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Abstract

Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a com-
plex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions
of admixture between the Native American, European and African components. In the first years following the findings of
the role of the GJ/B2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing
loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern
techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel
mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique
to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing
loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar con-
tributions of some genes, such as GJ/B2/GJB6, when compared to European and North American countries, Latin American
populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific

geographic regions.

Introduction
The origin of present Latin America populations

The Americas were the last continent to be colonized by
humans, about 30,000 and 70,000 years later than the other
continents. Most studies pointed out that the pioneer humans
in America arrived from northeastern Asia, now Siberia,
at least~ 14,500 years before present (BP) (Raghavan et al.
2015; Llamas et al. 2016; Potter et al. 2017; Posth et al.
2018). There were also subsequent waves of migration from
Siberia that left genetic signatures on some populations
(Reich et al. 2012). Native American populations remained
isolated from the populations in the other continents for
nearly 10,000 years until they contacted the Europeans
500 years ago (Salzano and Sanz 2014). The contact with
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Europeans led to reductions in population size and severe
bottlenecks. These facts explain why there are specific
alleles or allele frequencies among the Amerindians (Native
Americans) and significant genetic differentiation. Amerin-
dian ancestry is especially prevalent in Mexico, Guatemala,
Peru, Ecuador, and the Caribbean area and varies among
Latin American countries (Salzano and Sanz 2014; Rod-
rigues-Soares et al. 2020). Genomic datasets have brought
essential knowledge regarding the history and demography
of these native populations, dividing autochthonous popula-
tions into significant groups such as Mesoamericans, Ande-
ans, Amazonians, and Eskimos (Reich et al. 2012; Hiine-
meier et al. 2012).

Geographically, what we call Latin America presently
comprises all countries from South and Central America and
Mexico. Estimates indicate that, when the Europeans started
their migration to the American continent in 1492, about 45
million Amerindians were in Latin America (Salzano and
Bortolini 2002). Genetically different Amerindian popula-
tions contacted different European populations, with differ-
ent relationships that provided more or less interbreeding
(Tamm et al. 2007). Regarding the European component,
the first and more representative colonizers were from Spain,
in almost every region except Brazil, which the Portuguese
colonized. The predominant Portuguese presence in its first
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three centuries of colonization explains why Brazil is the
only Portuguese-speaking country in Latin America.

After the Europeans, the African slaves came to America
from many different parts and ethnicities from Africa (Klein
1999). As aresult, different parts of the American continent
received different amounts of African genetic contributions
from different ethnicities (Gouveia et al. 2020). Furthermore,
it was frequent that one geographical region received Afri-
cans from different regions, resulting in a complex mosaic
of regions with heterogeneous genetic profiles, regarding
the geographical origin of the ancestors and proportions
of admixture between the Native American, European and
African components (Gouveia et al. 2020). In addition,
East Indian, Chinese, Japanese, Javanese, and other Asian
populations also migrated later to Latin America, increas-
ing the diversity of our genetic backgrounds (Salzano and
Sans 2014).

Brazil is the largest country from Latin America, with
one of the most genetically heterogeneous populations in
the world, due to its complex and comprehensive admix-
ture between Amerindians, Africans, and Europeans from
the past 500 years, and more recent admixture with Mid-
dle Eastern and East Asian migrants (Carvalho-Silva et al.
2001). Slaves came in waves of forced migration and with
different origins from Africa, ranging from the Guinea coast
to Mozambique, between the XVI and the XIX centuries
(Klein 1999; Gouveia et al. 2020). Later on, starting in the
nineteenth century, Germans, Japanese, Poles, Lebanese,
Syrians, French, Ukrainians, Lithuanians, Jews, Russians,
and many others migrated to Brazil (IBGE 2000; Ongaro
et al. 2019).

Brazil is a country of continental size with nearly 210
million people and has a history of massive interethnic
admixture. In a simplified model, the Brazilian population
can be described as three-hybrid composed of Amerindians,
Europeans, and Africans. However, the proportion of the
contribution of each parental population and the frequency
of interethnic admixture varied between different regions
of Brazil, as a consequence of historical patterns, migra-
tion, and economic dynamics, making each Brazilian city
or region unique in terms of ancestry composition and allele
frequencies. Consequently, this mosaic of ethnicities pro-
foundly impacts the dynamics and distribution of mutations
that lead to genetic diseases.

Overview of hearing loss In Latin America

Latin America is a region of contrasts, with a significant part
of its diverse population lacking health care assistance and
facing absolute poverty (Madriz 2000), but interspersed with
nuclei of intense development. Moreover, it comprises a vast
area composed of distinct environments regarding geologi-
cal, climate, altitude, and ecological aspects (Salzano and
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Sans 2014). Despite the advances in the genomic and medi-
cal fields, the lack of accessibility to resources and health
leadership makes those advances intangible for a signifi-
cant fraction of the population. However, modern research
centers arose, mainly in the Universities, giving rise to
high-quality medical and genetic services, allowing genetic
counseling and genetic tests, including those based on mas-
sive parallel sequencing. Nevertheless, these services are
still restricted in numbers and concentrated in few urban
centers. Unfortunately, they are not accessible to everyone
who needs them, but they have allowed extracting interesting
information about the genetics of hearing loss.

Despite the large number of children being born every
year in Latin American countries, several barriers delayed
the implementation of UNHS (universal newborn hearing
screening) in all countries, such as limited funding, inad-
equate support services, and shortage of qualified personnel.
Although some countries have taken necessary steps towards
introducing NHS, evidence from the literature suggests that
hearing loss has not received high priority in many parts
of Latin America (Gerner de Garcia et al. 2011). Argen-
tina and Brazil have been addressing NHS efforts since the
1990s, and, in Argentina, legislation from 2001 defines that
all newborns have the right to be screened for hearing loss
and to receive appropriate diagnostic evaluation and treat-
ment. Brazil has the largest and the oldest NHS programs in
Latin America, with many screening sites in different states.
However, the law that determines that Universal Neonatal
Hearing Screening is mandatory in all children was approved
only in 2010.

In an interesting survey on the topic (Gerner de Garcia
et al. 2011), the authors concluded that there is great vari-
ation in the strategies to identify infants with hearing loss
within Latin America, ranging from efforts restricted to a
single hospital or region of a country, to some programs
implemented at the national level. It seems that in countries
with higher incomes per capita, such as Mexico and Brazil, it
is more likely that the resources needed to implement UNHS
are regularly provided; on the other hand, in countries with
limited funding, although there are growing efforts to imple-
ment screening programs, they are restricted to few hospitals
or regions. Likewise, comprehensive and systematic surveys
about frequency and the different causes of HL are scarce as
the access to molecular diagnosis.

Given the heterogeneity of study coverage and strategies
of NHS in the different regions and countries in Latin Amer-
ica, it is far from being an easy task to obtain a reliable pic-
ture of the prevalence of hearing loss cases and their causes.

Few published studies are reporting the results of Uni-
versal Newborn Hearing Screening (UNHS) in Brazil. One
of the first, the study of Chapchap and Serge (2000) was
performed in a private hospital in the city of Sdo Paulo and
disclosed a prevalence of 2.4/1000 affected newborns. In
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the sample of Bevilacqua et al. (2010), studied in a pub-
lic hospital in the city of Bauru, in the state of Sdo Paulo,
the prevalence of sensorineural congenital hearing loss was
estimated in 0.96/1000. According to the Universal Neo-
natal Hearing Screening program leadership of the city of
Sao Paulo (Manzoni et al. 2016), the prevalence of perma-
nent hearing loss in the screened population was estimated
to be 1-2/1000 newborns. Also, in the state of Sdo Paulo
(in Jundiai), the prevalence was estimated to be 1.9/1000
(Pereira et al. 2014), and in 2/1000 in the city of Ribeirdo
Preto (Anastasio et al. 2021). In other Brazilian states, in
Santa Catarina, a figure of 3.2/1000 was obtained (Mattos
et al. 2009). In recently evaluated samples from the Federal
District and the Belo Horizonte city (State of Minas Gerais),
estimates of 3/1000 (Marinho et al.2020) and near 4/1000
(Barboza et al. 2013) were found.

Martinez-Cruz et al. (2020), in Mexico, through the inves-
tigation of an extensive series of 14.000 neonates, provided
an estimate of the prevalence of hearing loss of 2.2/1000.

Although available data are scattered, overall, it seems
that in developed Latin American cities where UNHS could
be efficiently implemented, the estimated prevalence of
hearing loss is similar to the values obtained in developed
countries, 1-2/1000, with some samples providing evidence
that these values may reach 3—4/1000. In parallel to the
implementation of UNHS, cochlear implantation is slowly
surpassing the challenges and reaching a growing number
of children with profound hearing loss in Latin America.
A study about the cost-effectiveness of cochlear implanta-
tion in Latin America shows that the number of implants
per year is heterogeneous among countries. However, some
of them perform appreciable numbers of implants annually,
such as 1200 and 500, in Brazil and Colombia, respectively.
However, these numbers represent much less than 50% of
the potential cases that would benefit from the procedure
(Emmett et al. 2016).

The relative contribution of environmental and genetic
factors to the etiology of hearing loss is highly correlated
to the level of socio-economic development, ethnicity, and
demographic region. Although much progress related to pre-
natal and neonatal health care and immunization programs
has been made in recent years, complications in these critical
periods, congenital or neonatal infections, and their manage-
ment, are still significant causes of hearing loss, especially
in developing countries of Latin America.

