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Quantum dissipative adaptation
Daniel Valente 1✉, Frederico Brito 2 & Thiago Werlang1

Dissipative adaptation is a general thermodynamic mechanism that explains self-organization

in a broad class of driven classical many-body systems. It establishes how the most likely

(adapted) states of a system subjected to a given drive tend to be those following trajectories

of highest work absorption, followed by dissipated heat to the reservoir. Here, we extend the

dissipative adaptation phenomenon to the quantum realm. We employ a fully-quantized

exactly solvable model, where the source of work on a three-level system is a single-photon

pulse added to a zero-temperature infinite environment, a scenario that cannot be treated by

the classical framework. We find a set of equalities relating adaptation likelihood, absorbed

work, heat dissipation and variation of the informational entropy of the environment. Our

proof of principle provides the starting point towards a quantum thermodynamics of driven

self-organization.
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When a physical system is simultaneously subjected to
both predictable and random energy exchanges, what
dictates the likelihood of a given state to be found?

From a classical thermodynamic perspective, where energy
exchanges are classified as work or heat, the concept of dissipative
adaptation has recently been put forward by J. England as the
expected answer, at least in the context of driven self-assembly1.
Qualitatively speaking, dissipative adaptation establishes that,
given a certain drive (an external work source), the most adapted
(most likely and lasting) states of a fluctuating system tend to be
those with a history of exceptionally high work absorption fol-
lowed by heat dissipation to the environment. Because heat dis-
sipation is an irreversible process, the higher the dissipation, the
less likely the reverse trajectory is. In the long run, the system
may appear to us as self-organized in this drive-dependent state
of highest energy-consuming history. Dissipative adaptation is
the recent theoretical development of a long search for the
emergence of order from disorder, as inspired by life-like
behavior2,3. Examples revealing this general mechanism of
energy-consuming irreversible self-organization span diverse
systems, environments, lengths and timescales, as shown both
theoretically4–6 and experimentally7–12.

The dissipative adaptation phenomenon has been originally
formulated in terms of fluctuation theorems. Fluctuation theo-
rems are equalities relating out-of-equilibrium processes with
thermal-equilibrium variables, giving evidence that the fluctua-
tions present in many realizations of a process can provide useful
knowledge when summed up. The pioneering example is the so-
called Jarzynski equality13, expð�βWabsÞh i ¼ expð�βΔFÞ, where
β= 1/(kBT) is the inverse temperature, Wabs is the work absorbed
by the system as described by a time-dependent Hamiltonian, ΔF
is the variation in the Helmholtz free energy and the brackets is
the ensemble average over realizations of the process, initially
departing from thermal equilibrium. The Jarzynski equality has
been lately derived by Crooks from what he called a micro-
scopically reversible condition14,

pi!jðtÞ
p�j!iðτ � tÞ ¼ eβQdiss ; ð1Þ

where the forward pi!jðtÞ and backward p�j!iðτ � tÞ probabilities
for the system to follow paths linking states i and j are related
with the amount of heat stochastically dissipated to the envir-
onment, Qdiss (a functional of the phase-space trajectory and of
the driving protocol performing work on the system). p�j!iðτ � tÞ
is computed with the reversed time-dependent protocol. βQdiss

relates the statistical irreversibility with the thermodynamic
entropy production. Let us call Eij= Ej− Ei the energy difference
between the specific final and initial states. Energy conservation
during each stochastic realization,

Wabs ¼ Qdiss þ Eij; ð2Þ
gives the hint on how the work source fuels the dissipative
adaptation. The higher the absorbed work, the more heat can be
released, hence the more irreversible the path can become. To
emphasize this adaptation-work relation, England rearranges
Eq. (1) as1

pi!jðtÞ
pi!kðtÞ

¼ e�βEkj
p�j!iðτ � tÞ
p�k!iðτ � tÞ

e�βWabs
� �

ik

e�βWabsh iij
; ð3Þ

where the angle brackets denote a weighted average over all
microtrajectories with fixed start (i) and end (j, k) points (the
coarse graining over microtrajectories describes experimentally
accessible states of out-of-equilibrium self-organizing classical
many-body systems; see Perunov et al.15 for further details).
Equation (3) establishes the classical theoretical framework

behind dissipative adaptation by showing how a given final state
can be statistically privileged by work consumption.

Here, we extend the concept of dissipative adaptation to the
quantum realm. Our main goal is to test the robustness of the
dissipative adaptation concept beyond its original theoretical
framework discussed above. From a technical viewpoint, at van-
ishing temperatures (β → ∞), where quantum fluctuations and
correlations usually prevail, Eqs. (1) and (3) are ill defined. We
employ a system-plus-reservoir approach to derive the exact
equations of motion of a three-level lambda (Λ) system driven by
a single-photon pulse added to a zero-temperature environment.
We find that the most adapted (self-organized) quantum state of
the lambda system is indeed that with a history of highest work
absorption followed by maximal heat dissipation, thus char-
acterizing a dissipative adaptation. As a consequence of our work,
we establish the starting point of a quantum thermodynamics of
driven self-organization, so far unexplored to the best of our
knowledge. We hope that the notion of a quantum dissipative
adaptation may also provide fresh insights to quantum biology16,
not only because adaptation and self-organization are concepts
inspired in life-like behavior, but also because our results may
find applications to discussions on quantum signatures in pho-
tosynthesis17–20.

