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Abstract

Mycotoxins are products of the secondary metabolism of fungi, which can be present in food as contaminants. According to
Food and Agriculture Organization (FAO), these substances, making them relevant to global health, contaminate approximately
25% of all food worldwide. The occurrence of exposure to these mycotoxins is more common in developing countries, where
their effects are more harmful to health due to the high rate of malnutrition in these places. The damage caused by them can
manifest acutely or chronically, and among them stand out hepatotoxicity, nephrotoxicity, immunogenicity, carcinogenesis,
mutagenesis, and teratogenesis and are associated with particularly dangerous nutritional disorders in children from poorer
regions. This review focuses on aflatoxins, fumonisins, zearalenone, deoxynivalenol and ochratoxins, with special attention to
their impacts on human and animal health, based on experimental studies and case reports. The biomarkers most used in the
detection of these substances based on their metabolism are also discussed.
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Practical Application: Control of food contamination by mycotoxins.

1 Introduction

Mycotoxins are secondary products of fungal metabolism,
with a high capacity to cause damage to human and animal
health (Bennett & Klich, 2003).

Fungi can naturally proliferate in food and are very
commonly found in grains used for animal and human food.
The growth is mainly favored by humidity and temperature.
Inadequate harvesting and storage practices contribute to fungal
contamination (Batatinha et al., 2008).

The presence of fungi in food does not necessarily indicate that
they are contaminated with mycotoxins; similarly, the elimination
of the fungi does not guarantee that the mycotoxin has been
removed because they have high stability (Turner et al., 2009).

In Brazil, mycotoxins can be found in isolation or in
combination in foods such as peanuts, grains, cereals, corn,
wheat and animal foods such as milk, eggs and meat. The fact
that these mycotoxins can be found in various foods makes
them of great importance in public health, in addition to causing
negative impacts on the economy (Maziero & Bersot, 2010;
Calori-Domingues et al., 2016).

There are several mycotoxins produced by different types of
fungi. Sometimes a single fungus species can produce different
mycotoxins, making the discussion about the toxic potential of
association between them relevant (Sweeney & Dobson, 1998;
Marin et al., 2013).

The ingestion of food contaminated by mycotoxins can
cause damage to human and animal health and can lead to

death, depending on the mycotoxin and the amount ingested
(Peraica et al., 1999). Among the harmful effects caused by
mycotoxins, hepatotoxicity, nephrotoxicity, carcinogenesis,
immunosuppression, and mutagenicity stand out (Rocha et al.,
2014). In addition, some mycotoxins, such as aflatoxins and
fumonisins, have teratogenic potential and may cause bone
malformation and poor development in fetal organs, as
demonstrated in previous studies with experimental models
(Fetaih et al., 2014; Abdel-Wahhab et al., 2004).

There are several methods that aim to detect mycotoxins in
food samples and biological samples. Among the techniques stand
out are immunoenzymatic assays and chromatography that can
isolate molecules (Chauhan et al., 2016; Pimpitak et al., 2020).
Chromatography becomes more effective when associated with
mass spectrometry, as it allows a greater amount of information
about the analyte to be obtained, making its identification more
assertive (Chiaradia et al., 2008; Medina et al., 2019). Fluorescence
methods can also be used to detect food contamination,
mainly by aflatoxins (Raota & Giovanela, 2016). Currently, the
most commonly used techniques for determining mycotoxin
exposure are high-performance liquid chromatography with
fluorescence detection (HPLC-FLUO) and high-performance
liquid chromatography coupled with sequential mass spectrometry
(LC-MS/MS) (Al-Jaal et al., 2019).

Residues and metabolites of mycotoxins, such as aflatoxin,
can be identified in humans and animal viscera and excreta, and
these are important markers of poisoning by these substances
(Ramalho et al., 2018; Jager et al., 2016).
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Animportant point in the study of poisoning by mycotoxins
is that food contamination is intended for the consumption of
farm animals, culminating in animal products contaminated
with metabolites of these substances, which contributes to
human exposure to mycotoxins (Dias, 2018).

