provided by

(ii) α1
1 < (1 − γ )α2

2, (26)

then〈
x2

t

〉 ∼ t (1−γ )α2
2

×
[ 〈

x2
1

〉
�
[
1 + (1 − γ )α2

2

] + γα2
1

〈
x1

1

〉( 1

�
[
2 + (1 − γ )α2

2

]
− �

(
2 + α1

1

)
/�

[
2 + (1 − γ )α2

2

]
[
α1

1 − (1 − γ )α2
2

]
�
(
α1

1 + 1
)
)]

, (27)
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in which the ox is almost fully decoupled from the cow. In this
case there are three regimes: if (ii.a), the expression between
the brackets is positive and the mean displacement is greater
than zero; if (ii.b), then the expression between the brackets is
negative and the mean displacement is also negative; if (ii.c),
the expression between the brackets equals zero and we need
to analyze the coefficients of tα1

1 , as can be seen in Eq. (23).
The third behavior happens when

(iii) α1
1 = (1 − γ )α2

2, (28)

whose asymptotic analysis cannot be made in Eq. (23). How-
ever, by applying Eq. (19) one arrives at〈

x2
t

〉 ∼ γα2
1 ln(t )

〈
x1

t

〉
, (29)

in which the ox marginally does the same as the cow
if (iii.a) (α2

1 > 0), or it distances itself from the Cow if
(iii.b) (α2

1 < 0).
For the second moment,

Mt = (〈(
x1

t

)2〉 〈
x1

t x2
t

〉 〈(
x2

t

)2〉)T

according to Eq. (13), and following the procedure described
subsequently, one arrives at

Gt =

⎛
⎜⎝ 1 + 2 α1

1γ 1
1

t 0 0
α2

1γ 2
1

t + α1
1γ 1

1 α2
1γ 2

1
t2 1 + (α1

1γ 1
1 +α2

2γ 2
2 )

t + α1
1γ 1

1 α2
2γ 2

2
t2 0

0 2α2
1γ 2

1
t 1 + 2 α2

2γ 2
2

t

⎞
⎟⎠, Ht =

⎛
⎜⎝

1

0

1

⎞
⎟⎠, (30)

with M1 = (1 〈x1
1〉〈x2

1〉 1)
T

. In the case of α2
1 = 0, the

solution is trivial, since the coupling between the cow and
the ox vanishes (the dependence is Markovian), Gt becomes
diagonal, and the diffusion behavior is elephantlike:

〈(
x1

t

)2〉 = t

2α1
1γ

1
1 − 1

(
�
(
t + 2α1

1γ
1
1

)
�(t + 1)�

(
2α1

1γ
1
1

) − 1

)
, (31)

〈
x1

t x2
t

〉 = 〈
x1

t

〉〈
x2

t

〉
, (32)

〈(
x2

t

)2〉 = t

2α2
2γ

2
2 − 1

(
�
(
t + 2α2

2γ
2
2

)
�(t + 1)�

(
2α2

2γ
2
2

) − 1

)
, (33)

and in the asymptotic limit,

〈(
xi

t

)2〉 ∼
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t

1 − 2αi
iγ

i
i

, αi
iγ

i
i < 1/2,

t ln t, αi
iγ

i
i = 1/2,

t2αi
iγ

i
i(

2αi
iγ

i
i − 1

)
�
(
2αi

iγ
i
i

) , αi
iγ

i
i > 1/2,

(34)

i.e., both walkers (the ox and the cow) might present su-
perdiffusive behavior if αi

iγ
i
i > 1/2 when α2

1 = 0. If α2
1 �=

0, the diffusion behavior is not trivial, as can be seen in
Fig. 1.

