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Abstract In this work, the two scales asymptotic
homogenization method (AHM) is applied for deter-
mining the effective coefficients of laminated piezo-
electric composite with periodic structure under non-
uniform electrical and mechanical imperfect contact
conditions. The analytical expressions of the local
problems and the effective coefficients as result of the
AHM are explicitly described. The constituent mate-
rials have properties belonging to 2 mm symmetry
point group. Numerical values of the effective coef-
ficients are reported and compared with limit cases,
where perfect and uniform imperfect contact condi-
tions are considered. Good agreements are found for
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these comparisons. Hence, the effect of the non-
uniform imperfect contact conditions on the effective
coefficients can be analyzed.
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1 Introduction

Several piezoelectric composites can be made by
combining a piezoelectric ceramic with a passive
polymer phase. The properties of piezoelectric com-
posites depend on constituent’s properties, the inter-
phase bonding conditions and the different phase
arrangements of the composites. The effect of the
interphase conditions on the mechanical and physical
properties has attracted a great deal of researcher’s
attention.

The prediction of the effective coefficients taking
into account different interfaces is the fundamental
problems in mechanics of composites [1-5]. The
adhesively bonded joints are very used in applications
in the aeronautical, automotive and many other
industries where prime requirements to use composite
made with light weight panels and high fatigue
strength are issues of interest. Different authors have
investigated the adhesive joints condition [6-11].
Several works [12-16] have shown that epoxy adhe-
sives form a so-called interphase in adhesive joints.
Hence, the term interphase to refer to an interlayer is
used in the present article.

As expected, the effective coefficients depend on
the microstructures and properties of the layers, but
also the interfacial bonding conditions need to be
considered. A number of works are focused on
multilayered with imperfect interfaces where the
effective properties have been calculated by consid-
ering the interface effect at the micro-scale level
[1, 2, 5, 17] or irregular interphases [18], i.e., the
influence of the interface between both constituents on
the effective properties of a composite material.

Different techniques have been used to estimate the
effective properties of composites materials; the two-
scale asymptotic expansion method [19, 20] was
applied by Galka et al. [21] to compute macro
behavior in thermo-piezoelectric composites. Further
research activities have focused on studies on the
micro-scale, where different approaches [22-30] have
been considered for describing perfect and imperfect
adhesion with a uniform interface between the
constituents. A mathematical structure was developed
to calculate the mechanical behavior of inhomoge-
neous media under the statement of an ordered
microstructure with perfect contact. In Refs. [23] and
[24], it was proposed a two scales asymptotic expan-
sion for the homogenization equations considering a
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perfect contact conditions between the constituents.
The interfaces between both materials have been
described considering a uniform spring parameter, as
can be seen in Refs. [25-28].

In this work, the AHM is applied for determining
the effective coefficients of laminated piezoelectric
composite with periodic structure and considering
non-uniform electrical and mechanical imperfect
contacts. The heterogeneous medium with a structure
at two length scales, macroscopic and microscopic can
be simulated by a homogeneous medium depending
on the homogenized or effective properties. It is well
known that under the assumptions of periodicity and
the strict separation of scales, the behavior of
composites is completely determined by the solution
of the so-called local problems based on the period of
the composite [23, 24]. The theoretical details of AHM
have been rigorously developed in previous studies,
e.g., Refs. [19, 20, 22, 23, 30]. The general method to
calculate the effective properties is performed assum-
ing the point group 2 mm for material symmetry. The
effective properties of layered composites considering
non-uniform imperfect adhesion has been investigated
in [31], only considering elastic laminated composites.
Thus, the present work is an extension of previous
results where piezoelectric constituents are incorpo-
rated. In addition, two types of possible contact
imperfections are considered: (1) mechanical imper-
fection simulated by spring type, i.e. the stresses are
proportional to the jump of the mechanical displace-
ments at the interface, and (2) electrical imperfection,
in which the dielectric displacement is proportional to
the jump of electrical potential at the interface.