Chronic exposure to small amounts of mycotoxins in food isa
major global health problem due to the ability of these substances
to lead to the development of various pathologies, which makes
monitoring mycotoxins in foods important for generating new
technologies. Detection and elimination of these substances aim
at reduction of exposure and therefore of the diseases caused by
them (Smith et al., 1995; Maziero & Bersot, 2010).

Studies indicate that the presence of mycotoxins in food
is more common in developing countries, and the population
of these countries will often be exposed to food contaminated
with one or more mycotoxins (Bryden, 2007).

It is estimated that approximately 25% of the entire world’s
food is contaminated by mycotoxins (Bennett & Klich, 2003).
Due to the importance of mycotoxins for public health, legislation
defines the maximum permitted amount of these substances
in food. In Brazil, these quantities are stipulated in RDC No.
7/2010 of the national health surveillance agency (ANVISA).

The purpose of this review is to discuss the following
mycotoxins: aflatoxins, fumonisins, zearalenone, deoxynivalenol
and ochratoxins, raising the main topics about their impact on
human and animal health and the biomarkers used to evidence
exposure to these substances.

2 Mycotoxins
2.1 Aflatoxins

Aflatoxins are mycotoxins of common occurrence in Brazil
and are produced by fungi of the genus Aspergillus spp., mainly
A. flavus, A. parasiticus and A. nomius (Caldas et al., 2002).
The group of aflatoxins has many representatives among fungal
metabolism products and metabolic products of these substances
in the body. The toxins B1, B2, G1 and G2 stand out due to their
toxicological importance, and aflatoxin B1 is the most important
due to its carcinogenic potential. Aflatoxin B1 is classified by
the International Agency for Research on Cancer (IARC) as a
group 1 carcinogen, which means that aflatoxin B1 (AFB1) is
part of the group of substances with the greatest carcinogenic
potential (International Agency for Research on Cancer, 2002).

The products of hepatic metabolism of aflatoxins are
responsible for their toxic effects (Batatinha et al., 2008). These
metabolites cause acute liver damage when ingested in large
quantities or express a high potential carcinogenic when ingested
continuously, causing damage in DNA through adduct formation
and interfering with protein metabolism (Wild & Turner, 2002).

The ingestion of aflatoxins is especially relevant in developing
countries, where contact with these substances occurs, from the
development embryo, into adulthood (Gong et al., 2002). One
of its effects would be the impairment in the development of
children, in addition to the association with nutritional disorders
such as Kwashiorkor (McMillan et al., 2018).
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Poor diets, from the nutritional point of view, seem to be
related to the increase in the toxic and carcinogenic effects of
aflatoxins, a fact that may be related to the low intake of substances
with antioxidant potential such as vitamins, a common condition
in the poorest populations of countries under development
(Rogers & Newberne, 1971).

In some countries, mainly in Africa and Asia, children become
fed almost exclusively with potentially contaminated grain, and
after being weaned, this is due to the economic condition. It was
shown that the increase in serum concentration of aflatoxin in
these children is also related to dwarfism (Alamu et al., 2020).

Experimental studies in rats demonstrate that exposure to
AFBI1 during the period of embryonic development can lead
to genotoxic changes, favoring the development of neoplasms
in adulthood (Chawanthayatham et al., 2015). In addition, the
mutagenic effect of aflatoxins during embryonic development can
lead to a series of morphological and behavioral changes, which
may lead to reproductive disability and even death (Fetaih et al.,
2014; Supriya & Reddy, 2015).

When high doses of aflatoxin are ingested, they usually
cause acute poisoning; although acute poisoning outbreaks are
not so common, they usually go with anorexia, general malaise,
low fever, and may progress with emesis, severe abdominal pain,
acute hepatitis and death (Azziz-Baumgartner et al., 2005).