However, as discussed in [21], for a random walk lacking
subdiffusion, if 〈xt 〉 ∼ t δ and 〈(xt )2〉 ∼ t2H, then H = δ when
δ > 1/2, and H = 1/2 when δ < 1/2. For the cow, we know
it is true, since it behaves as an elephant. Assuming this
conjecture also holds for the ox, it is possible to calcu-
late its second moment, and hence the diffusion behavior
from Eq. (23). For instance, when condition (24) is valid,
both cow and ox diffuse the same way [〈(xi

t )
2〉 ∼ t2α1

1 ], but
when condition (26) is valid, the ox can be superdiffusive,
whereas the cow can remain normal diffusive. Moreover, it

FIG. 1. Ox diffusion dependence on α2
1 and γ . Defining the Hurst

exponent H as 〈(xi
t )

2〉 − 〈xi
t 〉2 ∼ t2H, normal diffusion is defined

as 2H = 1, so that superdiffusion happens when 2H > 1. In this
picture, I simulate the ox diffusion behavior to different values of α2

1

and γ for 103 ox walking 103 steps each one. Here, α1
1 = α2

2 = 0.8,
α1

2 = 0, and β
j

i = 1.0, to i, j = 1, 2.

is worth noting that if the cow is superdiffusive, the ox will
be too, regardless of the considered regime. These results
(concerning the ox movement) are disposed at the phase
diagrams of Fig. 2. The colored blocks represent different
behavioral patterns regarding the first and second moment de-
scribed so far. Nevertheless, the surfaces in the diagrams pos-
sess nontrivial diffusion behaviors, which will be calculated
below.

IV. CONTINUOUS LIMIT

The process described so far also describes a bidimensional
elephant walking on a flat surface in which each step taken in
each direction depends on the history of both directions. As
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α
22

(a) (b)

(c) (d)

FIG. 2. Ox phase diagram. The diffusion is anomalous within the orange regions in all figures, and normal outside. (a) α2
1 = 0; (b) α2

1 �= 0:
first and second moment regions; (c) α2

1 �= 0: marginally superdiffusive surfaces; (d) α2
1 �= 0: α1

1 = (1 − γ )α2
2 > 1/2. In (a), because α2

1 = 0,
the ox has a Markovian dependence on the cow, so its behavior does not depend on α1

1 . In the white region, (1 − γ )α2
2 < 1/2, the ox is normal

diffusive; in the orange region, (1 − γ )α2
2 > 1/2 and 〈(x2

t )2〉 ∼ t2γα2
2 , then the ox is superdiffusive; at the black line (1 − γ )α2

2 = 1/2, the ox
is marginally superdiffusive, with 〈(x2

t )2〉 ∼ t ln(t ) [Eq. (34)]. In (b), the blue surface is the surface α1
1 = α2

2 (1 − γ ), where the first moment
satisfies Eq. (29). At the blue side, α1

1 < α2
2 (1 − γ ) and 〈x2

t 〉 ∼ t (1−γ )α2
2 ; then, where (1 − γ )α2

2 > 1/2 (orange region inside the blue one), the
ox is superdiffusive with 〈(x2

t )2〉 ∼ t2(1−γ )α2
2 , and it is normal diffusive otherwise. At the other side of the surface, α1

1 > α2
2 (1 − γ ), the ox’s first

moment is linearly dependent on the cow’s [Eq. (25)] and where α1
1 > 1/2 (orange region outside the blue one), the ox is superdiffusive with

〈(x2
t )2〉 ∼ t2α1

1 and normal diffusive otherwise. In (c), the diffusion is marginally superdiffusive of type 〈(x2
t )2〉 ∼ t ln(t ) at the green surface

but faster at the blue line α1
1 = (1 − γ )α2

2 = 1/2, in which 〈(x2
t )2〉 ∼ t[ln(t )]3. In (d), the red surface satisfies α1

1 = (1 − γ )α2
2 > 1/2, and the

diffusion at that is even faster, 〈(x2
t )2〉 ∼ t2α1

1 [ln(t )]2.

such, from now on, I shall treat both elephants as a unique
bidimensional one, whose displacement is given by the vector−→xt = (x1

t , x2
t ), with steps −→σt = (σ 1

t , σ 2
t ).