There are few comprehensive epidemiological and sys-
tematic studies about the proportion of syndromic features
among patients with hearing loss. Ideally, centers with
standard guidelines for diagnosing both environmental
and genetic causes should be the ones to investigate the
proportion of syndromic and non-syndromic hearing loss
cases. However, whenever the environmental factors were
the focus of the few studies available, the role of genetic

factors was misinterpreted or was not profoundly investi-
gated. Genetic Services performed a few reliable studies.
In many publications, the syndromic cases were excluded
from the investigation to maximize the molecular diagnos-
tic rate. Thus, different types of bias, for example, in the
inclusion criteria, are likely to be influencing the numbers.
For instance, Tamayo et al. (2009) analyzed data from 731
deaf children attending 8 schools for the deaf in Bogota
and identified 322 (44%) with no malformations or men-
tal retardation. The ophthalmologic evaluation suggested
congenital rubella in ~20% (in the non-syndromic group)
and other anomalies in 5.8%.

In Brazil, syndromic features were identified in 12.5%
of all hearing loss cases studied from two rural communi-
ties from Paraiba State by Melo et al. (2014). In contrast, in
Sao Paulo, Batissoco et al. (2021, this issue) found syndro-
mic features in 19% of the patients referred to the Genetic
Service of the Otorhinolaryngology Department. Faistauer
et al. (2021, in the State of Rio Grande do Sul) found 33%
of syndromic cases among the subjects with a likely genetic
cause for hearing loss.

In addition to genetic syndromes, some environmental
factors, such as congenital infections, are likely the causes
of syndromic features.

There are few studies about the contribution of environ-
mental and genetic factors to the etiology of prelingual hear-
ing loss in Latin American countries published in indexed
peer-reviewed journals. Nevertheless, some studies provided
some perspective into the field. In Brazil, congenital infec-
tions were reported among prelingual hearing loss cases,
with prevalence ranging from 6 to 29% (Faistauer et al. 2021;
Botelho et al. 2010; Anastacio et al. 2021). Other important
environmental risk factors were prolonged admission to neo-
natal ICU, mechanical ventilation, ototoxic use, exchange
transfusion for neonatal jaundice, and hyperbilirubinemia
(Pereira et al. 2014; Botelho et al. 2010; Anastacio et al.
2021; Faistauer et al. 2021). Ramos et al. (2013) studied 100
unrelated subjects with bilateral severe to profound SNHL
submitted to the cochlear implant and encountered 8% of
congenital infections, postnatal infection in 4%, prematu-
rity/neonatal ICU stay in 3%, and 19% of DFNB1-related
hearing loss.

In the first years following the remarkable findings of
the role of the G/B2/GJB6 genes in the etiology of hearing
loss (Zelante et al.1997; Denoyelle et al. 1997; Del Castillo
et al. 2005), the majority of scientific studies regarding the
genetics of hearing loss in Latin America aimed to evaluate
the frequencies of pathogenic variants in the G/B2/GJB6
genes, to develop affordable genetic tests that could bring an
immediate and relevant contribution for diagnosis, genetic
counseling, and prognosis. Unfortunately, while Sanger
sequencing proved worthier, especially for populations with
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diverse ancestries other than European, in many studies, only
the c¢.35delG screening was affordable.

Later, specific investigations were performed on the
frequency of variants in known genes, such as OTOF and
SLC26A4, based mainly on conventional Sanger sequenc-
ing techniques. More recently, the application of massive
parallel sequencing to diagnosis and research allowed the
scientists in Latin America to make exciting contributions to
the finding of new candidates genes (Lezirovitz et al. 2020;
Salazar-Silva et al. 2021) to highlight novel mechanisms of
inheritance in previously known genes (Dantas et al. 2018;
Dias et al. 2019), and to characterize a wide diversity of
variants, many of them were never described in other con-
tinents (Lezirovitz et al. 2008,2012; Batissoco et al. 2009a,
b; Romanos et al. 2009; Uehara et al. 2015; Bademci et al.
2016; Nonose et al. 2018; Sampaio-Silva et al. 2018; Dantas
et al. 2018; Dias et al. 2019). Although NGS is nowadays
widely employed in developed countries in the molecular
diagnosis for HL,, this is far from becoming a reality in Latin
America since, in the majority of regions, even the GJ/B2/
GJB6 screening is not available to every patient or, even
worse, many patients with hearing loss never receive proper
hearing rehabilitation or can reach a Genetic Service. Thus,
molecular diagnosis for HL is not part of the public health
care system in many Latin American countries.

Thus, the genetic heterogeneity of non-syndromic hear-
ing loss (NSHL) makes its molecular diagnosis a real chal-
lenge, mainly for those underdeveloped countries that form
Latin America. Since there are hundreds of genes respon-
sible for this phenotype, their identification is troublesome
and expensive. Furthermore, the contribution of each gene/
genetic cause may vary significantly in different Latin Amer-
ican populations. Thus, determining the most frequently
altered genes and variants in Latin America could help
prioritize the genes and variants to be screened, providing
a rationale for developing cheaper and effective screening
strategies with direct applications to genetic counseling.

This review aimed to provide a general landscape of the
genetics of non-syndromic hearing loss studies in Latin
America and highlight their main scientific contributions.

Methods
Search strategy

The search was done in the following databases: Pub-
Med (https://pubmed.ncbi.nlm.nih.gov/), Web of Science
(https://apps.webofknowledge.com/) and LILACS (https://
lilacs.bvsalud.org/). The keywords were “country or region
from Latin America” and “genetic” + “hearing loss/deaf-
ness”, or “GJB2”, “SLC26A4”, “Pendred”, “nonsyndro-
mic/non-syndromic hearing loss/deafness”. Publications
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cited in the Hereditary Hearing Loss Homepage were also
analyzed, and papers reporting Latin American pedigrees
were selected.

The countries that comprised Latin America and were
used as search terms were: Belize, Costa Rica, El Salva-
dor, Guatemala, Honduras, Nicaragua, Panama, Argentina,
Bolivia, Brazil, Chile, Colombia, Ecuador, Guiana, French
Guiana, Paraguay, Peru, Suriname, Uruguay, Venezuela,
Mexico, Cuba, the Dominican Republic, Haiti, Hondu-
ras, Saint Barthelemy, Saint Martin, Martinique, and
Guadeloupe.

Some studies came up as the result of searches for more
than one country, such as Rodriguez-Ballesteros et al.
(2008) and Bademci et al. (2016). The following coun-
tries/region terms did not yield publications or did not
have any publication within the inclusion criteria: Latin
America, Uruguay, Paraguay, Bolivia, French Guyana,
Guyana, Suriname, El Salvador, Haiti, The Dominican
Republic, Guadeloupe, Belize, Honduras, Martinique, and
Saint Barthelemy.

Inclusion and exclusion criteria

Only articles in English were included (articles in Portu-
guese or Spanish were not). Reports of single cases about
well-known genotype—phenotype correlations were not
included. This systematic review focused on the studies on
the molecular-genetic diagnosis of non-syndromic hearing
loss. Pendred syndrome was exceptionally included since
it belongs to one extreme of the phenotypic spectrum of
variants associated with SLC26A4; the other extreme is
DFNBA4, a form of autosomal recessive non-syndromic
hearing loss. Likewise, some variants in GJB2 that can be
associated with both non-syndromic HL and syndromic
HL with skin/nail abnormalities exhibiting intrafamilial
expression variability were also included.

The exclusion criteria were: irrelevant title or abstract;
not related to Latin American countries in the search; not
related to hearing loss or genetic; not about a disease (non-
syndromic HL of genetic origin) included.

The number of publications per country and among the
different topics (GJB2/GJB6, mitochondrial, SLC26A4,
OTOF, and other genes) before and after the exclusion
criteria were applied are presented in Supplementary Fig.
S1. In total, 828 papers were retrieved, and 88 publications
were included, 60% from Brazil. In addition, a manuscript
in this same issue was included (Batissoco et al. 2021).
The main topic was GJB2/GJB6, representing 53.4% of
the papers. Some papers included more than one topic,
and they were classified according to their most important
findings.
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Data extraction

The first author (KL) did the searching process on two dif-
ferent occasions, separated by a couple of months. Both
authors (KL and RCMN) reviewed all the titles indepen-
dently. First, differences in articles to be included were
discussed to find a consensus uniform criterion. Next, the
full texts were analyzed to access relevance. Bouzaher
et al. (2020), a systematic review of GJB2 variants in the
Latino population, was not included, although it appeared
in the majority of the searches, because it contains no
original research data.

Quality assessment

Both authors evaluated the risk of bias assessment on all
articles, and potential factors of bias or limitations were indi-
cated in Table 1 (italic), in Supplementary Table S1, and the
results section. We were aware that the selection criteria of
individuals in each study varied. In most cases, they were
biased to maximize molecular diagnosis because of the low
budget, instead of providing a representative sampling of
the populations in which the subjects were ascertained. The
possible bias factors, which were taken into consideration
for interpretation of the results were: selection of samples to
maximize molecular diagnosis such as familial cases or most
frequently associated phenotypes, motivation of the study,
the inclusion of related probands, not performing mutational
analysis of the whole genes, the inclusion of benign and
pathogenic variants in the results (in these cases, the raw
numbers were assessed and reanalyzed). When many papers
of the same study group were published within few years
and with quite similar data, without proper reference, the
paper with the largest cohort or with the less biased sample
selection was chosen for frequency calculations and to con-
struct the pie charts. The frequencies were compared without
any statistical analysis since the inclusion criteria, cohort
selection and size, and molecular strategies were highly
heterogeneous.

A GJB2/GJB6 test was considered complete if c.35delG
(NM_004004.6:c.35del) was screened, if sequencing was
performed in at least the heterozygous cases and if the
most frequent GJB6 deletions were tested (del(GJB6-
D13S1830) and del(GJB6-D13S51854). 1deally, the GJB2
complete coding region should be analyzed by sequencing,
the GJB6 deletions should be tested, and for those who
remained monoallelic, the ¢c.—23 + 1G> A should also be
screened. Nonetheless, all publications were included in
Table 1 (and Supplementary Table S3), and the ones with-
out complete tests were considered, with risk of molecular
bias, but this was indicated.

