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1. Notations 

Let H be an abstract Hilbert space and A a linear operator, densely defined in 
H, which is unbounded, selfadjoint, positive definite and has a bouncled 111 

verse A-1• 

If J is an open set of the real line, let .?2A (J) denote the set of the series in the 
nonnegative powers of A -1, with coefficients in C00 (J), which converge in 
L(H; H) (the Banach space of bounded linear operators on H), as well as 
each of their t-derivatives, uniformly with respect to t on compact subsets 
of J. We will consider differential operators of the form 

(I) P= I: c,,;(t,A)A'o{ 
r+ j'5:m 

(o, = a;at) 

where the r's are real numbers ~ 0, the j's are integers ~ 0, the sum is a finite 
one and each c,)t,A) belongs to .?2A(J). The operator P in (1) is said to be 
of order :c; m. 

We may construct the scale of Sobolev spaces H-' for each s E IR, in the follo­ 
wing way: if s ~ 0, H' is the space of elements u of H such that A'u E H, equip­ 
ped with the norm II u II, = II A'u llo, where II o llo denotes the norm of H = H0

; 

if s < 0, W is the completion of H for the norm II u II, = II A'u llo- By H00 

we denote the intersection of all the H', equipped with the projective limit 
topology, and by H-00 their union; with the inductive limit topology 

If J is an open set of the real line, we denote by C00(J, H00
) the space of ccn 

function in J valued in H00
, which is the projective Ii mit of Ci(J, H"') for j. 

m ~ 0 integers. If K is any compact subset of J, we denote by C't!(K, H00
) 

the su bspace of C00(J, H00) consisting of those functions which vanish outside K, 
and by C'(l(J, H00) the inductive limit of C'(l(K, H00

) as K ranges over all com­ 
pact subsets of J. Then, qJ'(J, rr00) will be the (strong) dual of C?(J, H00

). 
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We may denne another scale of Sobolev spaces: J/f" for s E IR, in which the 
t-variable also plays a role: the basic space is now L2(1R, H), which will be /f'0, 
and we consider the operator (1- 01

2 + A2)112 on L2(1R, H), which has the 
same properties that A has in relation to H, so that the scale /t' = Yf''(IR) 
is constructed exactly as before. 

We can then define J/f'~(K), J/f'r(J) and J/f'1~P) in the obvious way. 

2. Statement of the main theorem 

Let J be an open set of the real line, containing the origin. We will study 
operators of the form 

(2) P = (o, - ait, A)A) (01 - b(t,A)A) + c(t, A)A, 

where a(t, A), b(t, A), and c(t, A) belong to 2,A(J), and will systematically use 
the notation 

(3) X= 01 - a(t, A)A; Y = o, - b(t, A)A; b(t, A)= a(t, A) - b(t, A) 
Let 

00 

a(t, A) = L a;(t)A-; ; b(t, A) 
i=O 

00 00 L b;(t)A-\ c(t,A) = L c;(t)A-; 
i=O i=O 

When a0(0) = b0(0) = 0, we are in the case of dou ble characteristics (at t = 0) 
We will further assume that 

(4) ao(t) =atk+ tk+ 1f(t), b0(t) =btk+ r: 1g(t), c0(t) = ctk- 1 + tkh(t), 
where J, g, h E C00(J) and a, b, c are complex numbers. 
(5) Re a > 0, Re b < 0 and k is odd. 

We will call 6 =a -b and 

(6) 

Let 11 be the greatest open interval contarnmg the ongin and such that 
aW ~W . · · Re--;- and Re -k- do not vanish on J 1, and let us consider the followmg t I 

hypoelliptic properties: 
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(II) \:/ s E R, \:/ open set J c J 1, (7).v holds. 

The following is then the mam theorem of this work: 

THEOREM l. Let P be given by (2), satisfying (4) and (5), and let P* be the adjoint 
of P Then, the following conditions are equivalent: 
a) P satisfies II 
b) P* satisfies II 
c) \:/ m inteqer > 0, I,, =I= m(k+l) and I,,=/= m(k+l) + L 

In [2], the operators that are locally solvable and hypoelliptic at t =0 were 
completely characterized, when k = l. In [3], these operators were again 
studied, but under a pseudodi/Terential form, and Theorem 1 was proved 
for k = l. 

l The space kgs,m and their properties 

In order to prove the theorem, we will need to construct and know some 
properties of auxiliary spaces kgs,m, similarly to what was done in [3J In 
the case k > l, however, there are some peculiarities that make the statement 
of the results a little more complicated. 

Let us first assume that d and p are real numbers such that k · p is an inte­ 
ger 2".: 0. We define the space of operators kNd·,,(J) in the following way: 
BE kNd·,,(J) if B is an operator like in (1), and may be written in the form: 

(8) B = I Baiaaf' 
Ti +p:5ap 

a,PE 7l. + 
. kp-rx. + fi 

and Bap is of the form (1), with order ::;; d - k + 1 on J. 