In order to introduce a continuous approximation to this
bidimensional walk, I calculate a Fokker-Planck equation

using the jumping process that can be found with the complex

characteristic function of two directions Qt (
−→
k ) = 〈ei

−→
k ·−→x t 〉,

where
−→
k = k1x̂1 + k2x̂2 and −→x t = x1

t x̂1 + x2
t x̂2, with x̂1,2

being the orthonormal basis of the square lattice where the
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walk is supposed to be, so that

Qt+1(
−→
k ) = cos(k1) cos(k2)Qt (

−→
k )

+ cos(k1) sin(k2)
2∑

i=1

∂Qt

∂ki

α2
i γ

2
i

t

+ cos(k2) sin(k1)
2∑

i=1

∂Qt

∂ki

α1
i γ

1
i

t

+ sin(k1) sin(k2)
2∑

i=1

2∑
j=1

∂2Qt

∂ki∂k j

α1
i γ

1
i α2

j γ
2
j

t2
,

(35)

which can be solved with inverse Fourier transform, leading
to the jumping process

Pt+1(x1, x2) =Pt (x
1 − 1, x2 − 1)

[
a1 + b1

t
+ c1

t2

]

+ Pt (x
1 − 1, x2 + 1)

[
a2 + b2

t
+ c2

t2

]

+ Pt (x
1 + 1, x2 − 1)

[
a3 + b3

t
+ c3

t2

]

+ Pt (x
1 + 1, x2 + 1)

[
a4 + b4

t
+ c4

t2

]
, (36)

where Pt (x1, x2) is the probability of having the displacement
x1 and x2 at time t , and ai, bi, ci depend on x1 and x2 but none
depend on time. We can approximate this process to a Fokker-
Planck equation in two dimensions

∂P
∂t

(x1, x2, t ) = − 1

t
∇
⎛
⎝ 2∑

i=1

2∑
j=1

α
j
i γ

j
i xix̂ jP (x1, x2, t )

⎞
⎠

+ 1

2
∇2P (x1, x2, t ). (37)

This is a first-order approximation to a large time limit, as
obtained in [14] to the original one-dimensional ERW. In
that case, it can be seen that, in the normal diffusion regime,
and even at the transition, the process follows a central limit
theorem [15], thus making the Fokker-Planck approximation
a good one in this regime, but not in the superdiffusive regime.
So, at least to α2

1 = 0, the approximation Eq. (37) is expected
to be valid when both directions are in the normal diffusive
regime.

Now, one can calculate the moments of this distribution. In
particular, for the ox-cow case of Sec. III, we get for the first
moment

d

dt
〈x1〉 = α1

1

t
〈x1〉,

d

dt
〈x2〉 = α2

1γ

t
〈x1〉 + α2

2 (1 − γ )

t
〈x2〉,

(38)

which has the solution

〈x1〉 = 〈x1(t0)〉
(

t

t0

)α1
1

, (39)

〈x2〉 =
[
〈x2(t0)〉 − α2

1γ 〈x1(t0)〉
α1

1 − α2
2 (1 − γ )

](
t

t0

)α2
2 (1−γ )

+ α2
1γ 〈x1(t0)〉

α1
1 − α2

2 (1 − γ )

(
t

t0

)α1
1

, (40)

which has the same behavior as Eqs. (22) and (23) with respect
to the power laws, despite different coefficients, which is an
effect of the approximation of large time. For the second
moment, the equations are

d

dt
〈xlxk〉 = 1

t

2∑
i=1

(
αk

i γ
k
i 〈xixl〉 + αl

i γ
l
i 〈xixk〉) + δkl , (41)

with l, k = 1, 2. This equation is easily solved in the ox-cow
case, when α2

1 = 0:

〈[x1(t )]2〉 =
[
〈x1(t0)x1(t0)〉 − t0

1 − 2α1
1

](
t

t0

)2α1
1

+ t

1 − 2α1
1

,

(42)

〈[x2(t )]2〉 =
[
〈x2(t0)x2(t0)〉 − t0

1 − 2α2
2 (1 − γ )

]

×
(

t

t0

)2α2
2 (1−γ )

+ t

1 − 2α2
2 (1 − γ )

, (43)

and also exhibits the same power law behavior found in the
discrete calculations [Eq. (34)]. It must be stressed that in the
ox-cow model, the cow always walks as an ERW, since it is a
decoupled direction.