The knowledge about the pathogenicity status of var-
iants might have changed in time, with the increase of
genotype—phenotype correlation studies and functional
studies. Thus, in this review, we summarized data in
tables following the guidelines of ACMG (Richards et al.
2015; Oza et al. 2018) and using the present revised clas-
sification of pathogenicity of each variant consulting the
Deafness Variation Database (https://deafnessvariationdat
abase.org/) and ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), which may not always coincide with the clas-
sification of the variant at the time the original paper was
published.

Results and discussion

To provide an organized set of data and make it clear to
readers, our results were divided into several topics regard-
ing the different genes or mechanisms of transmission of
hearing loss.

The contribution of GJB2/GJB6 variants
to the etiology of hearing loss in different Latin
American populations

The c.35delG (NM_004004.6:c.35del; NP_003995.2: p.
Gly12ValfsTer2) is the most frequent pathogenic variant
found in GJB2 across many different populations distrib-
uted worldwide. It probably has a European origin; thus, its
frequency in multiethnic countries with admixed populations
might reflect the contribution of European ancestry to these
populations. Rothrock et al. (2003) genotyped SNPs from
chromosomes bearing the c.35delG variant and close micro-
satellite markers in patients with hearing loss from different
countries such as Italy, Brazil, and North America. Their
study provided evidence that the c¢.35delG variant arose in
European and Middle Eastern populations through a single
mutational founder event. Numerous studies revealed that
the carrier frequency varies among different hearing popula-
tions, being as high as 1 in 31 in Caucasians from the Medi-
terranean (Estivill et al. 1998b; Gasparini et al. 2000). The
low frequency of ¢.35delG among non-European descend-
ants, such as the Japanese or the African populations, sug-
gested that c.35delG was not a recurrent mutation, but its
present distribution is the consequence of a founder event
followed by migrations (Gasparini et al. 2000).

In 2000, Sartorato et al. screened the ¢.35delG variant in
620 randomly selected neonates from the region of Campi-
nas, Sao Paulo State—Brazil, to determine its frequency in
the general population. Carrier rate was estimated as 0.97%
(frequency of heterozygotes), or 1 in 103, and the allelic
frequency of this variant (35delG chromosomal rate) was
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# of papers that used the method

30
H GJB2/6JB6

25 Mitochondrial

20
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10

5 I

. N [] 1

s & TR ¢

& & T ¥ ¢ &
& @ ‘,:'{'5

Fig.1 Number of papers in which each screening method of the
GJB2/GJB6 genes and mitochondrial variants was used. The same
paper may have used more than one technique

found to be 6 in 1240. In 2004, Oliveira et al. conducted a
study to determine the c¢.35delG carrier frequency in Brazil-
ian samples with different ethnic backgrounds. In Brazilians
with a predominantly European background, the carrier fre-
quency was 2%, in the group with reported African ancestry,
it was 1%, but no c.35delG carriers were detected among
107 Asian Brazilians. In 2007, the same group of researchers
expanded their sample to 1,856 randomly selected newborns
from many different regions of Brazil (North, Northeast,
South, and Southeast). Since the frequencies do not differ
significantly between regions, they were grouped, resulting
in an overall Brazilian ¢.35delG carrier frequency of 1.35%
(25/1856). A similar study, to determine the frequency of
the ¢.35delG and m.1555A > G, was conducted in Argentina
with 712 samples of unrelated healthy blood donors and 330
unselected newborn dried blood spots, using PCR-RFLP.
The ¢.35delG was present in 1.5% (11/712), or 1 in 65 indi-
viduals, in heterozygosis, among the healthy blood donors.
Thus, the frequency is lower than the observed among the
European parental populations that originated the Argentin-
ians (Gravina et al. 2007).

A summary of the main findings, the inclusion criteria,
and the methods used for screening the GJB2/GJB6 genes
in hearing-impaired subjects are shown in Table 1 and

Fig.2 A, B Maps of Latin American countries and Brazilian regions,
respectively, displaying the GJ/B2/GJB6 Diagnostic rate (DR) and the
frequency of the c.35delG variant among mutated chromosomes (the
black part in the left pie chart) and all chromosomes tested (black
part right pie chart). Studies that were biased towards related sub-
jects, familial or recessive cases, were not included in studies from
the same country. The GJB2 coding region was sequenced in at least

@ Springer

Supplementary Table S1, which were built to allow com-
parison of the main results. Figure 1 presents the numbers
of papers using the different methods of screening, both of
GJB2/GJB6 and mitochondrial variants. Figures 2A, B dis-
play a map of Latin America and Brazilian regions, respec-
tively, showing GJB2/GJB6 diagnostic rate (DR), ancestry,
and the ¢.35delG variant frequency related to mutated alleles
and all screened chromosomes. Figure 2C shows the pro-
portions of main parental ancestries (European, African,
and Native American) and the DR in the different coun-
tries/regions. Supplementary Table S2 shows the selected
papers in each region, because of more negligible risk of
bias, used to determine the average DRs. Finally, supple-
mentary Table S3 provides an overview of the proportion
of the three main parental ancestries in Latina American
countries or regions, as obtained from different publications,
used to build the Fig. 2A-C.

The diversity of alleles encountered in all studies is exhib-
ited in Fig. 3 and summarized in Supplementary Tables S4.
Table S5 shows the diversity of genotypes.

The Latin American studies confirmed the importance of
GJB2 variants as a frequent cause of NSSNHL (non-syndro-
mic sensorineural hearing loss) and gave further support for
the pathogenicity of many GJB2 variants. The contribution
of ¢.35delG as a causative variant was estimated in Brazil
(States of Sao Paulo, Parana, Minas Gerais, Rio de Janeiro,
Babhia, and Para) as well as in other countries such as Colom-
bia, Argentina, Chile, Guatemala, Venezuela, and Mexico, in
cohorts of hearing-impaired individuals (Table 1, Fig. 2A,
B). Given limited funding for research and public health
in many developing countries, many investigations focused
only on screening the c¢.35delG variant, and some included
the GJBG6 deletions. However, the ones which included
sequencing of the whole coding region of GJB2 revealed a
wide diversity of genotypes and alleles and could reveal that
other variants could play a similar role in other populations
(Fig. 3, Supplementary Tables S4 and S5).

In the city of Sao Paulo, the most populated and multi-
ethnic city of South America, the diagnostic rate of GJB2/
GJBG6 screening was estimated as 12% (36/301) and 13.3%
(72/542) in studies published in 2009 and 2021, respec-
tively (Batissoco et al. 2009a, 2021, this issue). The cohorts
described in Batissoco et al. (2009a,b) and Batissoco et al.
(2021, this issue) were ascertained independently and did

part of the patients in the included studies, but not all tested the G/B6
deletions. The darker the grey, the higher the DR, whereas the lighter
the grey, the lowest the DR. **biased towards related probands.
*small sample, only one study; C comparison of the proportion of
each parental ancestry among the different regions or countries of
Latin America and the corresponding GJB2/GJB6 DR
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B
BRAZIL (N)
DR 4.5%

90% 6%

19%° 1%

69%

20% 3% BRAZIL
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Fig.2 (continued)

not overlap. In both studies, individuals with non-syndro-
mic hearing loss from the state of Sdo Paulo and different
country regions were ascertained, but, in the second study, a
higher proportion of probands from different regions of Bra-
zil was included. Therefore, they can be considered rough
estimates of the average Brazilian GJB2/GJB6 contribution
to the etiology of hearing loss. According to their Brazilian

@ Springer

BRAZIL (NE)
DR 11.2%

74% 11%

BRAZIL (SE)
DR 12.6%

77% 12%

c.35delG/  c.35delG/
DFNB alleles  all chrs
O @ MAP COLOR
[ oR 15%
B European I:I DR 13%
[] Amerindian I:I DR 11-12%
[ ]African |_| DR 4-5%

region of origin, the 542 subjects reported in Batissoco et al.
(2021, this issue) were separated in Table 1, and thus provide
a picture of the differences between the Brazilian regions.
Given the different subjects selection criteria (Table 1 and
Supplementary Table S1), as well as the inclusion of already
known positive cases, the studies performed near the city of
Campinas (also in the state of Sao Paulo, Brazil) exhibited
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Ancestry X GJB2/GJBé diagnostic rates
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Fig.2 (continued)

a more comprehensive range of proportions of G/B2/GJB6
DR: 11.29% (7/62), 7.13% (46/645) and 21.3% (60/282)
(Oliveira et al. 2002, 2007a,b; Martins et al. 2013). Inter-
estingly, in the Minas Gerais State from the Southeastern
Region of Brazil, none of the 53 cases of NSSNHL could
be attributed to ¢.35delG or GJB6 deletions, but 9 heterozy-
gous samples with ¢.35delG were found (Schiiffner et al.
2020). The second mutated allele was not searched through
sequencing. In the other two states from the Southeastern
region of Brazil, Rio de Janeiro, and Espirito Santo, GJ/B2/
GJB6 causative variants explained 4% and 5.2% of cases
of HL, respectively (Felix et al. 2014; Cordeiro-Silva et al.
2011). However, in the study conducted in Rio de Janeiro
(Felix et al. 2014), the inclusion criteria were "c.35delG
negative or heterozygous", but the number of homozygous
with the ¢.35delG was not mentioned preventing the calcula-
tion of the overall contribution of GJ/B2/GJB6 and c.35delG
(Table 1 and Supplementary Table S1).