Let now s and III be real numbcrs with k · m an inrcgcr ;?: 0. We define 
now kR;;;:'(1): a distribution uE§0'(J, H-00

) is in k..tt;:;'(J) if and only if 
s-d- k(m- p) 

V BE kNtl·"(J), with p::;; m, we have Bu E ./t'10c k+ 
1 (J), or, what is equi- 
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km-a+p s--- 
valente, if and only if f"f/; uE.1f10c kH (J), V1J.,/JEZ+ with{+~'$m. We 
equip k.Yfi',;;;' (J) with the coarsest Iocally convex topology which makes all 
the mappings B in the first definition, or taof in the second one, continuous 
from kff;~~ (J) to the corresponding spaces. Remark that kff l;,~ (J) = Jlf)

0
,(J). 

We may define kff:·m(K) and kYt:·m(J) in the obvious way, and finally, if s.m 
are as above, we define kJlt')~;m(J) as the (strong) dual of kJlt;:-'·'"(J) The 
following are useful facts about these spaces: 

PROPOS!TlON l. a) If BEkNd,P(J), then B: k,1t;;;1(J)-> kff);;;cJ,m-v(J) is con­ 
tinuous, provided either m - p ~ 0 or m :-c:; 0 or m E 'll... 

a 

b) ta: kyt;~:'(J)-> kJlt';~:,--/((J) is always continuous. 

P 'J , d , km' km h h ROPOS!TlON 2. J s :-::; s an s - k + 1 :-::; s - k + 
1
, t en we ave a con- 

tinuous injection kff hZ'( J) c; k Yt't~~,, ( J). 

km s- -- 
CoROLLAR Y 1. a) If m ~ 0, then Yt'toc (J) c; k Y't');;;1 (J) c; Jlt',oc k+ 1 (J) 

PROPOS!TlON 3. Given a compact set K of the real line, r. > 0 and a real number 
s1, there is C>0 such that 'v'uEkYt:·m(K), llull,.m· :-c:;cllull,.m+ Cllulls1. 

PROPOS!TlON 4. Let m E 'll../k. If tkA u and o,u both belong to kfft;;; I ,m- 1 (J), 
then u E kff;~~(J). The converse is true (Proposition 1) if m ~ 1 or m '$ 0. 

Let us suppose that PEkNd·P(Q.), where pE'lL+, and let J c c 0., with 0EJ. 
Let S be the set of real num bers m such that k · m E '1l.. and that: either m ~ 0 
or m + p :-c:; 0 or m E Z'., and let us consider the following conditions: 

(l L,m: vu E ~'(J, H- 00), P U E k.Yf)~;' (J) =;, U E k Yt;;d,m + /J (J). 
(2ls_m: V0EC;'°(J), Vs'ER, VK c c 0., :3C>0 such that Vc/JECc")(K,H00) 

IIOc/Jll,+d,m+1, :-::; C(IIPOq)lls,m + 11</>II,) 
(3ls,,,, V0EC;'°(J), Vs"E!Rl, 'v'gEkYt',:t-d.-m-p(J), 

:lf E kff,-:-'·-m(J) such that 0(P*f-g) E Jlt't'(J). 
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THEOREM 2. Let PEkNd·P(Q), with pEZ+. Then: 
a) If(j)s,,,, is I rue .for some j E {I, 2, 3} and some (s0, m0) E lR x S, then it is I rue 
for all such j's and all (s,m0) with SE IR. 
b) lfm., EZ (and a) is satisfied), then (j),1,, is true for allfs and a// (s,111)E lR x S; 
moreover, (I),,,, is true for a// (s, m) E lR x Z/k (if p = 2). 

. . . 

REMARK 1. If (1),,,,, holds for a family of open sets that covers 1, then of course 
it holds for J. If (2),,,,, holds, then it holds for every 1' c 1. Hence, if 111 E S, 
Theoren 2 implies that (j),,

111 
holds if and only if it holds for a family of open 

sets which rovers 1. 

One of the steps in the proof of Theorem 2 uses the following 

f>ROPOSITION 5. If (2),
0
,,,,
0 

is true for P, then it is also true for P - R if 
REkNd-I,,,-i (and if m~O or m+p-1:::;0 or mEZ). 

4. A stronger version of the main theorem and some partial results 

We keep all the notations of section 2, including that of 11, and we consider 
the following conditions ((7), and II appear in pg. 2) and 3): 

T) 3 open neigh borhood 1 of 0, with 1 c 11, and :ls E lR such that (7), holds. 

III) :lopen neighborhood 1 of 0, with 1 c 11, 3 (s, m) E lR x Z, and :lj E { L 2. 3} 
such that (i),,m holds. 