2 Formulation of the problem

Let us consider a bounded periodically laminated
piezoelectric composite Q C R® with boundary 0Q in
the Cartesian system of coordinates {x;,X2,X3}, as
shown in Fig. la. The region Q is defined as a
parallelepiped generated by repetitions of the periodic
cell Y (see, Fig. 1b), in which the layered direction is
along the x5 axis. The piezoelectric constituents have
properties belonging to 2 mm symmetry point group.
The associated periodic cell Y is defined as Y =

{(y1,y2,y3) € R*: 0<y; <]} with i =1,2,3 at the
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Fig. 1 a Laminate composite Q, b Periodic cell Y, ¢ Partition of the interface I'

microscale level, in the Cartesian system of coordi-
nates {yy, ¥, ys}-

Herein, the periodic cell Y is characterized by a bi-
laminated composite where the non-uniform imper-
fect interface region between the layers is denoted by
I (see, Fig. 1b). Figure 1c shows the cross-section of
the periodic cell Y. The contact region I' is partitioned
along y, direction in subregions I';, where each I’
region has uniform imperfection parameters. In addi-
tion, 0,1, is defined as the length of the r-partition
where 0, (r=1,2,...,N; N e&N) is the length
fraction of imperfection. N is the number of the
partitions of the interface I'. We also have that
SN 0, = 100% and UL, = T,

The AHM is applied to periodic layered composite
(see, Fig. 1) under non-uniform imperfect contact. A
general field variable f; now depends on both the
macro-scale or fast variable “x” and micro-scale or
slow variable “y”, i.e., f; = fi(x,y) where y = x/¢
with € = I/L such that [ and L are the characteristic
lengths of the periodic cell Y and the parallelepiped
composite, respectively. Hence, the partial derivatives
take the form:

afi/an :afi/a)(j—l—s_lafi/ayj. (1)

Then, assuming that the body forces and free charge
density are equal to zero, the piezoelectric equilibrium
equations are given by

Gijj=0, Dj;=0, inY, (2)

considering (-); =0(-)/0x;, and the constitutive

equations for piezoelectric materials by components
are:

0ij = CijUk) + €xijP g, Di = e k) — dik @,

(3)

where a3, ug, D; and ¢ are the components of the stress
tensor, the mechanical and electrical displacement
vectors, and the scalar electric potential, respectively.
Herein, the Latin indices i, j, k, 1 take values 1,2, 3.

Besides, the boundary conditions can be written in
the form:

aini|p = "Ki[lwllr,, (o)), =0, only,  (4)

Din; = "M[[o]]r,

[[Di}]l—rni =0 onl,, (5)

where "Kjj = 0ifi # j, and I satisty that I = Uil |
Herein, 'Kj; and ‘M denote the mechanical and
electrical imperfection parameters, respectively, for
the r-interface partition I'; in Y; region partition of Y,
withr=1,2,...,N, Uy Y: = Y. Herein, the symbol
Y, describes the r-partition of the periodic cell Y, the
notations [[]] = ()" —
across the interface IT'.
The imperfect contacts are modeled considering a
layer of zero thickness where a spring describes the
mechanical imperfection, and a capacitor can be
related to the electrical imperfection. The tangential
and normal components of the mechanical imperfec-
tion parameters are defined as K; = K;, K; = Ky, and
K, = K33, whereas M is the electrical imperfection
parameter. The infinite value for the imperfection
parameters implies vanishing of the imperfection (the
so called perfect interface conditions) and the zero
values for the imperfection parameters imply debond-
ing. Any finite positive values for the interface
parameters define an imperfect interface, see Ref. [24].

(-)(2) represents the jump
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Using the asymptotic expansion, the mechanical
displacements and the electric potential are written as:

o0

u;(x) = ui(o) (x) + Z skui(k) (xy),
k=1

o(x) = 0 (x) + Y o™
k=1

Then, if Eq. (6) is substituted into Egs. (2)—(5), and
further, Eq. (1) and the expressions

(6)

k. (0) k (0)
K _ (k) Oup )0 @
'< >(X’y) = (I)fm)n Oxk + 1_Il(m> an )
" (7)
® 1o Qu )0
) (va)ElenTxE+®m oxE
where (D1<m>n(y) Hi(rl;)(y), ‘ngg(y), and ®f§>(y) are

periodic functions with a periodic length equal to /. It
is possible to determine equivalent expressions to
those reported in Ref. [31] for the elastic case.
Therefore, different equations are obtained which
depends on the ¢ parameter. Subsequently, if the terms
are grouped according to the order of ¢
(e72,e71,€0%,...), and appropriate conditions are tak-
ing into account in order to guarantee the existence of
the [-periodic solutions. Then, a recurrent family of
partial differential equations is obtained. This way, the
expressions of the local problems on Y, the equivalent
homogenized problems and the corresponding effec-
tive coefficients can be stated. Theoretical details of
the rigorous mathematical foundation of the AHM can
be found in Refs. [19, 20, 22, 23], and here are omitted.