The State of Bahia is located in the Northeastern region
of Brazil, and nearly 75% of its population is self-identified
as having African ancestry (Supplementary Table S3). In
one study from the state of Bahia (city of Monte Santo),
Manzoli et al. (2013) selected probands mainly because of
a positive family history of hearing loss and found a rate
of GJB2/GJB6 pathogenic variants in 37% of the cases
(Table 1, Supplementary Tables S1, S4, and S5). The
c.35delG variant was present in 24.7% of the screened
chromosomes (40/162) and represented 80% of GJB2/GJB6

N

\é\ & Q’o & &
S o & é* &
< o i + 2
& < & &S
African DFNB1/A3 DR

mutated alleles. However, this proportion may be overes-
timated since the study included related probands, likely
explaining the high proportion of diagnoses. In addition,
more than half of the GJ/B2 homozygotes were born from
consanguineous marriages (Table 1, Supplementary Tables
S1). Those frequencies are comparable to those observed in
a study from the Colombian isle of Providencia, which also
included related probands, yielding a proportion of GJ/B2/
GJB6 causative variants or ¢.35delG of 47% (Lattig et al.
2008). Thus, founder effects and high rates of consanguinity
may explain the high contribution of the c¢.35delG to NSHL
in this island (Tables 1 and Supplementary Table S1).

In the rural settlements of Queimadas e Gado Bravo, in
the Northeastern Brazilian state of Paraiba, the frequency
of GJB2/GJB6 variants and c.35delG observed were similar
to those observed in the city Sdo Paulo, probably reflecting
the unbiased sample selection, as shown in Table 1 (also in
Supplementary Tables S1, S2, S4, and S5; Melo et al. 2014).
Amazingly, in Belém city from the Amazonian region, the
GJB2/GJB6 diagnostic rate was about one-tenth of the
average Brazilian rate, since only one case with ¢.35delG
in the homozygous state was observed among 77 probands
with HL (Table 1, Supplementary Tables S1, S2, S4, and
S5), suggesting that other genes might be more relevant
as causing HL in this population (Castro et al. 2013), as
well as environmental factors. It is important to highlight
that in the Amazonian region, the Native American genetic
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A GJB2/GJB6 most frequent variants

p.(Arg32Cys)
del(GJB6-D1351854)
p.(Glu47Ter)
p.(Glu147Lys)
p.(Val84Leu)
p.(Val37ILle)
p.(Arg216AspfsTer18)
p.[Val95Met)
p-[Asn206Ser)
p.(Met34Thr)
p.(Phe31ile)
c.167delT
p.(Gly12val)
del(GJB6-D1351830)
p.-(ILe20Thr)
p-(Arg32Ser)
p.(Trp44Ter)
p.(Thr77Arg)
p.(Val84Met)
p.(Arg32Leu)
p.(Arg143Trp)
p.(Ser199Phe)
p.(Gln7Ter)

B GJB2/GJBé less frequent variants

p.(Met163Val)
p-(Gly160Ser)
¢.313_326del
p.(Arg75Trp)
¢.334_335del
p.(Glu120del)
p.(Val84Trp)
p-(Leu90Pro)
p.(Ala88Pro)
p-(Trp172Ter)
c.269dup
p.(Lys122Ile)
p-(Trp24Ter)
p.(Ala171Thr)
p.(Arg184Gln)
c.235delC
¢.232dupG
p.(Leu10Pro)
p.(Arg127Leu)
p.(Ser19Arg)
p.(Arg756Ln)
c.-23+1G>A
p.(Arg184Pro)
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«Fig. 3 Diversity and frequencies of variants (protein description) in
GJB2/GJB6 genes among Latin American countries; ¢.35delG was
excluded, and the variants were divided into three charts to allow a
better analysis; A other frequent variants and B less frequent variants
(colors of each country are the same in A and B, except for Brazil
which is purple in A and medium blue in B)

contribution is the highest in the country, which might
explain the rarity of c.35delG (Supplementary Table S3,
Fig. 2B, C).

As more restricted selection criteria are included in the
study, the higher the GJB2/GJB6 contribution, as expected,
especially in the samples with a significant European ances-
try (mainly Spanish) (Table 1, Fig. 2A—C, Supplementary
Tables S1, S2, and S3). For instance, in an Argentinian sam-
ple composed of cases with prelingual NS-SNHL, after envi-
ronmental factors, malformations, or autosomal dominant
inheritance was excluded, the DR was 34%, thus approach-
ing the 50% estimate of GJB2/GJB6 contribution to AR
NSSNHL in European populations (Gravina et al. 2010). A
high diagnostic rate was also observed in Peru, 32.4%, in a
sample with a bias towards familial cases (Table 1, Fig. 2A,
C and Supplementary Table S1), but without c.35delG as the
most common variant (Table 1, Fig. 2A, and Supplementary
Table S4, Figueroa-Ildefonso et al. 2019). On the other hand,
in a sample with similar inclusion criteria, enriched towards
familial and presumably autosomal recessive cases, but in
Venezuela, a lower DR was obtained (4.8-7.5%), probably
due to minor European contribution to its genetic back-
ground (Table 1, Fig. 2A, C, Supplementary Tables S1, S2,
and S3; Angeli et al. 2000; Utrera et al. 2007).

A different approach for estimating GJ/B2 and c.35delG
contribution to HL was employed by Nivoloni et al. (2010),
who screened the c.35delG mutation in 8974 unselected
newborns who also underwent audiological testing (transient
otoacoustic emissions). Among 17 patients who failed in the
audiological testing, 4 were homozygotes with c.35delG,
thus explaining 23.5% of the HL cases. They also found 84
cases of c.35delG heterozygotes who passed the audiologi-
cal exams. The authors mentioned that these heterozygotes
would have their hearing followed. However, sequencing of
GJB2 was not reported to clarify if those subjects had a
second mutated allele and would have a higher probability
of developing a hearing impairment.

In the paper in which the second deletion involving G/B6
del(GJB6-D13S1854) was described, a multinational cohort
including subjects from Brazil was screened, and it was
found to account for 6.3% of the affected GJB2 heterozy-
gotes (Del Castillo et al. 2005). Both most common deletions,
del(GJB6-D13S1830) and del(GJB6-D13S1854), are also
among the most frequent variants in Latin America, the first
in Argentina, Venezuela, and Brazil, and the last in Argentina
and Brazil (Fig. 3A; Supplementary Table S4 and S5).

The frequency of pathogenic GJB2 variants among
the different populations that compose Latin America
was related to the admixture proportions in each of them
(Fig. 2A-C, Supplementary Tables S2 and S3). The
populations with a higher European contribution tend to
have higher diagnostic yields when GJB2 is investigated
(Fig. 2C). The higher the proportion of Amerindian contri-
bution, the lower the frequency of GJB2 causative variants
found among the hearing impaired since the high diagnostic
rates of GJB2/GJB6 related hearing loss is mainly due to the
¢.35delG variant. The influence of ancestry in the frequency
of disease was also stated by Fejerman et al. (2010), which
found an association between European ancestry and risk
of breast cancer in Latin American women while studying
Mexican women. In populations with reduced European
contribution, it is possible that other genes, yet unidentified
or not frequently screened, have a more substantial contribu-
tion as a cause of hearing loss. Besides ancestry, another fac-
tor to consider when interpreting the frequencies displayed
in Fig. 2, as influencing results of molecular diagnosis, is
the fraction of the population that has access to it, because
it is well known that health care is not equally available,
and some populations or groups might not reach the Genetic
Services. For instance, there are remarkable differences in
parental ancestry when people from low and high socio-
economic levels are compared in Venezuela, with 40% and
17% of Amerindian ancestry and 33% and 75% of European
ancestry, respectively (Martinez et al. 2007).

Regarding GJB2 recessive variants, it is interesting to
observe some likely consequences of founder effects in each
Latin American region analyzed. Some variants have high
frequencies in some regions and are rare or non-existent in
other locations. For instance, ¢.590_594dup: p.(Ser199Gl-
nfsTer9) was only described in Rio de Janeiro city, the
c.131G > A: p.(Trp44Ter) variant was observed in a high
frequency in Guatemala but was not observed in the other
Latin American countries. The same trend was observed for
the ¢.596C > T: p.(Ser199Phe) variant in Bogota (Colom-
bia) and Ecuador, for the variant ¢c.19C > T: p.(Gln7Ter)
in Ecuador and for the variant c.94C > A: p.(Arg32Ser) in
Lima (Peru) and Mexico. The variants ¢.269dup: p.(Val-
91SerfsTerl1), ¢.229 T > C: p.(Thr77Arg), c.246C > G: p.
(Ile82Met), c.487A > C: p.(Met163Val) were detected only
in the Argentinian samples, and p.Lys122Ile only in Mexico
(Fig. 3A, B; Supplementary Table S5).

Studies from Latin America also contributed
to the description of novel pathogenic variants in
GJB2:c.487A > C: p.(Leu76Pro) (Batissoco et al. 2009b),
¢.79_82delinsAGA [p.(Val27ArgfsTer8)] described in Batis-
soco et al. (2021, this issue), c.314A > G: p.(Lys105Arg)
described by Oliveira et al. (2007b), c¢.c.29 T> C: p.(Leu-
10Pro) and ¢.326G > T: p.(Gly109Val) reported by Dalamén
et al. (2010), c.35G > A: p.(Gly12Asp) by Hernandez-Juarez
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et al. (2014), ¢.590_594dup: p.(Ser199GInfsTer9) by Felix
et al. (2014).

Regarding the dominant pathogenic variants associ-
ated with variable epidermal and nails symptoms, such as
keratoderma palmoplantar or nail dysplasia, the most fre-
quently observed variant was p.(Arg75GIn), followed by
p-(Arg75Trp) and p.(Argl84Gln). In addition, a Cuban
family with sensorineural congenital profound HL in which
a novel dominant variant was segregating was described
(NM_004004.6: c.61G> A, p.(Gly21Arg) (Rabionet et al.
2006). This variant is neither listed in the Deafness Variation
Database nor ClinVar.