Results
Self-organized quantum state. To achieve our main goal, we look
for the most elementary scenario where the quantum state of a
certain physical system irreversibly self-organizes, as induced by
the absorption of energy from an external drive, the excess of
which is dissipated to the environment. We choose a three-level
system in Λ configuration, labeled as aj i, bj i, and ej i (being ej i the
most excited state, respectively, with transition frequencies ωa,b)
(see Fig. 1). To keep the model exactly solvable for both the system
and the environment, we assume that the drive source is a single-
photon pulse added to the vacuum state of an infinite environ-
ment at zero temperature, T= 0. The environment induces

Fig. 1 Quantum dissipative adaptation in a driven self-organized quantum
state. a Three-level system in lambda configuration is described by the
density operator ρS(t) at time t, starting at t= 0. The energy eigenstates
are aj i, bj i, and ej i (blue horizontal bars). The transition frequencies are ωa,

b (full gray arrows). The environment-induced spontaneous emission rates
are Γa,b (dashed gray arrows). The initial state is a mixture between aj i and
bj i, ρSð0Þ ¼ pð0Þa aj i ah j þ pð0Þb bj i bh j (smaller black dots). b A single-photon
pulse 1a

�� �
(the work source) drives the lambda system dynamics, inducing

the time-dependent transition probability pa→b(t) from aj i to bj i (the full
black horizontal arrow represents the forward dynamics from time t= 0 to
t→∞). The backward probability (with a time-reversed pulse),
p�b!aðtÞ ¼ 0, vanishes at zero temperature (the dashed gray horizontal
arrow represents the prohibited time-reversed transition). c The driven
lambda system undergoes an ideal irreversible self-organizing dynamics
(pa→b(∞)= 1 and p�b!aðtÞ ¼ 0, in b), so that the asymptotic state is pure,
ρSð1Þ ¼ bj i bh j (larger black dot), conditioned to maximizing the work
absorbed and the heat dissipated in the aj i to bj i transition.
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spontaneous emission rates, Γa and Γb. Our main results are that

pa!bð1Þ ¼ Γb
Γa þ Γb

Wabsh ia
_ωa

; and

p�b!aðtÞ ¼ 0;

ð4Þ

showing that adaptation likelihood at long times, pa→b(t → ∞), is
linearly proportional to the average absorbed work Wabsh ia from
a single-photon pulse of arbitrary shape, resonant with ωa. We
call attention to the fact that this result is not immediately
expected, since (i) the excitation probability is minimized
(pa→e(t)≪ 1, at all times) when the work absorption is max-
imized (pa→b(∞)→ 1), so the process cannot be thought of as a
simple absorption-plus-emission picture, and (ii) the final self-
organized state is not restrained to be the ground state, which
amounts to say that Wabsh ia does not depend on ωb, so the work
is not related to ℏ(ωa−ωb), in particular. The second line in
Eqs. (4) characterizes the irreversibility of the process. The
absorbed work is partly dissipated to the environment in the form
of heat, Qdissh ia, satisfying energy conservation

Wabsh ia ¼ Qdissh ia þ HSð1Þh i � HSð0Þh i: ð5Þ
HS here is the Hamiltonian of the system. Finally, we find an exact
expression for the informational entropy of the environment at
long times, SE(∞), as a function of the average dissipated heat,
Qdissh ia. The entropy analysis here provides us with both a clearer
physical picture of the process and an additional signature of the
dissipative adaptation.

Let us suppose that our generic three-level system in Λ
configuration, with lowest-energy states aj i and bj i and excited
state ej i, is initially in a non-driven steady state, in contact with
the environment at temperature T= 0. In this case, at precisely
T= 0, the steady state is not uniquely defined, even for non-
degenerated cases. We can choose its initial quantum state to be a
mixture of the lowest-energy states, as described by the density
operator

ρSð0Þ ¼ pð0Þa aj i ah j þ pð0Þb bj i bh j; ð6Þ
where pð0Þa;b depend on the preparation scheme. To give a concrete
example, in the preparation by means of a spontaneous emission

starting at ej i, one has pð0Þa;b ¼ Γa;b=ðΓa þ ΓbÞ. Now we look for the
most elementary out-of-equilibrium stochastic process that drives
the system from this (generally mixed) initial state into a final
(ideally pure) target state, let us say into state bj i,

ρSð0Þ ! ρSð1Þ ¼ bj i bh j: ð7Þ
In order to guarantee that the process is irreversible, in the light
of Crooks condition, we should also apply the time-reversed drive
on the system departing from state ρSð1Þ ¼ bj i bh j and find that
ρ�Sð1 � tÞ≠ ρSð0Þ for t→∞.

We employ a system-plus-reservoir approach, where we
assume a global time-independent Hamiltonian of the system
and its environment,

H ¼ HS þHI þ HE: ð8Þ
As we show in what follows, we find a self-organized quantum
state in the well-known dipolar model of light-matter interaction
in the rotating-wave approximation21,22,

HI ¼ �i_
X
ω

ðgaaωσya þ gbbωσ
y
b �H:c:Þ: ð9Þ

Here, σk ¼ kj i eh j (for k= a, b) and H.c. is the Hermitian
conjugate. We consider a continuum of frequencies, ∑ω→∫dωϱω,
with density of modes ϱω. Modes aωf g and bωf g are the
quantized field modes interacting with the transitions aj i to ej i

and bj i to ej i, respectively. The continuum of frequencies allows
us to employ a Wigner–Weisskopf approximation to obtain
dissipation rates Γa ¼ 2πg2aϱωa

and Γb ¼ 2πg2bϱωb
. Finally, HE ¼P

ω_ωðayωaω þ byωbωÞ and
HS ¼ _ωa ej i eh j þ _δab bj i bh j; ð10Þ

where ℏδab = ℏ(ωa−ωb) is the energy difference between states bj i
and aj i. It is worth emphasizing that our main results in this
paper are independent of δab.

