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Abstract: In this work, we introduce an extension of the so-called beta autoregressive moving average
(βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a
beta distributed variable. The conditional mean is connected to the linear predictor via a suitable
link function. We propose modeling the relationship between the conditional mean and the linear
predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function
contains a parameter estimated along with the other parameters via partial maximum likelihood.
We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing,
diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the
partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An
application to the proportion of stocked hydroelectric energy in the south of Brazil is presented.

Keywords: βARMA models; double bounded data; forecasting; non-Gaussian time series; parametric
link function
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1. Introduction

Gaussianity is by far the most commonly used hypothesis in statistics. It is easy to
find in the literature applications of Gaussian time series in contexts where it is neither
natural nor adequate to suppose normality of the underlying data distribution. Simple
examples are strictly positive data such as prices, counting phenomena or double bounded
data, such as rates and proportions whose support is (0, 1). In these situations, normality is
obviously not an adequate hypothesis to assume. The consequences of using a Gaussian
time series model were it is not reasonable may be grave, especially when the focus lies
on forecasting. In these cases, it is a common problem to obtain predicted values that lie
outside the natural bounds of the data.

To overcome these issues, non-Gaussian time series models have been extensively
explored in the literature. For instance, autoregressive models for integer valued time series
were introduced in [1]. A broad class of dynamic models for non-Gaussian time series
based on generalized linear models (GLM) [2] was considered in [3], which called them
generalized autoregressive moving average (GARMA) models. Traditional GLM methods
can serve as an inspiration for time series models, but there are important distinctions and
technicalities to keep in mind [4]. Other studies in this direction can be found in [5–8].

Modeling rates and proportions observed over time is a common problem in many
areas of application. By nature, such time series are limited to the interval (0, 1) and, hence,
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Gaussianity is an assumption that should be avoided [9]. In this direction, the class of
beta autoregressive moving average (βARMA) models, proposed by [10], introduces a
GLM-like dynamic model for time series restricted to (0, 1). The βARMA model assume
that, conditionally to its past, the variable of interest follows a beta distribution while
the conditional mean is modeled through a dynamical time dependent linear structure
accommodating an ARMA-like term and a linear combination of exogenous covariates. The
conditional mean is connected to the linear predictor through a suitable fixed link function.

The beta distribution is well known for its flexibility, being able to model asymmetric
behaviors such as bathtub and J-shaped and inverted J-shaped densities, among other.
For this reason, the literature has seen a growing interest in beta-based models in the last
decade and several improvements and generalizations of the βARMA model have been
proposed. For instance, some generalizations propose the use of different specifications
for the systematic component. Ref. [11] proposed the class of βSARMA models which
introduces a seasonal ARMA structure in the systematic components. Ref. [12] proposed
the class of βARFIMA models by considering a long range dependent specification for
the systematic component. Some goodness-of-fit tests for βARMA are proposed in [13],
while prediction intervals and model selection criteria are recently explored in [14,15],
respectively. In [16], the inflated βARMA model was introduced for modeling time series
data that assume values in the intervals (0, 1], [0, 1) or [0, 1].

A common feature in the aforementioned models, i.e., the connection between the
conditional mean with the linear predictor is made by a suitable link function, ensures
that the modeled conditional mean values do not fall outside its natural bounds. Typical
choices for responses taking values in (0, 1) are the logit and cloglog fixed links. However,
misspecification of the link function may cause distortions in parameter estimation [2]. A
simple solution to this problem is to apply a parametric link function. This adds flexibility to
the model and improves the finite sample performance of maximum likelihood estimation
in the context of GLM [17], compared to the canonical ones. In the literature, we can find
some models that apply parametric link functions in the context of regression models.
For instance, for binary response problems, [18] proposed the use a modified Box-Cox
transformation as link function, while [19] introduced a modified two parameter link that
allows free manipulation of both tails of the link. More flexible approaches, which treat
the entire link function to be estimated from the data, were considered in [20–22]. In the
context of beta regression with variable dispersion, [23] proposed the use of parametric link
function for the specification of both, mean and dispersion. Recently, ref. [24] proposed
the use of the Aranda-Ordaz parametric link function [25] in the context of Kumaraswamy
regression. Other applications of parametric link functions in regression models can be
found in [26–29].

Despite the relative growth of the literature on parametric link function in regres-
sion models, to the best of our knowledge, there are no time series models considering
parametric link functions. In this direction, this works generalizes the βARMA model
by introducing a parametric link function in the conditional mean specification. Given
that a time series following a βARMA lies on (0, 1), a suitable and widely known link (as
discussed in [23]) is the Aranda-Ordaz asymmetric link function, introduced in [25]. The
Aranda-Ordaz link function depends on a parameter λ which must be known, or, ideally,
estimated from the data. To do that, we propose a partial maximum likelihood approach to
estimate λ along with all other parameters in the model.

Different from time series analysis, in regression analysis, the interpretability of the
fitted model is of great interest. Some commonly applied link functions, such as the logit
and logarithm, allow for a simple interpretation of model parameters, which is no longer
the case when we consider a parametric specification for the link function. However, in time
series models, prediction is usually considered more important than model interpretability,
which favors the use of a parametric link function, since it usually allows for a better model
fitting and, often, a superior forecasting performance. In this sense, the proposed βARMA
with Aranda-Ordaz link function provides two advantages over the standard βARMA
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model: (i) better model fitting due to more flexibility when considering the relationship
between the mean and the linear predictor and (ii) robustness against inferential distortions
usually attributed to link misspecification.

The paper is organized as follows. In the next section, we introduce the βARMA
model with the Aranda-Ordaz link function. In Section 3, we propose a partial maximum
likelihood approach to estimate the model parameters and discuss some of its properties.
In Section 4, we present some diagnostic and goodness-of-fit tools and discuss forecasting in
the context of the proposed model. A Monte Carlo simulation study is presented in Section 5,
while a real data application is presented in Section 6. Our conclusions are presented in
Section 7 and some technical details are discussed in the Appendices A and B.