Hence, from the terms of the ¢~! order, the partial
derivate equations are obtained:

o ar(kaq (Y)

— 0, (y

dy. Cijpq(¥) + Cijia(y) 3, + e (y) al;?l( )} —0,
J L

o O (y 00, (y

dy; ePiJ(Y)+Cijkl(Y)+;l()+ 1ii (¥) a;I( )} =0,
jL

o 0" Dypq (y O (y

3y, om0 ejkz(Y)é‘i;j()* i(y) apyq,( )} — 0,
jL

¢ g O e(y) 3Oy

oy |400) e () 52+ 4y =2 ) =0

(8)

Consequently, from the terms of the &0 order, the
equivalent homogenized equations of the problem
Eq. (2) are determined
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. Pw) L P
ij Chij =
ipq @yjayq pij aypayj o)
0 )
et uy) . To —0
P oy;dy; P Oy;dy,
with effective coefficients in the form
* N arq)kpq ar\qu
Clivg = = <Cupq + Cij o + €ijj A
N ard)kpq A >
= €ipq 1 € dy )
ipq §< Pq k/ a Vi a Vi
N 0Tl 0'0,
= i Cl i
pij r; <ePJ + G —— e + €iij o >
N 0TIy RG]
o= dip — e ——> + d; —p>-
P rZ1< PNy ey
(10)

As mentioned above, constituent’s distribution
periodicity is along the y; direction. However, the
distribution of the imperfection parameters at the
interface I' is directed in the y, axes. From the
mathematical point of view, this situation must be
treated as a 2D problem written with partial derivates,
see Ref. [31]. Imperfection region I" is divided in N
partitions I'; and each one has a uniform imperfection

parameters, then, the functions o® (y), H»(k)(y),

Y (y), and ®¥(y) can be proposed as a piecewise
linear function in Y defined as:

o (y) iny,
(I)l(rl;)n(y) = )

Nq)lmn( ) in Yn

IHim (y) in Y1

"W(y) inY
P (y) = :

Nplo(y) i Yy

1(91(111() (y) in Yl

and ©® (y)

NoM(y) in¥y
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This way, local problems can be solved for each r-
partition. As the imperfection parameter is constant for
each partition, no dependence on y, needs to be
considered and the local problems equations only
depends on y;.

Therefore, the local problems pqL and ,I for each r-
interphase partition are written as:

pql problem

d d'@y ay
@, [CiSpq(Y) + Ciza(y) dyg(y) + 63.3()’) ;i(y)] =0,
; : 3 iny
d d'® dy !
ay, [equ(Y) + esa(y) (;(;2( Y ds3(y) dl;qu)} =0,
(12)
with interface conditions
d'd dV¥Y
Cizpq + Cisks K4 4 g3 —41In3 =0,
dys dys onT
drq)kpq dn{lpq '
€3pq 1 €3k3 dy, daz n3 =0
(13)
d'®, d"V¥,
(Ciqu + Cisks dy];pq +esi3 dy:q)ﬂs = "Ki [ Oipq
on I,
d'®, d'¥
<e3pq +eaas dykpq —dss ﬁ) ny = "M[["¥pq]],
3 3
(14)
("Dipq) = 0 and ("¥pq) = 0. (15)
ol problem
d d'TI d'e
dT’z {epiS(Y) + Ciza(y) dl;p}(Y) +esi3(y) d;fy)} =0, -
1 r
d d'TI d'e
&, |:d3p (y) —ess(y) d];;(y) +ds3(y) d;fy)} =0.
(16)
with interface conditions
d'I1 d'e
H%B + Cias dykp + €313 dy pﬂ n3 =0,
3 3
onl’
d'TIy de
—d P_d L =0
H R TR H B
(17)