To keep the model exactly solvable for both the system and the
environment, we choose the drive as provided by a propagating
pulse containing a single photon. We choose the photon to
initially populate only the continuum of modes aωf g, so the
vacuum state of bωf g allows us to avoid depleting our target state
bj i. The initial state of the field is

1aj i ¼
X
ω

ϕaωð0Þ ayω 0j i: ð11Þ

0j i ¼ Q
ω 0aω
�� �� 0bω

�� �
is the vacuum state of all the field modes.

The initial state of the Λ system is the mixed ρS(0) given in Eq.
(6). The global quantum state is given by

ρðtÞ ¼ U ρSð0Þ � 1aj i 1ah j� �
Uy; ð12Þ

where U ¼ expð�iHt=_Þ for the (time-independent) global
Hamiltonian H [Eq. (8)]. The quantum states of the system and
the environment are obtained by the partial traces ρSðtÞ ¼
trE½ρðtÞ� and ρEðtÞ ¼ trS½ρðtÞ�.

We obtain analytical expressions for the probabilities
pkðtÞ ¼ kh jρSðtÞ kj i, for k= a, b, e. Equation (6) allows us to
write the reduced state of the system as ρSðtÞ ¼
pð0Þa trE U a; 1aj i a; 1ah jUy� �þ pð0Þb trE U b; 1aj i b; 1ah jUy� �

. It proves
useful to write pk(t) in terms of transition probabilities, pn→k(t), as

pkðtÞ ¼
X
n

pð0Þn pn!kðtÞ; ð13Þ

where n= a, b, and

pn!kðtÞ � kh jtrE U n; 1aj i n; 1ah jUy� �
kj i: ð14Þ

Equations (13) and (14), which follow directly from the mixed-
state structure of the initial state, unravel a close analogy with the
notation used in Eq. (1) for the microscopically reversible
condition. Equation (13) has no relation with the degree of
Markovianity in the dynamics of the reduced state ρS(t), though.
On the contrary, Valente et al.23 characterize non-Markovianity
in a quite similar scenario. The photon initially at modes aωf g
does not interact with the three-level system initially at bj i [as
derived from Eqs. (6), (9), and (12)], so we find that pb→a(t)=
pb→e(t)= 0 and pb→b(t)= 1. Because the transition probabilities
vanish identically, regardless of the initial pulse shape, the
backwards probability also vanishes,

p�b!aðtÞ ¼ 0: ð15Þ
We have defined the reverse drive protocol here as the mirrored
shape of the initial pulse (further discussed below). Put simply, we
revert only the drive, not the entire universe. The final global state
of the system plus the environment is obviously reversible in our
model since it is governed by the global unitary operator U in
Eq. (12). Equation (15) explains the second line in Eqs. (4). We
now compute

pa!kðtÞ ¼ kh jtrE ξðtÞj i ξðtÞh j½ � kj i; ð16Þ
where ξðtÞj i � U a; 1aj i. Since our H conserves the total number
of excitations, we can restrict our model to the one-excitation
subspace, ξðtÞj i ¼ ψðtÞ e; 0j i þP

ωϕ
a
ωðtÞayω a; 0j i þ ϕbωðtÞbyω b; 0j i:
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We find that

pa!eðtÞ ¼ jψðtÞj2;
pa!bðtÞ ¼

X
ω

jϕbωðtÞj2

¼ 1
2πϱc

Z 1

�1
dz jϕbðz; tÞj2;

ð17Þ

and similarly with pa→a(t). Without loss of generality, we have
defined a one-dimensional real-space representation for the
amplitudes, ϕnðz; tÞ �

P
ωϕ

n
ωðtÞ expðikωzÞ, which characterizes

the pulse shape. We have also employed a linear dispersion
relation, ω= ckω, and approximated the density of modes by a
constant, ϱω ≈ ϱ. Note that, in Eq. (9), we have implicitly assumed
the three-level system to be positioned at zS= 0; otherwise, a
phase term such as expðikωzSÞ should have been included in the
sum over modes.

To go a step further, as to obtain explicit expressions for the
transition probabilities, we solve the Schrödinger equation for
ξðtÞj i (see Methods). Our intention with keeping modes bωf g
initially in the vacuum state, as we did in Eq. (11), was to
minimize excitations promoting the unwanted backward
( bj i ! aj i) transitions. Now that we have defined the amplitudes
ϕn(z, t), we see that Eq. (11) implies ϕb(z, 0)= 0, which we
combine with (34) and substitute in (17). After a change of
variables, we find that

pa!bðtÞ ¼ Γb

Z t

j0
dt0jψðt0Þj2: ð18Þ

Although the main results in this paper do not depend on the
initial pulse shape in modes aωf g (i.e., on the choice of ∣ϕa(z, 0)∣),
it is worth working out an explicit example. To that end, we now
set ϕa(z, 0) to have an exponential envelope profile of linewidth Δ
and a central frequency ωL (see Eqs. (36) and (37) in the
Methods), as typical in spontaneous emission. We are particularly
interested in the resonant condition ωL= ωa (see the Methods for
the more general solution). We find, in the monochromatic limit,
Δ≪ Γa+ Γb, and at long times t≫ Δ−1, that

pa!bð1Þ ¼ Γb
4Γa

ðΓa þ ΓbÞ2
: ð19Þ

When Γa= Γb, we have that pa→b(∞)= 1. Equation (19) reveals
the ideal driven self-organization we have been looking for. As
stated before, the self-organization in our model does not depend
on δab. As a final step, we combine Eq. (19) and pb→b(t)= 1 to see
that, in the ideal (monochromatic and resonant) regime,

pbð1Þ ¼ pð0Þa pa!bð1Þ þ pð0Þb pb!bð1Þ ¼ 1; ð20Þ
that is, ρSð1Þ ¼ bj i bh j and ρ�Sð1 � tÞ ¼ bj i bh j for all times t.
Hence, in the t→ ∞ limit, ρ�Sð1 � tÞ≠ ρSð0Þ, as was to be shown.

