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the symmetric units form a subloop of the loop of units in RL. Let
S1={teLl|f=1}, S;={t+L 1| #1}, and S=5US,.

Then a € RL is symmetric if and only if it is a linear combination of elements
of §. Since the mapping a ~+ of is an antiautomorphism of RL, the product
of symmetric units a, 8 is symmetric if and only if a and B commute. In
particular, this will be the case if the elements of § commute pairwise. The
converse is true in certain situations.

For example, let R = F be a field of characteristic two, let L be an RA
2-loop, and assume that symmetric units in FL commute. It is known that
A(L), the augmentation of FL, is nilpotent [5], so 1 4+ £+ £~ is a unit for
any £ € L (because £+ ¢~ € A(L)). It follows that any two such elements
must commute, hence any two elements of S commute.

We summarize.

Remark 1.1. An RA 2-loop over a field of characteristic two is admissible if
and only if the elements of S commute pairwise.

2. THE MoDULAR CASE

In this section, the coefficient ring is always a field F of characteristic
two.

Proposition 2.1. Let L be an admissible RA loop with unique commuta-
tor/associator 5. Then every element of order 2 in L is central and, if£ € L
i8 not central, then £ has order 4.

Proof. We follow some arguments in [1). Assume { € L has order 2. Then
£ commutes with any k € L satisfying k? = 1. If k? 1, then { commutes
with k + k=1, The equation £(k + k~!) = (k + k~1)£ implies

L+ Lk~ = ke + k12,

If £k # kL, then £k = k=, s0 £kf = k~*£% = k=, which implies that k£ has
order 2. Thus £ and k£ commute, so £ and k commute, a contradiction, All
this shows that elements £ € L with £2 = 1 are central.

Next, suppose the noncentral element £ does not have order 4. Then
£ # 1 (since £2 = 1 implies centrality). Choose k such that k¢ # £k. The
loop G = (k,£) is a nonabelian admissible group not of exponent 4. The
proof of {1, Lemma 2] establishes that the set

A={teL|t#1}

is commutative and, if b ¢ (A), then b~lab=a" for all a € A. Now £ € A,
80 k ¢ (A) (since k{ # fk). Thus k~'k = £~ while, on the other hand,
k~1¢k = sk. Thus £2 = s and #* = s = 1, a contradiction which completes
the proof. |

Corollary 2.2. An admissible RA loop has ezponent 4.
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Proof. Because of the Proposition, it suffices to show that if a € L is central,
then at = 1. So take @ € L be central and b € L not central (so b* = 1).
Then ab is not central, so (ab)* = 1. Since (ab)* = a*b* = a*, the result
follows. a

Now let k,£ € L with k€ # £k. (Thus k¢ = s€k.) In particular k% # 1 and
£2 1. Since (k+ k™) (L +£71) = (L + 1) (k + k™1), we obtain

T Y N g N e TN/ NN ) TNk
Since k£ ¢ {k£~1,k~1£, £k}, we must have
ke (k7Y ek 0k, k)

If k¢ = k=11, then k? = £72. Let ¢ = k™! and y = kf. Then ¢* =
klkl = sk = s and z7'yz = k*k~! = £ k7! = y~1. Note that (k,£) =
{z,y).

If k¢ = £k™1, then £~kL = k™1,

If k€ = €1k, then k£k™! = {71,

If k2 = £-k~1 = (k€)~1, then (kf)? = 1, so ki is central, implying
k€ = £k, which is not true.

To summarize, if k€ # £k, then the group generated by k and £ is
(2.3) H=(z,y|s*=y* =1Ly ley=27").

Note that this is the group (of order 16) labelled 16I'z¢; in the Hall and
Senior catalogue of groups of 2-power order [7].

It is known that any torsion RA loop is the direct product of an indecom-
posable loop (which is necessarily a 2-loop) and a possibly trivial abelian
group [4, Proposition V.1.1], [3, Theorem 6]. Thus, if we can classify the
(finite or torsion) indecomposable admissible RA loops, then we have in fact
classified all admissible (finite or torsion) RA loops because of the proposi-
tion which follows. Part of the proof we present requires an elementary fact
about the loop ring of a direct product.

Remark 2.3. Suppose a € RL and B € RK are elements of loop rings RL
and RK and suppose that ¢f = 0 € R[L x K]. Then a=0or = 0. To
see this, note that writing @ = Y~ af and 8 = }_ fxk gives af = Y arBitk,
which is a linear combination of distinct elements of the loop L x K.