2. Proposed Model

Let {yt}t∈Z denote a time series of interest and let {xt}t≥1 denote a set of k-dimensional
exogenous covariates, possibly time dependent and random. Let Ft denote the σ-field
representing the history of the model known to the researcher up to time t, that is, the
sigma-field generated by (yt, x′t, yt−1, x′t−1, yt−2, x′t−2, . . . ). We assume that the conditional
distribution of yt given Ft−1 is Beta(µt, ϕ) parameterized as in [9], with density:

f (yt|Ft−1) =
Γ(ϕ)

Γ(µtϕ)Γ((1 − µt)ϕ)
yµtϕ−1

t (1 − yt)
(1−µt)ϕ−1, 0 < yt < 1, (1)

where Γ(·) is the Gamma function, 0 < µt < 1 and ϕ > 0. It is easy to show that:

E(yt|Ft−1) = µt and Var(yt|Ft−1) =
µt(1 − µt)

1 + ϕ
.

Observe that the parameter ϕ acts as a precision parameter, since the higher the ϕ, the
smaller the variance of yt, for a fixed µt. Note that the variance of yt changes for each t,
so the model is naturally heteroscedastic. Although, in principle, it could be possible to
consider a variable dispersion parameter, as in [23]; however, the majority of works in the
literature assume a constant precision/dispersion parameter ([3,9–11,15,30], to name just a
few) so, for simplicity, we shall do the same.

Let g(·, λ) : (0, 1) → R be a twice continuously differentiable one to one link function,
possibly depending on a parameter λ. Consider the following specification for the model’s
systematic component:

ηt := g(µt, λ) = α + x⊤t β +
p

∑
i=1

φi
[
g(yt−i, λ)− x⊤t−iβ

]
+

q

∑
j=1

θjrt−j, (2)

where α ∈ R is an intercept, β = (β1, . . . , βk)
⊤ ∈ Rk is a k-dimensional vector of parameter

associated with the covariates, and φ := (φ1, . . . , φp)⊤ and θ := (θ1, . . . , θq)⊤ are p and q-
dimensional vectors of parameters associated with the autoregressive and moving average
components, respectively. The error term is defined as rt = g(yt, λ)− g(µt, λ). Observe
that if we substitute g(y, λ) for a fixed (non-parametric) link function g(y), such as logit or
probit links, then we obtain the βARMA model of [10].

In (2), when g indeed depends on λ we have a parametric link function. The choice
of the parametric link is an important one and due to its flexibility, we shall apply the
asymmetric Aranda-Ordaz family of link functions in (2), which has the form:

ηt = g(µt, λ) = log
(
(1 − µt)−λ − 1

λ

)
, (3)

for λ > 0. Observe that µt = g−1(ηt, λ) = 1 −
[
1 + λ exp(ηt)

]− 1
λ and that g is infinitely

differentiable away from zero on λ and µ. Figure 1 shows the Aranda-Ordaz link function
for several values of λ, highlighting its asymmetric behavior, which allows an asymmetric



Axioms 2024, 13, 806 4 of 17

relationship between µt and ηt. We note that it is an increasing and monotonic function,
where positive (or negative) changes in the linear predictor imply a positive (or negative)
effect on the response mean. The traditional logit is a particular case obtained when λ = 1
and the cloglog is obtained as a limiting case for λ → 0.
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Figure 1. The Aranda-Ordaz link function for different values of λ.

The proposed βARMA model with Aranda-Ordaz link function, hereafter referred to
as βARMAλ, is defined by (1), (2), and (3). The Aranda-Ordaz parameter influences the
conditional mean µt, which affects the response Yt through Yt|Ft−1 ∼ Beta(µt, ϕ). Figure 1
illustrates how the parameter λ affects µt as a function of ηt. For 0 < λ < 1, the effect on µt
is mild compared to clolog and logit, primarily impacting ηt values between 0 and 4 by
slightly accelerating or decelerating the increase of µt relative to ηt. For λ > 1, the impact
of λ is more pronounced, with larger λ values dampening the speed at which changes in
ηt affect µt. Thus, for λ > 1, µt becomes less sensitive to variations in ηt, smoothing Yt’s
conditional mean compared to the logit and cloglog functions.

3. Partial Likelihood Inference

Let {(xt, yt)}n
t=1 be a sample from the proposed βARMAλ model and let ω :=

(ϕ, λ, α, β⊤,φ⊤, θ⊤)⊤ be the (p + q + k + 3)-dimensional vector of unknown parameters in
the model, and Ω = (0, ∞)2 ×R1+k+p+q is the parametric space, such that ω ∈ Ω. In this
section, we derive a partial maximum likelihood estimation (PMLE) approach to estimate
ω. Given Ft−1, the partial log-likelihood function is given by:

ℓ(ω) :=
n

∑
t=m+1

log f (yt|Ft−1) =
n

∑
t=m+1

ℓt(µt, ϕ), (4)

where m = max{p, q} and

ℓt(µt, ϕ) := log
(
Γ(ϕ)

)
− log

(
Γ(µtϕ)

)
− log

(
Γ
[
(1 − µt)ϕ

])
+ (µtϕ − 1) log(yt) +

[
(1 − µt)ϕ − 1

]
log(1 − yt).

