A Class of Second-order Evolution Equations With Double Characteristics

ANTONIO GILIOLI

1. Notations

Let H be an abstract Hilbert space and A a linear operator, densely defined in H, which is unbounded, selfadjoint, positive definite and has a bounded in verse A^{-1} .

If J is an open set of the real line, let $\mathcal{Q}_A(J)$ denote the set of the series in the nonnegative powers of A^{-1} , with coefficients in $C^{\infty}(J)$, which converge in L(H;H) (the Banach space of bounded linear operators on H), as well as each of their t-derivatives, uniformly with respect to t on compact subsets of J. We will consider differential operators of the form

(1)
$$P = \sum_{r+i \le m} c_{r,j}(t,A) A^r \partial_t^j \qquad (\partial_t = \partial/\partial t)$$

where the r's are real numbers ≥ 0 , the j's are integers ≥ 0 , the sum is a finite one and each $c_{r,j}(t,A)$ belongs to $\mathcal{Q}_A(J)$. The operator P in (1) is said to be of order $\leq m$.

We may construct the scale of Sobolev spaces H^s for each $s \in \mathbb{R}$, in the following way: if $s \ge 0$, H^s is the space of elements u of H such that $A^su \in H$, equipped with the norm $\|u\|_s = \|A^su\|_0$, where $\|\cdot\|_0$ denotes the norm of $H = H^0$; if s < 0, H^s is the completion of H for the norm $\|u\|_s = \|A^su\|_0$. By H^∞ we denote the intersection of all the H^s , equipped with the projective limit topology, and by $H^{-\infty}$ their union, with the inductive limit topology.

If J is an open set of the real line, we denote by $C^{\infty}(J, H^{\infty})$ the space of C^{∞} function in J valued in H^{∞} , which is the projective limit of $C^{j}(J, H^{m})$ for j, $m \geq 0$ integers. If K is any compact subset of J, we denote by $C^{\infty}_{C}(K, H^{\infty})$ the subspace of $C^{\infty}(J, H^{\infty})$ consisting of those functions which vanish outside K, and by $C^{\infty}_{C}(J, H^{\infty})$ the inductive limit of $C^{\infty}_{C}(K, H^{\infty})$ as K ranges over all compact subsets of J. Then, $\mathscr{D}'(J, H^{-\infty})$ will be the (strong) dual of $C^{\infty}_{C}(J, H^{\infty})$.

We may define another scale of Sobolev spaces: \mathscr{H}^s for $s \in \mathbb{R}$, in which the t-variable also plays a role: the basic space is now $L^2(\mathbb{R}, H)$, which will be \mathscr{H}^0 , and we consider the operator $(1 - \partial_t^2 + A^2)^{1/2}$ on $L^2(\mathbb{R}, H)$, which has the same properties that A has in relation to H, so that the scale $\mathscr{H}^s = \mathscr{H}^s(\mathbb{R})$ is constructed exactly as before.

We can then define $\mathcal{H}_{C}^{S}(K)$, $\mathcal{H}_{C}^{S}(J)$ and $\mathcal{H}_{loc}^{S}(J)$ in the obvious way.

2. Statement of the main theorem

Let J be an open set of the real line, containing the origin. We will study operators of the form

(2)
$$P = (\partial_t - a(t, A)A) (\partial_t - b(t, A)A) + c(t, A)A,$$

where a(t, A), b(t, A), and c(t, A) belong to $\mathcal{Q}_A(J)$, and will systematically use the notation

(3)
$$X = \partial_t - a(t, A)A; \quad Y = \partial_t - b(t, A)A; \quad \delta(t, A) = a(t, A) - b(t, A)A$$

Let

$$a(t,A) = \sum_{i=0}^{\infty} a_i(t)A^{-i}$$
; $b(t,A) = \sum_{i=0}^{\infty} b_i(t)A^{-i}$; $c(t,A) = \sum_{i=0}^{\infty} c_i(t)A^{-i}$.

When $a_0(0) = b_0(0) = 0$, we are in the case of double characteristics (at t = 0). We will further assume that

(4)
$$a_0(t) = at^k + t^{k+1} f(t), \quad b_0(t) = bt^k + t^{k+1} g(t), \quad c_0(t) = ct^{k-1} + t^k h(t),$$

where $f, g, h \in C^{\infty}(J)$ and a, b, c are complex numbers.