129
d'T1 d'e
(epi3 + Ciais dykp +e3i3 Fp) n3 = "Ki [Tl ],
3 3
(7 d3p + €3 I ey dz3 dr@p) ny = "M[[0,]]. "
PO dys Tdyy ) b
(18)
("Myp) =0and ("O,) = 0. (19)

As can be seem, the local problems L [Egs. (12)—
(15)] and .1, [Egs. (16)—(19)] result from the fact that
unknown functions group in two separate set

rp (1 r
(d q)l((p)q / dys, d \Pl():]) / dY3) and
(dr kp ( / dy;, d'O / dyg) Also, the average
operator (-) :m f -)dY represents the volume
Y

average per unit length over Y.
Consequently, the equivalent homogenized equa-
tions of the problem Eq. (2) are determined:

. dzu 0) dz(p(o
Cisps d‘Z + €33 ay? =0
; (20)
. dzuf, ) . dch(‘))
e — =
33p dy% 33 dy%
with effective coefficients in the form:
pql problem
N
d' @y d'y
G <Ciqu+cijk3 pq+ 3ij Pq>»
N r T
* dq)kpq dlIlpq>
e, = €ipq + €ik3 —dis ;
P rz_l:< P dy; dys
(21)
ol problem
EN:<e e M dr®p>
; i k3 —— T &3ij—— ),
pJ =1 P ! dy; ! dy;
N
drH dr®
3o e )
=1 Y3 Y3
(22)
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Then the functions dr(I)l((p)q( ) / dy,, dr‘I’éa) (y) / dys,
d'TI kp (y / dy, and dr®§, )(y) / dy; need to be deter-

mine for each local problems.
Integrating Eqs. (12) and (16) respect to ys, it turns
out that,

oy apl)
Con =gy, e gy, = M~ G (23)
o) drpt)
€3k3 P dys — =B, — expg,
T dy; dys; P pq
. d'TIy) a¢e)) |
i3k3 dys +€3i3 dy, v Cpi3,
(1) (1) (24)
e del
€3k3 dys B . p T d3p;
where A13pq’ ngq, ngp, and ng are the integration

constants that need to be found. Then, taking into
account Eqs. (13), (14), (17), (18), (23), and (24), the
following systems of equations are obtained:

"QjiAlpg <Pfle3i3>B§pq = <P71 (d33Cizpq + e3i3e3pq)>7
<Re3k" Ck'§13>A13pq rSB;pq <R (e"k3 Ck31'¥C13Pq e3PQ) >7
(25)

"Quilkip, + (Pi'esin)Us, = (P! (dasepis — esidsp) ),
(ResisCiia ) T3, + "SUS, = (R(e3aCiizepis +d3p) ),
(26)

T — ~—1 - ——1
where 'Q; = (Cpt ) + 7 X pot = Clhd R = d,
and 'S = M <a33 > Herein, <> = .(I)Vl + .(2)V2

where V; and V, are the volume fraction of each
constituent for a two-layer composite. Thus, the

ei(;]‘) and di(j“) denote the

derived expressions Ci(jogl,
elastic, piezoelectric and dielectric material properties
for each constituents, denoted as o. The constituent
a{l if 0 <y1<V113,
2 if Vilz <y1<l3,
fraction of layered one and /3 is the length of the
periodic cell in the x3 direction. The magnitude n; is
the unit vector in the outward normal direction.
Solving the systems [Egs. (25) and (26)] and

considering 2 mm symmetry for the composite

where V; is the volume
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constituents (this algorithm also works for 4 mm and
6 mm symmetry point groups), we have:

o Iff+#3:
rA/qu = <Cﬁ3lﬁ3cﬁ3pq> {(IJK,;,; ) - +<Cﬁ3lﬁ3>} B )
(27)

_ -1 _ -1
Tops = <C/}3l/£36Pﬁ3> {(lfKﬁﬁ) +<Cﬁ3l/f3>} , (28)

o Iff=3:
"Aszpg ='Q [Hpq - <P_le333 >B3pq]’
(P 'es33)N, + 'FZ, (29)

o = (P~ e333> +FQ
-1
Bspq = <d3_3le3pq> {<d3_3]> - (er3)_]} )
rU3p = Q- NP — <P2716333>Zp (30)
(P~ ess3) +FQ
where P =Csdss +e2y;, F= (M- 13)_1 +