The biomarkers used to determine exposure to aflatoxins
are metabolites of AFB1, such as aflatoxin M1 (AFM1), aflatoxin
P1 (AFP1), aflatoxin Q1 (AFQ1), aflatoxin-albumin, AFB-N7
guanine and aflatoxicol (AFL), present in biological fluids
(Bando et al., 2007). AFB1 and metabolites can be detected in
the blood, urine and feces of humans and animals, which is
an important tool for assessing the exposure of individuals to
aflatoxins (Fernandez et al., 1997; Mykkénen et al., 2005). For
the monitoring of these biomarkers, analytical techniques that
are sensitive, specific and that can be applied to many samples
are necessary (Groopman & Kensler, 1999).

Free AFB1 can be found in the blood, but its levels are high
for a short time after intake, making it not a good exposure
marker, as aflatoxin-albumin is found in blood samples for up
to 20 days after exposure (Jager et al., 2016).

AFM1 can be found in urine, feces and milk, and in the
case of lactating women and animals, with high toxic potential,
this metabolite is especially important in the contamination
of children during breastfeeding and in commercial milk
from animals (Diaz & Sanchez, 2015; Giovati et al., 2015;
Hajmohammadi et al., 2019; Ahmadi, 2020). AFM1 is further
classified by IARC as agent 2B for its carcinogenic potential in
humans (International Agency for Research on Cancer, 1993).
The assessment of AFM1 levels in urine can also be used as a
biomarker to determine the effectiveness of methods that aim
to decrease exposure to AFB1 (Mitchell et al., 2013).

Another important biomarker is AFB-N7-guanine, a lead
product of AFB1 epoxide with a guanine of the DNA molecule
that is excreted in urine. AFB-N7-guanine is a biomarker that
shows, in addition to exposure to AFB1, DNA damage, the
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main factor in the development of hepatocellular carcinoma
(Dohnal et al., 2014).

The search for AFB1 biomarkers in hair and nail samples
is relevant, as it may indicate exposure that has occurred for a
longer time (Mupunga et al., 2017).

2.2 Fumonisins

Fumonisins are a group of mycotoxins produced mainly by
fungi of the genus Fusarium spp.. These mycotoxins are found
in foods such as corn and forages and are associated with liver
damage and some types of neoplasms. The variant of greater
importance is fumonisin B1 (FB1), classified by IARC as a 2B group
member with carcinogenic potential for humans (International
Agency for Research on Cancer, 1993). The mechanism of action
of FB1 consists of the interruption of sphingolipid synthesis by
inhibiting sphingosine-N-acetyltransferase, inducing oxidative
stress, altering DNA methylation, and modulating autophagy
and stress of the endoplasmic reticulum (Voss & Riley, 2013;
Liu et al., 2019).

Among the diseases caused by fumonisins in animals are
leukoencephalomalacia of the horse and pulmonary edema in
swine (Marasas et al., 1988; Harrison et al., 1990). In addition,
FB1 has been shown to cause hepatotoxicity and nephrotoxicity
in rats (Voss & Riley, 2013). In humans, fumonisins are constantly
found in places with a high incidence of esophageal cancer,
which is therefore a sign that these toxins may play a role in the
development of this neoplasm (Come et al., 2019).

In underdeveloped countries where maize and derivative
feeding rates are high, the fumonisins present in these foods seem
to be related to impaired child development (Chen et al., 2018).

The experimental administration of FB1 is related to
malformations in the closing of the neural tube in mice (Gelineau-
van Waes et al., 2009). Skeletal anomalies are also observed in
rats, as well as failure to develop the organs and even decrease
the number of pups per litter (Abdel-Wahhab et al., 2004).

In rats, liver damage caused by FB1 can lead to an imbalance
in the mineral composition of bones, leading to decreased bone
strength (Rudyk et al., 2019).

The toxic action of fumonisins occurs mainly by inhibiting
the function of the enzyme ceramide synthase, leading to a
decrease in the production of sphingolipids and, therefore,
accumulation of sphinganine (Sa) and sphingosine (So).
Sphingosine and sphinganine in serum, tissues, urine, and feces
can be used as biomarkers of exposure to fumonisins (Van der
Westhuizen et al., 1999).

In rats, the rates of Sa, So and free FB1 in the urine remain
high for a longer time when compared to serum, so the urinary
determination of Sa/So is more effective for determining exposure
to fumonisins (Cai et al., 2007).

