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1. INTRODUCTION:

Symmetric spaces are (locally) characterized by the
condition V'R = 0, where V is the riemannian connection
(extended to act on tensors) and R is the curvature
tensor. The integrability condition for V-R = 0 is R'R
= (0, where R is extended to act as a derivation on
tensors. Spaces which satisfy the latter condition are
called semi~symmetric. Semi-symmetric spaces where
introduced by Cartan and a classification of such
spaces was obtained by Szabo’ (see [18],{19]).

In the theory of submanifolds the condition analogue
to V'R = 0 1is V¢ = 0, where « 1is the second
fundamental form (see 2.1.). Such submanifolds, or
isometric immersions, are called parallel or
extrinsically symmetric and, in the case that the
ambient manifold is a space form, have been classified
by Ferus in [12], Backes and Reckziegel in [2] and
Takeuchi in [20].

In the same context, the analogue of the semi-symmetric
condition is R-a = 0 (see 2.2.) and submanifolds which
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verify this condition are called semi-parallel. Such
submanifolds have been object of study in the past
years by several authors, especially Deprez and
Lumiste, but a classification is not yet available.

In this paper we will discuss some results on semi-
parallel submanifolds of space forms with particular
emphasis to the case of surfaces, where the condition
R‘R = 0 is empty but the condition R-a = 0 is extremely

restrictive. Our main results are the following:

2 ¥ A connected semi-parallel surface 1in a 5~
dimensional space form is either flat or totally
umbilical or a piece of a Veronese surface in some
totally umbilical 4-sphere.

2. A compact, connected, semi-parallel, not

orientable surface in RN is either flat or a Veronese
surface in some totally umbilical 4-sphere.

2. NOTATIONS AND KNOWN FACTS.

Let M be an n-dimensional riemannian manifold and
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Q¥(c) a simply connected, complete N-dimensional
manifold of constant curvature c. Superscripts will, as
usual, denote dimensions and will be dropped when clear
from the context. We will consider isometric
immersions f: M —— Q(c) and will use standard
notations: V will denote the riemannian connection of
M, v(M) the normal bundle, a:TMxTM —— v (M) the second
fundamental form, V! and R! the normal connection and
it’'s curvature. Finally, if £ is a normal vector we
will denote by Ag:, TyM —— TxM the Weingarten
operator <A€X,Y> = <a(X,Y), &>,

We will say that the immersion f is parallel if for
all tangent vectors X,Y and %Z we have:

2.1. (Vxa) (Y,2) = Vg[a(Y,2)]-a(VxY,2)-a(Y,VxZ) = O.

We will say tat the immersion f is semi-parallel if
for all tangent vectors X and Y we have:

where V acts on v(M)-valued forms by the analogue of
2.1..

Using the classical equations of Gauss, Codazzi-
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Mainardi and Ricci,condition 2.2. may be written in the
form:

2.3.  RY(X,Y)[a(Z,W)] = a(R(X,¥)3,W) + a(3,R(X,Y)H).

Again the basic equations imply that if f: M ——
Q(c) is a semi-parallel immersion then M is semi-

symmetric.

2.4.REMARK: For an isometric immersion f: M — Q(c)
we have an associated triple system L:TyMxTyM ——
End(TyM), L(X,Y) = c<X,¥> + Ag(x y) + R(X,Y), which is
a Jordan triple system if the immersion is semi-
parallel (see [1],[12]). The basic observation that
leads to the classification of parallel immersions is
the following: Given a point x € Q(c), a subspace E <
TxQ(c) and a Jordan triple system on E, there exists a
unique parallel immersion through x with those data at
X . Therefore we can think of a semi-parallel immersion
as a "2nd order envelope of parallel immersions" in the
sense that we have at each point a parallel immersion
with the same tangent space and second fundamental form
(see [2]).

Let wus now briefly comment the case of
hypersurfaces. Let £ : MR — Qntl(c) be a semi-
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parallel hypersurface and £ a unit normal vector. Let
{e1,.++.,en} be an orthonormal basis for the tangent
space of M which diagonalizes Ag and let Aj = <Agej,ej>
be the principal curvatures. In this situation 2.3.
becomes:

2,.5. (Aihj+c)(hi - Aj) = 0.

