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Abstract In this work, the two scales asymptotic

homogenization method (AHM) is applied for deter-

mining the effective coefficients of laminated piezo-

electric composite with periodic structure under non-

uniform electrical and mechanical imperfect contact

conditions. The analytical expressions of the local

problems and the effective coefficients as result of the

AHM are explicitly described. The constituent mate-

rials have properties belonging to 2 mm symmetry

point group. Numerical values of the effective coef-

ficients are reported and compared with limit cases,

where perfect and uniform imperfect contact condi-

tions are considered. Good agreements are found for

these comparisons. Hence, the effect of the non-

uniform imperfect contact conditions on the effective

coefficients can be analyzed.
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1 Introduction

Several piezoelectric composites can be made by

combining a piezoelectric ceramic with a passive

polymer phase. The properties of piezoelectric com-

posites depend on constituent’s properties, the inter-

phase bonding conditions and the different phase

arrangements of the composites. The effect of the

interphase conditions on the mechanical and physical

properties has attracted a great deal of researcher’s

attention.

The prediction of the effective coefficients taking

into account different interfaces is the fundamental

problems in mechanics of composites [1–5]. The

adhesively bonded joints are very used in applications

in the aeronautical, automotive and many other

industries where prime requirements to use composite

made with light weight panels and high fatigue

strength are issues of interest. Different authors have

investigated the adhesive joints condition [6–11].

Several works [12–16] have shown that epoxy adhe-

sives form a so-called interphase in adhesive joints.

Hence, the term interphase to refer to an interlayer is

used in the present article.

As expected, the effective coefficients depend on

the microstructures and properties of the layers, but

also the interfacial bonding conditions need to be

considered. A number of works are focused on

multilayered with imperfect interfaces where the

effective properties have been calculated by consid-

ering the interface effect at the micro-scale level

[1, 2, 5, 17] or irregular interphases [18], i.e., the

influence of the interface between both constituents on

the effective properties of a composite material.

Different techniques have been used to estimate the

effective properties of composites materials; the two-

scale asymptotic expansion method [19, 20] was

applied by Galka et al. [21] to compute macro

behavior in thermo-piezoelectric composites. Further

research activities have focused on studies on the

micro-scale, where different approaches [22–30] have

been considered for describing perfect and imperfect

adhesion with a uniform interface between the

constituents. A mathematical structure was developed

to calculate the mechanical behavior of inhomoge-

neous media under the statement of an ordered

microstructure with perfect contact. In Refs. [23] and

[24], it was proposed a two scales asymptotic expan-

sion for the homogenization equations considering a

perfect contact conditions between the constituents.

The interfaces between both materials have been

described considering a uniform spring parameter, as

can be seen in Refs. [25–28].

In this work, the AHM is applied for determining

the effective coefficients of laminated piezoelectric

composite with periodic structure and considering

non-uniform electrical and mechanical imperfect

contacts. The heterogeneous medium with a structure

at two length scales, macroscopic and microscopic can

be simulated by a homogeneous medium depending

on the homogenized or effective properties. It is well

known that under the assumptions of periodicity and

the strict separation of scales, the behavior of

composites is completely determined by the solution

of the so-called local problems based on the period of

the composite [23, 24]. The theoretical details of AHM

have been rigorously developed in previous studies,

e.g., Refs. [19, 20, 22, 23, 30]. The general method to

calculate the effective properties is performed assum-

ing the point group 2 mm for material symmetry. The

effective properties of layered composites considering

non-uniform imperfect adhesion has been investigated

in [31], only considering elastic laminated composites.

Thus, the present work is an extension of previous

results where piezoelectric constituents are incorpo-

rated. In addition, two types of possible contact

imperfections are considered: (1) mechanical imper-

fection simulated by spring type, i.e. the stresses are

proportional to the jump of the mechanical displace-

ments at the interface, and (2) electrical imperfection,

in which the dielectric displacement is proportional to

the jump of electrical potential at the interface.

2 Formulation of the problem

Let us consider a bounded periodically laminated

piezoelectric composite X � R3 with boundary oX in

the Cartesian system of coordinates x1; x2; x3f g, as
shown in Fig. 1a. The region X is defined as a

parallelepiped generated by repetitions of the periodic

cell Y (see, Fig. 1b), in which the layered direction is

along the x3 axis. The piezoelectric constituents have

properties belonging to 2 mm symmetry point group.