High amounts of free FB1 have been found in the urine of
people who have eaten contaminated corn in China, indicating
free urinary FB1 as a potential biomarker of human exposure
to fumonisins (Xu et al., 2010). The Sa/So ratio can be used to
determine the degree of exposure to fumonisins; in addition,
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men have a greater amount of Sa and So in the urine when
exposed to FB1 (Qiu & Liu, 2001).

Fumonisins can still be identified in human and animal
hair, which is an important tool in detecting exposure to these
mycotoxins in populations, and the toxicokinetic mechanism
that explains the presence of fumonisins in the hair has yet to
be elucidated (Sewram et al., 2003; Souto et al., 2017).

2.3 Zearalenone

Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin
produced mainly by fungi of the genus Fusarium spp. ZEN can
be produced in colder climates and can be found in various
foods, mainly in corn. This mycotoxin acts in the body as an
estrogenic substance, and its mechanism consists of binding to
receptors for 17f estradiol, leading to hyperestrogenism and
reproductive disorders (Batatinha et al., 2008).

The metabolites of ZEN, a and (-zearalenol have higher
affinity for estradiol receptors and are therefore primarily
responsible for the mechanism of action (Fitzpatrick et al., 1989).

The ingestion of food contaminated with ZEN leads to
endocrine disorders due to its similarity to naturally produced
estrogenic hormones, and constant hormonal stimulation can
lead to the development of hormone-dependent neoplasms
(Kowalska et al., 2016).

In Tunisia, significant amounts of ZEN and metabolites in
the urine of patients with breast cancer have been identified,
indicating a possible role of this mycotoxin in the development
of this neoplasm (Belhassen et al., 2015). The association
between ZEN and carcinogenesis is the subject of discussion,
considering that experimental studies demonstrate the ability of
this substance to decrease the possibility of the development of
malignant neoplasms in rats in the prepuberty period (Hilakivi-
Clarke et al., 1999). Other experimental studies also evaluated
whether ZEN is related to the progression of breast cancer
through inhibition of apoptosis mechanisms and promotion
of cell proliferation mechanisms (Yu et al., 2005).

Experimental studies also demonstrate that exposure to ZEN
can lead to the death of Sertoli cells in mice by inducing reactive
oxygen species and the ATP/AMPK pathway (Zheng et al.,
2018). Other mechanisms that induce apoptosis by ZEN are due
to the stress of the endoplasmic reticulum and the activation
of autophagy, as demonstrated with immortalized Leydig cells
from goats (Yang et al., 2017).

In humans, consumption of food contaminated with ZEN
during pregnancy can expose the fetus to this mycotoxin and
its metabolites (Warth et al., 2019). Experimental studies in
rats indicate that gestational exposure to ZEN blocks the fetal
development of Leydig cells, which is an important indicator
that this exposure leads to anomalies in the development of the
male reproductive tract (Pan et al., 2020).

Estimates of exposure to ZEN in humans have shown that
a large part of the population consumes safe amounts of this
mycotoxin; however, in different parts of the world, exposure has
not been reported and may present different results in populations
exposed to potentially contaminated food (Maragos, 2010).
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The biomarkers used for the detection of zearalenone are ZEN
free and its metabolites a and P zearalenol (a-ZEL and B-ZEL)
and a and P zearalanol (a-ZAL and p-ZAL), in addition to the
conjugates with glucuronic acid as B-zearalenol-14-glucuronide
(Frizzell et al., 2015).

In humans, urine samples are the main way to assess exposure
to ZEN, with a-ZOL found in greater quantities, followed by
ZEN and finally -ZOL (Ali & Degen, 2018).

2.4 Deoxynivalenol

Deoxynivalenol (DON) is a mycotoxin produced by fungi
of the genus Fusarium spp. that can be found in several grains
and products of animal origin. The main damage to human and
animal health occurs mainly in an acute form leading to nausea,
emesis, diarrhea, abdominal and head pain, dizziness, and fever,
which can evolve to death depending on the amount ingested.
The chronic effects are mainly on the immune, reproductive,
and gastrointestinal systems. This toxin acts mainly on the
neuroendocrine system, inhibiting the growth hormone cascade
and stimulating inflammatory responses. In addition, it acts on
the gastrointestinal tract, inhibiting gastric emptying and causing
imbalance in the intestinal mucosa, consequently affecting the
absorption of nutrients. (Fioramonti et al., 1993; Pestka, 2010;
Sobrova et al., 2010).

