

A non-normal topology generated by a two-point selection [☆]

S. Garcia-Ferreira ^{a,*}, A.H. Tomita ^b

^a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3, Xangari, 58089 Morelia, Michoacán, Mexico

^b Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, CEP 05315-970, São Paulo, Brazil

Received 21 November 2006; accepted 23 January 2008

Abstract

We construct a two-point selection $f: [\mathbb{P}]^2 \rightarrow \mathbb{P}$, where \mathbb{P} is the set of the irrational numbers, such that the space (\mathbb{P}, τ_f) is not normal and it is not collectionwise Hausdorff either. Here, τ_f denotes the topology generated by the two-point selection f . This example answers a question posed by V. Gutev and T. Nogura. We also show that if $f: [X]^2 \rightarrow X$ is a two-point selection such that the topology τ_f has countable pseudocharacter, then τ_f is a Tychonoff topology.

© 2008 Elsevier B.V. All rights reserved.

MSC: primary 54B20, 54D80; secondary 54G20

Keywords: Two-point selection; Non-normal space

1. Introduction

In this paper, our spaces will be Tychonoff. The symbols $d(X)$ and $\psi(X)$ will stand for the density and the pseudocharacter of a space X , respectively. If X is a set, then $[X]^2 = \{A \subseteq X: |A| = 2\}$. The Euclidian order on the real line \mathbb{R} is simply denoted by $<$.

For a space X , we let $\mathcal{F}(X)$ be the family of all nonempty closed subsets of X . If \mathcal{V} is a finite family of nonempty open subsets of X , then we define

$$\langle \mathcal{V} \rangle = \left\{ F \in \mathcal{F}(X): F \subset \bigcup \mathcal{V} \text{ and } F \cap V \neq \emptyset \text{ for each } V \in \mathcal{V} \right\}.$$

The *Vietoris topology* on $\mathcal{F}(X)$ is the topology τ_V generated by the sets of the form $\langle \mathcal{V} \rangle$, where \mathcal{V} is a finite family of nonempty open subsets of X .

In this paper, we will consider the following functions:

[☆] Research supported by CONACYT grant No. 40057-F and PAPIIT grants No. IN106103. The research leading to this paper was essentially performed while the first-listed author was visiting the Instituto de Matemática e Estatística of the University of São Paulo, during August of 2006. He would like to gratefully acknowledge the hospitality received from this institution and the financial support received from FAPESP No. 2006/52282-6.

* Corresponding author.

E-mail addresses: sgarcia@matmor.unam.mx (S. Garcia-Ferreira), tomita@ime.usp.br (A.H. Tomita).

Definition 1.1. Let X be a set. A function

$$f : [X]^2 \rightarrow X$$

is called a *two-point selection* if $f(F) \in F$, for all $F \in [X]^2$. For a topological space (X, τ) , we say that a two-point selection $f : [X]^2 \rightarrow X$ is *continuous* if it is a continuous function from the space $([X]^2, \tau_V)$ to the space (X, τ) .

Given a set X , the symbol $\text{Sel}_2(X)$ will denote the set of all two-point selections defined on X .

Following E. Michael [5], if $f \in \text{Sel}_2(X)$ is a two-point selection, then we say that $x <_f y$ if $f(\{x, y\}) = x$. Thus, every two-point selection defines an order-like relation. We write $x \leqslant_f y$ if either $x <_f y$ or $x = y$. It is evident that the relation \leqslant_f is reflexive and antisymmetric, but, in general, \leqslant_f is not transitive. As in the ordered spaces, an order-like relation defined by a two-point selection also induces a topology. Indeed, for a set X , $x \in X$ and a two-point selection $f \in \text{Sel}_2(X)$, we define

$$(-\infty, x)_f = \{y \in X : y <_f x\}$$

and

$$(x, +\infty)_f = \{y \in X : x <_f y\}.$$

For two-points $x, y \in X$, we define

$$(x, y)_f = (-\infty, y)_f \cap (x, +\infty)_f = \{z \in X : x <_f z \text{ and } z <_f y\}.$$

The topology on X generated by all open intervals $(-\infty, x)_f$ and $(x, +\infty)_f$, for $x \in X$, will be denoted by τ_f . Some topological properties of this topology are stated in the next two theorems.