It follows from the above that there are at most two
distinct principal curvatures, say A and u. If A =
then ap = -c and the two eigenspaces T, and Ty
determine on that open set, two distributions. It is a
standard consequence of the equations of Codazzi-
Mainardi that those distributions are involutive and if
the multiplicity of one of the principal curvatures,
say A, is at least two, then A is constant along the
leaves of T, and those leaves are totally umbilical.
From those observations we get that if ¢ # 0 and at one
point there are two distinct principal curvatures, both
of multiplicity bigger than one, then the hypersurface
is isoparametric and therefore a tube around a totally
geodesic submanifold, if M is connected. If one of the
principal curvatures is simple then M is a l-parameter
envelope of umbilical submanifolds and those may be
described quite explicitly (see [3] ). If ¢ = 0,
besides such tubes we can have cylindrical immersions
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(i.e. rank Ag = 1), cones over spheres and products of
such cones with Euclidean spaces (Deprez [9]).

2.6.REMARK: In [16] and [17] Nomizu and Ryan study the
more general case of semi-symmetric hypersurfaces. In
this case condition 2.3. becomes (Aidg + c)(di - A4)2k
= 0 and besides the above possibilities we have all the
immersions with rank Ag = 2.

Strictly related to the case of semi-parallel
hypersurfaces is the case of semi-parallel immersions
with flat normal connection. If the normal curvature
vanishes at a point x e M then there exists an
orthonormal basis {ej,...,ep} of TyM such that if i =
jr a(ej,ey) = 0. In this case 2.3. is equivalent to:

2.7, K(ej,ej){a(ei,ej) - a(ej,e4)} =0,

where K(ej,eq) is the sectional curvature of the plane
spanned by e; and ej. If ¢ =2 0, the sectional curvature
is non negative and, at least if M is complete, the
topology is well understood: It‘s universal covering
space is the riemannian product of manifolds
homeomorphic to spheres and a manifold diffeomorphic to
a Euclidean space (see [10]). An interesting geometric
result, which we will use later in a weaker form, is
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the following:

2.8.PROPOSITION: Let f: M —— Q(c) be a semi-parallel
immersion with flat normal connection. If ¢ =2 0 , M is
connected and the Ricci curvature is positive at some
point, then f is a product of umbilical immersions.

2.9.REMARK: A scheme of classification of semi-parallel
immersions in Euclidean space with flat normal
connection may be found in [15], where the above
proposition is attributed to Riives. We will sketch a
proof of 2.8. since it is not easily found in the

literature.

Proof of 2.8.: We consider the case ¢ = 0. The case c >
0 is an obvious consequence. A theorem of Erbacher (see
[6], p- 139) states that f is the product of umbilical
immersion if M has non negative sectional curvatures,
flat normal connection, parallel mean curvature vector
and constant scalar curvature. So it will be enough to
show that the latter two conditions are satisfied.

Iet p € M be a point where the Ricci curvature is
positive and {ej,...,ep} be a basis of TpM such that
a(ej,eq) = 0 if i = j. We will write ax) for a(ek,e1).
From 2.7. and the positivity of the Ricci curvature at

p, we get:



i) ajj = ajj or K(ej,ej) = <ajj,ajj> = 0;
ii) for all i, ajj # 0 and there exists j # i with

adij= de

Since the condition Riccip > 0 is open the above
conditions hold in a neighborhood of p and is not
difficult to see that we <can choose a smooth
orthonormal frame, {ej,...,ep} in a possibly smaller
open set, such that the two conditions above hold true
in this open set. From the Codazzi-Mainardi equations

we get:

l.véjaii = (Veja)(ei,ei) + 2a(vejei,ei) = (Veia)(ej,ei)
i 2<ie.0i ei>ai; = Feieivejllaii ~ a55.

Therefore:

’ . b
2. If 1 # j and ajj = ajj, then Ve;2j53 = 0.

8. For ‘all. i, Véiaii = 0. (Take j # i with aj§ = ajj).
4. If i # j and a«jj * ayj then Véiajj = 0. In fact
<ajj,235> = 0 by i) and therefore 0 = ej<ajj,ougy> =
-<Veiei,ej>ﬂajjuz. Since ®j5 # 0 the conclusion follows

from 1.

From the above we conclude that the ajj’s are parallel



in the open set we are working on and therefore the
mean curvature vector is parallel and the scalar
curvature is constant in that open set. A simple

connectness argument gives the desired conclusion.

2.10.Remark: Proposition 2.8 gives a classification of
codimension two semi-parallel immersions into Euclidean
space. In fact it is easily seen that R} (X,Y)*H = 0 for
all tangent vectors X,Y. If H # 0, RI(X,Y) annihilates
E and, by anti symmetry, the orthogonal complement of
H, and therefore is zero if the codimension is two. If
H = 0 then the point is a totally geodesic point by
general properties of Jordan triple systems with ¢ = 0,
(see [1]), and therefore again R*(X,Y) = 0.

