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Abstract

We construct a two-point selection f : [P]2 → P, where P is the set of the irrational numbers, such that the space (P, τf ) is not
normal and it is not collectionwise Hausdorff either. Here, τf denotes the topology generated by the two-point selection f . This

example answers a question posed by V. Gutev and T. Nogura. We also show that if f : [X]2 → X is a two-point selection such that
the topology τf has countable pseudocharacter, then τf is a Tychonoff topology.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, our spaces will be Tychonoff. The symbols d(X) and ψ(X) will stand for the density and the
pseudocharacter of a space X, respectively. If X is a set, then [X]2 = {A ⊆ X: |A| = 2}. The Euclidian order on
the real line R is simply denoted by <.

For a space X, we let F(X) be the family of all nonempty closed subsets of X. If V is a finite family of nonempty
open subsets of X, then we define

〈V〉 =
{
F ∈ F(X): F ⊂

⋃
V and F ∩ V 
= ∅ for each V ∈ V

}
.

The Vietoris topology on F(X) is the topology τV generated by the sets of the form 〈V〉, where V is a finite family of
nonempty open subsets of X.

In this paper, we will consider the following functions:
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Definition 1.1. Let X be a set. A function

f : [X]2 → X

is called a two-point selection if f (F ) ∈ F , for all F ∈ [X]2. For a topological space (X, τ), we say that a two-point
selection f : [X]2 → X is continuous if it is a continuous function from the space ([X]2, τV ) to the space (X, τ).

Given a set X, the symbol Sel2(X) will denote the set of all two-point selections defined on X.
Following E. Michael [5], if f ∈ Sel2(X) is a two-point selection, then we say that x <f y if f ({x, y}) = x. Thus,

every two-point selection defines an order-like relation. We write x �f y if either x <f y or x = y. It is evident
that the relation �f is reflexive and antisymmetric, but, in general, �f is not transitive. As in the ordered spaces, an
order-like relation defined by a two-point selection also induces a topology. Indeed, for a set X, x ∈ X and a two-point
selection f ∈ Sel2(X), we define

(−∞, x)f = {y ∈ X: y <f x}
and

(x,+∞)f = {y ∈ X: x <f y}.
For two-points x, y ∈ X, we define

(x, y)f = (−∞, y)f ∩ (x,+∞)f = {z ∈ X: x <f z and z <f y}.
The topology on X generated by all open intervals (−∞, x)f and (x,+∞)f , for x ∈ X, will be denoted by τf . Some
topological properties of this topology are stated in the next two theorems.

Theorem 1.2. (See [2].) If (X, τ) is a Hausdorff space and f ∈ Sel2(X) is a continuous two-point selection, then
τf ⊆ τ .

Theorem 1.3. (See [3].) For a set X and a two-point selection f ∈ Sel2(X), the topology τf is Hausdorff and regular.

This last result suggests the question whether or not τf is a Tychonoff topology on X, or maybe it could be a
normal topology as V. Gutev and T. Nogura suggest in their paper [3, p. 903]. The following related question is posed
in [3].

Question. If X is a set and f ∈ Sel2(X), must the space (X, τf ) be collectionwise Hausdorff?

Our main purpose in this article is to define a two-point selection f ∈ Sel2(P) so that the space (P, τf ) is not
collectionwise Hausdorff, and this space is also separable and contains a closed discrete subset of size c. Thus, by
Jones’ lemma [1, 2.1.10], the space (P, τf ) is not normal.

2. The example

For the construction of the example we will modify some ideas from the article [4]. We start our task with an easy
lemma.

Lemma 2.1. For every infinite set X there is a two-point selection f ∈ Sel2(X) such that τf is the discrete topology
on X.

Proof. Assume that X = ⋃
ξ<α Zξ , where |X| = α, Zξ is a copy of the integers Z, for all ξ < α, and Zξ ∩ Zζ = ∅

whenever ξ < ζ < α. Let x, y ∈ X and suppose that x ∈ Zξ and y ∈ Zζ , for some ξ, ζ < α. Then, we define

f̂
({x, y}) =

{
x if ξ < ζ,

min{x, y} if ξ = ζ.