IV) {l) Vl c c 11, V(s,m)EIRxS, VjE{l,2,3}, (it,,,, holds. 
2) Vl c 11, V(s,m)EIR xZ./k, (1),,,,, holds. 

We will prove that I <c:> II <c:> III <c:> IV for an operator P, and then the following 
more precise version of Theorem I : 

THEOREM 3. Let P be as in Theorem l. Then, the following conditions are 
equivalent: 

a) I, II, 111 or IV for P; 
b) I, 11, ]J] or 1 V .for P*; 
c) \/111 inteqer ~ 0, /

1
, f. 111 (k+ I) and /11 =I= 111 (k+ I)+ I. 
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For the proof of Theorem 3, we need 2 partial results. The first is easily ob­ 
rained, as in [2] and [3]: 

k 
PROPOSITION 6. If P is as in Theorem 1 and Re IP :s; - 2, then 3C0, C1 > 0. 

such that V</> E C';°(J, H00
) (where O E J, J is bounded and contained in the domain 

of definition of P), 

J11<1>,ll6 + lltkA</>ll6)dt:,:; c, If P<t>,</>)odtl + c1fiti(ll<t>,ll6 + lltkA</>ll6)dt. 

where II a II and (, )0 are those of H0 = H. 

CoROLLAR Y 2. If P is as in Proposition 6, then there is an open neighborhood 
J o.fO and C>O such that V</>EC';°(J,H00

), we have ll<!>ll1.1 :S:: CjiP<f>ll-1.-1· 

The second result which we need is also easy, similar to what was done in 
[I J. We give below the result and the algebraic lemma in which it is based: 

LEMMA. Let E, F be two abelian groups, F a subgroup of E, and let P, Q, U, V 
be [our endomorphisms of E which map F into itself If U P = QV and 
v-1(F) n p-1(F) c F, then Q-1(F) c F => p-1(F) c F. 

PROPOSITION 7. Let P = P(c) = (a, - atkA) (a, - btk A)+ ctk- t A. If, for some 
m EZ+, we have LP = m(k+ I) or lp = m(k+ I)+ 1, then P is not hypoelliptic 
at t = 0. 

5. Proof of Theorem 3 

Throughout this section, P will be of the form (2), satisfying (4) and (5). We 
associate to P the operator 

(9) p = ( 8, - at" A) (8, - btkA) + ctk- 1 A. 

The following propositions reduce the proof of Theorem 3 for the general 
operator P to that of the simpler operator P: 

PROPOSITION 8. The following conditions are equioalent: 
a) III holds for P; 
b) IV holds for P; 
c) III holds for P; 
d) I V holds for P (for P, J 1 = IR). 
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PROOF That b)= a) and d) = c) is evident. Suppose a) holds; on J 1 \ f O} P 
is elliptic, so (lls,

111 
holds for all (s,m)EIR xll/k on 11\{o}, and by a) it also 

holds on some neighborhood of 0; now Remark I and Theoren 2 givcs b) 
Similarly, c)= d). 

We use now the fact that P-P=R1 +R2, where R2EkN1
•
1(O) and R1 =tU. 

with U E kN2•2(0). Hence, Proposition 5 and Theorem 2 show that b) for P 
implies a) for P - R2. To end the proof, it is enough to prove the following 
analog of Proposition 5: 
(10) If(2)0,0 holdsfor P on the neighborhood J of 0, then it also holdsfor P-R 
on a possibly smaller neighborhood J' of 0, if R =t U; with U E kN2

•
2(0). 

Now, //t<fJ//o.o::;: E//4>//o.o if </JEC;o((-e,c),H00
), and since U: kjf'f0}(J) 

..- k,:tf~~(J) is continuous, given a compact neighborhood K ofO, with K c J, 
there is C > 0 such that 

hence 

//R</J//o,o = //tU<fJ//o.o::;: ~ //U<f>//o,o :-;; e/14>1/i.2, 

Since, 

Ve > 0, 3e' > 0 such that II R<f> llo.o ::;: e // <I> 112.2, V<f> E C< (( -i;' .1:'). /-/'"'). 

it is now easy to prove (10). 

PROPOSJTJON 9. a) Conditions I, II, III, IV are equivalent. b) If P u E k.1r;;;.'(J) 
s + 2 - j ,111 + 2 - j (_!<_:+-_l__) 

but ur/:kYt';,:2·111+2(]), then ur/:k:lt'10, · k (J) for j=O, 1,2 .. 

PROOF. a) We already know that 111 <=> IV, and it is evident that 11 = I. 
That IV = II follows by remarking that we have a continuous injection 

2 s+ --- . 
kyt~1~

2•2(J) c; :Jt'10, k+ 1 (J) (Corollary I). 