3. SEMI-PARALLEL SURFACES.

In this section we will study semi-parallel
immersions of a 2- dimensional manifold M into an N-
dimensional space form Q =QN(c).

Let {ej,e2} be a local orthonormal tangent frame and
we will set, as before, ajj = a«(ej,ej)- Also K will
denote the Gaussian curvature and R' := Ri(ej,e2) the
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normal curvature operator. With these notations 2.3.
becomes:

3.1. Riaj; = -Rtags = 2Kaj2 , Rtajz = K(aji=-a22).

An immediate consequence of 3.1. is that if R! = 0,
then either f is umbilical or M is flat. Moreover an
immersion of a flat surface is semi-parallel if and
only if Ri =

The above observation is of some interest also
because it allows us to classify semi-parallel
immersions into Q4(c). In fact, in this case, if c = 0
then Rt = 0 (see 2.11.) and, if ¢ > 0, either R! = 0 or

f(M) is a piece of a Veronese surface (see 3.6. below).
Let £ be a unit normal field. The Ricci equation:
3.2. RY(X,Y)E = a(BgY,X) - a(AgX,Y),

together with 3.1. gives:

1<8ii,a12>(a11~622)+[<ajj,a22-011>-(-1)12K1a15 =. 0.
3.3. ‘

(lagat2 - K)(a1] - @22) + <@12,422 - «€11>012 = 0.
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If R* # 0, a12 and «11-a9y are linearly independent
and in this case 3.3. (and the Gauss equation) gives:

na12n2 =K, Haiiﬂz = 4Kk-¢c , <ajj,ax12> =0,
3. "
WgI2 = 3K - ¢, lapi-az202 = 4K, <a11,222> = 2K-C.

From the above we deduce the following result of
Deprez([8]):

3.5, THEOREM: Let f: M2 — QN(c) be a semi-parallel
immersion. Then there exists an open and dense set U <
M2 such that the connected components of U are of the
following types:

i) Open parts of umbilical Q2(K) in Q¥(¢), K = c;

ii) Flat surfaces with R! = 0;
iii) Isotropic immersions with R! = 0, 1HIZ = 3K-c.

For further use we will give a look at the case ¢ = 1.
By composition with the inclusion QN{1) = sV <, gN+l
we get a semi-parallel immersion into Euclidean -epace.
We will denote by a, # the 20d fundamental form and the
mean curvature vector of the new immersion. Since

1f(x)d = 1, differentiating twice we get <Eii,f{x)> =
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-1 and hence <H,f(x)> = -1. If Rt # 0, by 3.4. K =
(1/3)1812 and, since WHr = 1, K = (1/3).

3.6.PROPOSITION: Let f£f: M2 — SN be & semi-parallel
immersion of a connected surface with R = 0 somewhere.
Then the following are equivalent:
i) K= (1/3);
ii) £ is minimal;
iii) £(M2) is a piece of a Veronese surface;
iv) f(M2) is contained in a totally geodesic s4 in sN,

Proof: Since <H,f(x)> = -1 and K = (1/3)1H12 = (1/3} we
have that K = (1/3) if and only if # is parallel to
£(x) and therefore if and only if f is minimal in SN.
Moreover a minimal surface in SN with constant
curvature 1/3 is a piece of a Veronese surface, by a
theorem of Bryant (see [5]). So the first three
conditions are equivalent and clearly implies the
fourth. Suppose now N = 4. Differentiating f{(xj# = 1
we get <§12,f(x)> =0 = <&11-&22,f(x)> and therefore H

8

is parallel to f(x) since ey, ey, x32, aj1-x22 and
are orthogonal. Therefore f is minima) in %,

We will prove now the main result of this section:
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3.7.THEOREM: Let £f:M2— - Q5(c) be a semi-parallel
immersion of a connected surface. If R! 2 0 at some
point, then f(Mz) is a piece of a Veronese surface in

some Q4(c), ¢ > 0, totally umbilical in Q5(c).

Proof: The main point of the proof is to show that the
Gaussian curvature has to be constant. We will use the
moving frame method. Let {ej,e3} be a local smooth
orthonormal tangent frame in a non void open set U
where Rt # 0. We want to show that the function ¢ =
3K - ¢ is constant. Taking a possible smaller open set
we can assume ¢ * 0. Set k = K1/2 and define:

3.7.1. e3 = H/Vp ; e4 = (a11-222)/2k ; e5 = aj12/k .