It is clear that f ∈ Sel2(X) and τf is the discrete topology on X. �
The next lemma is crucial for the construction of the two-point selection which will be done by inductive steps.
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Lemma 2.2. Suppose that A,D ⊆ P, A 
= ∅, D is dense in P and A ∩ D = ∅. Then, every two-point selection
g : [A]2 → A extends to a two-point selection ĝ : [A ∪ D]2 → A ∪ D such that if {x0, . . . , xi} ⊆ A, {y0, . . . , yj } ⊆ A

and {x0, . . . , xi} ∩ {y0, . . . , yj } = ∅, then

D ∩
[(⋂

l�i

(−∞, xl)ĝ

)
∩

( ⋂
l�j

(yl,+∞)ĝ

)]

= ∅.

Proof. Let B be a countable base for P consisting of bounded clopen nonempty subsets. Put

F = {
F : F is a function which takes values on {0,1},dom(F ) ∈ [B]<ω

and the elements of dom(F ) are pairwise disjoint
}
.

Enumerate F as {Fn: n ∈ N} and let (kn)n∈N be an increasing sequence of natural numbers such that
⋃

dom(Fn) ⊆
(−∞, kn), for each n ∈ N. Now, we proceed to extend the two-point selection g to a two-point selection ĝ : [A∪D]2 →
A ∪ D. To do that we fix x, y ∈ A ∪ D and consider the following four cases:

Case I. x, y ∈ A. Then, we define ĝ({x, y}) = g({x, y}).
Case II. x, y ∈ D. So, we let ĝ({x, y}) = x provided that x < y.
Case III. x ∈ A, y ∈ D and there is n ∈ N such that x ∈ B , for some B ∈ dom(Fn), and y ∈ [kn, kn+1). Then, in this

case, we define ĝ({x, y}) = x if Fn(B) = 0, and ĝ({x, y}) = y if Fn(B) = 1.
Case IV. x ∈ A, y ∈ D and Case III does not hold. Then, we set ĝ({x, y}) = x.

Assume that {x0, . . . , xi} ⊆ A, {y0, . . . , yj } ⊆ A, and {x0, . . . , xi} ∩ {y0, . . . , yj } = ∅. Choose {Bl : l � i + j} ⊆ B
such that:

(1) Bl ∩ Bm = ∅ whenever l < m � i + j .
(2) |Bl ∩ {x0, . . . , xi, y0, . . . , yj }| = 1, for all l � i + j .

Now, we define F : {Bl : l � i + j} → {0,1} by F(Bl) = 1 if Bl ∩ {x0, . . . , xi} 
= ∅ and F(Bl) = 0 if Bl ∩ {y0, . . . ,

yj } 
= ∅, for every l � i + j . Let n ∈ N be such that F = Fn. Choose d ∈ (kn, kn+1]. By definition, we have that
ĝ({xl, d}) = d , for all l � i and ĝ({yl, d}) = yl , for all l � j . Thus, d ∈ (

⋂
l�i (−∞, xl)ĝ) ∩ (

⋂
l�j (yl,+∞)ĝ). This

shows the lemma. �
Example 2.3. There is a two-point selection f ∈ Sel2(P) such that the space (P, τf ) is not normal.

Proof. Write P as a disjoint union A ∪ (
⋃

n∈N
Cn) ∪ (

⋃
n∈N

Dn) where Cn and Dn are countable dense subsets of P,
for each n ∈ N. Observe that A has size c. Let g : [A]2 → A be a two-point selection such that the space (A, τg)

is discrete (this is possible by Lemma 2.1). We shall extend g to a two-point selection f : [P]2 → P by transfinite
induction. First, we define f ({x, y}) = x whenever x ∈ A and y ∈ C0 and f ({x, y}) = x if x < y and x, y ∈ C0. We
extend f to [A∪C0 ∪D0]2 as in Lemma 2.2 by replacing A by A∪C0 and D by D0. Suppose that f has been defined
on [A∪ (

⋃
i<n Ci)∪ (

⋃
i<n Di)]2, for some 0 < n ∈ N. Take x, y ∈ A∪ (

⋃
i�n Ci)∪ (

⋃
i�n Di). We have to consider

four possible cases.