(5) $Re \ a > 0$, $Re \ b < 0$ and k is odd.

We will call $\delta = a - b$ and

$$(6) l_p = \frac{c}{\delta}.$$

Let J_1 be the greatest open interval containing the origin and such that $Re \, \frac{a_0(t)}{t^k}$ and $Re \, \frac{b_0(t)}{t^k}$ do not vanish on J_1 , and let us consider the following hypoelliptic properties:

$$(7)_{s} \qquad \forall u \in \mathcal{D}'(J, H^{-\infty}), \ Pu \in \mathcal{H}^{s}_{loc}(J) \Rightarrow u \in \mathcal{H}^{s+\frac{2}{k+1}}_{loc}(J).$$

(II) $\forall s \in R$, \forall open set $J \subset J_1$, $(7)_s$ holds.

The following is then the main theorem of this work:

THEOREM 1. Let P be given by (2), satisfying (4) and (5), and let P^* be the adjoint of P. Then, the following conditions are equivalent:

- a) P satisfies II
- b) P* satisfies II
- c) $\forall m \ integer \ge 0$, $l_p \ne m(k+1) \ and \ l_p \ne m(k+1) + 1$.

In [2], the operators that are locally solvable and hypoelliptic at t=0 were completely characterized, when k=1. In [3], these operators were again studied, but under a pseudodifferential form, and Theorem 1 was proved for k=1.

3. The space ${}^{k}\mathcal{H}^{s,m}$ and their properties

In order to prove the theorem, we will need to construct and know some properties of auxiliary spaces ${}^k\mathcal{H}^{s,m}$, similarly to what was done in [3]. In the case k > 1, however, there are some peculiarities that make the statement of the results a little more complicated.

Let us first assume that d and p are real numbers such that $k \cdot p$ is an integer ≥ 0 . We define the space of operators ${}^kN^{d,p}(J)$ in the following way: $B \in {}^kN^{d,p}(J)$ if B is an operator like in (1), and may be written in the form:

(8)
$$B = \sum_{\substack{\frac{\alpha}{k} + \beta \leq p \\ \alpha, \beta \in \mathbb{Z} + }} B_{\alpha\beta} t^{\alpha} \partial_t^{\beta},$$

and $B_{\alpha\beta}$ is of the form (1), with order $\leq d - \frac{kp - \alpha + \beta}{k+1}$ on J.

Remark that $t^{\alpha}A^{\gamma}\partial_{t}^{\beta} \in {}^{k}N^{\beta+\gamma}$, $\frac{\alpha}{k}+\beta$ if $\alpha,\gamma,\beta \geq 0$; $\alpha,\beta \in \mathbb{Z}$ and $\gamma \in \mathbb{R}_{+}$.

Let now s and m be real numbers with $k \cdot m$ an integer ≥ 0 . We define now ${}^k\mathcal{H}^{s,m}_{loc}(J)$: a distribution $u \in \mathcal{D}'(J,H^{-\infty})$ is in ${}^k\mathcal{H}^{s,m}_{loc}(J)$ if and only if $\forall B \in {}^kN^{d,p}(J)$, with $p \leq m$, we have $B u \in \mathcal{H}^{s-d-\frac{k(m-p)}{k+1}}_{loc}(J)$, or, what is equi-

valente, if and only if $t^{\alpha}\partial_{t}^{\beta} u \in \mathcal{H}_{loc}^{s-\frac{km-\alpha+\beta}{k+1}}(J)$, $\forall \alpha, \beta \in \mathbb{Z}_{+}$ with $\frac{\alpha}{k}+\beta \leq m$. We equip ${}^{k}\mathcal{H}_{loc}^{s,m}(J)$ with the coarsest locally convex topology which makes all the mappings B in the first definition, or $t^{\alpha}\partial_{t}^{\beta}$ in the second one, continuous from ${}^{k}\mathcal{H}_{loc}^{s,m}(J)$ to the corresponding spaces. Remark that ${}^{k}\mathcal{H}_{loc}^{s,o}(J)=\mathcal{H}_{loc}^{s}(J)$.