Energetics of the self-organization. We now need to verify that
the self-organized quantum state we have found can indeed be
classified as dissipative adaptation. We shall find that ideal self-
organization costs maximal work absorption, followed by max-
imal dissipation. This is not an obvious relation because in the
ideal self-organization (which takes place in the monochromatic
limit, as we have shown above), the excitation probability is
minimized (rather than maximized),

pa!eðtÞ ¼ jψðtÞj2 � 1: ð21Þ
For instance, in the case of an incoming pulse with exponential
profile (as used in Eq. (19)), jψðtÞj2 ≤ 4ΔΓa=ðΓa þ ΓbÞ2 � 1, for
Δ≪ Γa+ Γb. Extremely low-excitation probabilities may leave the
false impression that no energy is absorbed neither dissipated at

all. To address this issue, we need to resolve energy transfer into
work and heat in our model. As mentioned earlier, work and heat
can be regarded as the predictable versus the random energy
exchanges, respectively. We restrict ourselves once again to the
resonant case, ωL= ωa, keeping in mind however an arbitrary
pulse shape. The average energy of the Λ system driven by this
resonant photon is given by

HSðtÞh i � tr½ρSðtÞHS� ¼ peðtÞ_ωa þ pbðtÞ_δab: ð22Þ
The resonant condition here avoids dynamic Stark shifts that
would otherwise bring extra (dispersive) energetic contributions
from time-dependent frequencies, as shown by Valente et al.24.
To be more precise, dispersive (refractive) energetic contributions
depend on the average interaction energy24, which vanishes at
resonance (ωL= ωa implies that HIðtÞh i � tr½ρðtÞHI � ¼ 0; see
details in the Methods). That justifies why we have used only HS

in Eq. (22). As inspired by Eq. (3), we are interested in the work
performed on the system during the dynamical transition starting
from aj i and arriving at bj i. Therefore, we now consider
ρSð0Þ ¼ aj i ah j, for which pe(t)= ∣ψ(t)∣2. From the Schrödinger
equation (see Eq. (32) in the Methods), we find that

∂tpe ¼ �ðΓa þ ΓbÞpe � 2gaRe ϕað�ct; 0Þψ�ðtÞ� �
; ð23Þ

where Re �½ � stands for the real part. Equation (23) clearly shows
us that the excited state of the Λ system is governed by a (pre-
dictable) drive-dependent term, related to ϕa(−ct, 0), and a
(random) spontaneous emission term, proportional to Γa+ Γb.
This motivates us to define the total average absorbed work
Wabsh ia and the total average absorbed heat Qabsh ia in the
dynamics starting at ρSð0Þ ¼ aj i ah j as

HSð1Þh i � HSð0Þh i ¼ Qabsh ia þ Wabsh ia; ð24Þ
where

Wabsh ia � _ωa

Z 1

0
�2gaRe½ϕað�ct; 0Þψ�ðtÞ�dt ð25Þ

and

Qabsh ia �
Z 1

0
�ðΓa þ ΓbÞpeðtÞ_ωadt þ _pb_δabdt: ð26Þ

Our definition of work, Eq. (25), can also be written as Wabsh ia ¼R1
0 ∂tdðtÞð ÞEinðtÞh idt (in the Heisenberg picture and in the rotating-

wave approximation), revealing a more clear link to our classical
notion of work. Here, d(t)=U†dU is the dipole operator, where
d= ∑kdekσk+H.c., the driving field operator at the system’s position
is EinðtÞ ¼

P
ωiϵω aω þ bωð Þ expð�iωtÞ þH:c:, the coupling is

ga ¼ deaϵωa
=_, and the average is calculated at the initial state

a; 1aj i. The Heisenberg picture also explains why work can be finite
even though the average driving field is precisely zero at the single-
photon state (i.e., 1ah jEinðtÞ 1aj i ¼ 0). This shows how the dissipative
adaptation can be robust to a phase-incoherent work source, in
contrast to the classical forces of well-defined phases used in ref. 4 (in
our model, a semiclassical driving field with a well-defined phase
would correspond to an initial coherent, or Glauber, state
αj i ¼ Q