Moreover, by solving Eq. (41) for α2
1 �= 0, one can find

the following asymptotic regimes for the ox diffusion: (a)
if 1/2 < α1

1 < (1 − γ )α2
2 , the walk is superdiffusive, with

〈(x2
t )2〉 ∼ t2(1−γ )α2

2 , while (b) if 1/2 < (1 − γ )α2
2 < α1

1, the
walk is superdiffusive with 〈(x2

t )2〉 ∼ t2α1
1 ; both regimes are

in accordance with the mentioned conjecture from [21].
(c) If 1/2 = α1

1 > (1 − γ )α2
2 or 1/2 = (1 − γ )α2

2 > α1
1, then

the walk is marginally superdiffusive, with 〈(x2
t )2〉 ∼ t ln(t ).

These three regimes have already appeared in the original
ERW, however, (d) if 1/2 = α1

1 = (1 − γ )α2
2 , the walk is also

marginally superdiffusive, but faster, with 〈(x2
t )2〉 ∼ t[ln(t )]3,

and (e) for 1/2 < α1
1 = (1 − γ )α2

2 , the walk is slightly faster
than the previous superdiffusion regimes, with 〈(x2

t )2〉 ∼
t2α1

1 [ln(t )]2. (f) The walk is normal diffusive otherwise. The
phase diagrams of Fig. 2 show these behavioral patterns.

It is noteworthy that the parameter α2
1 does not appear in

the phase diagram, since effects of multiplicative constants are
neglected in this kind of analysis, in which only the highest
power is taken into account. Thus the shape of Fig. 1 can be
understood as a consequence of the finite time of simulations,
which is also an interesting point, since, in real systems, the
observation time might not be large enough to consider only
the asymptotic result.
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V. MULTIDIMENSIONAL MODEL

The model introduced in Sec. II can be straightforwardly
extended to an N-dimensional one by appropriately chang-
ing the rules. The walk, as in the beginning of Sec. IV, is
provided by

−−→
Xt+1 = −→

Xt + −−→σt+1, (44)

where
−→
Xt = (X 1

t , . . . , X N
t ) and −→σt = (σ 1

t , . . . , σ N
t ). The ex-

tended rules are as follows.
(1) At time t + 1, a time t ′ in the set {1, . . . , t} is chosen

with uniform probability.
(2) The probability P[σ i

t+1 = σ |{σ 1
t ′ , . . . , σ

N
t ′ }] is

provided by

N∑
k=1

1

2

[
1 + (

2pi
k − 1

)
σσ k

t ′
]
γ i

k , (45)

where 0 � γ i
k � 1 and

∑N
k=1 γ i

k = 1.
(3) The first steps, as there is no past to follow, are provided

with probability

P
[
σ i

1 = σ
] =

N∑
k=1

1

2

[
1 + (

2qi
k − 1

)
σ
]
γ i

k , (46)

where I have already combined rules (1) and (3), inserting
without loss of generality the analogous extension of Eq. (7)
as rule (2).

Now, it is possible to calculate all the results expressed
in Eqs. (9)–(12) simply by changing the maximum index of
the sums from k = 2 to k = N . In addition, the results to
higher moments, Eqs. (14) and (15), still hold, but the number
of entries of Mt is dimension dependent. Nonetheless, the
Fokker-Planck equation to the bidimensional model can also
be generalized by changing the upper limits of the sums from
k = 2 to k = N and changing the differential operators to their
N-dimensional forms,

∂P
∂t

(−→x , t ) = − 1

t
∇
⎛
⎝ N∑

i=1

N∑
j=1

α
j
i γ

j
i xix̂ jP (−→x , t )

⎞
⎠

+ 1

2
∇2P (−→x , t ), (47)

where {x̂ j} is an orthonormal basis of a hypercubic lattice
where the walk takes place. It must be stressed that this
equation is only a first-order approximation of long time
behavior in the continuous limit.