We may define ${}^k\mathscr{H}^{s,m}_c(K)$ and ${}^k\mathscr{H}^{s,m}_c(J)$ in the obvious way, and finally, if s,m are as above, we define ${}^k\mathscr{H}^{s,-m}_{loc}(J)$ as the (strong) dual of ${}^k\mathscr{H}^{-s,m}_c(J)$. The following are useful facts about these spaces:

PROPOSITION 1. a) If $B \in {}^kN^{d,p}(J)$, then $B \colon {}^k\mathcal{H}^{s,m}_{loc}(J) \to {}^k\mathcal{H}^{s-d,m-p}_{loc}(J)$ is continuous, provided either $m-p \geq 0$ or $m \leq 0$ or $m \in \mathbb{Z}$.

b)
$$t^{\alpha}$$
: ${}^{k}\mathcal{H}^{s,m}_{loc}(J) \rightarrow {}^{k}\mathcal{H}^{s,m-\frac{\alpha}{k}}_{loc}(J)$ is always continuous.

PROPOSITION 2. If $s' \le s$ and $s' - \frac{km'}{k+1} \le s - \frac{km}{k+1}$, then we have a continuous injection ${}^k\mathcal{H}^{s,m}_{loc}(J) \subseteq {}^k\mathcal{H}^{s,m}_{loc}(J)$.

COROLLARY 1. a) If
$$m \ge 0$$
, then $\mathcal{H}^{s}_{loc}(J) \subsetneq {}^{k}\mathcal{H}^{s,m}_{loc}(J) \subsetneq \mathcal{H}^{s-\frac{km}{k+1}}_{loc}(J)$
b) If $m \le 0$, then $\mathcal{H}^{s-\frac{km}{k+1}}_{loc}(J) \subsetneq {}^{k}\mathcal{H}^{s,m}_{loc}(J) \subsetneq \mathcal{H}^{s}_{loc}(J)$

PROPOSITION 3. Given a compact set K of the real line, $\varepsilon > 0$ and a real number s_1 , there is C > 0 such that $\forall u \in {}^k\mathscr{H}^{s,m}_c(K)$, $||u||_{s',m'} \le \varepsilon ||u||_{s,m} + C ||u||_{s_1}$.

PROPOSITION 4. Let $m \in \mathbb{Z}/k$. If $t^k A u$ and $\partial_t u$ both belong to ${}^k \mathcal{H}^{s-1,m-1}_{loc}(J)$, then $u \in {}^k \mathcal{H}^{s,m}_{loc}(J)$. The converse is true (Proposition 1) if $m \geq 1$ or $m \leq 0$.

Let us suppose that $P \in {}^k N^{d,p}(\Omega)$, where $p \in \mathbb{Z}_+$, and let $J \subset \subset \Omega$, with $0 \in J$. Let S be the set of real numbers m such that $k \cdot m \in \mathbb{Z}$ and that: either $m \ge 0$ or $m + p \le 0$ or $m \in \mathbb{Z}$, and let us consider the following conditions:

$$(1)_{s,m}: \ \forall u \in \mathcal{D}'(J, H^{-\infty}), \ P \ u \in {}^{k}\mathcal{H}^{s,m}_{loc}(J) \Rightarrow u \in {}^{k}\mathcal{H}^{s+d,m+p}_{loc}(J).$$

$$(2)_{s,m}: \ \forall \theta \in C^{\infty}_{c}(J), \ \forall s' \in R, \ \forall K \subset \subset \Omega, \ \exists C > 0 \ \text{such that} \ \forall \phi \in C^{\infty}_{c}(K, H^{\infty})$$

$$\|\theta \phi\|_{s+d,m+p} \leq C(\|P\theta \phi\|_{s,m} + \|\phi\|_{s'})$$

$$(3)_{s,m} \ \forall \theta \in C^{\infty}_{c}(J), \ \forall s'' \in \mathbb{R}, \ \forall g \in {}^{k}\mathcal{H}^{-s-d,-m-p}_{loc}(J),$$

$$\exists f \in {}^{k}\mathcal{H}^{-s,-m}_{c}(J) \ \text{such that} \ \theta(P^{*}f-g) \in \mathcal{H}^{s''}_{c}(J).$$