Theorem 1.2. (See [2].) *If (X, τ) is a Hausdorff space and $f \in \text{Sel}_2(X)$ is a continuous two-point selection, then $\tau_f \subseteq \tau$.*

Theorem 1.3. (See [3].) *For a set X and a two-point selection $f \in \text{Sel}_2(X)$, the topology τ_f is Hausdorff and regular.*

This last result suggests the question whether or not τ_f is a Tychonoff topology on X , or maybe it could be a normal topology as V. Gutev and T. Nogura suggest in their paper [3, p. 903]. The following related question is posed in [3].

Question. If X is a set and $f \in \text{Sel}_2(X)$, must the space (X, τ_f) be collectionwise Hausdorff?

Our main purpose in this article is to define a two-point selection $f \in \text{Sel}_2(\mathbb{P})$ so that the space (\mathbb{P}, τ_f) is not collectionwise Hausdorff, and this space is also separable and contains a closed discrete subset of size \mathfrak{c} . Thus, by Jones' lemma [1, 2.1.10], the space (\mathbb{P}, τ_f) is not normal.

2. The example

For the construction of the example we will modify some ideas from the article [4]. We start our task with an easy lemma.

Lemma 2.1. *For every infinite set X there is a two-point selection $f \in \text{Sel}_2(X)$ such that τ_f is the discrete topology on X .*

Proof. Assume that $X = \bigcup_{\xi < \alpha} Z_\xi$, where $|X| = \alpha$, Z_ξ is a copy of the integers \mathbb{Z} , for all $\xi < \alpha$, and $Z_\xi \cap Z_\zeta = \emptyset$ whenever $\xi < \zeta < \alpha$. Let $x, y \in X$ and suppose that $x \in Z_\xi$ and $y \in Z_\zeta$, for some $\xi, \zeta < \alpha$. Then, we define

$$\hat{f}(\{x, y\}) = \begin{cases} x & \text{if } \xi < \zeta, \\ \min\{x, y\} & \text{if } \xi = \zeta. \end{cases}$$

It is clear that $f \in \text{Sel}_2(X)$ and τ_f is the discrete topology on X . \square

The next lemma is crucial for the construction of the two-point selection which will be done by inductive steps.

Lemma 2.2. Suppose that $A, D \subseteq \mathbb{P}$, $A \neq \emptyset$, D is dense in \mathbb{P} and $A \cap D = \emptyset$. Then, every two-point selection $g: [A]^2 \rightarrow A$ extends to a two-point selection $\hat{g}: [A \cup D]^2 \rightarrow A \cup D$ such that if $\{x_0, \dots, x_i\} \subseteq A$, $\{y_0, \dots, y_j\} \subseteq A$ and $\{x_0, \dots, x_i\} \cap \{y_0, \dots, y_j\} = \emptyset$, then

$$D \cap \left[\left(\bigcap_{l \leq i} (-\infty, x_l)_{\hat{g}} \right) \cap \left(\bigcap_{l \leq j} (y_l, +\infty)_{\hat{g}} \right) \right] \neq \emptyset.$$

Proof. Let \mathcal{B} be a countable base for \mathbb{P} consisting of bounded clopen nonempty subsets. Put

$$\mathcal{F} = \{F: F \text{ is a function which takes values on } \{0, 1\}, \text{dom}(F) \in [\mathcal{B}]^{<\omega} \text{ and the elements of } \text{dom}(F) \text{ are pairwise disjoint}\}.$$

Enumerate \mathcal{F} as $\{F_n: n \in \mathbb{N}\}$ and let $(k_n)_{n \in \mathbb{N}}$ be an increasing sequence of natural numbers such that $\bigcup \text{dom}(F_n) \subseteq (-\infty, k_n)$, for each $n \in \mathbb{N}$. Now, we proceed to extend the two-point selection g to a two-point selection $\hat{g}: [A \cup D]^2 \rightarrow A \cup D$. To do that we fix $x, y \in A \cup D$ and consider the following four cases:

Case I. $x, y \in A$. Then, we define $\hat{g}(\{x, y\}) = g(\{x, y\})$.

Case II. $x, y \in D$. So, we let $\hat{g}(\{x, y\}) = x$ provided that $x < y$.

Case III. $x \in A, y \in D$ and there is $n \in \mathbb{N}$ such that $x \in B$, for some $B \in \text{dom}(F_n)$, and $y \in [k_n, k_{n+1})$. Then, in this case, we define $\hat{g}(\{x, y\}) = x$ if $F_n(B) = 0$, and $\hat{g}(\{x, y\}) = y$ if $F_n(B) = 1$.