The associated periodic cell Y is defined as Y ¼
y1; y2; y3ð Þ 2 R3 : 0\yi\li

� �
with i ¼ 1; 2; 3 at the
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microscale level, in the Cartesian system of coordi-

nates y1; y2; y3f g.
Herein, the periodic cell Y is characterized by a bi-

laminated composite where the non-uniform imper-

fect interface region between the layers is denoted by

C (see, Fig. 1b). Figure 1c shows the cross-section of

the periodic cell Y. The contact region C is partitioned

along y2 direction in subregions Cr, where each Cr

region has uniform imperfection parameters. In addi-

tion, hrl2 is defined as the length of the r-partition

where hr (r ¼ 1; 2; . . .;N; N 2 N) is the length

fraction of imperfection. N is the number of the

partitions of the interface C. We also have that
PN

r¼1 hr ¼ 100% and [Cr ¼ C.
The AHM is applied to periodic layered composite

(see, Fig. 1) under non-uniform imperfect contact. A

general field variable fi now depends on both the

macro-scale or fast variable ‘‘x’’ and micro-scale or

slow variable ‘‘y’’, i.e., fi ¼ fi x; yð Þ where y ¼ x=e
with e ¼ l=L such that l and L are the characteristic

lengths of the periodic cell Y and the parallelepiped

composite, respectively. Hence, the partial derivatives

take the form:

ofi=oxj ¼ ofi=oxj þ e�1ofi=oyj: ð1Þ

Then, assuming that the body forces and free charge

density are equal to zero, the piezoelectric equilibrium

equations are given by

rij;j = 0 , Di;i = 0, in Y; ð2Þ

considering ð�Þ;j ¼ oð�Þ=oxj, and the constitutive

equations for piezoelectric materials by components

are:

rij ¼ Cijkluk;l þ ekiju;k; Di ¼ eikl uk;l � dik u;k;

ð3Þ

where rij, uk, Di andu are the components of the stress

tensor, the mechanical and electrical displacement

vectors, and the scalar electric potential, respectively.

Herein, the Latin indices i; j; k; l take values 1; 2; 3.

Besides, the boundary conditions can be written in

the form:

rijnj
��
Cr
¼ rKij½½uj��Cr

; ½½rij��Cr
nj ¼ 0; on Cr; ð4Þ

Dini ¼ rM½½u��Cr
; ½½Di��Cr

ni ¼ 0 on Cr; ð5Þ

where rKij ¼ 0 if i 6¼ j, andC satisfy thatC ¼
SN

r¼1 Cr.

Herein, rKij and rM denote the mechanical and

electrical imperfection parameters, respectively, for

the r-interface partition Cr in Yr region partition of Y,

with r ¼ 1; 2; . . .;N,
S

N Yr ¼ Y. Herein, the symbol

Yr describes the r-partition of the periodic cell Y, the

notations ½½��� ¼ ð�Þ 1ð Þ � ð�Þ 2ð Þ
represents the jump

across the interface C.
The imperfect contacts are modeled considering a

layer of zero thickness where a spring describes the

mechanical imperfection, and a capacitor can be

related to the electrical imperfection. The tangential

and normal components of the mechanical imperfec-

tion parameters are defined as Kt ¼ K11, Ks ¼ K22 and

Kn ¼ K33, whereas M is the electrical imperfection

parameter. The infinite value for the imperfection

parameters implies vanishing of the imperfection (the

so called perfect interface conditions) and the zero

values for the imperfection parameters imply debond-

ing. Any finite positive values for the interface

parameters define an imperfect interface, see Ref. [24].

Fig. 1 a Laminate composite X, b Periodic cell Y, c Partition of the interface C
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Using the asymptotic expansion, the mechanical

displacements and the electric potential are written as:

ui xð Þ ¼ u
0ð Þ
i xð Þ þ

X1

k¼1

eku kð Þ
i x,yð Þ;

u xð Þ ¼ u 0ð Þ xð Þ þ
X1

k¼1

eku kð Þ x,yð Þ:
ð6Þ

Then, if Eq. (6) is substituted into Eqs. (2)–(5), and

further, Eq. (1) and the expressions

u
kð Þ
i ðx,yÞ � UðkÞ

imn

oku
ð0Þ
m

oxkn
þPðkÞ

im

okuð0Þ

oxkm
;

u kð Þ x; yð Þ � WðkÞ
mn

oku
ð0Þ
m

oxkn
þHðkÞ

m

okuð0Þ

oxkm
;

ð7Þ

where U kð Þ
imnðyÞ, PðkÞ

im ðyÞ, WðkÞ
mnðyÞ, and HðkÞ

m ðyÞ are

periodic functions with a periodic length equal to l. It

is possible to determine equivalent expressions to

those reported in Ref. [31] for the elastic case.

Therefore, different equations are obtained which

depends on the e parameter. Subsequently, if the terms

are grouped according to the order of e
(e�2; e�1; e0; . . .), and appropriate conditions are tak-

ing into account in order to guarantee the existence of

the l-periodic solutions. Then, a recurrent family of

partial differential equations is obtained. This way, the

expressions of the local problems on Y; the equivalent

homogenized problems and the corresponding effec-

tive coefficients can be stated. Theoretical details of

the rigorous mathematical foundation of the AHM can

be found in Refs. [19, 20, 22, 23], and here are omitted.