Martinez-Saucedo et al. (2015) described two Mexican
families in which six different recessive GJB2 pathogenic
variants were segregating, and the affected members were
compound heterozygous with three pathogenic variants in
GJB2 (Table 1). The p.(Ser19Arg) was in the same chromo-
some as p.(Arg32Ser), both in trans with p.(Glu47Ter) in the
first family. Likewise, in the second family, the p.(Phe311le)
was in the same chromosome of p.(Val84Met), both in trans
with p.(Trp44Ter). To date, p.(Ser19Arg) was detected
only in the Mexican population (previous report from the
same group), in which p.(Phe31Ile) was also reported (Sup-
plementary Table S4). The p.(Phe311Ile) variant has only
been described in one additional study of an extensive
North American cohort (Putcha et al. 2007). Conversely,
p-(Val84Met) was also reported in this previous publication
(Loeza-Becerra et al. 2014), of the same group (Supplemen-
tary Table S4), but also in other populations, for instance,
in Portugal (Matos et al. 2015) and China (Li et al. 2014).
Furthermore, the p.(Arg32Ser) variant was reported in Peru
and Mexico in a paper from the same group (Loeza-Becerra
et al. 2014) as well as in the Japanese population (Hayashi
et al. 2011). Thus, a plausible hypothesis is that these two
less frequent variants, p.(Ser19Arg) and p.(Phe311Ile), arose
in chromosomes that already carried the p.(Arg32Ser) and
p.(Val84Met) variants, respectively. This study exemplifies
the complexity of GJB2 mutational patterns, together with
the diversity of variants found in Latin America.

The case of "Monoallelic" Variants

Data from several countries demonstrate a significant pro-
portion of GJB2/GJB6 monoallelic patients with hearing
loss, with a single recessive pathogenic variant detected,
even after screening for the noncoding GJB2 variant
(c.-23+ 1G> A) or GJB6 deletions. For example, in a recent
and complete investigation performed by Batissoco et al.
(2021 this issue), the rate of monoallelic patients among those
bearing GJB2/GJB6 pathogenic variants was 16/88 (18.2%).

Even though not all studies performed all available
methods for testing GJB2/GJB6 variants, some reported
a high frequency of monoallelic subjects, including
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heterozygotes bearing rare variants, making it challenging
to explain the occurrence of all cases by chance alone. For
instance, Oliveira et al. (2007b) found 22 subjects mono-
allelic to GJB2 pathogenic variants (31.4%; 22/70). Felix
et al. (2014) also found a high rate of monoallelic patients,
84.2% (16/19), but the selection criteria for recruitment was
"c.35delG negative or heterozygous patients”. Interestingly,
there were heterozygotes with rare pathogenic variants,
such as ¢.590_594dup: p.(Ser199GInfs*9), ¢.587 T>C: p.
(I1e196Thr), ¢.380G > T: p.(Argl27Leu) and c.499G > A: p.
(Vall67Met) in addition to 13 c.35delG heterozygotes. Cas-
tro et al. (2013) observed a similar frequency of monoal-
lelic cases, 77.8% (7/9). Unfortunately, GJB6 deletions
and the noncoding pathogenic GJB2 variants (for instance,
c.-234+ 1G> A and c.-22-2A > C) were not screened in
their study, as in many of the other studies conducted in
Latin America, which could potentially solve some of these
cases. For example, da Silva-Costa et al. (2009) screened the
c.-23+ 1G> A in 185 unrelated Brazilians with hearing loss,
43 heterozygous with GJB2 variants and the remaining with-
out variants detected and identified 2 cases presenting the
splicing variant (c.-23 4+ 1G> A) in compound heterozygosis
with ¢.35delG (4.6% of the monoallelic cases).

On the other hand, Figueroa-Ildefonso et al. (2019) found
only 5.3% of monoallelic individuals in a sample of 133 HL
patients from the Peruvian city of Lima. In a sample of 26
probands from 11 families from Ecuador, 11.5% were found
to be monoallelic, and no GJB6 deletion was detected (Paz-y-
Mifio et al. 2014). Thus, on average, monoallelic G/B2/GJB6
genotypes represented 38% of the cases of hearing loss inves-
tigated, ranging from 5.3 to 84.2% of cases. NGS sequencing,
either of gene panels or the whole exome, has been demon-
strated to solve at least part of these cases, for example, 22%
of them, in an investigation led by Pang et al. (2014) in a Han
Chinese sample. In agreement with the hypothesis that part
of the monoallelic subjects should have another etiology for
HL, among the 16 GJB2 monoallelic cases described in Batis-
sooco et al. (2021, this issue), 1 was also clinically diagnosed
with Waardenburg Syndrome, and a second patient presented
with Mondini dysplasia plus EVA.

In conclusion, it is likely that the proper search for G/B6
deletions and noncoding variants in GJB2, associated with
NGS of other HL genes, will clarify the etiology of a signifi-
cant amount of monoallelic cases, and the remaining ones
are possibly the result of the occurrence of variants in het-
erozygosis, by chance.

Mitochondrial variants contribution to NSHL in Latin
American populations

Since its first report by Prezant et al. (1993), m.1555A> G in
MT-RNRI was revealed to be the most frequent variant asso-
ciated with non-syndromic hearing loss, with mitochondrial
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Fig.4 Frequency of the
m.1555A > G variant among the
Latin American studies.' Abreu-
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transmission. Moreover, in the definitive study of Estivill
et al. (1998a), the onset and severity of hearing loss due to
m.1555A > G were strongly influenced by treatment with
ototoxic antibiotics of the group of the aminoglycosides.

The methods used to screen the mitochondrial variants
in Latin American studies retrieved in our search are shown
in Fig. 1.

The first investigation about mitochondrial variants in
Latin America was the study of Abreu-Silva et al. (2006a;
b), who found that 2% of their cohort of 203 NSHL sub-
jects, ascertained in the state Sdo Paulo (Brazil), presented
the m. 1555A > G variant (Fig. 4). Other hearing loss-
related variants in the tRNASer(UCN) gene (MT-TS1)
were also screened, but with negative results. In one of
the cases with m.1555A > G, there was documented evi-
dence of exposure to aminoglycosides anticipating the
HL onset and increasing its severity (Pupo et al. 2008).
Another independent study performed in Sdo Paulo, but
with patients originating from many Brazilian regions,
Batissoco et al. (2021, this issue) found a lower frequency
of this variant, 0.6% (3/542); in one case, there was ami-
noglycoside exposure before HL onset. The different fre-
quencies of m.1555A > G variant encountered by Abreu-
Silva et al. (2006a, b) and Batissoco et al. (2021 this
issue), 2% versus 0.6%, in the same city, might be partially
explained by the fact that these studies were performed
15 years apart. After 2011, strict control in the use of anti-
biotics was implemented in Brazil (law RDC nr 20 May
5th, 2011), which might have contributed to a decrease
in the penetrance of m.1555A > G. Those observations

0.0
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2.5 3

highlight the positive effects of public health normaliza-
tions in broader aspects that are anticipated.

Oliveira et al. (2007b) screened the m.1555A > G and
m.7445A > G mitochondrial variants in the MT-RNRI gene
in 207 probands with HL from Campinas city, Brazil. The
m.7445A > G variant had been previously associated with
syndromic hearing loss (Palmoplantar keratoderma; Sevior
et al. 1998). They found two cases bearing m.1555A > G
(0.46%), with reported association with aminoglycosides.
Alves et al. (2016) screened 152 unrelated patients with
moderate to profound sensorineural HL, as well as 104 sam-
ples from normal hearing individuals, also from Campinas
city, searching for mitochondrial variants through iPLEX
Gold/MALDI-TOF MS technology. The m.1555A > G path-
ogenic variant was present in 4/152 (2.6%) of the affected
group and absent in the unaffected. Salomao et al. (2013), in
Maringé city from the Brazilian state of Paran4, encountered
one case presenting with prelingual HL (1.3%) with the vari-
ant m.1555A > G, in a cohort of 78 HL subjects.

On the other hand, m.1555A > G was not detected in sam-
ples from Bahia State, Brazil (81 subjects; Manzoli et al. 2013)
and 2 studies from Argentina with 252 individuals (Dalamén
et al. 2010) and with 1042 individuals (Gravina et al. 2007),
and from Mexico (76 probands, Arenas-Sordo et al. 2012).
Saunders et al. (2009) sequenced the 12S rRNA (MT-RNRI)
gene in 31 deaf children with childhood or uterus exposure to
gentamicin from rural Nicaragua, but no pathogenic variants
were identified.

There were two reports in which a possible associa-
tion between mitochondrial variants, m.1291 T> C and
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m.827A > G, and HL was suggested (Ballana et al. 2006;
Chaig et al. 2008). However, a proper matching of the affected
subjects and the controls demonstrated no difference in the
frequencies of these variants among the two groups (Abreu-
Silva et al. 2006b; Uehara et al. 2010), suggesting that the
pathogenicity of both variants is questionable.

Adding the results of all studies (Abreu-Silva et al. 2006a;
b; Oliveira et al. 2007b; Salomio et al. 2013; Alves et al.
2016; Batissoco et al. 2021; Manzoli et al. 2013; Dalamén
et al. 2010; Gravina et al. 2007; Arenas-Sordo et al. 2012;
Saunders et al. 2009) the conclusion is that near 0.7% of all
HL cases screened in Latin America were due to the presence
of the m.1555A > G variant (Fig. 4). There is little informa-
tion regarding the presence of other mitochondrial mutations.
For genetic counseling purposes, it is highly relevant that the
m.1555A > G variant should be screened in Latin American
countries, even in unselected cases of HL, since most genetic
tests employed to detect it are cheap and straightforward. Fur-
thermore, in the pedigrees in which it is segregating, preven-
tion is possible through the warning about the role of ototoxic
agents in the onset of hearing loss.