VI. CONCLUSIONS

I have introduced a straightforward multidimensional gen-
eralization of the ERW in a way that takes into account the
past motion in all directions as an influence on the next step.
The recursion formula for the first moment of the displace-
ment probability distribution has been explicitly calculated.
The complexity in the treatment of the present model is due
to the nondiagonal matrices involved in the solution for the
higher-order moments recursion formulas [Eq. (15)], which
hamper long-term behavior analysis.

I have also highlighted two interesting regimes that occur
in the cow-and-ox model in Sec. III, the attractive and the re-
pulsive, expressed by (i.a) and (i.c) of Eq. (24), respectively.
The former gives a hint on how this generalization can be used
to model collective behavior, since this detective regime may
be viewed as a simple queue. Considering different walkers,
instead of a single multidimensional walker, the coupled
memory connects them all together, acting like an interaction
force on a dynamic equation.

The continuous process expressed by the Fokker-Planck
equation (47) is only a first-order approximation of the dis-
crete model, as in Ref. [7]. Its higher-order corrections might
be studied as in Ref. [14]. However, Eq. (47) is enough
to describe the long-term behavior of the first and second
moments of the discrete model, therefore being useful to
calculate diffusion behavior. With this equation, I found this
model to exhibit two different anomalous diffusion regimes,
not shown before by another ERW. Moreover, Eq. (47) can be
reduced to that found in [7], which in terms of the formalism
I introduced can be viewed as a simple special case.

In future research, the model might be enriched with,
for instance, the introduction of a stop possibility, as in
[9], and of position-dependent coupling coefficients, while
also discussing how crowd behavior might emerge from this
microscopic coupling of different random walkers. The stop
possibility has already been introduced in two dimensional
models [10,24], but the formalism has some differences. First,
in those walks, unlike the coupling model, there are no steps
taken simultaneously in both directions, which is basically
what happens in the formalism developed here, and secondly,
because of coupling, steps taken at a certain direction are not
entirely set according to the same direction; in fact, direction
i could stop by remembering a null step of direction j.
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APPENDIX: BIDIMENSIONAL JUMP EQUATION

In order to derive the jump equation, it is necessary to introduce the complex characteristic function. Here I calculate the
recurrence Eq. (35) and then show the route to the jump equation (36). Let the walk be on a square lattice with orthonormal basis

given by x̂1 = (1, 0) and x̂2 = (0, 1), so −→xt = (x1
t , x2

t ) and −→σt = (σ 1
t , σ 2

t ). According to the definition Qt (
−→
k ) = 〈ei

−→
k ·−→x t 〉 with−→

k = (k1, k2), then

Qt (
−→
k ) = 〈

eik1x1
t
〉〈

eik2x2
t
〉
. (A1)
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By evaluating the average 〈eikixi
t+1〉〈

eikixi
t+1
〉 = 〈

eikixi
t eikiσ i

t+1
〉 = ∑

xi
t

∑
σ i

t+1

P
(
xi

t , σ
i
t+1

)
eikixi

t eikiσ i
t+1 =

∑
xi

t

∑
σ i

t+1

P
(
xi

t

)
P
(
σ i

t+1

∣∣xi
t

)
eikixi

t eikiσ i
t+1 , (A2)

with Eq. (9), we have

〈
eikixi

t+1
〉 = ∑

xi
t

P
(
xi

t

)∑
σ i

t+1

⎡
⎣1

2
+ σ i

t+1

2∑
j=1

x j
t α

i
jγ

i
j

2t

⎤
⎦eikixi

t eikiσ i
t+1

=
∑

xi
t

P
(
xi

t

)
eikixi

t

⎧⎨
⎩eiki

⎡
⎣1

2
+ σ i

t+1

2∑
j=1

x j
t α

i
jγ

i
j

2t

⎤
⎦ + e−iki

⎡
⎣1

2
− σ i

t+1

2∑
j=1

x j
t α

i
jγ

i
j

2t

⎤
⎦
⎫⎬
⎭

=
∑

xi
t

P
(
xi

t

)
eikixi

t

⎧⎨
⎩cos(ki ) + i sin(ki )