Hence, from the terms of the e�1 order, the partial

derivate equations are obtained:

o

oyj
Cijpq yð Þ þ CijklðyÞ

orUkpq yð Þ
oyl

þ elijðyÞ
orWpq yð Þ

oyl

� �
¼ 0;

o

oyj
epij yð Þ þ CijklðyÞ

orPkp yð Þ
oyl

þ elijðyÞ
orHp yð Þ

oyl

� �
¼ 0;

o

oyj
ejpq yð Þ þ ejklðyÞ

orUkpq yð Þ
oyl

� djlðyÞ
orWpq yð Þ

oyl

� �
¼ 0;

o

oyj
djp yð Þ � ejklðyÞ

orPkp yð Þ
oyl

þ djlðyÞ
orHp yð Þ

oyl

� �
¼ 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð8Þ

Consequently, from the terms of the e0 order, the

equivalent homogenized equations of the problem

Eq. (2) are determined

C�
ijpq

o2u
ð0Þ
p

oyjoyq
þ e�pij

o2uð0Þ

oypoyj
¼ 0

e�ijp
o2u

ð0Þ
p

oyioyj
� d�ip

o2uð0Þ

oyioyp
¼ 0

8
>>>><

>>>>:

; ð9Þ

with effective coefficients in the form

C�
ijpq ¼

PN

r¼1

Cijpq þ Cijkl

orUkpq

oyl
þ elij

orWpq

oyl

� �
;

e�ipq ¼
PN

r¼1

eipq þ eikl
orUkpq

oyl
� dil

orWpq

oyl

� �
;

e�pij ¼
PN

r¼1

epij þ Cijkl

orPkp

oyl
þ elij

orHp

oyl

� �
;

d�ip ¼
PN

r¼1

dip � eikl
orPkp

oyl
þ dil

orHp

oyl

� �
:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð10Þ

As mentioned above, constituent’s distribution

periodicity is along the y3 direction. However, the

distribution of the imperfection parameters at the

interface C is directed in the y2 axes. From the

mathematical point of view, this situation must be

treated as a 2D problem written with partial derivates,

see Ref. [31]. Imperfection region C is divided in N

partitions Cr and each one has a uniform imperfection

parameters, then, the functions U kð Þ
imnðyÞ, PðkÞ

im ðyÞ,
WðkÞ

mnðyÞ, and HðkÞ
m ðyÞ can be proposed as a piecewise

linear function in Y defined as:

U kð Þ
imnðyÞ ¼

1U kð Þ
imnðyÞ in Y1

..

.

NU kð Þ
imnðyÞ in YN

8
>><

>>:
;

PðkÞ
im ðyÞ ¼

1PðkÞ
im ðyÞ in Y1

..

.

NPðkÞ
im ðyÞ in YN

8
>><

>>:
;

WðkÞ
mnðyÞ ¼

1WðkÞ
mnðyÞ in Y1

..

.

NWðkÞ
mnðyÞ in YN

8
>><

>>:

and HðkÞ
m ðyÞ ¼

1HðkÞ
m ðyÞ in Y1

..

.

NHðkÞ
m ðyÞ in YN

8
>><

>>:
:

ð11Þ
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This way, local problems can be solved for each r-

partition. As the imperfection parameter is constant for

each partition, no dependence on y2 needs to be

considered and the local problems equations only

depends on y3.

Therefore, the local problems pqL and pI for each r-

interphase partition are written as:

pqL problem

d

dy3
Ci3pq yð Þ þ Ci3k3ðyÞ

drUkpq yð Þ
dy3

þ e3i3ðyÞ
drWpq yð Þ

dy3

� �
¼ 0;

d

dy3
e3pq yð Þ þ e3k3ðyÞ

drUkpq yð Þ
dy3

� d33ðyÞ
drWpq yð Þ

dy3

� �
¼ 0;

8
>>><

>>>:

in Yr

ð12Þ

with interface conditions

Ci3pq þ Ci3k3

drUkpq

dy3
þ e3i3

drWpq

dy3

� �� �
n3 ¼ 0;

e3pq þ e3k3
drUkpq

dy3
� d33

drWpq

dy3

� �� �
n3 ¼ 0;

8
>>><

>>>:

on Cr

ð13Þ

Ci3pq þ Ci3k3

drUkpq

dy3
þ e3i3

drWpq

dy3

	 

n3 ¼ rKik

rUkpq

� �� �
;

e3pq þ e3k3
drUkpq

dy3
� d33

drWpq

dy3

	 

n3 ¼ rM rWpq

� �� �
;

8
>>><

>>>:

on Cr

ð14Þ

rUkpq


 �
¼ 0 and rWpq


 �
¼ 0: ð15Þ

pI problem

d

dy3
epi3 yð Þ þ Ci3k3ðyÞ

drPkp yð Þ
dy3

þ e3i3ðyÞ
drHp yð Þ
dy3

� �
¼ 0 ;

d

dy3
d3p yð Þ � e3k3ðyÞ

drPkp yð Þ
dy3

þ d33ðyÞ
drHp yð Þ
dy3

� �
¼ 0 :