Case IV. $x \in A, y \in D$ and Case III does not hold. Then, we set $\hat{g}(\{x, y\}) = x$.

Assume that $\{x_0, \dots, x_i\} \subseteq A$, $\{y_0, \dots, y_j\} \subseteq A$, and $\{x_0, \dots, x_i\} \cap \{y_0, \dots, y_j\} = \emptyset$. Choose $\{B_l: l \leq i+j\} \subseteq \mathcal{B}$ such that:

- (1) $B_l \cap B_m = \emptyset$ whenever $l < m \leq i+j$.
- (2) $|B_l \cap \{x_0, \dots, x_i, y_0, \dots, y_j\}| = 1$, for all $l \leq i+j$.

Now, we define $F: \{B_l: l \leq i+j\} \rightarrow \{0, 1\}$ by $F(B_l) = 1$ if $B_l \cap \{x_0, \dots, x_i\} \neq \emptyset$ and $F(B_l) = 0$ if $B_l \cap \{y_0, \dots, y_j\} \neq \emptyset$, for every $l \leq i+j$. Let $n \in \mathbb{N}$ be such that $F = F_n$. Choose $d \in (k_n, k_{n+1}]$. By definition, we have that $\hat{g}(\{x_l, d\}) = d$, for all $l \leq i$ and $\hat{g}(\{y_l, d\}) = y_l$, for all $l \leq j$. Thus, $d \in (\bigcap_{l \leq i} (-\infty, x_l)_{\hat{g}}) \cap (\bigcap_{l \leq j} (y_l, +\infty)_{\hat{g}})$. This shows the lemma. \square

Example 2.3. There is a two-point selection $f \in \text{Sel}_2(\mathbb{P})$ such that the space (\mathbb{P}, τ_f) is not normal.

Proof. Write \mathbb{P} as a disjoint union $A \cup (\bigcup_{n \in \mathbb{N}} C_n) \cup (\bigcup_{n \in \mathbb{N}} D_n)$ where C_n and D_n are countable dense subsets of \mathbb{P} , for each $n \in \mathbb{N}$. Observe that A has size \mathfrak{c} . Let $g: [A]^2 \rightarrow A$ be a two-point selection such that the space (A, τ_g) is discrete (this is possible by Lemma 2.1). We shall extend g to a two-point selection $f: [\mathbb{P}]^2 \rightarrow \mathbb{P}$ by transfinite induction. First, we define $f(\{x, y\}) = x$ whenever $x \in A$ and $y \in C_0$ and $f(\{x, y\}) = x$ if $x < y$ and $x, y \in C_0$. We extend f to $[A \cup C_0 \cup D_0]^2$ as in Lemma 2.2 by replacing A by $A \cup C_0$ and D by D_0 . Suppose that f has been defined on $[A \cup (\bigcup_{i < n} C_i) \cup (\bigcup_{i < n} D_i)]^2$, for some $0 < n \in \mathbb{N}$. Take $x, y \in A \cup (\bigcup_{i \leq n} C_i) \cup (\bigcup_{i \leq n} D_i)$. We have to consider four possible cases.

Case I. $x \in A \cup (\bigcup_{i < n} C_i) \cup (\bigcup_{i < n} D_i)$ and $y \in C_n$. Then, we define $f(\{x, y\}) = x$.

Case II. $x \in D_{n-1}$ and $y \in C_n$. Then, we define $f(\{x, y\}) = x$ if and only if $x < y$.

Case III. $x, y \in C_n$. In this case, we put $f(\{x, y\}) = x$ if $x < y$.

Case IV. For the points which lie in D_n , we proceed to extend the two-point selection

$$f: \left[A \cup \left(\bigcup_{i \leq n} C_i \right) \cup \left(\bigcup_{i < n} D_i \right) \right]^2 \rightarrow A \cup \left(\bigcup_{i \leq n} C_i \right) \cup \left(\bigcup_{i < n} D_i \right)$$

to the set

$$\left[A \cup \left(\bigcup_{i \leq n} C_i \right) \cup \left(\bigcup_{i \leq n} D_i \right) \right]^2$$

as it is indicated in Lemma 2.2 by replacing A by $A \cup (\bigcup_{i \leq n} C_i) \cup (\bigcup_{i < n} D_i)$ and putting $D = D_n$.

Thus, g has been extended to a two-point selection $f \in Sel_2(\mathbb{P})$. Let us see that our two-point selection f satisfies the required conditions.