Ingestion of DON, in addition to its acute effects, can lead
to genotoxicity on human lymphocytes, probably resulting from
the decrease in antioxidant substances, leading to DNA damage
by oxidative stress (Yang et al., 2014). Furthermore, DON seems
to have a genotoxic effect on E. coli strains present in the human
intestine, which is a possible indicator of its participation in
intestinal carcinogenesis, although previous studies have ruled out
that DON may play some role in the development of neoplasms
(Pestka, 2010; Payros et al., 2017). DON seems to cause emetic
effects in humans, and when its effects are evaluated in animals,
itis possible to observe effects on the immune system, anorexia
and loss of nutritional efficiency as well as adversely affect
reproductive capacity (Pestka & Smolinski, 2005).

Reviews carried out in cell lines of human intestinal mucosa
suggest that DON acts by modulating the activity of intestinal
transporters, thus acting on nutrient absorption, and the
main mechanism of injury occurs by the inhibition of protein
synthesis and the decrease in intercellular junction constituents
(claudina-4). (Maresca et al., 2002; Van de Walle et al., 2010).

The toxicity of d to DON varies according to the species
affected, as well as other mycotoxins, and pigs are more sensitive
and ruminants are the most resistant (Pestka, 2007).

Experimental studies demonstrate that DON may have
teratogenic potential related to disorders of bone and cartilage
development; however, such findings are open to discussion,
considering that other studies do not show changes in embryonic
development, which is a point to be clarified in the future
(Khera et al., 1982, 1986; Debouck et al., 2001).

The main route of DON metabolism includes conjugation
with glucuronic acid to free DON and conjugation with glucuronic
acid, for example, DON-Glucuronide (DON-GlcA), the most
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commonly used way to measure exposure. In addition to free
DON and DON-GIcA, de-epoxy deoxynivalenol (DOM-1)
is another metabolite present in body fluids associated with
microbiota (Al-Jaal et al., 2019).

Free DON can be used as a biomarker to investigate the
exposure of farm workers who handle grain or silage, showing
satisfactory results in humans (Turner et al., 2010a). Among the
conjugates with glucuronic acid, DON-15-Glycuronide is found
in greater quantity in urine and is therefore a good biomarker
of exposure to DON (Warth et al., 2012).

DON-1 is the metabolite found in lesser amounts in human
urine samples (Turner et al., 2010b; Ali et al., 2016). DON-1
is found in greater proportion in animal samples and is a less
toxic metabolite of DON derived from the metabolism of the
intestinal microbiota. The low levels of DON-1 in humans
may indicate a greater sensitivity to the toxic effects of DON
(Turner et al.,, 2011).

2.5 Ochratoxins

Ochratoxins are secondary metabolic products of fungi of
the genus Aspergillus spp. and Penicillium spp. found mainly in
nuts, dried fruits, grapes and grapes-derived drinks (Rocha et al.,
2014). It has a structure similar to that of phenylalanine, which
makes this mycotoxin act to inhibit protein synthesis. Its effects
include nephrotoxicity, hepatotoxicity, immunosuppression
and teratogenesis (Al-Jaal et al., 2019). Within the group of
Ochratoxins, the most important is Ochratoxin A (OTA), due
to its ability to cause damage to human and animal health,
being categorized by the International Agency for Research on
Cancer (1993) as a potential carcinogen for humans, remaining
in group 2B.