8
>>><

>>>:

in Yr

ð16Þ

with interface conditions

epi3 þ Ci3k3

drPkp

dy3
þ e3i3

drHp

dy3

� �� �
n3 ¼ 0;

� d3p þ e3k3
drPkp

dy3
� d33

drHp

dy3

� �� �
n3 ¼ 0;

8
>>><

>>>:

on Cr

ð17Þ

epi3 þ Ci3k3

drPkp

dy3
þ e3i3

drHp

dy3

	 

n3 ¼ rKik

rPkp

� �� �
;

� d3p þ e3k3
drPkp

dy3
� d33

drHp

dy3

	 

n3 ¼ rM rHp

� �� �
:

8
>>><

>>>:

on Cr

ð18Þ

rPkp


 �
¼ 0 and rHp


 �
¼ 0: ð19Þ

As can be seem, the local problems pqL [Eqs. (12)–

(15)] and pI, [Eqs. (16)–(19)] result from the fact that

unknown functions group in two separate set

drUð1Þ
kpq yð Þ

.
dy3; d

rWð1Þ
pq yð Þ

.
dy3

� �
and

drPð1Þ
kp yð Þ

.
dy3; d

rHð1Þ
p yð Þ

.
dy3

� �
. Also, the average

operator �h i ¼ 1

Yj j
R

Y

ð�ÞdY represents the volume

average per unit length over Y.

Consequently, the equivalent homogenized equa-

tions of the problem Eq. (2) are determined:

C�
i3p3

d2u
ð0Þ
p

dy23
þ e�3i3

d2uð0Þ

dy23
¼ 0

e�33p
d2u

ð0Þ
p

dy23
� d�33

d2uð0Þ

dy23
¼ 0

8
>>>><

>>>>:

; ð20Þ

with effective coefficients in the form:

pqL problem

C�
ijpq ¼

XN

r¼1

Cijpq þ Cijk3

drUkpq

dy3
þ e3ij

drWpq

dy3

� �
;

e�ipq ¼
XN

r¼1

eipq þ eik3
drUkpq

dy3
� di3

drWpq

dy3

� �
;

8
>>>><

>>>>:

ð21Þ

pI problem

e�pij ¼
XN

r¼1

epij þ Cijk3

drPkp

dy3
þ e3ij

drHp

dy3

� �
;

d�ip ¼
XN

r¼1

dip � eik3
drPkp

dy3
þ di3

drHp

dy3

� �
:

8
>>>><

>>>>:

ð22Þ
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Then, the functions drUð1Þ
kpq yð Þ

.
dy3, d

rWð1Þ
pq yð Þ

.
dy3,

drPð1Þ
kp yð Þ

.
dy3 and drHð1Þ

p yð Þ
.
dy3 need to be deter-

mine for each local problems.

Integrating Eqs. (12) and (16) respect to y3, it turns

out that,

Ci3k3

drUð1Þ
kpq

dy3
þ e3i3

drWð1Þ
pq

dy3
¼ Ar

i3pq � Ci3pq;

e3k3
drUð1Þ

kpq

dy3
� d33

drWð1Þ
pq

dy3
¼ Br

3pq � e3pq;

8
>>>><

>>>>:

ð23Þ

Ci3k3

drPð1Þ
kp

dy3
þ e3i3

drHð1Þ
p

dy3
¼ Jrpi3 � epi3;

e3k3
drPð1Þ

kp

dy3
� d33

drHð1Þ
p

dy3
¼ Ur

3p þ d3p;

8
>>>><

>>>>:

ð24Þ

where Ar
i3pq, B

r
3pq, J

r
3ip, and Ur

3p are the integration

constants that need to be found. Then, taking into

account Eqs. (13), (14), (17), (18), (23), and (24), the

following systems of equations are obtained:

rQjiA
r
i3pq þ P�1

ji e3i3

D E
Br
3pq ¼ P�1

ji d33Ci3pq þ e3i3e3pq
� �D E

;

Re3k3C
�1
k3i3


 �
Ar

i3pq þ rSBr
3pq ¼ R e3k3C

�1
k3i3Ci3pq � e3pq

� �
 �
;

8
<

:

ð25Þ

rQkiJ
r
3ip þ P�1

ki e3i3

 �

Ur
3p ¼ P�1

ki d33epi3 � e3i3d3p
� �
 �

;

Re3k3C
�1
k3i3


 �
Jr3ip þ rSUr

3p ¼ R e3k3C
�1
k3i3epi3 þ d3p

� �
 �
;

(

ð26Þ

where rQji ¼ �C
�1

i3j3

D E
þ

rK�1
ij

l3
, P�1

ji ¼ �C
�1

i3j3d
�1
33 , R ¼ �d

�1

33

and rS ¼ rM�1

l3
� �d

�1

33

D E
. Herein, �h i ¼ �ð1ÞV1 þ �ð2ÞV2

where V1 and V2 are the volume fraction of each

constituent for a two-layer composite. Thus, the

derived expressions C
að Þ
ijkl, e

að Þ
ijl and d

að Þ
ij denote the

elastic, piezoelectric and dielectric material properties

for each constituents, denoted as a. The constituent

a ¼ 1 if 0 \y1\V1l3;
2 if V1l3 \y1\l3;

�
where V1 is the volume

fraction of layered one and l3 is the length of the

periodic cell in the x3 direction. The magnitude nj is

the unit vector in the outward normal direction.