ω αωj i, where aω αωj i ¼ αω αωj i). In Eq. (26), Γa;b / g2a;b
reveals that the heat is related with the variance of the interaction
energy, explaining why the vanishing average interaction energy does
not hinder energy exchange in the form of heat and confirming its
stochastic nature. The energy conservation in Eq. (5) results, of
course, from defining Qabsh ia � � Qdissh ia in Eq. (24). Finally,
HSð0Þh i ¼ 0 and HSð1Þh i ¼ pa!bð1Þ_δab. We remind that,
during the dynamical transition from aj i to bj i, we
have peðtÞ ¼ jψðtÞj2, allowing us to establish an exact adaptation-
energy relation between Eqs. (18) and (26). We finally find our
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quantum adaptation-work relation,

pa!bð1Þ ¼ Γb
Γa þ Γb

Wabsh ia
_ωa

; ð27Þ

valid for a photon of arbitrary pulse shape and resonant with ωa,
as well as for arbitrary δab, as stated in Eqs. (4). In the case of the
exponential pulse used in Eq. (19), for instance, we find that
Wabsh ia ¼ _ωa 4Γa=ðΓa þ Γb þ ΔÞ, maximized in the monochro-
matic regime (Δ≪ Γa+ Γb). If in addition Γa= Γb, we get
Wabsh ia ¼ 2_ωa, which is twice the initial average energy
contained in the single-photon pulse. This counterintuitive result
reinforces the notion that work is the amount of energy
transferred during a process, rather than the average energy
stored in a system at a given time (after all, unitary evolutions
with time-independent Hamiltonians conserve energy; here,
∂t HðtÞh i ¼ 0 implies that HSðtÞh i þ HIðtÞh i þ HEðtÞh i ¼
pbð0Þ_δab þ _ωL, so at resonance and for pb(0)= 0 we find
HSðtÞh i≤ _ωL). Equation (27) is our key signature of a quantum
dissipative adaptation. The seeming low-excitation issue
(∣ψ(t)∣2≪ 1, in the monochromatic limit) has finally been
clarified, given that the time integral of ∣ψ(t)∣2 (in Eq. (18)) is
not only finite, but also linearly proportional to the work required
for the quantum dissipative adaptation to take place.

Entropy in the self-organization. In the classical formulation of
dissipative adaptation, entropy production has a key role in
establishing the connection between energy transfer and statistical
irreversibility, requiring no detailed knowledge on the state of the
environment. Here, irreversibility is readily characterized by the
asymmetry between the forward, pa→b(t), and the backward,
p�b!aðtÞ, processes. Nevertheless, we have the advantage that we
keep the full description of the quantum state of the system plus
the environment, ρ(t) (at the expense of a greater degree of
generality in our global Hamiltonian H). With ρEðtÞ ¼ trS½ρðtÞ� at
hands (see Methods), we now seek to describe what happens to
the environment during and after the drive interacts with the
three-level system. We calculate the exact expression for the von
Neumann entropy,

SEðtÞ ¼ �tr½ρEðtÞln ρEðtÞ�: ð28Þ
See Eqs. (45) and (46) in the Methods for the analytic expression.
We have found that our classical intuition, namely, that better
adaptation produces more entropy in the environment, can be
found by an appropriate distinction between the classical and the
quantum contributions to SE.

The idea behind this distinction is the following. Let us first
suppose that the system is initially at aj i. A highly monochro-
matic incoming photon will fully induce transition from state aj i
to bj i. Hence, the outgoing photon will be detected at modes
bωf g, as well. Now, by considering an initially mixed state of the
three-level system as given by ð1=2Þ aj i ah j þ ð1=2Þ bj i bh j, a highly
monochromatic incoming photon will have 1/2 probability of
leaving at aωf g (in the cases where it encounters the system at
bj i) and 1/2 of leaving at bωf g (in the cases where it encounters
the system at aj i), so the final global state would be mixed and
separable,

ρð1Þ 	 bj i bh j � 1
2
~1b
�� �

~1b
� ��þ 1

2
1freea

�� �
1freea

� ��	 

: ð29Þ

~1b
�� �

and 1freea

�� �
have been defined in Eqs. (43) and (44) below (see

Methods). This is what we call the classical contribution to the
final mixed state of the field: the initial mixture of the system is
fully transferred to the environment.

Let us now consider again that the system is initially at aj i (i.e.,
pð0Þa ¼ 1). However, let us assume that the linewidth of the pulse
is of the order of the dissipation rates of the three-level system. In
that case, the final state of the global system becomes entangled,

ξð1Þj i ¼ ffiffiffiffiffiffi
Na

p
a; ~1a
�� �þ ffiffiffiffiffiffi

Nb

p
b; ~1b
�� �

; ð30Þ
Nk being the average number of photons at modes k (see Eq. (42)
in the Methods). Therefore, the quantum state of the environ-
ment in this case, ρEð1Þ ¼ trS½ ξð1Þj i ξð1Þh j�, is also mixed
between modes aωf g and bωf g. However, the mixture in this case
arises from a sustained system–environment quantum entangle-
ment rather than from the statistical mixture in the initial state of
the system.

To unravel these two entropy contributions, we define the
classical contribution to the environment entropy as

ScEðtÞ � SEðtÞ � pð0Þa SðtrS½ ξðtÞj i ξðtÞh j�Þ; ð31Þ
where Sð�Þ � �tr½�ln �� is the von Neumann entropy (see Eq.
(51) in the Methods). In Eq. (31), we have taken into account that
only the term proportional to pð0Þa in ρS(0) generates the
entanglement discussed in Eq. (30). Now we focus on the long
time limit, t→∞. Most interestingly, we have analytically
expressed ScEð1Þ as a function of pa→b(∞) (see Eqs. (45)–(49)
in the Methods). Figure 2 illustrates that ScEð1Þ vs. pa→b(∞)
(solid black line) is a monotonic function, in contrast with the
non-monotonic SE(∞) vs. pa→b(∞) (dashed blue line). This
monotonic behavior shows that the more organized is the three-
level system, the higher is the classical contribution to the entropy
of the environment at long times t→∞. Besides having derived
ScEð1Þ as a function of pa→b(∞), we have also expressed pa→b(∞)
as a function of the average dissipated heat in the aj i to bj i
transition, Qdissh ia, with the help of Eq. (27). This establishes the