The estimator ω̂ is defined as:

ω̂ := arg sup
ω∈Ω

{
ℓ(ω)

}
. (5)

The solution of (5) is obtained by solving U(ω) = 0, where U(ω) is the partial score vector
and 0 := (0, . . . , 0)⊤ ∈ Rp+q+k+3. Closed-form expressions of the partial score vector are
presented in Appendix A.
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The non-linear system U(ω) = 0 has no closed-form solution. To obtain approximate
solutions, it is necessary to numerically maximize the partial log-likelihood function given
in (4). In this work, we consider the so-called BFGS method [31] with analytical first
derivatives to do so. The procedure requires initialization. We initialize λ = 1 (logit
particular case) and θ = 0 in all cases. Parameters α, β, and φ are initialized as the ordinary
least squares estimates of the regression problem:

g(yt, 1) = α + x⊤t β +
p

∑
i=1

φig(yt−i, 1) + εt,

where εt denotes an error term. Let (α0, β0,φ0)⊤ denote the initial value of (α, β,φ)⊤, the
starting value of ϕ is given by:

ϕ0 :=
1
n

n

∑
t=1

µ0
t (1 − µ0

t )

s0 − 1,

where µ0
t := g−1(α0 + x⊤t β0 +∑

p
i=1 φ0

i
[
g(yt−i, 1)− x⊤t−iβ

0], 1
)

and s0 :=
1

n − 1

n

∑
t=1

(
yt −µ0

t
)2.

In addition to point inference, it is also interesting to build confidence intervals and
carry out hypothesis tests. In this sense, we need the asymptotic distribution of the partial
maximum likelihood estimator. The seminal work of [32] established the asymptotic theory
of the maximum likelihood in the context of traditional GLM under mild conditions. These
results were generalized for the case of GLM with parametric link functions in [33]. For
GARMA-like models, a rigorous asymptotic theory was established in [34,35]. Ref. [12]
presented the asymptotic theory for the PMLE in the context of βARFIMA models. Recently,
Ref. [24] established the asymptotic theory of the MLE for GLM-like models with the
Aranda-Ordaz parametric link based on the Kumaraswamy distribution, which is not a
member of the exponential family.

In the context of βARMAλ model, specification (1) and the fact that the information
matrix is not block diagonal imply that the parameter estimation must be jointly performed
via the log-likelihood function. To derive the asymptotic theory for the PMLE in the
context of the present work, a similar argument as in [33,34] can be applied, with a few
modifications. Under suitable conditions, closely related to the ones presented in [34], it
can be shown that the partial maximum likelihood estimator ω̂ is consistent and:

√
n(ω̂ − ω)

d−→ N (0, K−1(ω)),

as n tends to infinity, where N (0, Σ) denotes the (p + q + k + 3)-variate normal distribution
with mean vector 0 and variance-covariance matrix Σ. The matrix K(ω) is a positive definite
and invertible matrix, the analogous to the information matrix per observation in the context
of i.i.d. samples. Under suitable conditions, Kn(ω)/n −→ K(ω) in probability, where
Kn(ω) is the cumulative conditional information matrix presented in the Appendix B.

Let ωr denote the r-th component of ω, and with the previous results, it is possible to
obtain approximate confidence interval to ωr and standard Z statistics to test hypothesis
like H0 : ωr = ω0

r vs. H1 : ωr ̸= ω0
r [36]. Versions of other commonly applied test statistics,

such as the Wald [37], likelihood ratio [38], Rao’s score [39], and the gradient [40] statistic,
can be similarly defined. Their asymptotic distributions will be χ2 with the corresponding
degrees of freedom imposed by the restrictions under H0. More general forms of these
hypothesis tests can be performed similarly to traditional regression models.

4. Diagnostics and Forecasting

In this section, we consider some diagnostic tools useful in determining whether
a fitted model succeeded in capturing the data dynamics. Also, we detail a method to
produce forecasts based on a fitted model. Besides the joint significance of the parameters
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obtained using the tests presented in the previous section, we can also discuss residual
analysis. A priori, there is no imposed distributional structure for the error term rt in (2),
but it is quite common to look at some goodness-of-fit statistics.

The so-called deviance statistics is commonly applied as a goodness-of-fit measure
of a given model [4]. It can be shown that, if the model is correctly specified, then the
deviance statistics is asymptotically χ2

n−(p+q+k+3) distributed [3,4]. Model selection can
be performed by using adapted versions of the AIC [41] and BIC [42]. A lower AIC and
BIC values are associated with more suitable models. Residual analysis is a fundamental
diagnostic tool in statistical modeling. There are several ways to define the residuals for the
proposed model, such as standardized, quantile [43], and deviance residuals. As considered
in [13], for the βARMA, and in [9], for the beta regression model, we suggest using the
standardized ordinary residual.

Another useful tool in diagnostic analysis are Portmanteau tests. If the model is cor-
rectly specified, it is expected that the residuals behave like a white noise [4]. Portmanteau
tests for βARMA models were rigorously studied by [13]. In this context, similar argu-
ments to those in [13] can be applied to show that the Ljung–Box statistics to test the null
hypothesis that the first s residual autocorrelations are zero will be asymptotically χ2

s−p−q
distributed, under mild assumptions.

Since the proposed model is an extension of the βARMA, h0-step ahead forecasts can
be obtained similarly. Let {(xt, yt)}n

t=1 be a sample from the proposed βARMAλ model.
Let ω̂ be the PMLE based on the sample and µ̂t be µt evaluated at ω̂ and r̂t :=

[
g(yt, λ̂)−

g(µ̂t, λ̂)
]
I(1 ≤ t ≤ n). For h = 1, 2, . . . , h0, h-step ahead forecasts are given by:

µ̂n+h := g−1
(

α̂ + x⊤n+h β̂ +
p

∑
i=1

φ̂i
([

g(yn+h−i, λ̂)
]
− x⊤n+h−i β̂

)
+

q

∑
j=1

θ̂j r̂n+h−j, λ̂

)
,

where
[
g(yt, λ)

]
:=

{
g(µ̂t, λ̂), if t > n,
g(yt, λ̂), if t ≤ n.