(P'Cs333), Np = (P! (e333¢p33 + Ca333dzp) ), "Q =
(Pd33) + Kz l5!, Zp = (P~ (epasdas — exnzdyp))
and Hpq = <P_l (d33c33pq + e333eSpq)>'

Then, substituting Egs. (27)-(30) into Egs. (21)
and (22) considering Eqgs. (23) and (24), the expres-
sions for the effective coefficients are found:

(I)k dry
1 i + 0 < ijk3 pq + €3 pq>’
Jpq JPQ> Z 1l 1l dy3
&e,
ey = (epij) + > O < ijka —— + €3 d—3/3>’

N
2
i9r<elk3drnkp dia dr®>

=1 dy3

(31)

To determine the effective coefficients [Eqgs. (31)]
the contribution of each N interface partition of the
composite is needed. Then, finally, the functions
d" Dy /dy;, d"'Wpq /dys, d' Tl /dy; and d'©, /dy; can
be written as:
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d"Wpq /dy; = P~ es33("As3pq — C33pq)

. (32)
— C3333("B3pq — €3pq) ]+

d'®,/dy; = P~ [e333("Tp33 — €p33) + C3333("Usp — dsp) ],

(33)
o Iff#3:
dr(D/ipq/ dy; = CE/B (rA/qu - C/qu)7 (34)
d'Tlg, /dy; = Cﬁal/s ("Tops — €pp3), (35)
o Iff=3:
dr(D3pq/d)’3 =p! [d33(rA33pq — Cs3pq) (36)

+ €333('Bapg — e3pq)]v

d'Tls, /dy; = p! [d33 ("Tp33 — ep33z) — e333("Usp — d3p)]-
(37)

3 Numerical results

In the present work, it is investigated the influences of
the non-uniform electrical and mechanical imperfect
contacts on the effective piezoelectric moduli of
layered composites considering different length frac-
tions of the imperfection at the interface and volume
fractions of the layer 1 (PZT-5A). Limit cases for the
present model are verified, i.e., the analytical expres-
sions [Eq. (31)] reproduce the material properties for
each constituent when the volume fraction of layer 1 is
equal to zero or one. Besides, the Eq. (31) can be
reduced to the elastic case reported in Ref. [31], if we
consider null piezoelectric properties and the partition
number N = 1. On the other hand, as the mechanical
and electrical imperfect parameters reach higher
values (for example 'Kj = 10° and ™™ = 10°), the
results of Ref. [30] for the perfect contact case are
reproduced. These situations are also shown in
Table 2 and Figs. 2, 3, 4.

A computational algorithm has been implemented
for the illustration of the behavior of two layers
composites (PZT-5A/Araldite) where the constituent
parameters used in the calculations are given in

Table 1 and taken from Ref. [30]. Also, the permit-
tivity of free space is dy = 8.85 x 107'2C?/Nm?.

The numerical model is rapidly converging to local
problem solution for any volume fraction of the
composite constituents. For the case of the con-
stituents reported in Table 1, the effect of the non-
uniform imperfections (mechanical and electrical) can
be more significantly detected for values of the PZT-
5A volume fraction higher than 0.75 according to the
numerical results. Therefore, the results are only
reported for PZT-5A volume fractions equal to 0.75
and higher. A bi-laminate composite PZT-5A/Araldite
(ceramic/polymer) is a case where hard and soft
constituents have a common interface. For the case,
where the soft phase is dominant, most of the
mechanical energy can relax in the soft phase and
the quality of the contact does not play a dominant
role. On the other side, when the hard phase is
dominant, the properties of the interface have a more
significant effect on the PZT-5A/Araldite composite
properties.

A bi-laminated with the interface divided into two
portions can be seen as a non-uniform imperfect
contact conditions, where one part of the interface (Let
us say the portion “1””) decreases its percentage from
01 = 100 % to 6, = 0 % with respect to the total area
of the interface I'. We can define the pair [0;; 0] where
0 + 0, = 100 %. Thus, the mechanical and electrical
interface parameters for the first and second portion of
the interface are taken as: 'K; = 10°, 'M = 10°, and
2K;i = M = 50.