Proposition 2.4. The direct product Lx A of an RA 2-loop L and an abelian
group A is admissible if and only if L is admissible and A has exponent 2.

Proof. If L is admissible and A has exponent 2, elements of order 2in L x A
are certainly central, so, to show that L x A is admissible, it suffices to
show that elements of the form £a + (¢a)™*, £ € L,a € A commute. This is
immediate because fa+ ((a)~! = la+£"'a = ({+£!)a, with a central and
elements of the form £ 4+ £~! commuting pairwise.

Now assume that L x A is admissible. Since a subloop of an admissible
loop is admissible, L is admissible, so it remains only to show that A has
exponent 2. Suppose this is not the case. Take ¢ € A with a® # 1 and
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let k£ € L be a noncentral element with k? # s. (The existence of such k
is a consequence of the fact that any noncentral element lives in a group
H defined in (2.1).) There exists £ € L such that k€ # ¢k. We claim that
fa + (fa)™' does not commute with k + k~!. This can be established by
showing that £~ (a + a™!) and k + £~ do not commute, or, equivalently,
that

22)  [a+a™)E+HET) +(k+ET)E a0 #0,
because
tat (la)'=tat+ L = (04 )a+ L at e

and the first term on the right here commutes with k + k~! because A is
central and L is admissible. The sum in (2.2} is

C+ R R+ R U Y (a4 a7Y,
which is the product of elements in FL and FA. Using remark 2.3, this is
0 if and only if one of the two factors is 0. Since a + a~! # 0, we have only
to prove that
CUe+ % kT 4 kU £ 0.
Since k and £ do not commute, this element is
O+ st kst = (14 ) R+ Y.

This is 0 if and only if (1 + s)(k + k1) = 0. This is not the case, however,
because (1+s)(k+k™1) = k+k~'+sk+sktand k2 # 1, s # 1,2 £ O

In light of Proposition 2.4, we turn our attention to the classification of
finite indecomposable RA loops as found in Chapter V of [4]. (See also [8].)
In examining these references, it is helpful to note a few facts about RA
loops.

An RA loop has the form L = GUGu, where G is (certain kind of) group,
u is an element not in G, g — g* is an involution on G, gy is an element in
Z(G) (the centre of G) which is fixed by the involution, and multiplication
in L is defined by

g(hu) = (hg)u
(gu)h = (gh*)u
(gu)(hu) = gohg
(See [4, §I1.5].) In consequence, such L is denoted M(G, *, go). It will prove
useful also to know that for any z € L,

., {z if z is central

sz if z is not central

[4, Theorem IV.3.1]. If L is finite and indecomposable (that is, not a non-
trivial direct product), the group G = D x C is the direct product of an
indecomposable group D and a cyclic group C, which might be trivial. The
group D is generated by two noncommuting elements z,y.
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Assume now that L is admissible. From what we have shown, D must
be the group H described in (2.1). Since Z(H) = C; x C; and elements in
L of order 2 are central, Table 3 on p. 142 of [4] shows clearly that L must
be of type L4, with D = Dg = H and s = go. Since the unique nonidentity
commutator /associator of L is in D, Theorem V.1.7 of [4] shows that C'is in
fact trivial. Thus G = H has order 16 and L = M (16I'2C3, *, 8) (a Moufang
loop of order 32).2

Theorem 2.5. Let L be a finite RA 2-loop and let F be a field of char-
acteristic two. Then L is admissible if and only if L = Lo X A, where
Lo = M(16T3¢3, *,8) and A is an abelian group of ezponent two.

Proof. The RA 2-loop L can be written as the product Lo x A of an indecom-
posable RA loop Ly and an abelian group A. If this is admissible, then Lo =

M (16T'3¢3, ¥, 5) as shown above and A has exponent two, by Proposition 2.4.
Conversely, if Lo = M(16T'3ca, %, 8) and A is an abelian group of exponent

2, again appealing to Proposition 2.4, to prove that Lo X A is admissible, it
is sufficient to prove that Ly is admissible. The reader may check that in
H = Ds, as presented in (2.1), the set C = {1, 2,22 23 y% zy?, 2%, 2%%}
is an abelian subgroup of index 2 and that t~!ct = ¢~ for every ¢ € C
and every t ¢ C. By [l], G = Ds = 16Tsc; is admissible. In particular,
elements of order 2 in G are central. By the definition of multiplication in
L =GUGu, if g € G, then (gu)? = (gu)(gu) = gog"g = sg"g. If g* = 1,
then g is central so g* = ¢ and sg*g = s # 1. If g% # 1, then g is not central,
8o g* = 8g and sg*g = 8%g® = ¢* # 1. Thus the only elements of order 2 in
L = GUGu are in G and hence central. It remains only to verify that two
kinds of pairs of elements commute in FL.