5. Numerical Experiments

In this section, we present a Monte Carlo simulation study to assess the finite sample
properties of the PMLE for the proposed model parameters. We consider 10,000 simulated
replications of a process {yt}n

t=1, for n ∈ {100, 300, 500, 1000} following the βARMAλ(p, q).
The following two scenarios were considered in the simulation:

1. βARMAλ(2, 2) with two covariates, where the parameters are set as α = 0.5,
β = (0.3,−1)⊤, φ = (−0.5, 0.3)⊤, θ = (0.4,−0.1)⊤, ϕ ∈ {20, 120}, and λ = 1.5;

2. βARMAλ(2, 1) with one covariate, where the parameters are α = −0.5, β1 = −1,
φ = (−0.4, 0.2)⊤, θ1 = 0.3, ϕ ∈ {20, 120}, and λ = 0.5.

In order to induce a deterministic seasonality into the model, we consider xt =

(sin(2πt/12), cos(2πt/12))⊤ in Scenario 1 and xt = cos(2πt/12) in Scenario 2. All simu-
lations were performed using R version 3.5.2 [44]. Tables 1 and 2 present the simulation
results for Scenario 1, while Tables 3 and 4 for Scenario 2 by varying the precision parameter
ϕ ∈ {20, 120}. Presented are the mean estimate, relative bias (RB), standard error (SE), and
mean square error (MSE).

As expected, in general, as n increases, the mean of the estimated values converges to
the true value of the parameter and the RB, SE, and MSE decrease. Note that for ϕ = 20,
the relative bias and standard errors are higher than the ones when ϕ = 120. This behavior
is expected since decreasing precision implies an increase in the variability of yt. For small
sample sizes such as n = 100, there is considerable bias in all scenarios. Just as in the case of
the beta regression [45] and βARFIMA [12], ϕ̂ is slightly biased, especially in small samples.
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Table 1. Simulation results for the proposed PMLE under Scenario 1 with ϕ = 120.

α β1 β2 φ1 φ2 θ1 θ2 λ ϕ
0.5 0.3 −1 −0.5 0.3 0.4 −0.1 1.5 120

n = 100

Mean 0.693 0.253 −1.050 −0.488 0.281 0.308 −0.036 1.820 132.753
RB (%) 38.631 −15.801 4.965 −2.328 −6.299 −22.944 −64.227 21.361 10.627
SE 2.660 0.319 0.424 0.603 0.689 0.616 0.529 3.887 20.858
MSE 7.115 0.104 0.182 0.364 0.474 0.387 0.284 15.212 597.688

n = 300

Mean 0.549 0.282 −1.022 −0.549 0.290 0.416 −0.064 1.545 124.046
RB (%) 9.772 −6.107 2.197 9.707 −3.466 3.876 −35.550 3.021 3.371
SE 0.394 0.038 0.164 0.407 0.391 0.427 0.328 0.500 10.420
MSE 0.158 0.002 0.027 0.168 0.153 0.183 0.109 0.253 124.945

n = 500

Mean 0.532 0.282 −1.016 −0.524 0.324 0.397 −0.093 1.532 122.285
RB (%) 6.429 −5.978 1.648 4.734 7.847 −0.840 −6.583 2.104 1.904
SE 0.321 0.027 0.124 0.327 0.315 0.342 0.265 0.379 7.810
MSE 0.104 0.001 0.016 0.108 0.100 0.117 0.070 0.144 66.225

n = 1000

Mean 0.539 0.283 −1.016 −0.523 0.330 0.400 −0.095 1.531 121.149
RB (%) 7.747 −5.601 1.619 4.640 9.954 0.099 −4.635 2.044 0.957
SE 0.226 0.019 0.086 0.225 0.217 0.233 0.181 0.260 5.395
MSE 0.053 0.001 0.008 0.051 0.048 0.054 0.033 0.069 30.430

Table 2. Simulation results for the proposed PMLE under Scenario 1 with ϕ = 20.

α β1 β2 φ1 φ2 θ1 θ2 λ ϕ
0.5 0.3 −1 −0.5 0.3 0.4 −0.1 1.5 20

n = 100

Mean 2.197 0.161 −1.295 −0.657 0.450 0.363 −0.004 3.855 22.678
RB (%) 339.318 −46.389 29.453 31.354 49.996 −9.144 −96.077 156.990 13.389
SE 7.309 0.960 1.079 0.952 1.372 0.634 0.538 10.157 3.650
MSE 56.303 0.942 1.251 0.932 1.904 0.404 0.298 108.704 20.491

n = 300

Mean 0.910 −0.595 0.302 0.448 −0.044 20.698 1.964 0.253 −1.098
RB (%) 81.931 19.038 0.792 12.098 −56.266 3.491 30.966 −15.671 9.753
SE 3.505 0.447 0.604 0.429 0.325 1.702 4.698 0.450 0.529
MSE 12.454 0.208 0.365 0.186 0.109 3.384 22.290 0.205 0.289

n = 500

Mean 0.624 0.282 −1.040 −0.566 0.292 0.439 −0.063 1.576 20.400
RB (%) 24.788 −6.031 4.038 13.232 −2.588 9.711 −37.279 5.073 2.002
SE 0.812 0.093 0.282 0.331 0.320 0.337 0.257 0.955 1.297
MSE 0.675 0.009 0.081 0.114 0.102 0.115 0.067 0.918 1.841

n = 1000

Mean 0.557 0.282 −1.015 −0.546 0.308 0.423 −0.078 1.511 20.191
RB (%) 11.455 −5.869 1.485 9.203 2.685 5.827 −22.212 0.730 0.953
SE 0.397 0.038 0.169 0.226 0.216 0.231 0.176 0.503 0.881
MSE 0.161 0.002 0.029 0.053 0.047 0.054 0.031 0.253 0.813
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Table 3. Simulation results for the proposed PMLE under Scenario 2 with ϕ = 120.