Let {wp}, {wap}s AB = 1,...,5 be the dual frame and
the connection forms, respectively. As usual capital
Latin indices will run from 1 to 5, small Latin indices

from 1 to 2 and Greek indices from 3 to 5. Since w; = 0
2

along M we have wj, = z <ajj,ex>wj , and therefore, by
A=l ‘
our choice of the ep’s we have:
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W13 = yPe1 , W14 = kwy , w15 = kwy,

w23 = Vpwy , w24 = -kwy , w25 = kwjy.

(see 3.4.). The structure equations give:

3.7.3.dwp = wapAWR , dwiz = -Kwjawr , dw = WARA
iy ABNYB 1 1AW2 BAA ABAWR
B B

Set now:
3.7.4. de = awy + bwy , wap = appw; + bapwy -

We want to show that a = 0 = b. For this we compute
dwj, using 3.7.2 and 3.7.3.. For (i,A) = (1,3) we have:

dwiz = d(vpw1) = (a12ve - b/2Vp) wirwy ,

dwyz = ) wiprwp3 = (a12ve - b3gk + azsk)wiawy.
B

This and the analogue calculations for the other pairs
of indices give:

k(azs - b3g) = -b/2vp ,
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k(a3g + b3s) = -a/2vp ,

2a12 - ag5 - pb3g/k = b/2(p + c) ,
2a12 - a45 + pa3zs/k = b/2(p + ),

bgs - 2bj + pazg/k = a/2(p +c) ,

bgs - 2bjz + ¢b3g/k = a/2(p +c) .

Algebraic manipulations of the above give:

w34 = [(3/16p(p + c)]11/2(-aw; +bwy),
39,5, w35 = -[(3/16p(p + c)11/2(bwy + awy),

w45 = 2012 + [5/4(p + ¢c)](-bwy + awy).

Differentiating w34 using the expression in 3.7.5. we

get:
dw3yg = {-[(2¢+c)/p(p+c) Jabw]irwg-aw] 2Awy=bw] 2Aw] +dbAwy+
wlAda}{3/16¢(¢+c)}1/2.

The structure equations, together with 3.7.2. and
3.7.5. give:

dw3g = w35Aw54 = {2bwjiAwiz+2awrAw]g+[1l0ab/4(p+c) Jwirwy}
{3/16¢ (p+c)}1/2,
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Comparing the two expressions we get:
wiada+dbawr=[ (%¢+2c)/2¢ (p+c) ]abwiAwr+bwiAw] 2-aw] 2AWY .

The same calculation for w3s and wgs gives:

wiadb-darwy = [(9¢+2c)(bz—az)/4¢(p+c)]w1mw2
—aw]Aw] 2+bwaAw] 2,

wiAadb+darwy = [(17@-3c)(a2+b2)/20p(¢+c)]w1Aw2
—aw]Aw] 2+bwi 2Awg .

Combining with 0 = d(d¢) = -wjada+dbawz+aw]zrwr+bwirwi)
we get:

r.:1‘-=\=1L«-;¢£;12+{[ (6292+47c)a2-(28p+13c)b2]/40¢p (p+c) i+
[ (9¢+2c)/4p(p+c) Jabwy

3.7.6.4

db=-aw12+{[(62p2+7c)b2-(28p+130)a2]/40¢(¢+c)}w2+
[ (9¢+2c)/4p(p+c) Jabwy

.
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Differentiating again the last two equations we get:

0=b[2(p+c) 1-1{K+(a2+b2) (849+299c) [80092 (p+c) 11}
< W i,
0=a[2(p+c)]~1{K+(a2+b2) (849p+299c)[800p2 (p+c)]~1}

0 = b. We will treat now

It o= 0, 3.7.7. implices a
the case ¢ < 0. We shall suppose ¢ = -1, Vp # 0 and use
a classical result of Beltrami (see [4] and also [1l1]
p. 161) on the differential parameters on a surface.
Beltrami's theorem states that if the ratio Ap/1vpi?2 is
a function of ¢ alone, there exists a function ¥ on M2
such that (¢,¥) gives a system of local coordinates and
in those coordinates the metric takes the: form:

ds2 = wen=2(de2 + exp.(2I(A¢/HV¢H2)dp)d$2).
In our case, from 3.7.6.and 3.7.7., we get:

19p12=800p2 (p-1)2/3(299-849p),
Ap = VN2 (179+3)/20p(p-1).