2∑
j=1

x j
t α

i
jγ

i
j

t

⎫⎬
⎭

= cos(ki )
〈
eikixi

t
〉 + sin(ki )

∑
xi

t

P
(
xi

t

)
eikixi

t

2∑
j=1

x j
t α

i
jγ

i
j

t
. (A3)

The second term can be calculated as follows:

∑
xi

t

P
(
xi

t

)
eikixi

t

⎡
⎣xi

tα
i
iγ

i
i

t
+
∑
j �=i

x j
t α

i
jγ

i
j

t

⎤
⎦ =

∑
xi

t

P
(
xi

t

)
xi

t e
ikixi

t
αi

iγ
i
i

t
+ 〈

eikixi
t
〉∑

j �=i

x j
t α

i
jγ

i
j

t

= αi
iγ

i
i

it

∂

∂ki

⎛
⎝∑

xi
t

P
(
xi

t

)
eikixi

t

⎞
⎠ + 〈

eikixi
t
〉∑

j �=i

x j
t α

i
jγ

i
j

t

= αi
iγ

i
i

it

∂

∂ki

〈
eikixi

t
〉 + 〈

eikixi
t
〉∑

j �=i

x j
t α

i
jγ

i
j

t
, (A4)

and so,

〈
eik1x1

t+1
〉 = cos(k1)

〈
eik1x1

t
〉 + sin(k1)

α1
1γ

1
1

t

∂

∂k1

〈
eik1x1

t
〉 + i sin(k1)

〈
eik1x1

t
〉x2

t α
1
2γ

1
2

t
, (A5)

〈
eik2x2

t+1
〉 = cos(k2)

〈
eik2x2

t
〉 + sin(k2)

α2
2γ

2
2

t

∂

∂k2

〈
eik2x2

t
〉 + i sin(k2)

〈
eik2x2

t
〉x1

t α
2
1γ

2
1

t
. (A6)

Now, after multiplying 〈eik1x1
t+1〉〈eik2x2

t+1〉 and rearranging the terms conveniently, we get

Qt+1(
−→
k ) = cos(k1) cos(k2)Qt (

−→
k ) + cos(k1) sin(k2)

2∑
i=1

∂Qt

∂ki

α2
i γ

2
i

t
+ cos(k2) sin(k1)

2∑
i=1

∂Qt

∂ki

α1
i γ

1
i

t

+ sin(k1) sin(k2)
2∑

i=1

2∑
j=1

∂2Qt

∂ki∂k j

α1
i γ

1
i α2

j γ
2
j

t2
, (A7)

thus demonstrating Eq. (35).
Now, we take the inverse Fourier transform,

P (−→x t ) = 1

(2π )2

∫
Qt (

−→
k )e−i

−→
k ·−→x t dk1dk2 = F−1[Qt (

−→
k )], (A8)

on Eq.(A7). Below, I evaluate each term of the calculation.
First, as stated in Eq. (A8),

F−1[Qt+1(
−→
k )] = P (−→x t+1) ≡ Pt+1(x1, x2). (A9)

The next term is

F−1[cos(k1) cos(k2)Qt (
−→
k )] = 1

(2π )2

∫
cos(k1) cos(k2)Qt (

−→
k )e−i

−→
k ·−→x t dk1dk2, (A10)
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and by representing the cosines with complex exponentials,

1

(2π )2

∫
Qt (

−→
k )

4

[
ei(k1+k2 ) + ei(k1−k2 ) + e−i(k1−k2 ) + e−i(k1+k2 )