The most prominent damage caused by ingestion of OTA
is due to nephrotoxicity, which can cause edema, necrosis and
changes at the cellular level, such as karyomegaly and apoptosis,
in several species. (Huff et al., 1975; Maaroulfi et al., 1999). In
humans, OTA has been identified at high levels in areas with a
high incidence of endemic Balkan nephropathy and malignant
neoplasms of the urinary tract (Simon, 1996; Castegnaro et al.,
2006). The mechanism by which OTA causes nephrocarcinogenesis
is still the subject of discussion. Considering the mechanism
of adducts formation with DNA, hypotheses are raised that a
series of epigenetic mechanisms are related to the carcinogenic
potential of OTA. (Marin-Kuan et al., 2008; Pfohl-Leszkowicz
& Manderville, 2012).

As shown in experimental studies, OTA, which is metabolized
in the liver via cytochrome P450, acts on hepatic metabolism,
inducing changes in its metabolic pathways, thus leading to the
development of liver diseases over time (Qi et al., 2014). The
mechanisms by which OTA operates in the liver are mostly
increased production of reactive oxygen species in hepatocytes,
followed by lesions in DNA and stimulation of intrinsic apoptosis
pathway activation (Gayathri et al., 2015).

OTA metabolites can be found in human and animal breast
milk, which shows the risk of contamination during breastfeeding
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Figure 1. The main impact of aflatoxins, fumonisins, zearalenone, deoxynivalenol and ochratoxins on human and animal health.

and in dairy products (Breitholtz-Emanuelsson et al., 1993;
Skaug, 1999; Skaug et al., 2001).

Experimental studies also suggest a great teratogenic potential
of OTA. When evaluated for its effects in rats and mice, OTA has
been related to increased prenatal mortality and decreased weight
of puppies, bone, eye, and face malformations. When delivered
in high doses, it leads to the death of fetuses (Hayes et al., 1974;
Brown et al., 1976). A study conducted on perfused human
placenta demonstrated ineffectiveness in transferring OTA,
going against the results obtained in animals, and this is a point
to be investigated in the future (Woo et al., 2012).

The most commonly used biomarkers for the diagnosis of
exposure to OTA is OTA, ochratoxin o and  (OTa and OTp),
which are the products of hydrolysis by carboxypeptidases, and
finally 4-R-hydroxyocratoxine (4-OH-OTA), which results from
hydroxylation processes by enzymes of the cytochrome P450
family and peroxidases. All can be found in serum, plasma,
and human and animal urine (Rocha et al., 2014; Al-Jaal et al.,
2019). OTA can still be evidenced in milk, although the levels of
biomarkers in urine indicate a better source to assess exposure
(Scott, 2005).

A study conducted in adult Germans showed a greater
amount of OTa in urine samples when compared to OTA, an
inverse situation in the assessment of plasma levels of these
biomarkers; the studies in this case indicate a greater amount
of OTA in the blood when compared to OTa (Ali et al., 2017,
2018). Figure 1 summarizes the main damages of mycotoxins
on human and animal health.
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Finally, the improved detection of fungal biomarkers is also
important for the investigation of alternatives that can minimize
the presence of mycotoxins in foods, or at least neutralize their
toxic and teratogenic effects. For example, the use of polymers
with three-dimensional and specific sites (Bodbodak et al., 2018),
as well as the biofilm of Lactobacillus rhamnosus (Assaf et al.,
2019) for binding with AFMI, can reduce the presence of this
mycotoxin in milk. The use of some lipid compounds has also
been shown to be promising because in addition to having a
mycostatic effect, they have antioxidant capacity, decreasing fungal
toxicity (Bemvenuti et al., 2019; Villegas-Rascén et al., 2018).

3 Conclusions

Mycotoxin contamination of food is very relevant from a
global health point of view, and understanding its mechanisms of
action makes it increasingly possible to associate it with several
diseases. To establish more precisely how these substances are
associated with various pathologies, the measurement of exposure
of populations based on their biomarkers is essential, which
makes it important to know in detail the biotransformation of
these substances and define the best markers to identify them.
Another very important point is the chain reaction that can take
place when the feed of farm animals is contaminated and then
their products such as meat, milk and eggs become contaminants.
Thus, due to its close correlation with human health, procedures
for feeding farm animals should be optimized, with the rapid
identification of pathogens, as well as the proposition of measures
to reduce these damages.
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