In Table 2, it can be observed, the elastic (Cj,;,),
piezoelectric (e%;;) or dielectric (d3;) effective coef-
ficients as a function of the layer volume fraction and
the pair [0;; 0] that describes the non-uniformity of
the imperfect contact. For the case where the first
portion represents 100 % of the interface, the numer-
ical results reproduce the perfect contact reported in
Ref. [30], whereas the first portion has 0 % of the
interface the numerical results reproduce the uniform
imperfect contact reported in Ref. [25]. Also, when the
portion one decreases its percentage, the calculated
coefficients values move from perfect contact condi-
tion to uniform imperfect contact. Then, Table 2
describes a behavior that characterizes a transition
between perfect contact and a uniform imperfect
contact. The numerical coincidence of the two
extreme cases [100;0] and [0;100] with the result
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A

of layer 1

Fig. 2 Effect of the imperfection parameter on the effective elastic coefficients Cj;,, C}3,3 and C33,5 considering a bi-phase partition

for the bi-laminate composite PZT-5A/Araldite

reported by Ref. [30] validates the analytical formulae
obtained previously. It can be observed from Table 2
that as 0, increases, the elastic, piezoelectric and
dielectric coefficients decrease. This result can be
qualified as physically congruent and expected
because the second portion of the interface character-
izes the imperfect contact.

A two layers composite with the interface divided
into two portions is studied herein. In the first portion,

@ Springer

we assume 'Kj =10° (ii=11, 22, 33) and
'M = 10°. In the second part of the interface, the
parameters are evaluated to be equal to >Ky, = 2Ki3 =
10° and 2M = 10° with the exception of 2K, that runs
from 1 to 10°, this way, we investigated the effect of
2K, as can be seen in the 2K;; column of Table 3.Ina
similar way, we proceed with 2Ky, 2Ks3 and M. The
same results are obtained if the imperfection param-
eters of the portion 1 are investigated.
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Fig. 3 Effect of the mechanical/electrical imperfection parameters on the effective piezoelectric coefficients €3, e],; and e3,; for a bi-
laminate composite PZT-5A/Araldite

Finally, Table 3 shows the summary for the influ- (1) the parameter significantly affects (Yes), (2)
ence of the imperfection parameter on each effective almost does not affect (Negligible) or (3) does not
coefficient, where three situations can be identified: affect (Not) the value of the effective coefficients.

@ Springer



134

Meccanica (2020) 55:125-138

¥ 1JSS 1998 [30]
800 I —2p = 106 !
- =mM=10 2
...... 20 =102

600 H{===2M =50
-=M=10

S0 O M=t

5 . 0.9
Vf of layer 1

Fig. 4 Effect of the imperfection parameter on the effective dielectric coefficient d3; considering a bi-phase partition for the bi-

laminated composite PZT-5A/Araldite

Table 1 Materials used in Dimension GPa C/m? _

the computation
Parameters  Cii;1 Ciizz Ciss Caazz Caszs €31 e exp3 di/dg  ds/do
PZT-5A 121 75.4 75.2 111 21.1 —54 158 123 0916 830
Araldite 5.46 2.94 2.94 5.46 1.26 0 0 0 7 7

These results are congruent due to the mechanical
imperfection parameters affect only the elastic and
piezoelectric coefficients, while the dielectric coeffi-
cients are barely affected. A similar situation occurs
with the electric imperfection parameter: it affects the
piezoelectric and dielectric coefficients and barely
affects the elastic coefficients.

In Figs. 2, 3 and 4 the effect caused by the variation
of the imperfection parameter on the behavior of the
effective elastic (Fig. 2), piezoelectric (Fig. 3) and
dielectric (Fig. 4) coefficients is shown. Herein, a bi-
phase partition for a bi-laminated PZT-5A/Araldita is
considered. These results agree with Table 3. In
Figs. 2 and 3, we illustrate the behavior of the
effective coefficients C},,, and e},, because it is more
significant than the coefficients Cj,5,, Cii33, Ciass
and e3;5.