THEOREM 2. Let $P \in {}^k N^{d,p}(\Omega)$, with $p \in \mathbb{Z}_+$. Then:

- a) If $(j)_{s,m}$ is true for some $j \in \{1, 2, 3\}$ and some $(s_0, m_0) \in \mathbb{R} \times S$, then it is true for all such j's and all (s, m_0) with $s \in \mathbb{R}$.
- b) If $m_0 \in \mathbb{Z}$ (and a) is satisfied), then $(j)_{s,m}$ is true for all \hat{j} s and all $(s,m) \in \mathbb{R} \times S$; moreover, $(1)_{s,m}$ is true for all $(s,m) \in \mathbb{R} \times \mathbb{Z}/k$ (if p=2).

REMARK 1. If $(1)_{s,m}$ holds for a family of open sets that covers J, then of course it holds for J. If $(2)_{s,m}$ holds, then it holds for every $J' \subset J$. Hence, if $m \in S$, Theoren 2 implies that $(j)_{s,m}$ holds if and only if it holds for a family of open sets which covers J.

One of the steps in the proof of Theorem 2 uses the following

PROPOSITION 5. If $(2)_{s_0,m_0}$ is true for P, then it is also true for P-R, if $R \in {}^k N^{d-1,p-1}$ (and if $m \ge 0$ or $m+p-1 \le 0$ or $m \in \mathbb{Z}$).

4. A stronger version of the main theorem and some partial results

We keep all the notations of section 2, including that of J_1 , and we consider the following conditions ((7)_s and II appear in pg. 2) and 3):

- I) \exists open neighborhood J of 0, with $J \subset J_1$, and $\exists s \in \mathbb{R}$ such that $(7)_s$ holds.
- III) \exists open neighborhood J of 0, with $J \subset J_1$, $\exists (s, m) \in \mathbb{R} \times \mathbb{Z}$, and $\exists j \in \{1, 2, 3\}$ such that $(j)_{s,m}$ holds.

$$\text{IV) } \begin{cases} 1) \ \forall J \subset \subset J_1, \ \forall (s,m) \in \mathbb{R} \times S, \ \forall j \in \{1,2,3\}, \ (j)_{s,m} \ \text{holds.} \\ 2) \ \forall J \subset J_1, \ \forall (s,m) \in \mathbb{R} \times \mathbb{Z}/k, \ (1)_{s,m} \ \text{holds.} \end{cases}$$

We will prove that $I \Leftrightarrow II \Leftrightarrow III \Leftrightarrow IV$ for an operator P, and then the following more precise version of Theorem 1:

THEOREM 3. Let P be as in Theorem 1. Then, the following conditions are equivalent:

- a) I, II, III or IV for P;
- b) I, II, III or IV for P^* ;
- c) $\forall m \ integer \ge 0$, $l_p \ne m(k+1)$ and $l_p \ne m(k+1) + 1$.

For the proof of Theorem 3, we need 2 partial results. The first is easily obtained, as in [2] and [3]:

PROPOSITION 6. If P is as in Theorem 1 and Re $l_p \leq -\frac{\kappa}{2}$, then $\exists C_0, C_1 > 0$, such that $\forall \phi \in C_c^{\infty}(J, H^{\infty})$ (where $0 \in J$, J is bounded and contained in the domain of definition of P),

$$\int (\|\phi_t\|_0^2 + \|t^k A\phi\|_0^2) dt \le C_0 \left| \int (P\phi, \phi)_0 dt \right| + C_1 \int |t| (\|\phi_t\|_0^2 + \|t^k A\phi\|_0^2) dt,$$

where $\| \cdot \|$ and $(,)_0$ are those of $H^0 = H$.

COROLLARY 2. If P is as in Proposition 6, then there is an open neighborhood J of 0 and C > 0 such that $\forall \phi \in C_c^{\infty}(J, H^{\infty})$, we have $\|\phi\|_{1,1} \leq C \|P\phi\|_{-1,-1}$.