Case I. x ∈ A ∪ (
⋃

i<n Ci) ∪ (
⋃

i<n−1 Di) and y ∈ Cn. Then, we define f ({x, y}) = x.
Case II. x ∈ Dn−1 and y ∈ Cn. Then, we define f ({x, y}) = x if and only if x < y.
Case III. x, y ∈ Cn. In this case, we put f ({x, y}) = x if x < y.
Case IV. For the points which lie in Dn, we proceed to extend the two-point selection

f :

[
A ∪

( ⋃
i�n

Ci

)
∪

( ⋃
i<n

Di

)]2

→ A ∪
( ⋃

i<n

Ci

)
∪

( ⋃
i<n

Di

)

to the set[
A ∪

( ⋃
i�n

Ci

)
∪

( ⋃
i�n

Di

)]2

as it is indicated in Lemma 2.2 by replacing A by A ∪ (
⋃

i�n Ci) ∪ (
⋃

i<n Di) and putting D = Dn.
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Thus, g has been extended to a two-point selection f ∈ Sel2(P). Let us see that our two-point selection f satisfies
the required conditions.

Claim 1. A is a closed discrete subset of (P, τf ).

Proof. Since (A, τg) is discrete and f is an extension of g, then A is a discrete subset of (P, τf ). Take x ∈ P \ A.
Then, there is n ∈ N such that x ∈ Cn ∪ Dn. If x ∈ Cn, then choose a, b ∈ Cn so that a < x < b. From the definition
we can easily see that x ∈ (a, b)f and A ∩ (a, b)f = ∅. Assume that x ∈ Dn. It is then possible to choose a, b ∈ Cn+1
so that a < x < b. By the second case, we obtain that x ∈ (a, b)f and, by construction, A ∩ (a, b)f = ∅. �
Claim 2.

⋃
n∈N

Dn is a dense subset of (P, τf ).

Proof. Let {x0, . . . , xi} ⊆ P and {y0, . . . , yj } ⊆ P be such that {x0, . . . , xi} ∩ {y0, . . . , yj } = ∅. Then, we can find
m ∈ N such that

{x0, . . . , xi} ∪ {y0, . . . , yj } ⊆ A ∪
( ⋃

n�m

Cn

)
∪

( ⋃
n<m

Dn

)
.

According to the construction based on Lemma 2.2, there exists d ∈ Dm such that

d ∈
(⋂

l�i

(−∞, xl)ĝ

)
∩

( ⋂
l�j

(yl,+∞)ĝ

)
.

By construction,
⋃

n∈N
Dn is a dense subset of the space (P, τf ). Hence, (P, τf ) is separable and since A is a

closed discrete subset of (P, τf ) of size c, by Jones’ lemma, we obtain that the space (P, τf ) cannot be normal. �
Observe that the space (P, τf ) from the previous example contains a discrete subset inside of A whose points

cannot be separated by pairwise disjoint open subsets. This answers Question 1 from [3] in the negative.
Let τ be the Euclidian topology on P. If the two-point selection f : ([P]2, τV ) → (P, τ ) is continuous, by Theo-

rem 1.2, then we know that τf ⊆ τ . Hence, (P, τf ) is a Lindelöf topology and so it is normal. Thus, the two-point
selection defined in Example 2.3 cannot be continuous.

Theorem 1.3 asserts that the topology τf is always Hausdorff and regular, for every f ∈ Sel2(X). This suggests the
following question.

Question 2.4. Are there a set X and a two-point selection f ∈ Sel2(X) such that the space (X, τf ) is not Tychonoff?

The authors were unable to answer this question, but if there is a non-Tychonoff example, it should have uncount-
able pseudocharacter and be non-separable.