Solving the systems [Eqs. (25) and (26)] and

considering 2 mm symmetry for the composite

constituents (this algorithm also works for 4 mm and

6 mm symmetry point groups), we have:

• If b 6¼ 3:

rAb3pq ¼ C�1
b3b3Cb3pq

D E
l3
rKbb

� ��1þ C�1
b3b3

D Eh i�1

;

ð27Þ

rJpb3 ¼ C�1
b3b3epb3

D E
l3
rKbb

� ��1þ C�1
b3b3

D Eh i�1

; ð28Þ

• If b ¼ 3:
rA33pq ¼ rQ�1 Hpq � P�1e333


 �
B3pq

� �
;

rJp33 ¼
P�1 e333

 �

Np þ rF Zp

P�1 e333

 �2þrF rQ

;
ð29Þ

rB3pq ¼ d�1
33 e3pq


 �
d�1
33


 �
� rMl3ð Þ�1

h i�1

;

rU3p ¼
rQ � Np � P�1e333


 �
Zp

P�1e333

 �2þrF rQ

;
ð30Þ

where P ¼ C3333d33 þ e2333,
rF ¼ rM � l3ð Þ�1 þ

P�1C3333


 �
, Np ¼ P�1 e333ep33 þ C3333d3p

� �
 �
, rQ ¼

P�1d33

 �

þ rK�1
33 l

�1
3 , Zp ¼ P�1 ep33d33 � e333d3p

� �
 �

and Hpq ¼ P�1 d33C33pq þ e333e3pq
� �
 �

.

Then, substituting Eqs. (27)–(30) into Eqs. (21)

and (22) considering Eqs. (23) and (24), the expres-

sions for the effective coefficients are found:

C�
ijpq ¼ Cijpq


 �
þ
XN

r¼1

hr Cijk3

drUkpq

dy3
þ e3ij

drWpq

dy3

� �
;

e�pij ¼ epij

 �

þ
XN

r¼1

hr Cijk3

drPkp

dy3
þ e3ij

drHp

dy3

� �
;

d�ip ¼ dip

 �

�
XN

r¼1

hr eik3
drPkp

dy3
� di3

drHp

dy3

� �
:

8
>>>>>>>>>><

>>>>>>>>>>:

ð31Þ

To determine the effective coefficients [Eqs. (31)]

the contribution of each N interface partition of the

composite is needed. Then, finally, the functions

drUkpq=dy3, d
rWpq

�
dy3, d

rPkp

�
dy3 and d

rHp

�
dy3 can

be written as:
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drWpq

�
dy3 ¼ P�1 e333ðrA33pq � C33pqÞ

�

� C3333ðrB3pq � e3pqÞ
�
;

ð32Þ

drHp

�
dy3 ¼ P�1 e333ðrJp33 � ep33Þ þ C3333ðrU3p � d3pÞ

� �
;

ð33Þ

• If b 6¼ 3:

drUbpq
�
dy3 ¼ C�1

b3b3
rAb3pq � Cb3pq
� �

; ð34Þ

drPbp

�
dy3 ¼ C�1

b3b3
rJpb3 � epb3
� �

; ð35Þ

• If b ¼ 3:

drU3pq

�
dy3 ¼ P�1 d33ðrA33pq � C33pqÞ

�

þ e333ðrB3pq � e3pqÞ
�
;

ð36Þ

drP3p

�
dy3 ¼ P�1 d33ðrJp33 � ep33Þ � e333ðrU3p � d3pÞ

� �
:

ð37Þ

3 Numerical results

In the present work, it is investigated the influences of

the non-uniform electrical and mechanical imperfect

contacts on the effective piezoelectric moduli of

layered composites considering different length frac-

tions of the imperfection at the interface and volume

fractions of the layer 1 (PZT-5A). Limit cases for the

present model are verified, i.e., the analytical expres-

sions [Eq. (31)] reproduce the material properties for

each constituent when the volume fraction of layer 1 is

equal to zero or one. Besides, the Eq. (31) can be

reduced to the elastic case reported in Ref. [31], if we

consider null piezoelectric properties and the partition

number N � 1: On the other hand, as the mechanical

and electrical imperfect parameters reach higher

values (for example rKii ¼ 109 and rM � 106), the

results of Ref. [30] for the perfect contact case are

reproduced. These situations are also shown in

Table 2 and Figs. 2, 3, 4.

A computational algorithm has been implemented

for the illustration of the behavior of two layers

composites (PZT-5A/Araldite) where the constituent

parameters used in the calculations are given in

Table 1 and taken from Ref. [30]. Also, the permit-

tivity of free space is d0 ¼ 8:85� 10�12 C2=Nm2.

