
RT-MAT 2003-20 

SYMMETRIC UNITS IN ALTERNATIVE 
LOOP RINGS 

Edgard G. Goodaire and 
Cesar Polcino Milies 

Setembro 2003 

Esta ~ uma publica~o preliminar (''preprint''). 



SYMMETRIC UNITS IN ALTERNATIVE LOOP RINGS 

EDGAR G. GOODAIRE AND CESAR POLCINO MILIES 

ABSTRACT. Let L be an RA loop, that is, a loop whose loop ring in any 

characteristic ii an alternative, but not associative, ring. For a= E all. 

in a loop ring RL, define a 1 = E aLC1 and call a aymmetric if al = a. 

We find necessary and sufficient conditions under which the symmetric 

unita are cloeed under multiplication ( and hence form a subloop of the 

loop of units in RL) when R has characteristic two and when R = Z is 

the ring of rational integers. 

1. INTRODUCTION 

A loop ring ia a.n algebraic object RL, constructed in the same way as 

a group ring, but in which the underlying loop L is not necessarily a&'lo­

ciative. This paper is concerned with loop rings which are alternative, but 

not associative. Loops which give rise to such loop rings (over rings of any 

characteristic) a.re called RA (ring alternative} loops. The best reference 

for information about RA loops and their loop rings is the monograph [4]. 

One property of RA loops used implicitly throughout is their diassociativity: 

any subloop generated by just two elements is associative (so parentheses to 

indicate order of multiplication in monomials are not required). It is also 

important to remember that an RA loop L possesses an element s "# 1, 

which we always so label, which is both a unique nonidentity commutator 

and a unique nonidentity aggociator; that is, if a, b E L do not commute, 

then ba = sab and, if a, b, c E L do not associate, then (ab)c = [a(bc)]s. {It 

is easy to see that s is necessarily central and of order 2.) 

If a: = E O:tl is an element of a loop ring RL, we define o:1 = E o:il-1 

and ca.II a: symmetric if o:U = o.1 

In this paper, with a given coefficient ring R fixed, we call a.n RA loop 

admissible if the product of symmetric units is syIIJmetric; equivalently, if 
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the symmetric units form a. subloop of the loop of units in RL. Let 

S1 = {l EL j l 2 = 1}, S2 = {l + r 1 j l 2
-::/ 1}, and S = S1 U S2. 

Then a E RL is symmetric if and only if it is a. linear combination of elements 
of S. Since the mapping a t--+ al is an antia.utomorphism of RL, the product 
of symmetric units a, fi is symmetric if and only if a and fi commute. In 
particular, this will be the case if the elements of S commute pairwise. The 
converse is true in certain situations. 

For example, let R = F be a field of characteristic two, let L be an RA 
2-loop, and assume that symmetric units in FL commute. It is known that 
~(L), the augmentation of FL, is nilpotent [5], so 1 + l + t-1 is a unit for 
any l E L (because l + t-1 E ~(L)). It follows that a.ny two such elements 
must commute, hence any two elements of S commute. 

We summarize. 

Remark 1.1. An RA 2--loop over a field of characteristic two is admissible if 
and only if the elements of S commute pairwise. 

2. THE MODULAR CASE 

In this section, the coefficient ring is always a field F of characteristic 
two. 

Proposition 2.1. Let L be an admissible RA loop with unique commuta­
tor/associators. Then every element of order 2 in L is central and, if l E L 
is not central, then l ha, order 4. 

Proof. We follow some arguments in [1). Assume l E L has order 2. Then 
l commutes with any k E L satisfying k2 = 1. If k2 -:/- 1, then l commutes 
with k + 1.-1• The equation l(k + k-1) = (k + k-1 )l implies 

lk + lk-1 = kl+ k-1l. 

If lk i= kl, then lk = k-1l, so lkl = k-1l 2 = k-1 , which implies that kl has 
order 2. Thus l a.nd kl commute, sol and k commute, a contradiction. All 
this shows that elements l E L with l 2 = 1 are central. 