α β1 φ1 φ2 θ1 λ ϕ
−0.5 −1.0 −0.4 0.2 0.3 0.5 120

n = 100

Mean −0.433 −1.048 −0.314 0.160 0.207 0.629 130.483
RB (%) −13.354 4.850 −21.569 −20.199 −30.895 25.739 8.735
SE 0.248 0.119 0.389 0.119 0.413 0.394 19.982
MSE 0.066 0.016 0.159 0.016 0.179 0.171 509.160

n = 300

Mean −0.518 −1.015 −0.408 0.149 0.307 0.534 122.941
RB (%) 3.636 1.511 1.946 −25.272 2.486 6.765 2.451
SE 0.159 0.073 0.206 0.067 0.212 0.246 10.199
MSE 0.025 0.006 0.042 0.007 0.045 0.062 112.665

n = 500

Mean −0.531 −0.427 0.149 0.329 121.462 0.525 −1.011
RB (%) 6.222 6.823 −25.370 9.795 1.219 5.020 1.068
SE 0.127 0.144 0.050 0.149 7.765 0.197 0.059
MSE 0.017 0.022 0.005 0.023 62.427 0.040 0.004

n = 1000

Mean −0.541 −1.008 −0.442 0.147 0.345 0.518 120.628
RB (%) 8.180 0.753 10.413 −26.418 14.834 3.574 0.523
SE 0.088 0.041 0.094 0.035 0.098 0.139 5.375
MSE 0.009 0.002 0.011 0.004 0.012 0.020 29.288

Table 4. Simulation results for the proposed PMLE under Scenario 2 with ϕ = 20.

α β1 φ1 φ2 θ1 λ ϕ
−0.5 −1.0 −0.4 0.2 0.3 0.5 20

n = 100

Mean −0.091 −1.240 −0.345 0.197 0.211 1.332 21.745
RB (%) −81.898 24.005 −13.710 −1.590 −29.671 166.329 8.727
SE 2.411 1.075 0.444 0.180 0.390 5.924 3.253
MSE 5.979 1.213 0.200 0.032 0.160 35.784 13.629

n = 300

Mean −0.406 −1.080 −0.381 0.179 0.282 0.733 20.565
RB (%) −18.707 7.985 −4.638 −10.545 −5.972 46.634 2.824
SE 0.248 0.150 0.204 0.074 0.209 0.464 1.710
MSE 0.070 0.029 0.042 0.006 0.044 0.270 3.244

n = 500

Mean −0.448 −1.051 −0.387 0.175 0.292 0.653 20.289
RB (%) −10.381 5.118 −3.291 −12.493 −2.803 30.606 1.445
SE 0.196 0.118 0.147 0.055 0.152 0.371 1.264
MSE 0.041 0.017 0.022 0.004 0.023 0.161 1.681

n = 1000

Mean −0.483 −1.030 −0.398 0.171 0.306 0.592 20.136
RB (%) −3.365 3.032 −0.486 −14.723 1.915 18.495 0.678
SE 0.143 0.086 0.099 0.039 0.102 0.272 0.878
MSE 0.021 0.008 0.010 0.002 0.010 0.083 0.789
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Overall, all parameters are reasonably estimated even in small samples. In all scenarios,
the MSE uniformly decreases as n increases, which represents numerical evidence of the
PMLE’s consistency. Among all parameters, the estimation of α is the one presenting the
highest relative bias. The simulation results provide numerical evidence supporting the
theory discussed in Section 3.

6. Application

In this section, we showcase the usefulness of the proposed βARMAλ model in a real
data application. The data comprehend the monthly proportion of stocked hydroelectric
energy in the south of Brazil from January 2000 to May 2022, yielding a total of 269 obser-
vations. The last six months of data were reserved for out-of-sample forecasting purposes,
and hence, for modeling purposes the sample size is n = 263. This is an updated time
series that was also modeled in [13]. The data are freely available at the Operador Nacional
do Sistema Elétrico repository (http://www.ons.org.br/paginas/resultados-da-operacao/
historico-da-operacao/dados-gerais/, accessed on 29 October 2024). The hydrological
study is essential for the adequate distribution of energy and to supply the consumption
demand of the population. Forecasts are widely used by institutions to prevent energy
shortages. All the results presented in this section can be accessed by a friendly web
application available at http://ufsm.shinyapps.io/appBARMA/, accessed on 29 October
2024. In this online application, users can upload any time series data to fit using the
proposed model.

Figure 2 presents the time series plot of the data, as well as its sample autocorrelation
(ACF) and partial autocorrelation (PACF) functions. From the time series plot, a clear yearly
seasonal pattern can be observed. In order to capture this seasonality, we shall employ
xt = sin(2πt/12) as covariate in the model.

Additionally, we consider a further step in the optimization procedure that explores
different initial values of λ (Aranda-Ordaz parameter); this step selects the model that has
the smallest AIC value. The algorithm is described by:

1. Let λ0 = (λ0
1, . . . , λ0

L)
⊤ ∈ (0, ∞)L be a vector of initial values associated with the

Aranda-Ordaz link function parameter.
2. Fit L models, one for each λ0

l , for l ∈ {1, . . . , L}.
3. Calculate the AIC for each fitted model and choose the one with the lowest value.

For this application, we considered λ0 = (0.5, 1, 3, 5)⊤.
Model selection is carried out in a similar fashion to the iterative Box and Jenkins

methodology [46]. To select the model, first we compare the AIC of the following compet-
ing models: βARλ(1), βARλ(2), βARλ(3), βMAλ(1), βMAλ(2), βMAλ(3), βARMAλ(1, 1),
βARMAλ(2, 1), βARMAλ(3, 1), βARMAλ(1, 2), βARMAλ(1, 3), βARMAλ(2, 2),
βARMAλ(3, 2), βARMAλ(2, 3), and βARMAλ(3, 3). The model selected by the AIC was a
βARMAλ(2, 1) given by:

ηt = g(µt, λ) = α + β1 sin(2πt/12) + φ2
[
g(yt−2, λ)− β1 sin(2π(t − 2)/12)

]
+ θ1rt−1.