Claim 1. *A is a closed discrete subset of (\mathbb{P}, τ_f) .*

Proof. Since (A, τ_g) is discrete and f is an extension of g , then A is a discrete subset of (\mathbb{P}, τ_f) . Take $x \in \mathbb{P} \setminus A$. Then, there is $n \in \mathbb{N}$ such that $x \in C_n \cup D_n$. If $x \in C_n$, then choose $a, b \in C_n$ so that $a < x < b$. From the definition we can easily see that $x \in (a, b)_f$ and $A \cap (a, b)_f = \emptyset$. Assume that $x \in D_n$. It is then possible to choose $a, b \in C_{n+1}$ so that $a < x < b$. By the second case, we obtain that $x \in (a, b)_f$ and, by construction, $A \cap (a, b)_f = \emptyset$. \square

Claim 2. *$\bigcup_{n \in \mathbb{N}} D_n$ is a dense subset of (\mathbb{P}, τ_f) .*

Proof. Let $\{x_0, \dots, x_i\} \subseteq \mathbb{P}$ and $\{y_0, \dots, y_j\} \subseteq \mathbb{P}$ be such that $\{x_0, \dots, x_i\} \cap \{y_0, \dots, y_j\} = \emptyset$. Then, we can find $m \in \mathbb{N}$ such that

$$\{x_0, \dots, x_i\} \cup \{y_0, \dots, y_j\} \subseteq A \cup \left(\bigcup_{n \leq m} C_n \right) \cup \left(\bigcup_{n < m} D_n \right).$$

According to the construction based on Lemma 2.2, there exists $d \in D_m$ such that

$$d \in \left(\bigcap_{l \leq i} (-\infty, x_l)_{\hat{g}} \right) \cap \left(\bigcap_{l \leq j} (y_l, +\infty)_{\hat{g}} \right).$$

By construction, $\bigcup_{n \in \mathbb{N}} D_n$ is a dense subset of the space (\mathbb{P}, τ_f) . Hence, (\mathbb{P}, τ_f) is separable and since A is a closed discrete subset of (\mathbb{P}, τ_f) of size c , by Jones' lemma, we obtain that the space (\mathbb{P}, τ_f) cannot be normal. \square

Observe that the space (\mathbb{P}, τ_f) from the previous example contains a discrete subset inside of A whose points cannot be separated by pairwise disjoint open subsets. This answers Question 1 from [3] in the negative.

Let τ be the Euclidian topology on \mathbb{P} . If the two-point selection $f : ([\mathbb{P}]^2, \tau_V) \rightarrow (\mathbb{P}, \tau)$ is continuous, by Theorem 1.2, then we know that $\tau_f \subseteq \tau$. Hence, (\mathbb{P}, τ_f) is a Lindelöf topology and so it is normal. Thus, the two-point selection defined in Example 2.3 cannot be continuous.

Theorem 1.3 asserts that the topology τ_f is always Hausdorff and regular, for every $f \in Sel_2(X)$. This suggests the following question.

Question 2.4. Are there a set X and a two-point selection $f \in Sel_2(X)$ such that the space (X, τ_f) is not Tychonoff?

The authors were unable to answer this question, but if there is a non-Tychonoff example, it should have uncountable pseudocharacter and be non-separable.

Theorem 2.5. *If $f \in Sel_2(X)$ satisfies that the topology τ_f has countable pseudocharacter, then τ_f is a Tychonoff topology.*

Proof. Let $x \in X$ and let $F \subseteq X$ be a τ_f -closed subset of X such that $x \notin F$. Then, choose points $a_0, \dots, a_n, b_0, \dots, b_k \in X$ so that the open set $U = \bigcap_{i \leq n} (a_i, +\infty)_f \cap \bigcap_{j \leq k} (-\infty, b_j)_f$ satisfies that $x \in U \subseteq X \setminus F$. Since the topology τ_f has countable pseudocharacter, we can find a countable subset C of X such that:

- (1) $\{x, a_0, \dots, a_n, b_0, \dots, b_k\} \subseteq C$,
- (2) for each $c \in C$, $\{c\} = (\bigcap_{C \ni a <_f c} (a, +\infty)_f) \cap (\bigcap_{c <_f b \in C} (-\infty, b)_f)$, and
- (3) for each pair of distinct points $c, d \in C$, if $(c, d)_f \neq \emptyset$ then $(c, d)_f \cap C \neq \emptyset$.