Next, suppose the noncentral element l does not have order 4. Then 
t' i= 1 (since l 2 = 1 implies centrality). Choose k such that kl i= lk. The 
loop G = (k, l) is a nonabelian admissible group not of exponent 4. The 
proof of [1, Lemma. 2] establishes that the set 

A = { t E L j t4 
-::/ 1} 

is commutative and, if I,¢ (A), then b-1al, = a-1 for all a E A. Now l E A, 
so k ¢ (A) (since kl i= lk). Thus k-1lk = l-1 while, on the other hand, 
k-1lk = sk. Thus l 2 =sand t' = s2 = 1, a contra.diction which completes 
the proof. □ 

Corollary 2.2. An admissible RA loop has exponent 4. 
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Proof. Because of the Proposition, it suffices to show that if a E L is central, 

then a4 = 1. So take a E L be central and b E L not central (so b4 = 1). 

Then ab is not central, so (ab)_. = 1. Since (ab)4 = a4b4 = a", the result 

follows. O 

Now let k, l EL with kl=/; lk. (Thus kl= slk.) In particular k2 # 1 and 

l 2 =/ 1. Since (k+k-1)(l+t-1) = (l+l- 1)(k+k-1 ), we obtain 

kl+ kt-1 + k-1l + k-1l-1 = lk + lk-1 + l-11; + l-11;-1 . 

Since kl 'I. {kl- 1 ,k-1l,lk}, we must have 

kl E {k-1r1,lk-1,r1k,r1k-1}. 

If kl= k-1l-1 , then k2 = r 2 • Let X = k-1 and y = kl. Then y2 = 
klkl = sk2l 2 =sand x-1yz = k2lk- 1 = 1-1k- 1 = y-1 • Note that (k,l) = 
(x, y}. 

If kl= Lk-1, then t-1kl = k-1• 

If kl= 1.-1k, then klk-1 = t-1. 

If kl = L-1k-1 = (kl)-1 , then (kl)2 = 1, so kl is central, implying 

kl = lk, which is not true. 
To summarize, if kl -:f. lk, then the group generated by k and l is 

(2.1) H = (x, y I x4 = y4 = 1, y-1xy = x-1
). 

Note that this is the group (of order 16) labelled 16f2c2 in the Hall and 

Senior catalogue of groups of 2-power order [7]. 

It is known that any torsion RA loop is the direct product of an indecom­

posable loop (which is necessarily a 2-loop) and a possibly triVial abelian 

group [4, Proposition V.1.1), [3, Theorem 6]. Thus, if we can classify the 

(finite or torsion) indecomposable admissible RA loops, then we have in fact 

classified all admissible (finite or torsion) RA loops because of the proposi­

tion which follows. Pa.rt of the proof we present requires an elementary fact 

about the loop ring of a direct product. 

&mark 2.3. Suppose a E RL and /3 E RK are elements of loop rings RL 

and RK and suppose that af) = 0 E R[L x K]. Then a = 0 or /3 = 0. To 

see this, note that writing a= E atl and /3 = E f31ck gives a(3 = E a.tf31clk, 

which is a linear combination of distinct elements of the loop L x K. 

Proposition 2.4. The direct product LxA of an RA 2-loop Land an abelian 

group A is admissible if and only if L is admissible and A has exponent 2. 

Proof. If L is admissible and A has exponent 2, elements of order 2 in L x A 

are certainly central, so, to show that L x A is admissible, it suffices to 

show that elements of the form la+ (la)-1, l E L, a E A commute. This is 

immediate because la+ (la)-1 = la+r1a = (l +L-1 )a, with a central and 

elements of the form l + L-1 commuting pa.irwise. 

Now assume that L x A is admissible. Since a subloop of an admissible 

loop is admissible, L is admissible, so it remains only to show that A has 

exponent 2. Suppose this is not the case. Take a E A with a2 # 1 and 
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let k e L be a noncentral element with k2 =f. s. {The existence of such k 
is a consequence of the fa.ct that any noncentral element lives in a group 
H defined in (2.1).) There exists l E L such that kl =f. l.k. We claim that 
I.a+ (la)-1 does not commute with k + k-1. This can be established by 
showing that r 1 (a + a-1) and k + k-1 do not commute, or, equivalently, 
that 

(2.2) [r1(a + a-1 )](k + k-1
) + (k + k-1 )[r1 (a + a-1 )] f:. O, 

because 

la+ (la)-1 = la+r1a-1 = (l + r 1)a+r1(a+ a-1
) 

and the first term on the right here commutes with k + k-1 because A is 
central and L is admissible. The sum in (2.2) is 

(r"1k + r 1k-1 + kr 1 + k-1r 1)(a + a-1
), 

which is the product of elements in FL and FA. Using remark 2.3, this is 
0 if and only if one of the two factors is O. Since a+ a-1 =f. O, we have only 
to prove that 

r 1k+r1k- 1 + kr1 + k- 1r 1 -1- o. 
Since k and l do not commute, this element is 

r 1k +r1k-1 + sr1k + s1-1k-1 = (1 + s)r1(k + k-1). 