The parameter φ1 was not significant. Table 5 presents a summary of the fitted model
with estimated parameters, standard errors, Z-statistics, and p-values, as well as AIC, BIC,
deviance, and Ljung–Box test for the residuals. We also test the null hypothesis H0 : λ = 1
(logit), rejecting the null hypothesis at the 1% significance level, indicating that the logit
function is not adequate for the data.

To carry on the residual analysis, we consider the standardized ordinary residual. The
diagnostic plots presented in Figure 3 suggest that the residuals do not exhibit any pattern
and are uncorrelated, as confirmed by the Ljung–Box test [13]. Figure 4 shows the normal
plot with simulated envelope of the residuals considering the proposed model and the
standard βARMA model with different fixed link functions. Among all competitors, the
proposed model was the only one capable of fitting the data adequately, with the residuals

http://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais/
http://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais/
http://ufsm.shinyapps.io/appBARMA/
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lying uniformly within the 95% confidence region. The plots and tests further support the
hypothesis that the model is correctly specified.
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Figure 2. Time series and related plots for the hydroelectric energy.

Table 5. Summary statistics for the fitted βARMAλ(2, 1).

Estimate Std. Error Z Statistic p-Value

α 0.616 0.249 2.478 0.013
φ2 0.445 0.109 4.090 <0.001
θ1 0.840 0.062 13.634 <0.001
β1 −0.424 0.163 2.600 0.009
λ 1.920 0.264 7.284 * <0.001
ϕ 12.482 1.073 - -

Log-likelihood = 209.941; D = 228.188
AIC = −414.301; BIC = −396.440
Ljung–Box test: p-value = 0.456

* Z-statistic calculated under H0 : λ = 1.

Figure 5a presents the time series plot of the data and the predicted values (in-
sample forecasts), while Figure 5b presents the six-step out-of-sample forecasts. In or-
der to make a comparison, we have added to the plot out-of-sample forecasts for the
fitted βARMA(2, 1) model coupled with four different link functions, namely, the fitted
Aranda-Ordaz (βARMAλ), the logit, the probit, and the cloglog. It is noteworthy that the
βARMAλ model yielded more accurate out-of-sample forecasts than the competitors.
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Figure 3. Diagnostic plots for the βARMAλ(2, 1) residuals.
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(b) βARMA(2, 1) with logit link function
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(c) βARMA(2, 1) with probit link function
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(d) βARMA(2, 1) with cloglog link function

Figure 4. Normal plot with simulated envelope for different fitted models.

Table 6 presents in-sample and out-of-sample forecasting root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) mea-
sures between observed yt and fitted µ̂t values, for all t, for the four fitted models. In addi-
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tion, we present the forecast measures by modeling the time series with smaller periods,
namely n ∈ {253, 243, 233}. We observe that the proposed βARMAλ model outperforms
the competitor models in all metrics in the in-sample case. Considering out-of-sample
forecasting, the proposed model outperforms in most cases, with lower performance only
in MAPE for the logit and probit link functions, and in RMSE for the logit link function
when considering n = 233. The usual logit link function performs better than our proposal
only in two metrics of one prediction scenario. Our proposal performs better in most
cases, and when it does not, it is still very competitive. The Aranda-Ordaz link function
with λ = 1.920 has a heavier right tail compared to the other links, which may explain its
superior forecasting performance.
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Figure 5. Observed in-sample and out-of-sample forecasts for the hydroelectric energy data.

Table 6. In-sample and out-of-sample (h = 6) forecasting measures for the βARMAλ(2, 1) model
compared to the βARMA model with other fixed links (best figures are in bold).

Link
In-Sample Out-of-Sample

RMSE MAE MAPE RMSE MAE MAPE

n = 263

Aranda-Ordaz 0.116 0.092 17.026% 0.153 0.124 36.474%
logit 0.155 0.130 24.395% 0.166 0.132 40.233%
probit 0.145 0.121 22.466% 0.167 0.134 40.676%
cloglog 0.145 0.122 22.899% 0.207 0.171 51.138%

n = 253

Aranda-Ordaz 0.116 0.093 16.871% 0.103 0.073 13.384%
logit 0.155 0.130 24.082% 0.113 0.088 15.619%
probit 0.144 0.121 22.246% 0.107 0.081 14.539%
cloglog 0.146 0.125 23.755% 0.109 0.083 15.225%

n = 243

Aranda-Ordaz 0.115 0.092 15.976% 0.183 0.157 59.158%
logit 0.152 0.129 22.349% 0.198 0.174 69.918%
probit 0.142 0.121 20.768% 0.186 0.160 64.178%
cloglog 0.142 0.121 21.130% 0.185 0.158 63.833%

n = 233

Aranda-Ordaz 0.114 0.092 15.372% 0.265 0.233 53.918%
logit 0.150 0.128 21.526% 0.263 0.239 52.931%
probit 0.140 0.119 19.820% 0.267 0.240 53.906%
cloglog 0.140 0.120 20.008% 0.268 0.241 54.016%

Moreover, besides presenting the best forecast performance, the flexibility of the
Aranda-Ordaz link allows for the proposed βARMAλ model to circumvent problems
steaming from link function misspecification, being more robust and facilitating the con-
struction of an adequate model for practitioners.
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7. Conclusions