OTOF contribution to ARNSHL and auditory
neuropathy in Latin American populations

Pathogenic variants in the OTOF gene were first reported
as a cause of autosomal recessive sensorineural hear-
ing loss (ARNSHL) in four unrelated Lebanese families
(Yasunaga et al. 1999). In 2003, Varga et al. established
the relationship between auditory neuropathy and OTOF
pathogenic variants. Auditory neuropathy is a type of
sensorineural hearing loss characterized by an absent or
abnormal auditory brainstem response (ABR), with pres-
ervation of otoacoustic emissions (OAEs), and/or cochlear
microphonics (CMs).

Some studies focused on screening variants in OTOF
in unselected hearing-impaired patients. However, due to
the reported association of OTOF with the auditory neu-
ropathy phenotype, many studies introduced auditory neu-
ropathy as a selection criterion for samples to be submitted
to the sequencing of the whole coding region of OTOF by
the Sanger method, mainly before the availability of mas-
sive parallel sequencing. Variants in OTOF found in Latin
American studies are presented in Table 2, after reevalua-
tion according to recent ACMG criteria. Table 2 also pre-
sents the reevaluation of nomenclature and the pathogenic-
ity status of the variants described in the study of Romanos
et al. (2009), after reassessment of some cases with mas-
sive parallel sequencing and ACMG classification, in addi-
tion to eight cases more recently ascertained in the same
laboratory, in Sao Paulo, Brazil. All variants were submit-
ted to ClinVar. Figure 5A illustrates the methods used to
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identify these variants, and Fig. 5B shows the frequency
of the different variants among the countries. Figure 6 dis-
plays the pedigrees in which the variants described in the
present study are segregating.

The variant ¢.2485C > T:p.(GIn829Ter), usually known
as Q829X is a frequent pathogenic variant in OTOF, firstly
identified in the Spanish population with a frequency of
4.4% in cases of AR-NSHL (Rodriguez-Ballesteros et al.
2003; Migliosi et al. 2002). However, it appears to be less
frequent in Latin America. It has been detected in one
Mexican (Varga et al. 2006) and two Argentinian patients
(Reynoso et al. 2004). Rodriguez-Ballesteros et al. (2008)
studied 83 Colombian and 30 Argentinean subjects and
also screened for the variant ¢.2485C > T:(p.GIn829Ter)
in the OTOF gene. Homozygosity was identified in one
Colombian patient. Besides, one compound heterozygote
[p.(GIn829Ter)/p.(Arg708Ter]) from Colombia and two
from Argentina [p.(GIn829Ter)/c.2905_2923delinsCTC
CGAGCGCA] were also identified in their study. How-
ever, (p.GIn829Ter) was not detected in hearing-impaired
cohorts from the Brazilian cities of Campinas (207 sub-
jects, Oliveira et al. 2007b) and Sdo Paulo (342 subjects,
Romanos et al. 2009). Carvalho et al. (2016a,b) investi-
gated the p.(GIn829Ter) variant in 47 patients with audi-
tory neuropathy, with varying ages of onset, also from
Campinas city. None of them showed p.(Gln829Ter),
but three of them were found to be homozygous for the
¢.35delG variant, further emphasizing the relevance of
screening this variant in any case of hearing loss, regard-
less of the clinical presentation. The other exons of OTOF
were not screened to rule out pathogenic variants in this
study. Remarkably, p.(GIn829Ter) was seen only in
Spanish-speaking countries and never in Brazilian cities,
where Portuguese ancestry is much more prominent than
Spanish.

Silva et al. (2015) screened five different OTOF
variants [c.2416 T > A: p(Y730Ter), c.766-2A > G,
¢.2485C>T: p.(GIn829Ter), c.5473C > G: p.(Pro1825Ala)
and ¢.3032 T> C: p.(LeulO11Pro)] in a sample composed
of 16 index cases selected because of auditory neuropathy,
from the city of S@o José do Rio Preto, in the state of Sdo
Paulo, Brazil. One proband was heterozygous with c.766-
2A > G, and five were heterozygous with ¢.5473C > G: p.
(Pro1825Ala), and two probands, who carried two of the
five variants, were identified. However, the sample from the
normal hearing mother of one of these subjects also showed
both variants, indicating that they are in cis.

From a cohort of 342 Brazilian hearing-impaired patients,
48 probands with presumptive autosomal recessive inherit-
ance (born from consanguineous or equally affected sibs and
unaffected parents), 4 familial and 7 auditory neuropathy iso-
lated cases were selected for OTOF investigation (Romanos
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Fig.5 A Estimates of the con-
tribution of each method to the
solution of cases in the screen-
ing of SLC26A4, OTOF, auto-
somal recessive non-syndromic
hearing loss (AR-NSHL) and
analysis of autosomal dominant
non-syndromic hearing loss
(AD-NSHL); B frequency of
the different OTOF variants;

C frequency of the different
SLC26A4 variants.
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Fig.6 Pedigrees showing the A OTOF biallelic
segregation of: A biallelic vari- 2

4 O==|:| 7

ants in OTOF'; B monoallelic
variants in OTOF, and the other ¢.1552_1567del .l/z. i 12 . 498I1:13>A _/:_
candidate variants to explain €.4961-1G>A +/- €.5431A>T +/-
the HL; C COCH and MYO7A ‘ /Y‘
variants
11:1 11:2% 2w 13 14 1 2% N3
¢.1552_1567del +/- C.4541A>G +/- C.4981G>A  +/- +/-
€.4961-1G>A +/- C.4960G>A +/- C5431A>T  +/- +/-

9 10 1"

1:2

1:2
¢.1552_1567del -/+ c.4718T>C +/-

11:1 1:2 %
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11 % 11:1 11:2 %
€.1552_1567del +/+ .4718T>C +f+
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et al. 2009). Frequent HL variants had been previously = and among them, there was 1 documented auditory neu-
excluded (c.35delG and c.167delT in GJB2, GJB6 deletions  ropathy (AN) case. Sequencing of all OTOF exons was car-
and m.1555A > G). The p.(GIn829Ter) was not detected  ried out in 7 auditory neuropathy sporadic cases and the 11
in any of the 342 probands, as mentioned above. Linkage  cases putatively linked to OTOF'. In eight cases, at least one
analysis with microsatellites close to OTOF was conducted  likely pathogenic variant was detected, three biallelic and six
to prioritize probands to sequence all coding exons of the =~ monoallelic. Given the unsolved cases, we continued inves-
gene. In 11 cases, the linkage was compatible with OTOF,  tigating the cases first reported by Romanos et al. (2009).
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Table 2 shows the results obtained after the restudy of these
cases, either with Sanger Sequencing or NGS, that allowed
identifying additional pathogenic variants, thus solving
three additional cases. Eight novel cases were also investi-
gated for OTOF variants because of the clinical diagnosis
of auditory neuropathy or AR inheritance, which revealed
12 additional variants. These variants were biallelic in five
of the eight cases and were causative of the HL phenotype
(Table 2). Considering the 16 subjects with likely patho-
genic variants in OTOF (novel variants from the reexamined
samples and additional subjects), we here report three novel
variants: ¢.1392 + 1del, ¢.3049G > T: p.(Glul1017Ter) and
c.4541A > G: p.(Asp1514Gly). The c.1392 + 1del variant is
predicted to disrupt the donor splice site. The other two are
loss of function variants, a frequent mutational mechanism
in OTOF. The c.4541A > G: p.(Asp1514Gly) is predicted to
be damaging/disease-causing by MutationTaster/Sift/Poly-
phen/Mutation Assessor/Provean and REVEL (score 0.923).
In another recent study conducted in the city of Sdo Paulo
(Batissoco et al. 2021, this issue), two cases were selected
because of the clinical diagnosis of auditory neuropathy.
Biallelic causative variants in OTOF were found in the two
cases screened, one case from the city of Cuiabad (Mato
Grosso State from the MidWestern region of Brazil) and
the other from Rio de Janeiro city (the Southeastern region).

Taking together, among all the pathogenic/likely patho-
genic or unknown significance variants (N=30) found in
the city of Sao Paulo (Romanos et al.2009; Batissoco et al.
2021 this issue, and present study), there were remark-
able cases of recurrent variants: six cases of the vari-
ant c.1552_1567del: p.(Arg518Thrfs*15) (frequency of
20%—=6/30) reported only in Brazil, suggesting a com-
mon ancestor; two cases from Sdo Paulo (6.7%-2/30) had
the variant ¢.3049C > A: p.(Glul017Ter), never reported
before; the variant ¢.3400C > T: p.(Argl134Ter) found in
two patients in Sao Paulo, was previously reported twice
in Italian patients (Santarelli et al. 2015; Rodriguez-Bal-
lesteros et al. 2008); and the variant c.2153G > A: p.
(Trp718Ter), also seen in two cases, was reported once in
ClinVar and Deafness Variation Database (without refer-
ence to a publication). The presence of a recurrent "Ital-
ian" variant in the State of Sdo Paulo is explained by the
significant Italian contribution to the gene pool of Brazil-
ians living in the state of Sdo Paulo (and also in Southern
states of the country), in comparison to other Brazilian
regions, such as Northern and Northeastern, where Ital-
ian ancestry is less relevant. While considering all studies
from Latin America, the ¢.2485 ¢.2905_2923delins variant
stands out as a recurrent variant, detected in Argentina
and Brazil as ¢.2485C > T: p.(GIn829Ter) in Colombia and
Argentina (Fig. 5B).

In conclusion, OTOF variants were confirmed to be
important as causing ARNSHL, especially in samples in

@ Springer

which auditory neuropathy was the criterion for select-
ing subjects. Furthermore, the studies performed in Latin
America contributed to the description of novel variants and,
unexpectedly, p.(GIn829Ter) was not found very prominent
despite the relevant Spanish contribution to the colonization
of many countries.