Let τ be the topology on X generated by the half intervals $\{(-\infty, a)_f : a \in C\}$ and $\{(b, +\infty)_f : b \in C\}$. We shall show that τ is a normal topology. For the proof of it, we need two preliminary results:

Claim 1. *If $c \in C$ and $d \in X$ satisfy that $(c, d)_f = \emptyset = (d, c)_f$, then $d \in C$.*

Proof. By the choice of C , there exists $e \in C$ such that either

- (a) $c \in (-\infty, e)_f$ and $d \notin (-\infty, e)_f$, or
- (b) $c \in (e, +\infty)_f$ and $d \notin (e, +\infty)_f$.

If (a) holds, then $c <_f e$ and either $e = d$ or $e <_f d$. Since $(c, d)_f = \emptyset$, we must have that $d = e \in C$.

If (b) holds, then $e <_f c$ and either $e = d$ or $d <_f e$. As $(d, c)_f = \emptyset$, then $d = e \in C$. \square

Claim 2. Let $c \in C$. For each $y \in (c, +\infty)_f$ there exists a τ -neighborhood V of y such that $y \in V \subseteq cl_\tau(V) \subseteq (c, +\infty)_f$.

Proof. Let $c \in C$ and $y \in (c, +\infty)_f$. The proof will be divided in two cases:

Case I. The open intervals $(c, y)_f$ and $(y, c)_f$ are empty. By Claim 1, we know that $y \in C$ and then, as in the proof of the regularity of τ_f in [3, Lemma 2.2], the interval $(c, +\infty)_f$ is clopen.

Case II. $(c, y)_f \cup (y, c)_f \neq \emptyset$. Without loss of generality, we assume that $(y, c)_f$ is not empty.

If $y \notin C$, then there exists $d \in C \setminus \{y\}$ such that either

- (a) $c \in (d, +\infty)_f$ and $y \notin (d, +\infty)_f$ or
- (b) $c \in (-\infty, d)_f$ and $y \notin (-\infty, d)_f$.

If (a) holds, then $y \in (-\infty, d)_f$ and then

$$y \in (c, +\infty)_f \cap (-\infty, d)_f \subseteq [c, +\infty)_f \cap (-\infty, d]_f \subset (c, +\infty)_f.$$

If (b) holds, then $y \in (d, +\infty)_f$. So,

$$y \in (c, +\infty)_f \cap (d, +\infty)_f \subset [c, +\infty)_f \cap [d, +\infty)_f \subset (c, +\infty)_f.$$

If $y \in C$, then there exists $d \in C$ such that $d \in (y, c)_f$. Then, $c \in (d, +\infty)_f$. Thus,

$$y \in (c, +\infty)_f \cap (-\infty, d)_f \subset [c, +\infty)_f \cap (-\infty, d]_f \subset (c, +\infty)_f. \quad \square$$

Claim 3. Let $c \in C$. For each $y \in (-\infty, c)_f$ there exists a τ -neighborhood V of y such that $y \in V \subseteq Cl_\tau(V) \subseteq (-\infty, c)_f$.

The proof of this claim is completely similar to the one of Claim 2.

It is evident that Claims 2 and 3 guarantee that the topology τ is regular (this topology is not necessarily T_1). Since τ is second countable, we obtain that the topology τ is normal. From the definition of C we can see that $U \in \tau$. Thus, by the regularity of τ , we can find $W \in \tau$ such that $x \in W$ and $cl_\tau(W) \subseteq U$. By Urysohn's lemma, there is a τ -continuous function $g : X \rightarrow [0, 1]$ such that $g(y) = 1$, for all $y \in cl_\tau(W)$, and $g(y) = 0$, for each $y \in X \setminus U$. Observe that $F \subseteq X \setminus U$ and g is τ_f continuous. Therefore, x and F are separated by a τ_f -continuous function. This shows that the topology τ_f is Tychonoff. \square

Theorem 2.6. If $f \in Sel_2(X)$, then $\psi(X, \tau_f) \leq d(X, \tau_f)$.

Proof. Fix $x \in X$. If x is an isolated point, we are done. Suppose that x is not isolated and let D be a τ_f -dense subset of X such that $x \notin D$ and $|D| = d(X, \tau_f)$. We shall consider two cases:

Case I. Assume that there exists $z \in X$ such that $(x, z)_f = \emptyset = (z, x)_f$. In this case, we claim that

$$\{x\} = (X \setminus \{z\}) \cap \left(\bigcap_{D \ni d <_f x} (d, +\infty)_f \right) \cap \left(\bigcap_{x <_f d \in D} (-\infty, d)_f \right).$$

To establish this equality we will prove that either $(x, y)_f \neq \emptyset$ or $(y, x)_f \neq \emptyset$ for each $y \in X \setminus \{x, z\}$. Indeed, let $y \in X \setminus \{x, z\}$.