The numerical model is rapidly converging to local

problem solution for any volume fraction of the

composite constituents. For the case of the con-

stituents reported in Table 1, the effect of the non-

uniform imperfections (mechanical and electrical) can

be more significantly detected for values of the PZT-

5A volume fraction higher than 0.75 according to the

numerical results. Therefore, the results are only

reported for PZT-5A volume fractions equal to 0.75

and higher. A bi-laminate composite PZT-5A/Araldite

(ceramic/polymer) is a case where hard and soft

constituents have a common interface. For the case,

where the soft phase is dominant, most of the

mechanical energy can relax in the soft phase and

the quality of the contact does not play a dominant

role. On the other side, when the hard phase is

dominant, the properties of the interface have a more

significant effect on the PZT-5A/Araldite composite

properties.

A bi-laminated with the interface divided into two

portions can be seen as a non-uniform imperfect

contact conditions, where one part of the interface (Let

us say the portion ‘‘1’’) decreases its percentage from

h1 ¼ 100 % to h1 ¼ 0 % with respect to the total area

of the interfaceC. We can define the pair h1; h2½ �where
h1 þ h2 ¼ 100 %. Thus, the mechanical and electrical

interface parameters for the first and second portion of

the interface are taken as: 1Kii ¼ 109, 1M � 106, and
2Kii ¼ 2M ¼ 50.

In Table 2, it can be observed, the elastic ðC�
1111Þ,

piezoelectric ðe�333Þ or dielectric ðd�33Þ effective coef-

ficients as a function of the layer volume fraction and

the pair h1; h2½ � that describes the non-uniformity of

the imperfect contact. For the case where the first

portion represents 100 % of the interface, the numer-

ical results reproduce the perfect contact reported in

Ref. [30], whereas the first portion has 0 % of the

interface the numerical results reproduce the uniform

imperfect contact reported in Ref. [25]. Also, when the

portion one decreases its percentage, the calculated

coefficients values move from perfect contact condi-

tion to uniform imperfect contact. Then, Table 2

describes a behavior that characterizes a transition

between perfect contact and a uniform imperfect

contact. The numerical coincidence of the two

extreme cases 100; 0½ � and 0; 100½ � with the result
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reported by Ref. [30] validates the analytical formulae

obtained previously. It can be observed from Table 2

that as h2 increases, the elastic, piezoelectric and

dielectric coefficients decrease. This result can be

qualified as physically congruent and expected

because the second portion of the interface character-

izes the imperfect contact.

A two layers composite with the interface divided

into two portions is studied herein. In the first portion,

we assume 1Kii ¼ 109 ðii ¼ 11; 22; 33Þ and
1M ¼ 106. In the second part of the interface, the

parameters are evaluated to be equal to 2K22 ¼ 2K33 ¼
109 and 2M ¼ 106 with the exception of 2K11 that runs

from 1 to 103, this way, we investigated the effect of
2K11 as can be seen in the

2K11 column of Table 3. In a

similar way, we proceed with 2K22,
2K33 and M. The

same results are obtained if the imperfection param-

eters of the portion 1 are investigated.

Fig. 2 Effect of the imperfection parameter on the effective elastic coefficients C�
1111, C

�
1313 and C

�
2323 considering a bi-phase partition

for the bi-laminate composite PZT-5A/Araldite
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Finally, Table 3 shows the summary for the influ-

ence of the imperfection parameter on each effective

coefficient, where three situations can be identified:

(1) the parameter significantly affects (Yes), (2)

almost does not affect (Negligible) or (3) does not

affect (Not) the value of the effective coefficients.

Fig. 3 Effect of the mechanical/electrical imperfection parameters on the effective piezoelectric coefficients e�311, e
�
113 and e

�
223 for a bi-

laminate composite PZT-5A/Araldite
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These results are congruent due to the mechanical

imperfection parameters affect only the elastic and

piezoelectric coefficients, while the dielectric coeffi-

cients are barely affected. A similar situation occurs

with the electric imperfection parameter: it affects the

piezoelectric and dielectric coefficients and barely

affects the elastic coefficients.

In Figs. 2, 3 and 4 the effect caused by the variation

of the imperfection parameter on the behavior of the

effective elastic (Fig. 2), piezoelectric (Fig. 3) and

dielectric (Fig. 4) coefficients is shown. Herein, a bi-

phase partition for a bi-laminated PZT-5A/Araldita is

considered. These results agree with Table 3. In

Figs. 2 and 3, we illustrate the behavior of the

effective coefficients C�
1111 and e

�
311 because it is more

significant than the coefficients C�
1122; C

�
1133; C

�
3333

and e�333.