Fig. 2 Entropy of the environment. The classical contribution to the
environment entropy, ScEð1Þ, increases monotonically as a function of the
transition probability from aj i to bj i, pa→b(∞) (solid black), providing an
additional signature of the dissipative adaptation. The environment entropy,
SE(∞), presents a non-monotonic behavior as a function of pa→b(∞)
(dashed blue), due to a sustained system–environment quantum
entanglement that can contribute to the entropy production of the
environment. In both curves, we refer to the asymptotic state t→∞ of the
dynamics. We use Γa= Γb as the environment-induced spontaneous
emission rates and pð0Þa ¼ pð0Þb ¼ 1=2 as the probabilities in the initial state
of the lambda system, ρSð0Þ ¼ pð0Þa aj i ah j þ pð0Þb bj i bh j (the curves do not
qualitatively depend on these choices). The dotted gray line is ln ð2Þ. Note
that both ScEð1Þ as a function of pa→b(∞) and SE(∞) as a function of
pa→b(∞) do not explicitly depend on the photon pulse shape, though
pa→b(t) does; e.g., attaining pa→b(∞)→1 requires an extremely
monochromatic (long) photon, whereas the pa→b(∞)→0 limit is attained in
the extremely broadband (short) pulse regime.
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function SE(∞) vs. Qdissh ia, as mentioned earlier. In addition, we
have derived ScEð1Þ as a function of Qdissh ia. This is even more
meaningful, because we have found that the function ScEð1Þ vs.
Qdissh ia is monotonic. To provide an example illustrating this
monotonicity, let us take the degenerate case (δab= 0) with equal
dissipation rates (Γa= Γb). In that case, we have that
pa!bð1Þ ¼ Qdissh ia=ð2_ωaÞ, showing that ScEð1Þ vs. Qdissh ia is
monotonic, since ScEð1Þ vs. pa→b(∞) is monotonic as well
(Eq. (50) in the Methods provides the more general relation). The
monotonicity here strengthens the signature of dissipative
adaptation. Namely, maximal adaptation (irreversible self-orga-
nization) not only costs maximal work absorption (as we have
shown in the energetics analysis), but also maximizes the
dissipated heat which, in turn, maximizes the classical contribu-
tion to the environment entropy.

Discussion
Our results establish the quantum dissipative adaptation under-
lying the driven self-organization of a quantum state, going
beyond the classical formulation. We have explored an elementary
fully quantized model, exactly solvable for both the system and the
environment, where the irreversibly self-organized quantum state
of a three-level system is owing to the work absorption from a
single-photon pulse, part of which is dissipated to the environ-
ment (as shown in Eqs. (4) and (5)). The irreversibility of this self-
organization became clear from the asymmetry in the transition
probabilities in the forward and backward processes. Finally, with
the purpose of providing an additional signature of dissipative
adaptation, we have analytically investigated the environment
entropy. We have found that the classical contribution to the
environment entropy variation is a monotonic function of
pa→b(∞) (as illustrated in Fig. 2), showing that maximizing
adaptation not only requires maximal work absorption, but also
leads to maximal increase in the classical contribution to the
environment entropy, due to maximal dissipated heat.

We remind that the meaning of this increase in the envir-
onment entropy is that of a statistical mixing between the field
modes aωf g and bωf g, as we have analyzed in Eq. (29). Our
model’s dynamics do not lead to the thermalization of the
environment, which always remains out of equilibrium. If we
wish to take the analogy further, so as to give a thermodynamic
meaning to the entropy increase, we will have to add extra
ingredients. In practice, there could be for instance a slight
increase in the local temperature of the environment in the
vicinity of the Λ system. To describe that kind of effect, the
model should consider a finite heat capacity environment (in
contrast to our infinite-size environment) and some auxiliary
light-matter coupling mechanism that could effectively create
an interaction between the many frequency modes of the light
field. Such features provide means for the environment state to
eventually approximate a Gibbs state at some new finite
temperature T 0 >T ¼ 0 (producing even more entropy than
that we have calculated from our model), in the spirit of
Timpanaro et al.25.

Before concluding, we would like to point out how our model
can be significant to quantum many-body systems. Our intention
is to indicate how broadly applicable the concept of quantum
dissipative adaptation may become. First, we notice that the Λ
structure of energy levels can arise from the quantization of
collective degrees of freedom describing many interacting atoms
and electrons, as happens in the so-called artificial atoms (e.g.,
electron-hole pairs in semiconductor quantum dots26 and the
quantized magnetic flux in superconducting rings27). Lodahl
et al.26 and Gu et al.27 also discuss how these artificial atoms can

be driven by single-photon pulses propagating in one-
dimensional waveguides, building the closest possible scenario
to that in our model.

We can also envision the quantum dissipative adaptation in
ensembles of non-interacting atoms or spins. That is more easily
seen when we realize that our idea of a driven self-organized
quantum state is notably similar to the dynamics induced by
stimulated Raman adiabatic passage (STIRAP)28, a versatile and
robust technique that has been performed, e.g., in ultracold gases,
in doped crystals and in nitrogen-vacancy centers. STIRAP
consists of an efficient population transfer between two discrete
quantum states of an ensemble of emitters (usually the lowest
levels of Λ systems) by coherently coupling them with two
radiation fields (well-controlled classical pulses) through an
unpopulated intermediate state. The connection we have in mind
between the driven self-organization provided by STIRAP and
dissipative adaptation becomes more evident in light of the recent
proposal for using STIRAP as a tool for spectral hole burning
(SHB) in inhomogeneously broadened systems29. The reason is
that the mechanism behind standard SHB30 turns out to be
precisely that of classical dissipative adaptation, as discussed by
Kedia et al.31. Namely, those dipoles that get excited by the
resonant drive (whose frequency can be swept on demand) can
become irreversibly trapped in dark states (at sufficiently low
temperatures). The difference concerning the newly proposed
STIRAP-based SHB29, or the single-photon pulse that we have
studied here, is the quantum coherent nature of the process.
Understanding how STIRAP-based SHB depends on temperature
seems a valuable opportunity for widening the concept of
quantum dissipative adaptation (similarly, Ropp et al.10 show a
groundbreaking experiment on temperature-dependent dis-
sipative self-organization in optical space).