The second result which we need is also easy, similar to what was done in [1]. We give below the result and the algebraic lemma in which it is based:

LEMMA. Let E, F be two abelian groups, F a subgroup of E, and let P,Q,U,V be four endomorphisms of E which map F into itself. If UP = QV and $V^{-1}(F) \cap P^{-1}(F) \subset F$, then $Q^{-1}(F) \subset F \Rightarrow P^{-1}(F) \subset F$.

PROPOSITION 7. Let $P = P(c) = (\partial_t - at^k A) (\partial_t - bt^k A) + ct^{k-1} A$. If, for some $m \in \mathbb{Z}_+$, we have $l_p = m(k+1)$ or $l_p = m(k+1) + 1$, then P is not hypoelliptic at t = 0.

5. Proof of Theorem 3

Throughout this section, P will be of the form (2), satisfying (4) and (5). We associate to P the operator

(9)
$$\tilde{P} = (\partial_t - at^k A) (\partial_t - bt^k A) + ct^{k-1} A.$$

The following propositions reduce the proof of Theorem 3 for the general operator P to that of the simpler operator \tilde{P} :

PROPOSITION 8. The following conditions are equivalent:

- a) III holds for P;
- b) IV holds for P;
- c) III holds for P;
- d) IV holds for \tilde{P} (for \tilde{P} , $J_1 = \mathbb{R}$).

PROOF. That b) \Rightarrow a) and d) \Rightarrow c) is evident. Suppose a) holds; on $J_1 \setminus \{\circ\} P$ is elliptic, so $(1)_{s,m}$ holds for all $(s,m) \in \mathbb{R} \times \mathbb{Z}/k$ on $J_1 \setminus \{\circ\}$, and by a) it also holds on some neighborhood of 0; now Remark 1 and Theoren 2 gives b). Similarly, c) \Rightarrow d).

We use now the fact that $P - \tilde{P} = R_1 + R_2$, where $R_2 \in {}^kN^{1,1}(\Omega)$ and $R_1 = tU$, with $U \in {}^kN^{2,2}(\Omega)$. Hence, Proposition 5 and Theorem 2 show that b) for P implies a) for $P - R_2$. To end the proof, it is enough to prove the following analog of Proposition 5:

(10) If (2)_{0,0} holds for P on the neighborhood J of 0, then it also holds for P-R on a possibly smaller neighborhood J' of 0, if R=tU, with $U \in {}^kN^{2,2}(\Omega)$.

Now, $\|t\phi\|_{0,0} \le \epsilon \|\phi\|_{0,0}$ if $\phi \in C_c^{\infty}((-\varepsilon, \varepsilon), H^{\infty})$, and since $U: {}^k\mathcal{H}^{2,2}_{loc}(J) \longrightarrow {}^k\mathcal{H}^{0,0}_{loc}(J)$ is continuous, given a compact neighborhood K of 0, with $K \subset J$, there is C > 0 such that

$$\| \mathbf{U} \phi \|_{0,0} \le C \| \phi \|_{2,2} \ \forall \phi \in C_c^{\infty}(K, H^{\infty}),$$

hence

$$||R\phi||_{0,0} = ||tU\phi||_{0,0} \le \frac{\varepsilon}{C} ||U\phi||_{0,0} \le \varepsilon ||\phi||_{2,2},$$

$$\forall \phi \in C_c^{\infty} \left(\left(-\frac{\varepsilon}{C}, \frac{\varepsilon}{C} \right) \cap K, H^{\infty} \right).$$

Since,

 $\forall \varepsilon > 0, \ \exists \varepsilon' > 0 \ \text{ such that } \|R\phi\|_{0,0} \le \varepsilon \|\phi\|_{2,2}, \ \forall \phi \in C_c^{\infty}((-\varepsilon',\varepsilon'), H^{\infty}).$ it is now easy to prove (10).

PROPOSITION 9. a) Conditions I, II, III, IV are equivalent. b) If $Pu \in {}^k\mathcal{H}^{s,m}_{loc}(J)$ but $u \notin {}^k\mathcal{H}^{s+2.m+2}_{loc}(J)$, then $u \notin {}^k\mathcal{H}^{s+2-j,m+2-j}_{loc}(j)$ for j=0,1,2...