In Table 4, the effect of the interface partition on

the effective coefficients C�
1133, e

�
333 and d�33 are also

illustrated. Herein, a bi-laminated composite with a

three partitioned interface h1 ; h2 ; h3½ � is considered.
Also, for each interphase portion, the imperfect

parameters takes the values: 1Kii ¼ 100, 1M ¼ 100,
2Kii ¼ 109, 2M ¼ 106, 3Kii ¼ 50, and 3M ¼ 50

ðii ¼ 11; 22; 33Þ. From Table 4, it is shown that

C�
1133, e

�
333 and d

�
33 values are always bounded between

those values obtained when considering perfect and

the uniform most imperfect contact, i.e., the case with

the weakest contact 3Kii ¼ 50; 3M ¼ 50ð Þ. It can also
be seen, that the value of C�

1133, e
�
333 and d

�
33 are always

affected by the type of partition that is proposed, for

example: 0 ; 100 ; 0½ � correspond to the perfect

contact, 0 ; 70 ; 30½ � and 30 ; 70 ; 0½ � are expected

to similarly behave due to for both cases, 30% of the

contact area correspond to an imperfect contact. The

slight difference between these cases is because, for

the third partition, the imperfection parameters have

lower values. The cases 0 ; 0 ; 100½ � and 100 ; 0 ; 0½ �
represents two uniform imperfect contacts. As

expected, the case 50 ; 0 ; 50½ � can be visualized as

an average between the two uniform imperfects.

Again, the slight difference between them is a result

of not having the same imperfection parameters.

Numerical results of Table 4 can reproduce the

perfect and uniform imperfect contact reported in

Refs. [25] and [30]; and in Table 2 as a limit case when

one of the portions is null. It can be observed that the

elastic, piezoelectric and dielectric coefficients are

more sensitive to the imperfection parameters with the

PZT-5A volume fraction between 0.9 and 1.0. As

Fig. 4 Effect of the imperfection parameter on the effective dielectric coefficient d�33 considering a bi-phase partition for the bi-

laminated composite PZT-5A/Araldite

Table 1 Materials used in

the computation
Dimension GPa C/m2 –

Parameters C1111 C1122 C1133 C3333 C2323 e311 e333 e223 d11=d0 d33=d0

PZT-5A 121 75.4 75.2 111 21.1 - 5.4 15.8 12.3 916 830

Araldite 5.46 2.94 2.94 5.46 1.26 0 0 0 7 7
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mentioned above, this is a result of the increasing

volume for the harder phase with higher dielectric

constants.

With the present model, it is possible to study a

composite with as many partitions for the interface as

can be of interest. Herein, we only study the two- and

Table 2 Evolution of non-uniform imperfect contact for C�
1111, e

�
333 and d

�
33 considering a bi-phase partition for bi-laminate PZT-5A/

Araldite

Vf Perfect contact Ref. [30] Imperfect non-uniform contact Uniform imperfect

contact Ref. [25]
100; 0½ � 75; 25½ � 50; 50½ � 25; 75½ � 0; 100½ �

Elastic effective coefficient C�
1111 (GPa)

0.1 12.36484 12.36484 12.31532 12.26581 12.21630 12.16679 12.16679

0.3 26.38717 26.38717 26.30220 26.21722 26.13224 26.04726 26.04726

0.5 40.95013 40.95013 40.78501 40.61989 40.45477 40.28966 40.28966

0.7 56.97634 56.97634 56.57170 56.16705 55.76241 55.35777 55.35777

0.8 66.62882 66.62882 65.87556 65.12231 64.36905 63.61580 63.61580

0.9 80.25864 80.25864 78.49033 76.72202 74.95372 73.18541 73.18541

1 121.0000 120.9999 112.2711 103.5422 94.81337 86.08450 86.08450

Piezoelectric effective coefficient e�333 (C/m2)