This is O if and only if (1 + s)(k + k-1) = 0. This is not the case, however, 
because (l+s)(k+k-1) = k+k-1+sk+sk-1 and k2 =f.1, s-::/ 1, k2 -::/ s. □ 

In light of Proposition 2.4, we turn our attention to the classification of 
finite indecomposable RA loops as found in Chapter V of [4]. (See also [8].) 
In examining these references, it is helpful to note a few facts about RA 
loops. 

An RA loop has the form L = Gu Gu, where G is (certain kind of) group, 
u is a.n element not in G, g ➔ g• is a.n involution on G, g0 is an element in 
Z(G) (the centre of G) which is fixed by the involution, and multiplication 
in L is defined by 

g(hu) = (hg)u 
(gu)h = (gh•)u 

(gu)(hu) = goh•g 

(See (4, §Il.5J.) In consequence, such Lis denoted M(G, •, g0). It will prove 
useful also to know that for any z e L, 

• {z if x is central 
x = sx if :r is not central 

[4, Theorem IV.3.1]. If Lis finite and indecomposable (that is, not a non­
trivial direct product), the group G = D x C is the direct product of an 
indecomposable group D and a cyclic group C, which might be trivial. The 
group Dis generated by two noncommuting elements x,y. 
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Assume now tha.t L is admissible. From wha.t we ha.ve shown, D must 
be the group H described in (2.1). Since Z(H) = C2 x C2 and elements in 
L of order 2 are central, Table 3 on p. 142 of [4] shows clearly tha.t L must 
be of type £4, with D = Ds = H ands= g0 • Since the unique nonidentity 
commutator/associator of Lis in D, Theorem V.1.7 of [4] shows that C is in 
fa.ct trivia.I. Thus G = H has order 16 and L = M(l6f2C2, *, s) (a Moufa.ng 
loop of order 32).2 

Theorem 2.5. Let L be a finite RA 2-loop and let F be a field of char­

acteristic two. Then L is admissible if and only if L = Lo x A, where 

Lo= M(l6f2c2, *, s) and A is an abelian group of ezponent two. 

Proof. The RA 2-loop L can be written as the product Lox A of an indecom­
posable RA loop Lo and an abelian group A. If this is admissible, then Lo = 
M(l6f2c2, *, s) as shown a.bove and A has exponent two, by Proposition 2.4. 
Conversely, if Lo= M(l6f2c2 , *, s) and A is an abelian group of exponent 

2, again appealing to Proposition 2.4, to prove that Lo x A is admissible, it 
is sufficient to prove tha.t Lo is admissible. The reader may check tha.t in 
H = Dr,, as presented in (2.1) , the set C = {l,x,x2,x3,y2, xy2,x2y2,x3y2} 

is an abelian subgroup of index 2 and that t-1 ct = c-1 for every c E C 
and every t ~ C. By [1], G = Ds = 16f2c2 is admissible. In particular, 
elements of order 2 in G are central. By the definition of multiplication in 
L = GU Gu, if g E G, then (gu)2 = (gu)(gu) = gog•g = sg•g. If g2 = 1, 
then g is central so g• = g a.nd sg*g = s I- 1. If g2 I- 1, then g is not central, 
so g• = sg and sg•g = s1 g3 = g 1 =I' 1. Thus the only elements of order 2 in 
L = GU Gu a.re in G a.nd hence central. It remains only to verify that two 
kinds of pairs of elements commute in FL. 