Theorem 2.5. If f ∈ Sel2(X) satisfies that the topology τf has countable pseudocharacter, then τf is a Tychonoff
topology.

Proof. Let x ∈ X and let F ⊆ X be a τf -closed subset of X such that x /∈ F . Then, choose points a0, . . . , an, b0, . . . ,

bk ∈ X so that the open set U = ⋂
i�n(ai,+∞)f ∩ ⋂

j�k(−∞, bj )f satisfies that x ∈ U ⊆ X \ F . Since the topo-
logy τf has countable pseudocharacter, we can find a countable subset C of X such that:

(1) {x, a0, . . . , an, b0, . . . , bk} ⊆ C,
(2) for each c ∈ C, {c} = (

⋂
C�a<f c(a,+∞)f ) ∩ (

⋂
c<f b∈C(−∞, b)f ), and

(3) for each pair of distinct points c, d ∈ C, if (c, d)f 
= ∅ then (c, d)f ∩ C 
= ∅.

Let τ be the topology on X generated by the half intervals {(−∞, a)f : a ∈ C} and {(b,+∞)f : b ∈ C}. We shall
show that τ is a normal topology. For the proof of it, we need two preliminary results:

Claim 1. If c ∈ C and d ∈ X satisfy that (c, d)f = ∅ = (d, c)f , then d ∈ C.



S. Garcia-Ferreira, A.H. Tomita / Topology and its Applications 155 (2008) 1105–1110 1109
Proof. By the choice of C, there exists e ∈ C such that either

(a) c ∈ (−∞, e)f and d /∈ (−∞, e)f , or
(b) c ∈ (e,+∞)f and d /∈ (e,+∞)f .

If (a) holds, then c <f e and either e = d or e <f d . Since (c, d)f = ∅, we must have that d = e ∈ C.
If (b) holds, then e <f c and either e = d or d <f e. As (d, c)f = ∅, then d = e ∈ C. �

Claim 2. Let c ∈ C. For each y ∈ (c,+∞)f there exists a τ -neighborhood V of y such that y ∈ V ⊆ clτ (V ) ⊆
(c,+∞)f .

Proof. Let c ∈ C and y ∈ (c,+∞)f . The proof will be divided in two cases:

Case I. The open intervals (c, y)f and (y, c)f are empty. By Claim 1, we know that y ∈ C and then, as in the proof
of the regularity of τf in [3, Lemma 2.2], the interval (c,+∞)f is clopen.

Case II. (c, y)f ∪ (y, c)f 
= ∅. Without loss of generality, we assume that (y, c)f is not empty.

If y /∈ C, then there exists d ∈ C \ {y} such that either

(a) c ∈ (d,+∞)f and y /∈ (d,+∞)f or
(b) c ∈ (−∞, d)f and y /∈ (−∞, d)f .

If (a) holds, then y ∈ (−∞, d)f and then

y ∈ (c,+∞)f ∩ (−∞, d)f ⊆ [c,+∞)f ∩ (−∞, d]f ⊂ (c,+∞)f .

If (b) holds, then y ∈ (d,+∞)f . So,

y ∈ (c,+∞)f ∩ (d,+∞)f ⊂ [c,+∞)f ∩ [d,+∞)f ⊂ (c,+∞)f .

If y ∈ C, then there exists d ∈ C such that d ∈ (y, c)f . Then, c ∈ (d,+∞)f . Thus,

y ∈ (c,+∞)f ∩ (−∞, d)f ⊂ [c,+∞)f ∩ (−∞, d]f ⊂ (c,+∞)f . �
Claim 3. Let c ∈ C. For each y ∈ (−∞, c)f there exists a τ -neighborhood V of y such that y ∈ V ⊆ Clτ (V ) ⊆
(−∞, c)f .