Case 1: Let a =g+ ¢! and B8 = hu+ (hu)™), g,h € G. The rules for
multiplication in L give (hu)™! = w~*h~? = suh™! = s(h™")*u. So,

af = (g+g ") (hu+s(h™")"w)
= g(hu) + sg[(h~1)"u] + g™ (hu) + sg 7' [(A™") 4]
= [hg + s(h71)*g + hg™ + s(h7*) g™ ]u
= [hg+g7) + s(h™) (g4 97 V)]u
= [(h+sth")) g+ g7)]u= [tlg +97)]u,

with t = h + s(h™1)*. Also

Ba = (hu+ s(h™")*u)(g+g7")
= (hu)g + (hu)g~" + [s(h~")"u]g + [s(h™")"ulg™’
= [hg" + h(g™Y)* +5(h7")"g" + s(h7)* (g7 ") ]
= [(h+s(A~H)")g" + (R + (7)) g™ ]u

2]y, the dassification and labelling of the Moufang loops of order less than 64, this loop
has also been denoted 32/65 [6].
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= [(h+ (™)) g+ g7 ]u = [tg+ 971w
If  is not central, then s(h=)* = ssh~! = A~! and the elements t(g+g¢7*),
t(g+g~1)" clearly commute; while such is clearly also the case if h is central.
Thus off = Ba.
Case 2: Let @ = gu+ (gu)~! and B = hu + (hu)™!, g,h € G. We have
(9u)~! = s{¢g"*)*u and (hu)~! = s(h~1)*x, so
of = [gu+ s(g™) ulfhu+ s(h™!)"y]
= (gu) (hu) + s(gu)[(A™")"u] + s[(g™") " ulhu + [(¢!)*u][(h™")*4]
= goh*g + sgoh™"g + sgoh™(g™")" + goh ™ (g7")*
=sh*g+h g+ h*(g™")* +sh~ (g71)"  (because go = 5)
= (oh* + K )g 4 (4 sh7)(g™)"
Since h* + sh~1 = s(sh* + h™!), we have

(23) af = (sh* + h7")(g +3(971)").
By symmetry,
(2.4) Ba = (sg"+ g ") (h+s(h™")").

If g is not central, then g* = sg and (¢7)* = sg~*,s0 g+s(¢™!)* = g+g~ 1 =
89" +g¢~" and, if h is not central, then h+s(h~1)* = h4+h~! = h+s(h~1)".
In all cases, each factor on the right of (2.3) commutes with each factor
on the right of (2.4), implying that & and 8 commute. This completes the
proof. a

Interestingly, Theorem 2.5 can be extended verbatim to torsion loops, as
we proceed to show. First, we observe that the concepts of “torsion” and
“local finiteness” are the same for RA loops.

Lemma 2.8. An RA loop is torsion if and only if it is locally finite.

Proof. A locally finite loop is always torsion. On the other hand, remember
that if z and y are any two elements in an RA loop, then yz = zy, or
yz = szy (s the unique nonidentity commutator/associator), and if z, y,
z are any three elements, then (2y)z = z(y2) or (zy)z = sz(yz). Since s
is central of order 2, any element in a subloop K generated by elements
Z1,%2,...,2, Can be written in the form s¢(---((z}2¥)z¥) - - -zir), i € Z,
€=0,1, 8o, if L is torsion, then K is finite. O

Suppose that L = M(G, *,go) is an admissible torsion RA loop. Clearly
G is an admissible group, so by [1], G = H x E is the direct product of an
elementary abelian group and a group H which is one of four types.

i. H has an abelian subgroup A of index 2 and an element b of order
4 such that b~tab = a~! for all a € A4;
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ii. H= Qg x C is the direct product of the quaternion group Qg and
a cyclic group C of order 4, or the direct product of two quaternion
groups;

iii. H is the central product of the group (z,y | z* = y* = 1,2% = (y, z))
with a quaternion group;

iv. H is isomorphic to either

32T4cs = (z,y,ul 2* =y* =1,
2t = (y,2),4° = (¢} = (v,2), 2%y" = (w,))
6411305 = (o, y,u,v | 2" = y* = (v,u) =1,
2 =v? = (y,z) = (v,9), 4 = v? = (¢, 2),
z?y? = (u,y) = (v,2)).
(The latter two groups are denoted Ha; and Hass, respectively, in [1].)