PROOF. a) We already know that III \Leftrightarrow IV, and it is evident that II \Rightarrow I. That IV \Rightarrow II follows by remarking that we have a continuous injection ${}^{k}\mathcal{H}_{loc}^{s+2,2}(J) \subseteq \mathcal{H}_{loc}^{s+\frac{2}{k+1}}(J)$ (Corollary 1).

Finally, $I \Rightarrow III$: in fact, suppose that $(7)_s$ holds. Then, if $u \in \mathcal{D}'(J, H^{-\infty})$ is such that $Pu \in \mathcal{H}^s_{loc}(J)$, we get by $(7)_s$ that $u \in \mathcal{H}^{s+\frac{2}{k+1}}_{loc}(J)$, which is con-

tained in ${}^{k}\mathcal{H}_{loc}^{s,-\frac{2}{k}}(J)$ (Corollary 1).

Hence, by b) case j=2, we have $u \in {}^k\mathcal{H}^{s+2,2}_{loc}(J)$, so that $(1)_{s,0}$, hence III holds.

b) We begin with the following claim (which is but b) in the case j = 1):

(11) If
$$Pu \in {}^{k}\mathcal{H}^{s,m}_{loc}(J)$$
 and $u \in {}^{k}\mathcal{H}^{s+1,m+2-\frac{k+1}{k}}_{loc}(J)$, then $u \in {}^{k}\mathcal{H}^{s+2,m+2}_{loc}(J)$.

In fact, since $u \in {}^k\mathcal{H}^{s+1,m+2-\frac{k+1}{k}}_{loc}(J)$, we have $t^{k-1}Au \in {}^k\mathcal{H}^{s,m}_{loc}(J)$. Let now α be a sufficiently great positive real number. Then $P_1 = P - \alpha \delta t^{k-1}A$ has $Re \ l_{p_1} \leq -\frac{k}{2}$ hence (by Corollary 2 and Theorem 2) P_1 satisfies $(1)_{s,m}$. Since $P_1u = Pu - \alpha \delta t^{k-1}Au \in {}^k\mathcal{H}^{s,m}_{loc}(J)$, we get $u \in {}^k\mathcal{H}^{s+2,m+2}_{loc}(J)$. Suppose now that b) case j was proved and let us prove b) case j+1. Let $Pu \in {}^k\mathcal{H}^{s,m}_{loc}(J)$, $u \notin {}^k\mathcal{H}^{s+2,m+2}_{loc}(J)$. By b), we have $u \notin {}^k\mathcal{H}^{s+2-j,m+2-j}_{loc}(\frac{k+1}{k})$ (J). Since ${}^k\mathcal{H}^{s,m}_{loc}(J) \subsetneq {}^k\mathcal{H}^{s-j,m-j}_{loc}(\frac{k+1}{k})$ (J). (Corollary 1), we have $Pu \in {}^k\mathcal{H}^{s-j,m-j}_{loc}(\frac{k+1}{k})$ and $u \notin {}^k\mathcal{H}^{s+2-j,m+2-j}_{loc}(\frac{k+1}{k})$ (J), which by (11) (with s-j and m-j (k+1) substituded for s and m, respectively) gives b) j+1.

COROLLARY 3. The following 8 conditions are equivalent: I, II, III, IV for P and I, II, III, IV for \tilde{P} .

PROOF OF THEOREM 3. The remark that $l_{p*} = \overline{l_p}$ immediately shows that, if we prove $a) \Rightarrow c) \Rightarrow a$, then we will also have $b) \Rightarrow c) \Rightarrow b$.

a) \Rightarrow c): a) \Rightarrow II for $\tilde{P} \Rightarrow \tilde{P}$ hypoelliptic \Rightarrow c). The last implication is Proposition 7.

c) \Rightarrow a): Since $l_{\tilde{p}} = l_p$ it is enough to prove c) \Rightarrow a) for \tilde{P} , given by (9). Let us call $P(c) = (\acute{o}_t - at^k A) \ (\partial_t - bt^k A) + ct^{k-1} A, \ X = \partial_t - at^k A, \ Y = \acute{o}_t - bt^k A$. It is enough to prove, for $j = 0, 1, 2, \ldots$

(12)_j c)
$$\Rightarrow$$
 a) when $Re \ e_{p(c)} \le (j-1) \ (k+1)$.