]
e−ik1x1

t −ik2x2
t dk1dk2

= 1

4

{
1

(2π )2

∫
Qt (

−→
k )e−ik1(x1−1)−ik2(x2−1)dk1dk2 + 1

(2π )2

∫
Qt (

−→
k )e−ik1(x1−1)−ik2(x2+1)dk1dk2

+ 1

(2π )2

∫
Qt (

−→
k )e−ik1(x1+1)−ik2(x2−1)dk1dk2 + 1

(2π )2

∫
Qt (

−→
k )e−ik1(x1+1)−ik2 (x2+1)dk1dk2

}

= 1

4
[Pt (x

1 − 1, x2 − 1) + Pt (x
1 − 1, x2 + 1) + Pt (x

1 + 1, x2 − 1) + Pt (x
1 + 1, x2 + 1)], (A11)

F−1

[
cos(k1) sin(k2)

2∑
i=1

∂Qt

∂ki

α2
i γ

2
i

t

]

= 1

(2π )2

∫
cos(k1) sin(k2)

2∑
i=1

∂Qt

∂ki

α2
i γ

2
i

t
e−i

−→
k ·−→x t dk1dk2

= 1

(2π )2

∫ −i

4

[
ei(k1+k2 ) − ei(k1−k2 ) + e−i(k1−k2 ) − e−i(k1+k2 )]e−ik1x1

t −ik2x2
t

(
∂Qt

∂k1

α2
1γ

2
1

t
+ ∂Qt

∂k2

α2
2γ

2
2

t

)
dk1dk2

= 1

(2π )2

∫ −i

4

[
e−ik1(x1−1)−ik2(x2−1) − e−ik1(x1−1)−ik2 (x2+1) + e−ik1(x1+1)−ik2(x2−1) − e−ik1(x1+1)−ik2(x2+1)

]

×
(

∂Qt

∂k1

α2
1γ

2
1

t
+ ∂Qt

∂k2

α2
2γ

2
2

t

)
dk1dk2, (A12)

= 1

4

α2
1γ

2
1

t

1

(2π )2

{∫
Qt (

−→
k )(x1 − 1)e−ik1(x1−1)−ik2(x2−1)dk1dk2 −

∫
Qt (

−→
k )(x1 − 1)e−ik1(x1−1)−ik2(x2+1)dk1dk2

+
∫

Qt (
−→
k )(x1 + 1)e−ik1(x1+1)−ik2 (x2−1)dk1dk2 −

∫
Qt (

−→
k )(x1 − 1)e−ik1(x1+1)−ik2 (x2+1)dk1dk2

}

+ 1

4

α2
2γ

2
2

t

1

(2π )2

{∫
Qt (

−→
k )(x2 − 1)e−ik1(x1−1)−ik2(x2−1)dk1dk2 −

∫
Qt (

−→
k )(x2 + 1)e−ik1(x1−1)−ik2(x2+1)dk1dk2

+
∫

Qt (
−→
k )(x2 − 1)e−ik1(x1+1)−ik2 (x2−1)dk1dk2 −

∫
Qt (

−→
k )(x2 + 1)e−ik1(x1+1)−ik2 (x2+1)dk1dk2

}
, (A13)

= α2
1γ

2
1

4t
[(x1 − 1)Pt (x

1 − 1, x2 − 1) − (x1 − 1)Pt (x
1 − 1, x2 + 1) + (x1 + 1)Pt (x

1 + 1, x2 − 1) − (x1 + 1)Pt (x
1 + 1, x2 + 1)]

+ α2
2γ

2
2

4t
[(x2−1)Pt (x

1−1, x2−1)−(x2 + 1)Pt (x
1 − 1, x2 + 1) + (x2 − 1)Pt (x

1 + 1, x2 − 1) − (x2 + 1)Pt (x
1 + 1, x2 + 1)].