The proof of this claim is completely similar to the one of Claim 2.
It is evident that Claims 2 and 3 guarantee that the topology τ is regular (this topology is not necessarily T1). Since

τ is second countable, we obtain that the topology τ is normal. From the definition of C we can see that U ∈ τ .
Thus, by the regularity of τ , we can find W ∈ τ such that x ∈ W and clτ (W) ⊆ U . By Urysohn’s lemma, there is
a τ -continuous function g :X → [0,1] such that g(y) = 1, for all y ∈ clτ (W), and g(y) = 0, for each y ∈ X \ U .
Observe that F ⊆ X \ U and g is τf continuous. Therefore, x and F are separated by a τf -continuous function. This
shows that the topology τf is Tychonoff. �
Theorem 2.6. If f ∈ Sel2(X), then ψ(X, τf ) � d(X, τf ).

Proof. Fix x ∈ X. If x is an isolated point, we are done. Suppose that x is not isolated and let D be a τf -dense subset
of X such that x /∈ D and |D| = d(X, τf ). We shall consider two cases:

Case I. Assume that there exists z ∈ X such that (x, z)f = ∅ = (z, x)f . In this case, we claim that

{x} = (
X \ {z}) ∩

( ⋂
D�d<f x

(d,+∞)f

)
∩

( ⋂
x<f d∈D

(−∞, d)f

)
.

To establish this equality we will prove that either (x, y)f 
= ∅ or (y, x)f 
= ∅ for each y ∈ X \ {x, z}. Indeed, let
y ∈ X \ {x, z}.
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First, let us suppose that x <f z. If x <f y, then it follows from (x, z)f = ∅ that z <f y. Thus, z ∈ (x, y)f . If
y <f x then x ∈ (y, z)f . Choose d ∈ D ∩ (y, z)f . Since (x, z)f = ∅, we must have that y <f d <f x.

Now, assume that z <f x. If x <f y, then x ∈ (z, y)f . Pick d ∈ D ∩ (z, y)f . From (z, x)f = ∅ we obtain that
x <f d <f y. If y <f x, then y <f z and hence z ∈ (y, x)f .

Hence, we deduce that( ⋂
D�d<f x

(d,+∞)f

)
∩

( ⋂
x<f d∈D

(−∞, d)f

)
⊆ {x, z}.

This proves the claim.
Case II. For each y ∈ X \ {x}, (x, y)f ∪ (y, x)f 
= ∅. It then follows that

{x} =
( ⋂

D�d<f x

(d,+∞)f

)
∩

( ⋂
x<f d∈D

(−∞, d)f

)
. �

The next corollary follows directly from Theorems 2.5 and 2.6.

Corollary 2.7. If f ∈ Sel2(X) is a two-point selection such that τf is separable, then τf is a Tychonoff topology.

Let X be a set and let f ∈ Sel2(X). Suppose that {xn: n ∈ N} ⊆ (−∞, x)f and {yn: n ∈ N} ⊆ (x,+∞)f satisfy
that x ∈ clτf

({xn: n ∈ N}) ∩ clτf
({yn: n ∈ N}). Then, ψ(x, τf ) = ω. Indeed, we claim that

{x} =
( ⋂

n∈N

(xn,+∞)f

)
∩

( ⋂
n∈N

(−∞, yn)f

)
.

Let y ∈ X \ {x}. If x <f y, then there is m ∈ N such that ym ∈ (x, y)f and then y /∈ (−∞, ym)f . If y <f x, then we
can find m ∈ N so that xm ∈ (y, x)f and hence y /∈ (xm,+∞)f . From these observations and Theorems 2.5 and 2.6
we can established the following corollary.

Corollary 2.8. If f ∈ Sel2(X) is a two-point selection such that τf is sequential, then τf is a Tychonoff topology.

Recall that a space X is said to be functionally Hausdorff if whenever for two distinct points x, y ∈ X there is a
continuous function f :X → R such that f (x) = 0 and f (x) = 1.

Question 2.9. Are there a set X and a two-point selection f ∈ Sel2(X) such that the space (X, τf ) is functionally
Hausdorff and it is not Tychonoff?

Question 2.10. Are there a set X and a two-point selection f ∈ Sel2(X) such that every real-valued continuous
function on (X, τf ) is constant?
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