SLC26A4 contribution to hearing loss in Latin
American populations

Pendred syndrome (PDS) and Non-syndromic Enlarged
Vestibular Aqueduct (DFNB4) represent part of the phe-
notypic spectrum resulting from pathogenic variants in
SLC26A4, characterized by sensorineural hearing loss, usu-
ally of prelingual/perilingual onset, vestibular dysfunction,
and temporal bone abnormalities, such as bilateral enlarged
vestibular aqueduct with or without cochlear hypoplasia.
Besides, PDS patients usually develop euthyroid goiter with
a positive perchlorate test, later than the hearing and balance
dysfunctions. Thus, some cases of PDS could be included
in non-syndromic HL cohorts since there are patients with
variants in SLC26A4 who do not exhibit the clinical signs of
Pendred syndrome or present the thyroid-related phenotypes
later in life. Besides, intrafamilial phenotypic variation is
possible, with individuals in the same pedigree presenting
or not syndromic features. That is the reason why articles
describing patients or families with pathogenic variants in
SLC26A4 were included in this review, regardless of the
phenotypic classification (syndromic/non-syndromic).

At least 50% of PDS/DFNB4 cases are attributed to bial-
lelic SLC26A4 pathogenic variants or double heterozygosity
with one variant in SLC26A4 and the other in FOXII or
KCNJI0 (Smith et al. 2020). Furthermore, many estimates
account that those pathogenic alleles in SLC26A4 might be
the second most common cause of hereditary hearing loss
after Connexin 26 (GJB2) mutations (Hilgert et al. 2009).

In many healthcare centers in Latin America, imaging
exams are not routinely done to investigate hearing loss
because of their elevated cost or lack of equipment. In
addition, the goiter may not always manifest or may have a
later onset. Therefore, the selection criteria of patients for
SLC26A4 studies were broad and heterogeneous in inves-
tigations that aimed at establishing its contribution among
prelingual or autosomal recessive cases of HL.

Table 3 summarizes data about the pathogenic, likely
pathogenic, and variants of unknown significance reported
to date in Latin America in SLC26A4. Figure SA illustrates
the methods used to identify these variants. Figure 5C rep-
resents the frequency of the different variants among the
countries.

Through linkage analysis and sequencing, Kopp
et al. (1999) investigated a highly inbred pedigree from
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Northeastern Brazil, with the affected individuals showing
features of Pendred syndrome. They identified three family
members affected by deafness, positive perchlorate test, and
goiter, who were homozygous for NM_000441.2:c.279del: p.
(Ser93ArgfsTer4). Surprisingly, there were 19 patients with
HL and/or goiter who were monoallelic or did not carry the
SLC26A4 variant. The goiters were found to be due to iodine
deficiency, and HL was probably due to another autosomal
recessive gene. Investigation of another consanguineous Bra-
zilian family in which Pendred syndrome was segregating
revealed wide variability in the clinical presentation. Sanger
sequencing identified the c.1198delT:p.(Cys400ValfsTer32)
homozygous variant in all three deaf siblings (Lofrano-Porto
et al. 2008; Table 3).

A total of 31 unrelated Brazilian patients from Sao Paulo
city, Brazil, were screened for variants in the SLC26A4 gene
based on 2 selection criteria: 16 index cases with presump-
tive autosomal recessive inheritance, with microsatellite
haplotype segregation compatible with DFNB4, selected
from a collection of 68 pedigrees; and 15 probands who
were suspected of presenting Pendred syndrome, because of
the presence of hearing loss associated with thyroid dysfunc-
tion, or because hearing loss was associated with EVA or
other inner ear malformation (Nonose et al. 2018). Among
the autosomal recessive cases, biallelic pathogenic variants
(Table 3) were detected in two cases, 12.5% (2/16 or 2/68
from the total of pedigrees). In the group with suspected
Pendred syndrome, two monoallelic cases were detected,
13.3% (2/15). Exome sequencing and MLPA failed to find a
second causative variant. Another study, also performed in
Sédo Paulo (Batissoco et al. 2021, this issue), aimed to deter-
mine the frequency of SLC26A4 variants in 15 cases of HL
associated with inner ear malformations with no additional
clinical features. Three biallelic (20%) and one monoallelic
case (7%) were found.

Among 23 unrelated Brazilian patients with NSHL
and EVA from Campinas, screening of the SLC26A4 gene
revealed biallelic pathogenic variants in 5 (21.7-5/23),
and 3 were monoallelic (Table 3; de Moraes et al. 2013).
The contribution of SLC26A4 to prelingual NSHL was
also estimated by applying the High-Resolution Melt-
ing technique to screen 88 samples from Campinas city,
followed by Sanger sequencing, but no causative vari-
ants were identified (Carvalho et al. 2018). However, two
monoallelic cases were identified with novel missense
variants, NM_000441.2:c.760A > G: p.lle254Val and
NM_000441.2:c.1146C > G: p.Asn382Lys.

Four Mexican patients from three unrelated families present-
ing with sensorineural deafness, Mondini malformations of the
cochlea, an enlarged vestibular aqueduct, goiter, and a positive
perchlorate test, were investigated through linkage analysis
and sequencing. Biallelic pathogenic variants (Table 3) were
found in all three families (Gonzalez-Trevino et al. 2001). In a

multicenter study, 7 probands among 11 (63%), from Mexico,
with non-syndromic sensorineural HL and inner ear anomalies
were found to have biallelic pathogenic variants in SLC26A4.
Bademci et al. (2016) used exome NGS to investigate the molec-
ular causes of non-syndromic HL in two probands from Mexico,
two from Ecuador, and one from Puerto Rico. One Mexican
patient was biallelic regarding variants in SLC26A4.

The most frequent variants, described in Table 3 and
Fig. 5C, were c.1226G > A: p.(Arg409His) and ¢.412G>T: p.
(Vall138Phe)—present in four alleles each, followed by
¢.1673A > G: p.(Asn558Ser) present in three alleles, and seven
other variants that were present in two alleles each. While
c.1226G > A: p.(Arg409His) was found only in Brazil, its
highest population frequency was described among Americans
(Latino), according to GnomAD, but it has also been reported
to be frequent in Iran and Turkey, probably sharing a common
founder in those regions (Bademci et al. 2006). It is possible
that ¢.1226G > A: p.(Argd09His) was inherited from a com-
mon ancestor in Eastern countries, and Latin America, given
the diversity of Latin American parental populations and the
genetic contributions it received after the nineteenth century.
The c.412G > T: p.(Val138Phe) variant was detected in two
cohorts, in Sdo Paulo State as well as in Mexico, and it was
recurrent in a comprehensive study of North American patients
(Sloan-Heggen et al. 2016). It was also frequent in Germany,
Czech Republic, and Denmark (Tsukada et al. 2015a).

Overall, SLC26A4 variants were shown to have a relevant
contribution to the etiology of HL among a specific subgroup
of non-syndromic patients, mainly selected because they are
affected by inner ear malformations. However, its contribution
to the etiology of hearing loss among all non-syndromic cases
is hard to estimate, given that most studies focused on selected
samples because of DFNB4 or PS-related phenotypes.

Latin American families reveal impressive genetic
heterogeneity in autosomal recessive hearing loss,
even within pedigrees

Some Latin American cities are densely populated, with sizes
comparable to the most populous metropolis in the world. For
instance, the city of Sdo Paulo in Brazil has an estimated 12
million people, and Mexico City has nearly 9 million peo-
ple. In these modern and populated cities, there is an overall
trend of reducing family sizes and reducing consanguineous
unions. For instance, Brazil had a fertility rate estimated to
be 2.4 near IBGE 2020, but in 2020 it changed to 1.7 (IBGE,
2020). Although consanguineous unions are nowadays rare in
big cities, there are still thousands of minor cities, villages, or
rural properties spread over Latin America in which inbreed-
ing is still highly significant. For instance, Weller et al. (2012)
and Otto et al. (2020) dealt with the types and frequency of
consanguineous unions in Northeastern Brazil. Although the
level of inbreeding is reduced compared to other populations,

@ Springer
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for instance, those from Pakistan, one occasionally finds in
Latin America highly inbred families, which have been help-
ful to the identification of novel genes and variants related to
HL, which are shown in Table 4. The methods used to unravel
these variants are listed in Fig. 5A. Surprisingly, the assump-
tion that all cases of genetic disease in a large inbred family
are due to one single pathogenic variant in homozygosis has
been proved wrong in some cases. This unexpected genetic het-
erogeneity was reported by Lezirovitz et al. (2008) in a large
inbred Brazilian pedigree with 26 subjects affected by prelin-
gual deafness, with autosomal recessive inheritance. Instead
of one expected homozygous mutation in a single gene, indi-
cated as the MYOI15A gene (DFNB3 locus) by linkage stud-
ies, two different pathogenic variants and possibly a third
undetected one were found in the same pedigree within this
gene. Among the 26 affected subjects, 15 were homozygous
with NM_016239.4: c.10573delA: p.(Ser3525AlafsTer29)
[ 5 were compound heterozygotes with a second variant
NM_016239.4: ¢.9958_9961del: p.(Asp3320ThrfsTer2), and
1 inherited only a single ¢.10573delA, without a second vari-
ant identified. There might be other deafness loci segregating
to explain the condition in some of the subjects in the same
pedigree, whose deafness was not due to MYO15A mutations.
Another example of genetic heterogeneity within one pedi-
gree was presented in the reports of Lezirovitz et al. (2006)
and Dias et al. (2019), in which the same extended genealogy
was investigated. In the work of Lezirovitz et al. (2006), it was
identified that some individuals, born from a union reported
as nonconsanguineous (but in which haplotyping showed evi-
dence of a common ancestor), presented with oculocutane-
ous albinism due to a homozygous variant in the MATP gene
(OCA4 locus) and some presented prelingual deafness due to
¢.35delG in GJB2 in homozygosis. In a second sibship from
the same inbred pedigree, Dias et al. (2019), using massive
parallel sequencing, demonstrated that hearing loss was due to
the variant ¢.436C > T:p.(Argl46Ter) in homozygosis in the
CEACAM 6 gene, segregating with postlingual progressive
hearing loss with autosomal recessive inheritance. The latest
report was significant to confirm the previous findings of Booth
et al. (2018), who associated, for the first time, CEACAM16 to
autosomal recessive hearing loss.