In this work, we considered an alternative way to model bounded time series by
extending the relationship between the random component and linear predictors in the
context of βARMA models. To do that, we introduced the Aranda-Ordaz parametric
link function in place of the traditional fixed links. The parameter on the Aranda-Ordaz
link is estimated along the other βARMA parameters by partial maximum likelihood.
We discussed large sample inferences and presented a Monte Carlo simulation study
showcasing the estimator’s performance in finite sample sizes. Based on the proposed
methodology, we discussed residual analysis, hypothesis testing, and forecasting. Finally, a
real data application to the proportion of stocked hydroelectric energy in the south of Brazil
was presented, showcasing the usefulness of the proposed model, which has outperformed
the competing ones.
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Appendix A. Score Vector

The conditional score vector will be derived in this appendix. In what follows, all
equalities should be understood to hold almost surely. Let δ = (α, β⊤,φ⊤, θ⊤)⊤, we have:

U(δ) =
∂ℓ(ω)

∂δi
=

n

∑
t=m+1

∂ℓt(µt, ϕ)

∂µt

∂µt

∂ηt

∂ηt

∂δi
= ϕ

n

∑
t=m+1

(y∗t − µ∗
t )

∂µt

∂ηt

∂ηt

∂δi
.

It is easy to see that ∂µt
∂ηt

= exp(ηt)[1 + λ exp(ηt)]
− (1+λ)

λ , y∗t = log
( yt

1−yt

)
and µ∗

t =

ψ(µtϕ)− ψ[(1 − µt)ϕ], where ψ(·) = d
dx log

(
Γ(·)

)
is the digamma function. Proceeding

similarly as in [10,30], the derivatives ∂ηt
∂δi

are given by:

∂ηt

∂α
= 1 +

q

∑
j=1

θj
∂rt−j

∂α
= 1 −

q

∑
j=1

θj
∂ηt−j

∂α
,

∂ηt

∂βl
= xtl −

p

∑
i=1

φix(t−i)l −
q

∑
j=1

θj
∂ηt−j

∂βl
, l = 1, . . . , k,

∂ηt

∂φi
= g(yt−i, λ)− x⊤t−iβ −

q

∑
j=1

θj
∂ηt−j

∂φi
, i = 1, . . . , p,

∂ηt

∂θj
= g(yt−j, λ)− ηt−j −

q

∑
l=1

θl
∂ηt−l
∂θj

, j = 1, . . . , q,

where xtr is the r-th coordinate of xt. Finally:

∂ℓ(ω)

∂λ
=

n

∑
t=m+1

∂ℓt(µt, ϕ)

∂µt

∂µt

∂λ
,

http://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais/
http://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais/
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where

ρt :=
∂µt

∂λ
=

[1 + λ exp(ηt)]
− 1

λ

λ

{
1

exp(−ηt) + λ
− log[1 + λ exp(ηt)]

λ

}
.

The score vector is given by U(ω) =
(
Uα(ω), Uβ(ω)⊤, Uϕ(ω), Uφ(ω)⊤, Uθ(ω)⊤,

Uλ(ω)
)⊤, which can be compactly rewritten in matrix form as:

Uα(ω) = ϕa⊤T(y∗ − µ∗), Uβ(ω) = ϕM⊤T(y∗ − µ∗), Uφ(ω) = ϕP⊤T(y∗ − µ∗),
Uθ(ω) = ϕR⊤T(y∗ − µ∗), Uλ(ω) = ϕρ⊤(y∗ − µ∗),

Uϕ(ω) =
n

∑
t=m+1

[
µt(y∗t − µ∗

t ) + log(1 − yt)− ψ[(1 − µt)ϕ] + ψ(ϕ)
]
,

where y∗ := (y∗m+1, . . . , y∗n)⊤, µ∗ := (µ∗
m+1, . . . , µ∗

n)
⊤, a :=

(
∂ηm+1

∂α , . . . , ∂ηn
∂α

)⊤
, T :=

diag
{

∂µm+1
ηm+1

, . . . , ∂µn
∂ηn

}
, M, P, and R are (n − m) × k, (n − m) × p and (n − m) × q ma-

trices, respectively, with (i, j)-th entry given by Mi,j := ∂ηi+m
∂β j

, Pi,j := ∂ηi+m
∂φj

, Ri,j := ∂ηi+m
∂θj

and ρ := (ρm+1, . . . , ρn)⊤.

Appendix B. Information Matrix

In this appendix, we derive the cumulative conditional information matrix and all
equalities should be understood to hold almost surely. The cumulative conditional infor-
mation matrix is given by:

Kn(ω) = −
n

∑
t=m+1

E

(
∂2ℓt(µt, ϕ)

∂ω∂ω⊤

∣∣∣∣Ft−1

)
.

Let δi and δj be proxies for α, β,φ or θ. We have:

∂2ℓt(µt, ϕ)

∂δi∂δj
=

∂

∂µt

(
∂ℓt(µt, ϕ)

∂µt

∂µt

∂ηt

∂ηt

∂δj

)
∂µt

∂ηt

∂ηt

∂δi

=

[
∂2ℓt(µt, ϕ)

∂µ2
t

∂µt

∂ηt

∂ηt

∂δj
+

∂ℓt(µ, ϕ)

∂µt

∂

∂µt

(
∂µt

∂ηt

∂ηt

∂δj

)]
∂µt

∂ηt

∂ηt

∂δi
.

It is easy to show that E(∂ℓt(µt, ϕ)/∂µt|Ft−1) = 0 and E(y∗t |Ft−1) = µ∗
t . Hence:

E

(
∂2ℓt(µt, ϕ)

∂δi∂δj

∣∣∣∣Ft−1

)
= E

(
∂2ℓt(µt, ϕ)

∂µ2
t

∣∣∣∣Ft−1

)(
∂µt

∂ηt

)2 ∂ηt

∂δj

∂ηt

∂δi
,

where ∂µt/∂ηt and ∂ηt/∂δj were derived in Section 3. Observe that

∂2ℓt(µt, ϕ)

∂µ2
t

= −ϕ2{ψ′(µtϕ) + ψ′[(1 − µt)ϕ]
}

.