First, let us suppose that $x <_f z$. If $x <_f y$, then it follows from $(x, z)_f = \emptyset$ that $z <_f y$. Thus, $z \in (x, y)_f$. If $y <_f x$ then $x \in (y, z)_f$. Choose $d \in D \cap (y, z)_f$. Since $(x, z)_f = \emptyset$, we must have that $y <_f d <_f x$.

Now, assume that $z <_f x$. If $x <_f y$, then $x \in (z, y)_f$. Pick $d \in D \cap (z, y)_f$. From $(z, x)_f = \emptyset$ we obtain that $x <_f d <_f y$. If $y <_f x$, then $y <_f z$ and hence $z \in (y, x)_f$.

Hence, we deduce that

$$\left(\bigcap_{D \ni d <_f x} (d, +\infty)_f \right) \cap \left(\bigcap_{x <_f d \in D} (-\infty, d)_f \right) \subseteq \{x, z\}.$$

This proves the claim.

Case II. For each $y \in X \setminus \{x\}$, $(x, y)_f \cup (y, x)_f \neq \emptyset$. It then follows that

$$\{x\} = \left(\bigcap_{D \ni d <_f x} (d, +\infty)_f \right) \cap \left(\bigcap_{x <_f d \in D} (-\infty, d)_f \right). \quad \square$$

The next corollary follows directly from Theorems 2.5 and 2.6.

Corollary 2.7. *If $f \in Sel_2(X)$ is a two-point selection such that τ_f is separable, then τ_f is a Tychonoff topology.*

Let X be a set and let $f \in Sel_2(X)$. Suppose that $\{x_n: n \in \mathbb{N}\} \subseteq (-\infty, x)_f$ and $\{y_n: n \in \mathbb{N}\} \subseteq (x, +\infty)_f$ satisfy that $x \in cl_{\tau_f}(\{x_n: n \in \mathbb{N}\}) \cap cl_{\tau_f}(\{y_n: n \in \mathbb{N}\})$. Then, $\psi(x, \tau_f) = \omega$. Indeed, we claim that

$$\{x\} = \left(\bigcap_{n \in \mathbb{N}} (x_n, +\infty)_f \right) \cap \left(\bigcap_{n \in \mathbb{N}} (-\infty, y_n)_f \right).$$

Let $y \in X \setminus \{x\}$. If $x <_f y$, then there is $m \in \mathbb{N}$ such that $y_m \in (x, y)_f$ and then $y \notin (-\infty, y_m)_f$. If $y <_f x$, then we can find $m \in \mathbb{N}$ so that $x_m \in (y, x)_f$ and hence $y \notin (x_m, +\infty)_f$. From these observations and Theorems 2.5 and 2.6 we can establish the following corollary.

Corollary 2.8. *If $f \in Sel_2(X)$ is a two-point selection such that τ_f is sequential, then τ_f is a Tychonoff topology.*

Recall that a space X is said to be *functionally Hausdorff* if whenever for two distinct points $x, y \in X$ there is a continuous function $f: X \rightarrow \mathbb{R}$ such that $f(x) = 0$ and $f(y) = 1$.

Question 2.9. Are there a set X and a two-point selection $f \in Sel_2(X)$ such that the space (X, τ_f) is functionally Hausdorff and it is not Tychonoff?

Question 2.10. Are there a set X and a two-point selection $f \in Sel_2(X)$ such that every real-valued continuous function on (X, τ_f) is constant?

Acknowledgement

We are grateful to the referee for correcting some typos.

References

- [1] R. Engelking, General Topology, Sigma Ser. Pure Math., vol. 6, Heldermann, 1989.
- [2] V. Gutev, T. Nogura, Selections and order-like relations, *Appl. Gen. Topol.* 2 (2001) 205–218.
- [3] V. Gutev, T. Nogura, A topology generated by selections, *Topology Appl.* 153 (2005) 900–911.
- [4] V. Gutev, A.H. Tomita, Selections generating new topologies, *Publ. Mat.* 51 (1) (2007) 3–15.
- [5] E. Michael, Topologies on spaces of subsets, *Trans. Amer. Math. Soc.* 71 (1951) 152–182.