0.1 0.000802 0.000802 0.000756 0.000711 0.000665 0.000619 0.000619

0.3 0.003906 0.003906 0.003636 0.003365 0.003095 0.002825 0.002825

0.5 0.012358 0.012358 0.011270 0.010182 0.009094 0.008006 0.008006

0.7 0.044742 0.044741 0.039340 0.033939 0.028538 0.023137 0.023137

0.8 0.105733 0.105730 0.074507 0.067231 0.058896 0.043285 0.043285

0.9 0.379386 0.379361 0.307970 0.236579 0.165188 0.093797 0.093797

1 15.80000 15.78690 11.90975 8.032601 4.155457 0.278307 0.278307

Dielectric effective coefficient d�33

0.1 7.992715 7.770455 7.509174 7.247893 6.986611 6.725330 6.725330

0.3 10.62890 9.963981 9.550080 9.136178 8.722276 8.308375 8.308375

0.5 14.98597 13.88302 13.12879 12.37456 11.62032 10.86609 10.86609

0.7 24.41096 22.88357 21.08742 19.29128 17.49513 15.69898 15.69898

0.8 35.58161 33.85916 30.44151 27.02387 23.60622 20.18857 20.18857

0.9 66.93087 65.06596 55.86808 46.67020 37.47232 28.27444 28.27444

1 830.0000 829.3117 633.7748 438.2379 242.7010 47.16409 47.16409

Table 3 Influence of

imperfect parameters on the

effective coefficients for

non-uniform imperfect

contacts

Effective coefficients 2K11
2K22

2K33
2M

C�
1111; C

�
1122; C

�
1133; C

�
3333 Not Not Yes Negligible

C�
2323 Not Yes Not Not

C�
1313 Yes Not Not Not

e�311; e
�
333 Not Not Yes Yes

e�223 Not Yes Not Not

e�113 Yes Not Not Not

d�11 Negligible Not Not Not

d�22 Not Negligible Not Not

d�33 Not Not Negligible Yes

123

Meccanica (2020) 55:125–138 135



three portions cases with the sake of validating the

model. The number of partitions at the interface may

be use as way to characterize a more realistic interface

between constituents.

4 Conclusions

In the present work, the formulae for effective

properties of piezoelectric composites with 2 mm

point group symmetry has been obtained, considering

non-uniform imperfect adhesion between layers. This

model is a generalization of those where perfect and

uniform imperfect contact conditions are considered.

These formulae have been numerically validated

comparing with previous reported results and theoret-

ical limit cases.

It can be observed that the effect of non-uniform

imperfection on the interphase plays a very important

role on the final properties. For a bi-laminate com-

posite PZT-5A/Araldite, these effects are more inten-

sively detected for PZT-5A volume fractions larger

that 0:75. The numerical values of the effective

properties, where a non-uniform imperfect contact is

considered, are always bounded between the values of

the perfect and the uniform imperfect contact condi-

tions. Anyway, this interval is large enough to make

the portion combination effect capable of affecting the

composite properties. For the PZT-5A/Araldite com-

posite, the elastic constant runs from 15 to 75 GPa, the

piezoelectric from 3 to 14 C/m2, and the dielectric one

Table 4 Effect of the partition at the interface on the effective coefficient considering a three-phase partition of the bi-laminate

composite PZT-5A/Araldite

Vf Perfect contact 0; 100; 0½ � 0; 70; 30½ � 30; 70; 0½ � Uniform imperfect

contact 0; 0; 100½ �
50; 0; 50½ � Uniform imperfect

contact 100; 0; 0½ �

Elastic effective coefficient C�
1133 (GPa)

0.1 3.331176 3.274309 3.223565 2.972472 3.057045 3.141618

0.3 4.425825 4.331593 4.249850 3.839242 3.975480 4.111718

0.5 6.314348 6.135759 5.987945 5.226337 5.472694 5.719051

0.7 10.35168 9.915773 9.587216 7.803455 8.351051 8.898646

0.8 14.77787 13.95429 13.38914 10.14879 11.09070 12.03260

0.9 25.04554 22.98375 21.80283 14.23651 16.20471 18.17292

1 75.20008 63.29811 59.62219 23.27380 29.40032 35.52684

Piezoelectric effective coefficient e�333 (C/m2)

0.1 0.000802 0.000747 0.000772 0.000619 0.000661 0.000702

0.3 0.003906 0.003581 0.003724 0.002825 0.003062 0.003300

0.5 0.012358 0.011053 0.011599 0.008006 0.008917 0.009829

0.7 0.044741 0.038260 0.040708 0.023137 0.027218 0.031299

0.8 0.105730 0.086996 0.093304 0.043285 0.053798 0.064311

0.9 0.379361 0.293692 0.315562 0.093797 0.130246 0.166696

1 15.78690 11.13432 11.29207 0.278307 0.541231 0.804155

Dielectric effective coefficient d�33

0.1 7.770455 7.456918 7.602392 6.725330 6.967786 7.210243

0.3 9.963981 9.467299 9.693151 8.308375 8.684794 9.061214

0.5 13.88302 12.97794 13.37534 10.86609 11.52842 12.19075

0.7 22.88357 20.72819 21.60526 15.69898 17.16075 18.62252

0.8 33.85916 29.75798 31.29000 20.18857 22.74194 25.29531

0.9 65.06596 54.02851 57.37220 28.27444 33.84727 39.42009

1 829.3117 594.6674 607.2965 47.16409 68.21253 89.26097
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from 150 to 800. Composite elastic properties are

mainly affected by the mechanical imperfect condi-

tions and dielectric properties only change because of

the electrical imperfect contacts. Piezoelectric effec-

tive coefficients are always influenced by both

mechanical and electrical imperfections.

The herein developed model can be used to

estimate effective properties for a variety of situations

concerning the quality of the interfaces between

constituents. The possibility of simulating a number

of partitions at the contact where each one has its

imperfection parameter provides the tools to study

more realistic contact regions.

Acknowledgements The authors JCLR and HCM thank the

financial support for a sabbatical stay CONACYT 2018-1

performed at the Autonomous University of Ciudad Juarez. The

author YEA gratefully acknowledges the Program of

Postdoctoral Scholarships of DGAPA from UNAM (2019-
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