Upon defining vt := ϕ2{ψ′(µtϕ) + ψ′[(1 − µt)ϕ]}, we have:

E

(
∂2ℓt(µt, ϕ)

∂δi∂δj

∣∣∣∣Ft−1

)
= −vt

(
∂µt

∂ηt

)2 ∂ηt

∂δj

∂ηt

∂δi
.
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The derivative of Uϕ(ω) with respect to δi is given by:

∂2ℓt(µt, ϕ)

∂ϕ∂δi
=

∂

∂ϕ

(
∂ℓt(µt, ϕ)

∂µt

)
∂µt

∂ηt

∂ηt

∂δi
=
[
(y∗t − µ∗

t )− ct
]∂µt

∂ηt

∂ηt

∂δi
,

where ct := ϕ(∂µ∗
t /∂ϕ) = ϕ{ψ′(µtϕ)µt − ψ′[(1 − µt)ϕ](1 − µt)}. Observe further that:

E

(
∂2ℓt(µt, ϕ)

∂ϕ∂δi

∣∣∣∣Ft−1

)
= −ct

∂µt

∂ηt

∂ηt

∂δi
and E

(
∂2ℓt(µt, ϕ)

∂ϕ2

∣∣∣∣Ft−1

)
= −st,

where st := ψ′(µtϕ)µ2
t + ψ′[(1 − µt)ϕ](1 − µt)2 − ψ′(ϕ). The derivative of Uλ(ω) with

respect to λ is given by:

∂2ℓt(µt, ϕ)

∂λ2 =
∂

∂λ

(
∂ℓt(µt, ϕ)

∂µt

∂µt

∂λ

)
=

∂2ℓt(µt, ϕ)

∂µ2
t

(
∂µt

∂λ

)2
+

∂ℓt(µ, ϕ)

∂µt

∂2µt

∂λ2 .

We then arrive at:

E

(
∂2ℓt(µt, ϕ)

∂λ2

∣∣∣∣Ft−1

)
=

∂2ℓt(µt, ϕ)

∂µ2
t

(
∂µt

∂λ

)2
= −vtρ

2
t .

The derivatives with respect to λ and ϕ are given by:

E

(
∂2ℓt(µt, ϕ)

∂λ∂ϕ

∣∣∣∣Ft−1

)
= E

(
∂2ℓt(µt, ϕ)

∂µt∂ϕ

∣∣∣∣Ft−1

)
∂µt

∂λ
= −ctρt.

The derivatives with respect to δi and λ, are given by:

∂2ℓt(µt, ϕ)

∂δi∂λ
=

∂

∂λ

(
∂ℓt(µt, ϕ)

∂µt

∂µt

∂ηt

∂ηt

∂δi

)
=

∂2ℓt(µt, ϕ)

∂µ2
t

∂µt

∂λ

∂µt

∂ηt

∂ηt

∂δi
+

∂ℓt(µt, ϕ)

∂µt

∂

∂λ

(
∂µt

∂ηt

∂ηt

∂δi

)
,

and, hence:

E

(
∂2ℓt(µt, ϕ)

∂δi∂λ

∣∣∣∣Ft−1

)
= −vtρt

∂µt

∂ηt

∂ηt

∂δi
.

Let V := diag{vm+1, . . . , vn}, C := diag{cm+1, . . . , cn}, S := diag{sm+1, . . . , sn}, the
conditional cumulative information matrix can be written as:

Kn(ω) =



Kα,α Kα,β Kα,ϕ Kα,φ Kα,θ Kα,λ
Kβ,α Kβ,β Kβ,ϕ Kβ,φ Kβ,θ Kβ,λ
Kϕ,α Kϕ,β Kϕ,ϕ Kϕ,φ Kϕ,θ Kϕ,λ
Kφ,α Kφ,β Kφ,ϕ Kφ,φ Kφ,θ Kφ,λ
Kθ,α Kθ,β Kθ,ϕ Kθ,φ Kθ,θ Kθ,λ
Kλ,α Kλ,β Kλ,ϕ Kλ,φ Kλ,θ Kλ,λ


,

where Kα,α = a⊤V T2a, Kα,β = K⊤
β,α = aV T2M, Kα,ϕ = K⊤

ϕ,α = a⊤CT1, Kα,φ = K⊤
φ,α =

a⊤V T2P, Kα,θ = K⊤
θ,α = a⊤V T2R, Kα,λ = K⊤

λ,α = a⊤V Tρ, Kβ,β = M⊤V T2M, Kβ,ϕ =

K⊤
ϕ,β = M⊤CT1, Kβ,φ = K⊤

φ,β = M⊤V T2P, Kβ,θ = K⊤
θ,β = M⊤V T2R, Kβ,λ = K⊤

λ,β =

M⊤V Tρ, Kϕ,ϕ = tr(S), Kϕ,φ = K⊤
φ,ϕ = P⊤CT1, Kϕ,θ = K⊤

θ,ϕ = R⊤CT1, Kϕ,λ = K⊤
λ,ϕ = Cρ,

Kφ,φ = P⊤V T2P, Kφ,θ = K⊤
θ,φ = P⊤V T2R, Kφ,λ = K⊤

λ,φ = P⊤V Tρ, Kθ,θ = R⊤V T2R,

Kθ,λ = K⊤
λ,θ = R⊤V Tρ, and Kλ,λ = ρ⊤Vρ, with 1 denoting a (n − m) vector of ones. From
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the cumulative conditional information matrix we conclude that the model parameters are
not orthogonal, contrarily to some linear and some GARMA models [3].
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