Case 1: Let a= g + g-1 and fJ = hu + (hu)-1, g, h E G. The rules for 
multiplication in L give (hu)-1 = u-1h-1 = suh-1 = s(h-1)*u. So, 

afJ = (g + g-1)(hu + s(h-1 )*u) 

= g(hu) + sg[(h-1)*u] + g-1(hu) + sg-1[(h-1)*u] 

= [hg + s(h-1 )*g + hg-1 + s(h-1)*g-1]u 
= [h(g + g-1) + s(h- 1 )*(g + g-1)] u 

= [(h+s(h-1 )*)(g+g-1)]u= [t(g+g-1)]u, 

with t = h+s(h-1)*. Also 

{Ja = (hu + s(h-1 )*u)(g + g-1
) 

= (hu)g + (hu)g-1 + [s(h-1)*u]g + [s(h-1tu]g-l 

= [hg• + h(g-1t + s(h-1 tg* + s(h-1 r(u- 1r] u 

= [(h + s(h-1t)g* + (h + s(h-1)*)(g-1)*]u 

21n the classification and labelling of the Moufang loops of order IC1!8 than 64, this loop 

has &!so been denoted 32/65 [6]. 
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= [(h + s(h-1)*)(g + g-1)*]u = [t(g + g-1)*]u. 

If his not central, then s(h-1 )* = ssh-1 = h-1 and the elements t(g + y-1 ), 

t(g+g-1)- clearly commute; while such is clearly also the case if his central. 
Thus 0/3 = {3a. 

Case 2: Let a= gu + (gu)-1 and /3 = hu + (hu)-1, g, h E G. We have 
(gu)-1 = s(g-1 )*u and (hu)-1 = s{h-1 )*u, so 

a/3 = [gu + s(g-1)*u][hu + s(h-1tu] 

= (gu)(hu) + s(gu)[(h-1)*u] + s[(g-1)*u]hu + [(g-1 )*u][{h-1)*u] 

= goh*g + sgoh-1g + sgoh*(g-1)* + g0h-1(g- 1)* 

= sh*g + h- 1g + h*(g- 1)* + sh-1 (g-1)* {because 9o = s) 

=(sh*+ h-1 )g + (h* + sh-1)(g-1)*. 

Since h* + sh-1 = s(sh* + h-1), we have 

(2.3) a/3 = (sh*+ h-1 )(g + s(g-1 )*). 

By symmetry, 

{2.4) 

If g is not central, then g• = sg and (g-1)* = sg-1 , so g+s(g-1)* = g+g-1 = 
sg•+g-1 and, if his not central, then h+ s(h-1)• = h+h-1 = h+ s(h-1t. 
In all cases, each factor on the right of (2.3) commutes with each factor 
on the right of (2.4), implying that o and /3 commute. This completes the 
~~ D 

Interestingly, Theorem 2.5 can be extended verbatim to torsion loops, as 
we proceed to show. First, we observe that the concepts of "torsion" and 
"local finiteness" a.re the same for RA loops. 

Lemma 2.6. An RA loop is torsion if and only if it is locally finite. 

Proof. A locally finite loop is always torsion. On the other hand, remember 
that if z and y a.re any two elements in an RA loop, then yx = xy, or 
yx = sxy (s the unique nonidentity commutator/associator), and if x, y, 
z are any three elements, then (xy)z = z(yz) or (zy)z = sz(yz). Since s 
is central of order 2, any element in a subloop K generated by elements 
:i:1,:i:2,, .. ,zn can be written in the form a•(· .. {(:i:i1:i:t2 ):i:;a) • •·Z~"), i; E Z, 
f. = O, 1, so, if L is torsion, then K is finite. D 

Suppose that L = M(G, •,go) is an admissible torsion RA loop. Clearly 
G is an admissible group, so by [1], G = H x Eis the direct product of an 
elementary abelian group and a group H which is one of four types. 

i. H has an abelian subgroup A of index 2 and an element b of order 
4 such that b-1ab = a-1 for all a E A; 
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ii. H = Qs X C is the direct product of the quaternion group Q8 and 

a cyclic group C of order 4, or the direct product of two quaternion 

groups; 
iii. H is the central product of the group (x, y I x4 = y4 = 1, x2 = (y, x)) 

with a quaternion group; 
iv. H is isomorphic to either 

32I',cc3 = (x, y, 1J / x4 = y4 = 1, 

x2 == (y, x), y2 == (u2 = (u, x), x2y2
::;:: (u, y)) 

64f13a5 = (x, Y, u, v I x4 = y4 = (v, u) = 1, 

x2 = v2 = (y,x) = (v,y),y2 = u2 = (u,x), 

x2y2 = (u,y) = (v,x)). 

(The latter two groups a.re denoted H32 and H 245, respectively, in [1].) 