Optomechanical nanoresonators32 also hold the promise of
displaying some kind of quantum dissipative adaptation in the
lines of our results. We glean this notion from Kedia et al.31,
where signatures of dissipative adaptation are shown in dis-
ordered networks of classical bistable springs. In the mechanical
nanoresonators by Yeo et al.32, bistability can arise from a strain-
mediated coupling between the center of mass of an oscillating
nanowire and the quantum state of a single semiconductor
quantum dot embedded therein. This kind of coupling between
an optically controllable microscopic degree of freedom (within
the quantum dot) and a mesoscopic degree of freedom (the
nanoresonator center of mass) opens appealing perspectives for
studying dissipative adaptation at a quantum-classical boundary
of a many-body system. As a last word on resonators, it seems
relevant investigating whether the vibration-assisted exciton
transport found in photosynthetic light-harvesting antennae17

could be related with a quantum dissipative adaptation.
To conclude, the quantum dissipative adaptation we have

found can be regarded as a proof of principle, in need of gen-
eralizations towards many directions. As a first example, it would
be worth investigating dissipative adaptation in larger Hilbert
spaces (i.e., in a vast energy landscape, in the words of ref. 1,4).
Multistability makes self-organization in classical many-body
systems a fascinating problem1,4,31. Curiously, the multistability
from complex classical systems is reminiscent of our zero-
temperature model. Among the huge amount of available “non-
organized” stable states that our Λ system can occupy, only a
single (exceptional) state is populated when the work source is
optimal. In other words, although we find an infinite number of
(pure or mixed) combinations of states aj i and bj i that are
equally stationary in the non-driven zero-temperature environ-
ment, the system always ends up in the rare state aj i (irrespective
of the infinitely many possible initial states) once it has been
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driven by the suitable pulse (which maximizes the absorbed work
in the aj i to bj i transition).

It also remains to be investigated how other sources of work
and finite temperatures affect dissipative adaptation in quantum
systems. In our Λ system, for instance, we expect that the forward
( aj i to bj i) transition will keep being favored with respect to the
backward ( bj i to aj i) transition at finite temperatures, as long as
the work source is strong enough. Also, the time dependence of
this asymmetry should be transient or stationary, depending on
the work source type (pulsed or continuous). In quantum ther-
modynamics, the influence of the environment temperature on
entropy production at the quantum regime, on the one hand, has
been the subject of many recent studies25,33–36. The focus on
model-independent aspects is justified not only due to the interest
in generality, but also due to the closest possible analogies with
classical fluctuation theorems and with the Landauer erasure
principle (that establishes how information erasure is connected
to thermodynamic entropy production due to heat dissipation).
On the other hand, Manzano et al.37, for instance, provide an
alternative formalism for quantum fluctuation theorems that go
beyond thermal-equilibrium states of the environment. It may be
the case that the quantum fluctuation theorems developed in the
papers above (and in the references therein) present fruitful
methods in the search for a general quantum theory of dissipative
adaptation. In summary, we provide the starting point towards a
quantum thermodynamics of driven self-organization.

Methods
Global system-plus-reservoir quantum dynamics. To obtain explicit expressions
for the transition probabilities in Eq. (17), we need to solve the Schrödinger equation
i_∂t ξðtÞj i ¼ H ξðtÞj i, where ξðtÞj i ¼ ψðtÞ e; 0j i þP

ωϕ
a
ωðtÞayω a; 0j i þ ϕbωðtÞbyω b; 0j i.

After a Wigner–Weisskopf approximation and using that
ϕnðz; tÞ �

P
ωϕ

n
ωðtÞ expðikωzÞ, with a linear dispersion relation, ω= ckω, and

∑ω → ∫dωϱω ≈ ϱ∫dω, we find that

∂tψðtÞ ¼ � Γa þ Γb
2

þ iωa

	 

ψðtÞ � gaϕað�ct; 0Þ; ð32Þ

with

ϕaðz; tÞ ¼ ϕaðz � ct; 0Þ
þ ffiffiffiffiffiffiffiffiffiffiffiffi

2πϱΓa
p

ΘðzÞΘðt � z=cÞψðt � z=cÞ ð33Þ

and

ϕbðz; tÞ ¼ϕbðz � ct; 0Þe�iδab t

þ ffiffiffiffiffiffiffiffiffiffiffiffi
2πϱΓb

p
ΘðzÞΘðt � z=cÞψðt � z=cÞe�iδabz=c;

ð34Þ

where Γk ¼ 2πg2kϱ.
Integrating Eq. (32) for ψ(0)= 0 gives

ψðtÞ ¼ �ga

Z t

0
ϕað�ct0; 0Þe� ΓaþΓb

2 þiωað Þðt�t0 Þdt0; ð35Þ

which depends on the initial photon wavepacket,

ϕaðz; 0Þ ¼ ϕshapea ðz; 0ÞeiωL
z
c : ð36Þ

ωL is the central frequency of the pulse and ϕshapea ðz; 0Þ is its spatial shape. For the
sake of providing an explicit and physically motivated example, we consider in Eq.
(19) the shape of the initial photon wavepacket to be an exponential (raising in
space, equivalent to decaying in time for a right-propagating pulse), as typical from
spontaneous emission,