By Corollary 2 (and Theorem 2), $(12)_0$ is true. For the inductive step, it is enough to prove:

(13) if $c \neq 0$, $c \neq \delta$, and $P(c - (k+1)\delta)$ satisfies IV, then P(c) satisfies $(1)_{s,m}$ (for $m \geq 5$). For this, we use the following identity, which concatenates P(c) and $P(c - (k+1)\delta)$:

(14)
$$P(c - (k+1)\delta)$$
 $(tY - \frac{c}{\delta}) = (tY - \frac{c}{\delta} + 2) P(c)$

Let $u \in \mathcal{D}'(J, H^{-\infty})$ be such that

(15) $P(c)u \in {}^{k}\mathcal{H}_{loc}^{s,m}(J)$ (hence, by Corollary 1,

(15')
$$P(c)u \in {}^{k}\mathcal{H}_{loc}^{s-1,m-1-\frac{1}{k}}(J)$$
.

Since $tY - \frac{c}{\delta} + 2 \in {}^k N^{1,1+\frac{1}{k}}$, we have

 $(tY - \frac{c}{\delta} + 2) P(c)u \in {}^k\mathcal{H}^{s-1,m-\frac{k+1}{k}}_{loc}(J)$, and since by hypothesis $P(c-(k+1)\delta)$ satisfies $(1)_{s,m}$ for all $(s,m) \in \mathbb{R} \times \mathbb{Z}/k$, we get from (14):

(16)
$$(tY - \frac{c}{\delta})u \in {}^{k}\mathcal{H}_{loc}^{s+1,m+1-\frac{1}{k}}(J).$$

We also have

(17)
$$(tX + \frac{c}{\delta} - 1) (tY - \frac{c}{\delta}) - t^2 P(c) = \frac{c}{\delta} (1 - \frac{c}{\delta}).$$

Since $tX + \frac{c}{\delta} - 1 \in N^{1,1+\frac{1}{k}}$ and $t^2 \in N^{0,\frac{2}{k}}$, (15), (16) and (17) give: $\frac{c}{\delta}(1 - \frac{c}{\delta})u \in \mathcal{H}_{loc}^{s,m-\frac{2}{k}}(J)$, and since $c \neq 0$, $c \neq \delta$ we get

(18)
$$u \in \mathcal{H}_{loc}^{s,m-\frac{2}{k}}(J)$$
.

Now we remark that

(19)
$$P(c - (k+1)\delta) = P(c) - (k+1)\delta t^{k-1}A$$

From (15'), (18) and (19) we get $P(c - (k+1)\delta)u \in \mathcal{H}_{loc}^{s-1,m-1-\frac{1}{k}}(J)$, hence

(20)
$$u \in {}^{k} \mathscr{H}_{loc}^{s+1,m+1-\frac{1}{k}}(J).$$

From (15), (19) and (20) we get $P(c - (k + 1) \delta) u \in {}^k\mathcal{H}^{s,m}_{loc}(J)$, hence $u \in {}^k\mathcal{H}^{s+2,m+2}_{loc}(J)$. Q.E.D.

FINAL REMARK. After this, it is not difficult to prove that a), b), c) are also equivalent to:

d) $\forall (s,m) \in R \times S$, \forall open $J' \subset \subset J_1$, P defines an isomorphism from

$$\left. \frac{{}^k\mathscr{H}^{s+2,m+2}_{loc}(J')}{C^\infty(J',H^\infty)} \right| c^\infty(J',H^\infty) \qquad \text{onto} \qquad {}^k\mathscr{H}^{s,m}_{loc}(J') \left| C^\infty(J',H^\infty). \right|$$

e) Same as d), but for P^* instead of P.

BIBLIOGRAPHY

- [1] GILIOLI, A. & TREVES, F., An example in the solvability theory of linear PDEs, to appear in Amer. J. of Math.
- [2] Treves, F., Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, to appear in Applied Pure Math.
- [3] DE MONVEL, L. B. & TREVES, F., On a class of pseudodifferential operators with double characteristics, to appear.

Instituto de Matemática e Estatística Universidade de S. Paulo S. Paulo — Brasil