In Table 4, the effect of the interface partition on
the effective coefficients Cj,55, €355 and dj; are also
illustrated. Herein, a bi-laminated composite with a
three partitioned interface [0 ; 0, ; 03] is considered.
Also, for each interphase portion, the imperfect
parameters takes the values: 'Kj = 100, 'M = 100,
2K = 10°, M = 10°, 3K; =50, and M =50
(ii = 11, 22, 33). From Table 4, it is shown that

@ Springer

Ci 133> €533 and d3; values are always bounded between
those values obtained when considering perfect and
the uniform most imperfect contact, i.e., the case with
the weakest contact (*K;; = 50, M = 50). It can also
be seen, that the value of CJ 43, €345 and d3; are always
affected by the type of partition that is proposed, for
example: [0; 100 ; 0] correspond to the perfect
contact, [0; 70 ; 30] and [30; 70 ; O] are expected
to similarly behave due to for both cases, 30% of the
contact area correspond to an imperfect contact. The
slight difference between these cases is because, for
the third partition, the imperfection parameters have
lower values. The cases [0 ; 0; 100] and [100 ; 0 ; 0]
represents two uniform imperfect contacts. As
expected, the case [50 ; 0; 50] can be visualized as
an average between the two uniform imperfects.
Again, the slight difference between them is a result
of not having the same imperfection parameters.
Numerical results of Table 4 can reproduce the
perfect and uniform imperfect contact reported in
Refs. [25] and [30]; and in Table 2 as a limit case when
one of the portions is null. It can be observed that the
elastic, piezoelectric and dielectric coefficients are
more sensitive to the imperfection parameters with the
PZT-5A volume fraction between 0.9 and 1.0. As
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Table 2 Evolution of non-uniform imperfect contact for C},,;, €353 and dj; considering a bi-phase partition for bi-laminate PZT-5A/

Araldite

V¢ Perfect contact Ref. [30]

Imperfect non-uniform contact

Uniform imperfect
contact Ref. [25]

[100; 0] [75;25] [50;50] [25;75] [0; 100]
Elastic effective coefficient Cj,,; (GPa)
0.1 12.36484 12.36484 12.31532 12.26581 12.21630 12.16679 12.16679
0.3 26.38717 26.38717 26.30220 26.21722 26.13224 26.04726 26.04726
0.5 40.95013 40.95013 40.78501 40.61989 40.45477 40.28966 40.28966
0.7 56.97634 56.97634 56.57170 56.16705 55.76241 55.35777 55.35777
0.8 66.62882 66.62882 65.87556 65.12231 64.36905 63.61580 63.61580
0.9 80.25864 80.25864 78.49033 76.72202 74.95372 73.18541 73.18541
1 121.0000 120.9999 112.2711 103.5422 94.81337 86.08450 86.08450
Piezoelectric effective coefficient ef;; (C/m?)
0.1 0.000802 0.000802 0.000756 0.000711 0.000665 0.000619 0.000619
0.3 0.003906 0.003906 0.003636 0.003365 0.003095 0.002825 0.002825
0.5 0.012358 0.012358 0.011270 0.010182 0.009094 0.008006 0.008006
0.7 0.044742 0.044741 0.039340 0.033939 0.028538 0.023137 0.023137
0.8 0.105733 0.105730 0.074507 0.067231 0.058896 0.043285 0.043285
0.9 0.379386 0.379361 0.307970 0.236579 0.165188 0.093797 0.093797
1 15.80000 15.78690 11.90975 8.032601 4.155457 0.278307 0.278307
Dielectric effective coefficient d;
0.1 7.992715 7.770455 7.509174 7.247893 6.986611 6.725330 6.725330
0.3 10.62890 9.963981 9.550080 9.136178 8.722276 8.308375 8.308375
0.5 14.98597 13.88302 13.12879 12.37456 11.62032 10.86609 10.86609
0.7 24.41096 22.88357 21.08742 19.29128 17.49513 15.69898 15.69898
0.8 35.58161 33.85916 30.44151 27.02387 23.60622 20.18857 20.18857
0.9 66.93087 65.06596 55.86808 46.67020 37.47232 28.27444 28.27444
1 830.0000 829.3117 633.7748 438.2379 242.7010 47.16409 47.16409
Table 3 Influence of Effective coefficients 2Ky, 2Ky, 2K33 M
imperfect parameters on the
effectiv.e coefﬁcients for Cints Clians Chass Clans Not Not Yes Negligible
Egrlllt_iltlsform imperfect Cans Not Yes Not Not
Clans Yes Not Not Not
€311, €333 Not Not Yes Yes
€393 Not Yes Not Not
eli3 Yes Not Not Not
dy, Negligible Not Not Not
d;, Not Negligible Not Not
d3, Not Not Negligible Yes

mentioned above, this is a result of the increasing
volume for the harder phase with higher dielectric

constants.