Massive parallel sequencing of exome or targeted
sequencing of hearing loss-related genes has recently
revealed a wide repertoire of novel variants, some never
described in other continents. Bademci et al. (2016)
used exome sequencing to investigate a multiethnic
cohort of hearing-impaired subjects from pedigrees
with presumptive autosomal recessive hearing loss.
One of the two patients from Mexico was biallelic for
CDH23, c.2959G > A: p.(Asp987Asn)/c.3628C > T: p.
(GIn121Ter), one of two from Ecuador was a bial-
lelic for TMC1, c.1718 T > A: p.(Ile573Asn)/c.2130-
1delG, and the patient from Puerto Rico had biallelic

variants in MYO15A, c.7226delC: p.(Pro2409GInfsTer8)/
¢.9620G > A: p.(Arg3207His). Near half of the variants
identified in the study were novel. In the study of Man-
zoli et al. (2016), targeted sequencing of 180 hearing loss
genes was performed in 19 probands of Brazilian families,
most from the Northeastern region. The authors identi-
fied pathogenic variants in MYOI5A (ten families) and
CLDN14 (one family). It was remarkable that one specific
variant, p.(Val1400Met) in MYO15A, was found in eight
families from one city, and haplotype analysis was con-
sistent with one single origin for the variant. In another
report, MYO15A variants, c.1615C > T: p.(GIn539Ter)/
c.3524_3525insA:p.(Ser1176ValfsTer14), both already
reported as pathogenic and identified through an NGS
panel of ~ 100 HL genes in a sporadic case of bilateral
prelingual HL (Batissoco et al. 2021, this issue). Sum-
ming up, there are 15 reported families of AR-HL asso-
ciated with MYO15A in Latin America, with 7 different
pathogenic variants, and only 2 recurrent variants were
found in inbred communities. Thus, it is likely that this
gene represents an important cause of AR-HL in Brazil or
Latin America, but its large size makes NGS mandatory,
which is not yet affordable as a routine even in the richest
cities of Latin American.

The TMPRSS3 might also be a relevant cause of AR-HL
in Brazil (Batissoco et al. 2021, this issue) since three sib-
lings from the same family affected by postlingual pro-
gressive HL were found to be compound heterozygotes
with two pathogenic variants using WES, ¢.1276G > A:p.
(Ala426Thr)/c.916G > A:p.(Ala306Thr). These findings
motivated screening of TMPRSS3 using Sanger sequenc-
ing in a selected sample of 31 cases of postlingual progres-
sive HL with presumptive autosomal recessive inheritance.
One isolated case was detected as a compound heterozy-
gote with two TMPRSS3 pathogenic variants, ¢.346G > A:p.
(Vall16Met)/c.413C > A: p.(Alal38Glu).

These reports reinforce that founder effects may account
for specificities in diversity and frequency of variants. Spe-
cific and regional distribution of variants influences the
planning strategies for developing genetic testing routines
in different populations.

Genetic analysis of autosomal dominant hearing
loss pedigrees: novel candidate variants and genes
revealed

Although there is a recent general trend for reducing children
in sibships, it is still common to ascertain, in genetic coun-
seling services, large multigenerational pedigrees with large
offspring, with many individuals affected by genetic diseases
exhibiting autosomal dominant inheritance. Ascertained in
genetic services located in the greatest cities because of
individuals who migrated, these large pedigrees frequently
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have their ancestors in smaller cities or rural regions, where
families are still large. Our laboratories in the city of Sdo
Paulo have ascertained an exciting collection of samples
from extended families with autosomal dominant hearing
loss, who were personally examined by us or were examined
by collaborators in other regions of the country who pro-
vided us with samples for molecular studies. Some of these
large pedigrees allowed linkage mapping studies with LOD
score calculations, followed by investigating the segrega-
tion of novel variants to validate their pathogenicity. Mas-
sive parallel sequencing of the exome was crucial in many
cases to find the causative genetic alterations, as shown in
Fig. 5A, summarizing the methods used to identify these
variants. The most relevant results are presented in Table 5,
which comprises the studies in which novel AD-HL-related
genes were found, studies where novel causative variants
were detected in previously known genes, and descriptions
of previously reported variants.

Novel candidate genes were revealed by the study of
prominent Latin American families. For instance, the study
of a family from Costa Rica allowed mapping and identify-
ing DIAPH] as a novel non-syndromic progressive hearing
loss gene (Lynch et al. 1997). NCOA3 was recently indicated
as a candidate gene to explain autosomal dominant hearing
loss (Salazar-Silva et al. 2021). The association of NCOA3
with HL was reinforced by the description of another likely
pathogenic variant (NM_181659.3: ¢.2909G > C:p.(Gly-
970Ala)) segregating with AD-NSHL in an Italian family
(Tesolin et al. 2021). A genomic duplication mapped in
chromosome 2 revealed the possible role of the overexpres-
sion CNRIPI and two IncRNA genes (LOCI107985892 and
LOC102724389) in the etiology of hearing loss in a large
Brazilian pedigree (Lezirovitz et al. 2020).

The relevance of CN Vs to the etiology of non-syndromic
hearing loss was investigated by Rosenberg et al. (2016).
They used oligonucleotide array-CGH to investigate 50
cases of presumptive autosomal recessive inheritance and in
50 of presumptive autosomal dominant inheritance, in which
GJB2/GJB6 variants and m.1555A > G had been previously
excluded. Rare copy number variants were detected in 12
subjects, but 4 were considered as probably causative (4%)
because they comprised genes that have already been associ-
ated with HL and segregated with the phenotype. Two cases
of the group with presumptive autosomal dominant inherit-
ance were confirmed to have causative CNVs (2/50-4%)
with dominant transmission.

Among these reports, the most striking was the variant
¢.2090 T> G: (p.Leu697Trp) in the MYO3A gene in Brazilian
families. The majority of variants described in the MYO3A
gene up to 2018 were associated with autosomal recessive
hearing loss, making this variant a peculiar finding. Functional
studies have permitted to explain the dominant transmission
because of a dominant-negative effect (Dantas et al. 2018).

Besides, the same variant was found in five apparently unre-
lated pedigrees, two in the original description of the variant
(Dantas et al. 2018) and three in the recent report of Bueno
et al. (2021). SNP array analysis followed by kinship analysis
revealed that individuals from the five pedigrees were related
and inherited a common haplotype of 607 kb. Furthermore,
the variant had also been previously deposited in the LOVD
Database by Dutch researchers, firstly as a VUS. The inclu-
sion of the Dutch sample in the haplotype analysis revealed a
shared chromosomal region of 87,121 bp between individuals
from the six pedigrees, indicating the age of the most recent
common ancestor and confirming a European origin of the
mutation. The variant identification in Brazilian and Dutch
patients allowed the speculation that the variant was introduced
by Dutch colonists who occupied Northeastern Brazil in the
seventeenth century and spread to the Southeastern region in
the following centuries. The finding that the ¢.2090 T > G:
p.(Leu697Trp) was present in a Dutch family, and about 1%
of pedigrees with autosomal dominant hearing loss (Bueno
et al. 2021) suggests that it may be frequent in other regions
of Brazil and may even occur in other European countries if
screened in larger samples.

Concluding remarks

Our review allowed us to draw some practical conclusions
despite the severe limitations in the coverage of studies and
the wide heterogeneity in investigation strategies. First,
although GJB2/GJB6 was confirmed to be a relevant cause
of HL, the diagnostic rates of G/JB2/GJB6 studies are not
the same in all geographical regions within Latin America.
Second, the c.35delG, although frequent and significant as
causing HL,, was not always the most frequent causative vari-
ant in all samples, thus arguing against its screening being
used as a single test.

We hypothesized that the probability of getting a molecu-
lar diagnosis with GJB2/GJB6 testing in Latin America is
inversely related with the proportion of Native American
ancestry since we observed that in countries where Native
American ancestry is higher (p. ex. Guatemala, and Nicara-
gua), diagnostic rate is less than 10%. Thus, the greater the
European ancestry, the greater the likelihood that a molecular
diagnosis will be achieved with GJB2/GJB6 screening first.

Rare recurrent variants and heterogeneous patterns of
variant distribution were described in this review. For
instance, the ¢.2090 T > G:p.(Leu697Trp) MYO3A vari-
ant was shown to be a frequent cause of autosomal domi-
nant postlingual progressive HL in Brazil. This type of
information is helpful to guide molecular testing, mainly
in centers with limited equipment and limited funding,
where NGS is far from becoming a routine. Other frequent
or recurrent causative variants would likely stand out if
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comprehensive analyses using NGS or other advanced
high throughput technologies could be applied to all of the
diversely admixed countries of Latin America. In conclu-
sion, Latin American studies contributed significantly to
our current scientific knowledge of the genetic causes of
HL, although with severe limitations to the study of many
different genes. They showed the incredible value of study-
ing highly admixed populations and point out a yet poorly
explored potential in revealing new insights into hearing
physiology. Besides, understanding the regional patterns
of distribution of mutated alleles is of profound relevance
to planning strategies for molecular studies in hearing loss,
aiming to reduce costs and widen the range of patients and
populations with access to efficient genetic counseling.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00439-021-02354-4.
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