(A14)

The next terms are evaluated similarly, and the results are

F−1

[
cos(k2) sin(k1)

2∑
i=1

∂Qt

∂ki

α1
i γ

1
i

t

]
= α1

1γ
1
1

4t
[(x1 − 1)Pt (x

1 − 1, x2 − 1) − (x1 + 1)Pt (x
1 + 1, x2 − 1)

+ (x1 − 1)Pt (x
1 − 1, x2 + 1) − (x1 + 1)Pt (x

1 + 1, x2 + 1)]

+ α1
2γ

1
2

4t
[(x2 − 1)Pt (x

1 − 1, x2 − 1) − (x2 − 1)Pt (x
1 + 1, x2 − 1)

+ (x2 + 1)Pt (x
1 − 1, x2 + 1) − (x2 + 1)Pt (x

1 + 1, x2 + 1)], (A15)

F−1

⎡
⎣sin(k1) sin(k2)

2∑
i=1, j=1

∂2Qt

∂ki∂k j

α1
i γ

1
i α2

j γ
2
j

t2

⎤
⎦

= α1
1γ

1
1 α2

1γ
2
1

4t2
[(x1 − 1)2Pt (x

1 − 1, x2 − 1) − (x1 − 1)2Pt (x
1 − 1, x2 + 1)

− (x1 + 1)2Pt (x
1 + 1, x2 − 1) + (x1 + 1)2Pt (x

1 + 1, x2 + 1)]
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+ α1
1γ

1
1 α2

2γ
2
2

4t2
[(x1 − 1)(x2 − 1)Pt (x

1 − 1, x2 − 1) − (x1 − 1)(x2 + 1)Pt (x
1 − 1, x2 + 1)

− (x1 + 1)(x2 − 1)Pt (x
1 + 1, x2 − 1) + (x1 + 1)(x2 + 1)Pt (x

1 + 1, x2 + 1)]

+ α1
2γ

1
2 α2

1γ
2
1

4t2
[(x1 − 1)(x2 − 1)Pt (x

1 − 1, x2 − 1) − (x1 − 1)(x2 + 1)Pt (x
1 − 1, x2 + 1)

− (x1 + 1)(x2 − 1)Pt (x
1 + 1, x2 − 1) + (x1 + 1)(x2 + 1)Pt (x

1 + 1, x2 + 1)]

+ α1
2γ

1
2 α2

2γ
2
2

4t2
[(x2 − 1)2Pt (x

1 − 1, x2 − 1) − (x2 + 1)2Pt (x
1 − 1, x2 + 1)

− (x2 − 1)2Pt (x
1 + 1, x2 − 1) + (x2 + 1)2Pt (x

1 + 1, x2 + 1)]. (A16)

Now, by combining the results expressed in Eqs. (A9), (A11), (A14), (A15), and (A16), we get

Pt+1(x1, x2) =Pt (x
1 − 1, x2 − 1)

[
1

4
+ α2

1γ
2
1

4t
(x1 − 1) + α2

2γ
2
2

4t
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1γ
1
1

4t
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2γ
1
2

4t
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+ α1
1γ

1
1 α2

1γ
2
1

4t2
(x1 − 1)2 + α1
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1
1 α2

2γ
2
2

4t2
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1
2 α2

1γ
2
1

4t2
(x1 − 1)(x2 − 1) + α1

2γ
1
2 α2

2γ
2
2

4t2
(x2 − 1)2

]

+ Pt (x
1 − 1, x2 + 1)

[
1
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1γ
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1
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2
2
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2γ
1
2
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1γ

1
1 α2
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1
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2

4t2
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1
2 α2
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2
1

4t2
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2γ
1
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2
2

4t2
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]

+ Pt (x
1 + 1, x2 − 1)

[
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2
1
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2
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1
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1
2

4t
(x2 − 1)
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1
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2
1
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2
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2
1
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1
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2
2
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]

+ Pt (x
1 + 1, x2 + 1)

[
1

4
− α2
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2
1
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2
2
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1
1
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1
2
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+ α1
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1
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2
1
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1
1 α2
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2
2

4t2
(x1 + 1)(x2 + 1) + α1
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1
2 α2
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2
1

4t2
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1
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2γ
2
2

4t2
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]
,

(A17)

which is the complete form of Eq. (36), which characterizes the described random walk as a jump process.
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