Since an RA loop ha.s a unique commutator, groups of types iii and iv a.re 

quickly eliminated. Suppose G = Qa x C x Eis a group with H = Q8 x C of 

type ii. Since the unique nonidentity commutator/associator of G lies in Q8 , 

M(G, •,go)= M(Qs, •,go) x (C x E) by [4, Proposition V.1.6]. This loop 

is not admissible by Proposition 2.4. It follows that G = H x E, with H of 

type i. Since the unique nonidentity commutator of G is necessarily in H, we 

must have E of exponent 2, quoting Proposition 2.4 again. Thus G has an 

abelian subgroup (which we also call) A of index 2 such that x-1ax = a-1 

for a.ll a E A and x ¢ A. Since [G: Z(G)) = 4 (the group G defining a.n 

RA loop is a C2 x C2 extension of its centre), A ~ Z is not possible, so 
choose a E A \ Z and x such that ax #- xa. Since A is abelian, x ,t A, so 

x-1ax = a-1 on the one hand and x-1ax = sa on the other. It follows that 

a2 = s and a has order 4. Since A is a 2-group and a has maximal order 

in A, A = (a) x Ao for some subgroup Ao- Suppose some element t E Ao 
has order 4. Then t and x cannot commute; otherwise, x-1tx = t = t-1 

would imply that t2 = 1, which is not true. Thus x- 1tx = st = t- 1 , so 

t2 ::;:: s = a2 E (a) n Ao = {l}. This contradiction shows that Ao has 

exponent two (and hence is central). 
Now x2 E A, so we can write x2 = aioao, ao E Ao, io E Z. If ao -/- 1, 

this element has maximal order in Ao, so Ao = {ao) x A1 for some group 

A1, a factorization of Ao which evidently also holds if ao = 1. Thus A = 
(a) x (ao) x /41• Let B = {a, x, ao) be the group generated by a, x and 

ao. We claim that G =Bx A1 • Since A~ BA1 s; G and [G: A]= 2, we 

have G = BA1 • The subgroup A1 is normal since it is central and so is B, 

because ao is central and s = a2 E B (implying, for example, that, for any 

t, t-1 xt :a:: x or a2x is in B). 
To show that B n A1 = {I}, let b = a&a;x; EB n A1. If j = 2j1 is even, 

then b = a0ai(x2)ii = a0ai(ai•ao)i E ((ao) x (a)) n A1 = {1}. If j = 2i1 + 1 

is odd, then b = a0aiaioiiaf,1x E A1 implies x E (ao) x (a) x A1 = A, a 

contradiction. 
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We ha.ve shown tha.t when L = M(G, *,Do) is torsion, the group G = 
B x A1 is the direct product of a. finite group B and an abelia.n group A1 
of exponent two. Suppose go = (b, ai) has a component a1 E A1 which is 
different from 1. Writing A1 = (a1} x A2 and replacing B by B x (a1), we 
ca.n assume that go EB. Thus M(B x A1,*,Yo) = M(B,*,Yo) x Ai [4, 
Proposition V.1.6] with M(B, *,Do) finite (and admissible). So we obtain 
the following theorem. 

Theorem 2. 7. When the ring of coefficients is a field of characteristic two, 
a torsion RA loop L is admissible if and only if L = M(l6r2c2, •, s) X A 
is the direct product of the loop M(l6r2c2, •, s) and an abelian group of 
exponent two. 

3. ADMISSIBILITY OYER Z 
In this brief section, we observe that when the ring of coefficients is the 

ring of rational integers, an RA loop is admissible essentia.lly when a group is 
admissible. In any RA loop L, the set T(L) of torsion units forms a subloop 
[4, Lemma VIIl.4.1] and, if L is admissible, it can be shown exactly as in 
[2] that every subloop of T(L) is normal in T(L); thus T(L) is an abelia.n 
group or a. Moufang Hamiltonian loop, without elements of odd order (see 
again [2]). 

In particular, we have the following analogue of Theorem 2.7 in this sit­
uation. 

Theorem 3.1. If Lis a torsion (equivalently, locally finite) RA loop, then L 
is admissible if and only if L is an abelian group or a Moufang Hamiltonian 
2-loop. 

Proof. We have already established necessity. On the other hand, it is easy 
to see that abelian groups and Moufa.ng Hamiltonian 2-loops are admissible, 
in the latter case because, in a Hamiltonian loop, if l 2 = nel, then l+l-1 = 
l + sl = l + l", a.nd such elements are central in any RA loop [4, Corollary 
IIl.4.3]. □ 
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