Therefore ds2 = Edp2 + Gdy2 with
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E = 3(299-849)/800p2(p-1)2 , G = 3h(299-84¢p)/800p23/10,

where h 1is a constant. The Gaussian curvature K
satisfies the equation:

202G/89p2 - G-1l(aG/8p)2 - E~1(8G/ap) (8E/dp) + 4EGK = 0,

Substituting K = (¢-1)/3 we find that the function ¢ is

solution of the polynomial equation:
42336p3+1336171292-41446782¢+67855359 = 0 (sicl)

and this is absurd since we have supposed that ¢ is not
constant.
Therefore even in the case ¢ < 0 we have a = 0 = b.

We will show now that the mean curvature is parallel
in the normal connection. In fact, from 3.7.5, w34 = 0
= w35, and this, together with the constancy of ¢,

gives:

ViH= Vp Z <V§ e3,e3>e; = Vp z w33 (X)e) = 0.

X
A A
It follows from results of Chen and Yau (see [6], p.
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106), that f embeds a neighborhood of the point where
Rt # 0 as a minimal surface in a totally umbilical
04(c) in Q5(c). By minimality ¢ = K and the conclusion
of the theorem follows from 3.6. and a simple
connectness argument. '

3.8.REMARK: For ¢ = 0 the above result is due to
Lumiste (see [14]). The essential difference here is
the use of Beltrami’s theorem to treat the case c < 0.

4., COMPACT SEMI-PARALLEL SURFACES IN RN,

Let £ : M — 5 RN be a semi-parallel immersion of
a compact, non flat surface. Since the Gaussian
curvature is non negative, M2 is diffeomorphic to a
sphere or to a projective plane. In this section we
will estimate the total absolute curvature of £, T(f),
and prove the following:

4,1, THEOREM: In the above hypothesis x(M) = tT(f) =
3x(M).

In particular we deduce the following:
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4,2, COROLLARY:

i) If M is not orientable then f embeds M as a
Veronese surface in some 4-sphere of RN,
ii) If M is orientable and f is tight, f is totally
umbilical.

Proof of 4.2, : If M is not orientable then y(M) = 1
and T(f) = 3 by 4.1.. On the other hand tT(f) = 3 by
Morse inequalities and therefore t(f) = 3 and f is
tight. By a theorem of Kuiper and Pohl (see [13]), f is
then projectively equivalent to a Veronese surface, in
particular f(M) is contained in some 5-dimensional
affine subspace of RN and i) follows from 3.7..

If M is orientable and f is tight then T(f) = 2 and
by a theorem of Chern and Lashof f(M) is contained in
some 3-dimensional affine subspace of RN (see [7]}. The
conclusion then follows from 3.6.

Proof of 4.1.: We recall that the total absolute
curvature is given by:

T(f) = (CN-l)"lf ( I 'det (Ag) 'doy_3)aM ,
Moogi=1
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where dop is the volume density of the n-sphere, cp =

I dop, and dM is the volume density of M.

sn

If the mean curvature vector at x, H(x), is zero then x
is a totally geodesic point (see remark 2.10.) and so
Ag = 0 for all £'s normal to M at x. Suppose H(x) # 0
and choose an adapted frame {ej,...,ey} with e3 = H/IHI
and, if R'* # 0, e4 = (aj1-a22)/lxjj-a20 and e =
a12/layl. Set Ay = Ag,, A = 3,. From 3.4. we have:

3
1.1f Ri=0, B3 = | /K ‘/OKJ,AA- g Tlaini

V3K 0 VK 0]
2 = [ ‘;,K],AR=[3 g] if 2 = 6.
Let £ be a unit normal vector at x. Write £ = Z £aey .

az3
Then det(AE) = Kp(£3,+++,EN), where K is the gaussian
curvature and ¢ is given by:
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(£3)2 if Rt =0
p(€3r---:§N) =
13(£3)2-(£4)2-(£5)2! if Rt 2 0

Observe now that ¢ is the integrand that appears in the
expression of the total absolute curvature of the
immersion of the unit sphere in RN as totally umbilical
surface, in the first case, and as a Veronese surface
in the second. Therefore the integral of ¢ on the unit
N-3 sphere is (cn-1)/2m in the first case and
3(cN-1)/2n in the second case. From the above and the
Gauss-Bonnet Theorem we get:

x(M) = (ex-1)7l[k am [ (£3)2 dogz = wE) s
M ghN-3

f‘ I - By
cn-1)"1[K av [ 13(£3)2-(84)2-(£5) 2 doy-3 = 3x().
M gN=-3
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