ϕshapea ðz; 0Þ ¼ NΘð�zÞeΔ2zc ; ð37Þ
where Δ is the pulse linewidth and N ¼ ffiffiffiffiffiffiffiffiffiffiffi

2πϱΔ
p

is a normalization factor
(considering ϕb(z, 0)= 0). Finally, and substituting Γa ¼ 2πg2aϱ, we have that

ψðtÞ ¼ �f Δ e
� ΓaþΓb

2 þiωað Þt e
ΓaþΓb�Δ

2 �iδLð Þt � 1
h i

; ð38Þ
where

f Δ �
ffiffiffiffiffiffiffiffi
ΓaΔ

p
ΓaþΓb�Δ

2 � iδL
ð39Þ

and δL≡ ωL− ωa.

The average interaction energy is given by

HIðtÞh i � tr½ρðtÞHI �: ð40Þ
From Eqs. (6), (12), and the definition ξðtÞj i � U a; 1aj i, we have that

HIðtÞh i ¼ pð0Þa ξðtÞh jHI ξðtÞj i þ pð0Þb b; 1ah jHI b; 1aj i: ð41Þ
Using HI from Eq. (9), we have that b; 1ah jHI b; 1aj i ¼ 0 and
ξðtÞh jHI ξðtÞj i ¼ 2ð_gaIm½ψ�ðtÞϕað�ct; 0Þ� þ _gbIm½ψ�ðtÞϕbð�ct; 0Þ�Þ. Choosing
ϕb(z, 0)= 0 obviously makes Im½ψ�ðtÞϕbð�ct; 0Þ� ¼ 0. By choosing the resonance
condition, δL= 0, we have from Eqs. (35) and (36) that Im½ψ�ðtÞϕað�ct; 0Þ� ¼ 0.
This shows that HIðtÞh i ¼ 0 at resonance.

Entropy of the environment. The quantum state of the environment in our model

is obtained from the global initial state ρð0Þ ¼ ðpð0Þa aj i ah j þ pð0Þb bj i bh jÞ � 1aj i 1ah j.
We obtain that

ρEðtÞ ¼ pð0Þa jψðtÞj2 0j i 0h j þ pð0Þa NbðtÞ ~1b
�� �

~1b
� ��

þ pð0Þa NaðtÞ ~1a
�� �

~1a
� ��þ pð0Þb 1freea

�� �
1freea

� ��: ð42Þ

We have defined NkðtÞ �
P

ωjϕkωðtÞj2, with
~1k
�� � � N�1=2

k

X
ω

ϕkωðtÞkyω 0j i; ð43Þ

and

1freea

�� � �
X
ω

ϕaωð0Þ expð�iωtÞ ayω 0j i: ð44Þ
To explicitly calculate the von Neumann entropy,

SE ¼ � tr½ρEðtÞln ρEðtÞ�;
¼ �

X
j

λjln λj;
ð45Þ

we need to find the eigenvalues λj of ρE. The exact diagonalization of ρE gives us
four non-zero eigenvalues, namely, λ1 ¼ pð0Þa jψðtÞj2, λ2 ¼ pð0Þa NbðtÞ, and

λ3;4 ¼
pð0Þa Na þ pð0Þb

2

±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð0Þa Na � pð0Þb

� 
2
þ 4pð0Þa pð0Þb Na 1freea

� ��~1a�� �j2
r

:

ð46Þ

Terms Na and Nb can be interpreted as the average number of photons in each
continuum of modes. Their mathematical expressions, however, are invariably
connected with the three-level system probabilities, namely,

NkðtÞ ¼ pa!kðtÞ: ð47Þ
We calculate the overlap between the states representing the free propagation

and the reemitted photon at mode a in the real-space representation,

1freea

� ��~1a� ¼ 1ffiffiffiffiffiffi
Na

p 1
2πϱc

Z 1

�1
dz ϕ�a;freeðz; tÞϕaðz; tÞ; ð48Þ

where ϕa, free(z,t)≡ ϕa(z− ct, 0).
With the aid of (32) and (33), and using integration by parts, we find that

1freea

� ��~1a� ffiffiffiffiffiffi
Na

p ¼ 1� Γa þ Γb
2Γb

	 

pa!bð1Þ; ð49Þ

valid at long times t→∞. Equation (49) provides the core connection between the
overlap and the transition probability at long times that we needed. Additionally,
Na(∞)= 1−Nb(∞)= 1− pa→b(∞) and λ1(∞)= 0. Since Eqs. (27) and (24) link
pa→b(∞) to Qdissh ia ,

pa!bð1Þ ¼ _ωa
Γa þ Γb

Γb
� _δab

	 
�1

Qdissh ia; ð50Þ

we have thus analytically established the function SE(∞) vs. Qdissh ia , valid at long
times t→∞, under the resonant condition ωL= ωa, for any arbitrary pulse shape.

Finally, the classical contribution to the entropy is
ScE � SE � pð0Þa SðtrS½ ξðtÞj i ξðtÞh j�Þ, where

SðtrS½ ξðtÞj i ξðtÞh j�Þ ¼ � NalnNa þ NblnNb þ jψðtÞj2ln jψðtÞj2� �
; ð51Þ

for which we also have the analytic solution.
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