With the present model, it is possible to study a
composite with as many partitions for the interface as
can be of interest. Herein, we only study the two- and
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Table 4 Effect of the partition at the interface on the effective coefficient considering a three-phase partition of the bi-laminate
composite PZT-5A/Araldite

Vi Perfect contact [0; 100; 0] [0;70;30] [30;70; 0] Uniform imperfect [50;0; 50] Uniform imperfect
contact [0; 0; 100] contact [100;0; 0]
Elastic effective coefficient Cj,3; (GPa)
0.1 3.331176 3.274309 3.223565 2.972472 3.057045 3.141618
0.3 4.425825 4.331593 4.249850 3.839242 3.975480 4.111718
0.5 6.314348 6.135759 5.987945 5.226337 5.472694 5.719051
0.7 10.35168 9.915773 9.587216 7.803455 8.351051 8.898646
0.8 14.77787 13.95429 13.38914 10.14879 11.09070 12.03260
0.9 25.04554 22.98375 21.80283 14.23651 16.20471 18.17292
1 75.20008 63.29811 59.62219 23.27380 29.40032 35.52684
Piezoelectric effective coefficient ef;; (C/m?)
0.1 0.000802 0.000747 0.000772 0.000619 0.000661 0.000702
0.3 0.003906 0.003581 0.003724 0.002825 0.003062 0.003300
0.5 0.012358 0.011053 0.011599 0.008006 0.008917 0.009829
0.7 0.044741 0.038260 0.040708 0.023137 0.027218 0.031299
0.8 0.105730 0.086996 0.093304 0.043285 0.053798 0.064311
0.9 0.379361 0.293692 0.315562 0.093797 0.130246 0.166696
1 15.78690 11.13432 11.29207 0.278307 0.541231 0.804155
Dielectric effective coefficient d;
0.1 7.770455 7.456918 7.602392 6.725330 6.967786 7.210243
0.3 9.963981 9.467299 9.693151 8.308375 8.684794 9.061214
0.5 13.88302 12.97794 13.37534 10.86609 11.52842 12.19075
0.7 22.88357 20.72819 21.60526 15.69898 17.16075 18.62252
0.8 33.85916 29.75798 31.29000 20.18857 22.74194 25.29531
0.9 65.06596 54.02851 57.37220 28.27444 33.84727 39.42009
1 829.3117 594.6674 607.2965 47.16409 68.21253 89.26097

three portions cases with the sake of validating the
model. The number of partitions at the interface may
be use as way to characterize a more realistic interface
between constituents.

4 Conclusions

In the present work, the formulae for effective
properties of piezoelectric composites with 2 mm
point group symmetry has been obtained, considering
non-uniform imperfect adhesion between layers. This
model is a generalization of those where perfect and
uniform imperfect contact conditions are considered.
These formulae have been numerically validated

@ Springer

comparing with previous reported results and theoret-
ical limit cases.

It can be observed that the effect of non-uniform
imperfection on the interphase plays a very important
role on the final properties. For a bi-laminate com-
posite PZT-5A/Araldite, these effects are more inten-
sively detected for PZT-5A volume fractions larger
that 0.75. The numerical values of the effective
properties, where a non-uniform imperfect contact is
considered, are always bounded between the values of
the perfect and the uniform imperfect contact condi-
tions. Anyway, this interval is large enough to make
the portion combination effect capable of affecting the
composite properties. For the PZT-5A/Araldite com-
posite, the elastic constant runs from 15 to 75 GPa, the
piezoelectric from 3 to 14 C/m?, and the dielectric one
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from 150 to 800. Composite elastic properties are
mainly affected by the mechanical imperfect condi-
tions and dielectric properties only change because of
the electrical imperfect contacts. Piezoelectric effec-
tive coefficients are always influenced by both
mechanical and electrical imperfections.

The herein developed model can be used to
estimate effective properties for a variety of situations
concerning the quality of the interfaces between
constituents. The possibility of simulating a number
of partitions at the contact where each one has its
imperfection parameter provides the tools to study
more realistic contact regions.
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