Finally, I=> lll: in fact, suppose that (7), holds. Then, if 1.1 E ~, (J. H-"') 
2 s+ --- 

is such that P u E ./f·;"AJ), we get by (7), that u E .;/('1"' k 1 (J), which is con- 
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2 

tained in kyt;~; ,; (J) (Corollary 1). 

Hence, by b) casej=2, we have UEkff~:::C2•2(J), so that (1k0, hence III holds. 

b) We begin with the following claim (which is but b) in the case j= I): 

k+I s+ l,m+2- -- 
In fact, since UEkYl'10, k (J), we have tk-1AuEk./f;t;'(J). Let now 
rx be a sufficiently great positive real number. Then P1 =P-rxc5tk-IA has 
Re IP, :c:; - ½ hence (by Corollary 2 and Theorem 2) P1 satisfies (lls,,,, Since 
P 1 u = Pu - rxbtk- 1 A u E k Yf"1;;;.1(J), we get u E kyt\: 2 ·"' + 2( J). Suppose now 
that b) case j was proved and let us prove b) case j+ I. Let P u E k/f/,;;'(J). 

(k + I) 
u1kYt';

0
:
2,m+Z(J). By b), we have u1kYf;,,:z-J,m+Z-J--k--(J). Since 

s- j,m- }~_+_!_) s- j,111-/!'._+_!_) 
k Yt;~:'(J) c; kYl'10, k (J). (Corollary 1 ), we have P u E k./f 10( k (J) 

s + 2 - i ,m + 2 - p_+_U . . . ( k + l ) 
and u1kYl'10, k (J), ~h1ch by (11) (with s-j and m-.1 -k- 
substituded for s and m, respectively) gives b) j+ I. 

COROLLARY 3. The [ollowinq 8 conditions are equivalent: I, II, III, IV for P 
and I, II, III, IV for P. 

- 
PROOF OF THEOREM 3. The remark that //J~- = IP immediately shows that, 
if we prove a) =c)= a), then we will also have b)= c)= b). 

a) = c): a) = II for P = P hypoelliptic = c). The last implication 1s Pro­ 
position 7. 

c)= a): Since lv = IP it is enough to prove c)= a) for P, given by (9). Let 
us call P(c) = (6, - atkA) (o, - btkA) + ctk-1A, X= o,-atkA, Y=6,-btkA_ 
It is enough to prove, for j = 0, 1, 2, ... 

c)= a) when Re ep(c) :c:; U-1) (k+ 1). 

By Corollary 2 (and Theorem 2), (12)0 is true. For the inductive step. it is 
enough to prove: 
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(13) if c i= 0, c i= b, and P(c - (k + l)b) satisfies IV, then P(c) satisfies (J ls,,,, 
(for m ~ 5). For this, we use the following identity, which concatenates P(c) 
and P(c -(k+ 1)6): 

( 14) P(c - (k + l)b) (t Y -%) = (t Y -% + 2) P(c) 

Let u E ~'(J, H-00
) be such that 

(15) P(c)u E k..ff'};;;'(J) (hence, by Corollary 1, 

J 
.s-1,m- I - - 

(15') P(c)uEkJt10, k(J)). 
J J+.!. 

Since I Y - % + 2 E kN · k, we have 
k+ I s-Jm---- 

(t Y - % + 2) P(c)u E k/t'10, • k (J), and since by hypothesis P(c-(k+ 1 )b) 
satisfies ( It,,., for all (s, m) E IR x Z/k, we get from (14): 

I s+ l ,m+ I - - 
(16) (tY-f)uEkJ(,'101 k(J). 

We also have 

(17) (tX+f-1) (tY-%)-t2P(c) =%(1-f). 

1 2 
k 1,1+- k 0- 

SincetX+,~-lE N k and t2E N 'k, (15), (16) and (17) give: 
k s m- 3, 

%( l - f)u E Yt'1~, k (J), and since c i= 0, c i= b we get 

2 
k s m- - 

(18) u E Yt';~, k (J). 

Now we remark that 

(19) P(c -(k + l)b) = P(c)- (k + l)Mk- 1 A 

I 
k s-1 m-t-- 

From (15'), (18) and (19) we get P(c-(k+ l)b)uE .lt'10, • k(J), hence 

k ., + I ,m + I - .!_ 
(20) U E ::/f101 k (J). 
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From (15), (19) and (20) we get P(c ~ (k + I) c5) u E 'if;;;:' (J). hence 
U E kffL:2.m+2(J). Q.E D. 

FINAI. REMARK. After this, it is not difficult to prove that a). b), c) are also 
equivalent to: 

d) V(s.m) E R x S, V open J' c c J 1, P dcfines an isorno rphism from 

k /ft:2,m+2(.J') / onto 
; c:'(.J' .H., i 

kj( l:,7,'(.J')/ 
C"(J'.H'"). 

e) Same as d). but for P* instead of P 
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