Since an RA loop has a unique commutator, groups of types iii and iv are
quickly eliminated. Suppose G = Qs xC X E is a group with H = Qs xC of
typeii. Since the unique nonidentity commutator/associator of G lies in @,
M(G,*,g0) = M(Qs, *,90) X (C x E) by [4, Proposition V.1.6). This loop
is not admissible by Proposition 2.4. It follows that G = H x E, with H of
type i. Since the unique nonidentity commutator of G is necessarily in H, we
must have E of exponent 2, quoting Proposition 2.4 again. Thus G has an
abelian subgroup (which we also call) A of index 2 such that z7lgz = a!
forall a € A and £ ¢ A. Since [G: Z(G)] = 4 (the group G defining an
RA loop is a C3 x Cy extension of its centre), A C Z is not possible, so
choose a € A\ Z and z such that az # za. Since A is abelian, z ¢ A, s0
z-laz = a~! on the one hand and z~laz = sa on the other. It follows that
a? = s and a has order 4. Since A is a 2-group and a has maximal order
in A, A = (a) x Ap for some subgroup Ap. Suppose some element ¢ € Ao
has order 4. Then t and z cannot commute; otherwise, 27}tz = ¢t = -1
would imply that t? = 1, which is not true. Thus z7'tz = st = t~1, so
t2 = s = a® € {(a) N Ap = {1}. This contradiction shows that Ap has
exponent two (and hence is central).

Now z? € A, so we can write z? = a®aq, a0 € Ao, %0 € Z. If ap # 1,
this element has maximal order in Ag, 80 Ag = (60} X Ay for some group
Ay, a factorization of Ap which evidently also holds if ag = 1. Thus A =
(a) X {ag) X A1. Let B = (a,z,ao) be the group generated by a, z and
ag. We claim that G = B X A;. Since A g BA; C G and [G: 4] = 2, we
have G = BA;. The subgroup A, is normal since it is central and so is B,
because ag is central and s = a? € B (implying, for example, that, for any
t, t~lzt = z or a’z is in B).

To show that B N A; = {1}, let b = afa‘z? € BN A;. If j = 2jy is even,
then b = aja! (+7)7 = aga(aac)’ € ((ao) X (@) Ny = {1}. If j = 251 +1
is odd, then b = a§a’a™tallz € A implies z € (ao) X {a) x Ay = A, a
contradiction.
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We have shown that when L = M(G, *, go) i torsion, the group G =
B X A, is the direct product of a finite group B and an abelian group A4,
of exponent two. Suppose go = (b,a1) has a component a; € A; which is
different from 1. Writing A; = {a;) X A, and replacing B by B x {a,), we
can assume that go € B. Thus M(B X Ay, *,g0) = M(B,*,60) X A; [4,
Proposition V.1.6] with M (B, x, go) finite (and admissible). So we obtain
the following theorem.

Theorem 2.7. When the ring of coefficients is a field of characteristic two,
a torsion RA loop L is admissible if and only if L = M(16I2c3,%,8) x A
18 the direct product of the loop M (16Tcq,*,s) and an abelian group of
ezponent two.

3. ADMISSIBILITY OVER Z

In this brief section, we observe that when the ring of coeficients is the
ring of rational integers, an RA loop is admissible essentially when a group is
admissible. In any RA loop L, the set T'(L) of torsion units forms a subloop
[4, Lemma VIIL.4.1] and, if L is admissible, it can be shown exactly as in
[2] that every subloop of T(L) is normal in T(L); thus T(L) is an abelian
group or a Moufang Hamiltonian loop, without elements of odd order (see
again [2]).

In particular, we have the following analogue of Theorem 2.7 in this sit-
uation.

Theorem 3.1. If L is a torsion (equivalently, locally finite) RA loop, then L
18 admissible if and only if L is an abelian group or a Moufang Hamiltonian
2-loop.

Proof. We have already established necessity. On the other hand, it is easy
to see that abelian groups and Moufang Hamiltonian 2-loops are admissible,
in the latter case because, in a Hamiltonian loop, if £2 = nel, then £+{"1 =
£+ st ={+ ¢, and such elements are central in any RA loop [4, Corollary
111.4.3]. O
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