A Class of Second-order Evolution Equations
With Double Characteristics

ANTONIO GILIOLI
1. Notations

Let H be an abstract Hilbert space and A a linear operator, densely defined in
H, which is unbounded, selfadjoint, positive definite and has a bounded in
verse A~ 1.

If J is an open set of the real line, let 2,(J) denote the set of the series in the
nonnegative powers of A~ ', with coefficients in C” (J), which converge in
L(H: H) (the Banach space of bounded linear operators on H), as well as
cach of their t-derivatives, uniformly with respect to t on compact subsets
of J. We will consider differential operators of the form
(1) P= I ¢ ;(tA)AY (0, = 0/ot)

r+j<m
where the r's are real numbers > 0, the j's are integers > 0, the sum is a finite
one and each ¢, (t,A) belongs to 2,(J). The operator P in (1) is said to be
of order < m.

~ We may construct the scale of Sobolev spaces H* for each s € R, in the follo-
wing way: if s > 0, H* is the space of elements u of H such that A*u € H. equip-
ped with the norm || u ||, = || A°u [|o, where || - ||, denotes the norm of H = H":
if s <0, H® is the completion of H for the norm ||ul|, = || A'ull,. By H”
we denote the intersection of all the H*, equipped with the projective limit
topology. and by H™“ their union, with the inductive limit topology.

If J is an open set of the real line, we denote by C*(J, H”) the space of C*
function in J valued in H”, which is the projective limit of C/(J, H™) for j.
m > 0 integers. If K is any compact subset of J, we denote by C(K.H™)
the subspace of C*(J, H™) consisting of those functions which vanish outside K.
and by CZ(J, H”) the inductive limit of C#(K, H”) as K ranges over all com-
pact subsets of J. Then, 2'(J, H *) will be the (strong) dual of C/(J. H™).
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We may detine another scale of Sobolev spaces: #* for s €[R, in which the
t-variable also plays a role: the basic space is now I*(IR, H), which will be .#°.
and we consider the operator (1—0?+ A%)'/? on I*(R, H), which has the
same properties that 4 has in relation to H. so that the scale #° = #([?)

is constructed exactly as before.

We can then define #(K), #7% (J)and #J(J) in the obvious way.

2. Statement of the main theorem

Let J be an open set of the real line, containing the origin. We will study

operators of the form
(2) P = (0,— a(t, A)A) (0, — b(t,A)A) + c(t, A)A,

where a(t, A), b(t, A), and c(t, A) belong to 2,(J), and will systematically use

the notation
(3) X=0—alt,A)A; Y=20,—b(t, A)A; &, A)=alt, A)— b(t, A).

Let

dtA) = Y af0A; B A) = Y bOAT; ) = 3 anA
2 |

i=0 i =0
When a,(0) = b,(0) = 0, we are in the case of double characteristics (at ¢ =0).
We will further assume that
@) aot) =at*+ 1 [ (1), bo(t) =bt*+t** 1g(e),  colt) =ct* "+ t*h(1),
where f,g.he C*(J) and a, b, ¢ are complex numbers.

(5) Rea>0, Reb<0 and k is odd.

We will call 6 =a—b and

aylt bo(t . . :
Re ;ﬂu and Re # do not vanish on J,, and let us consider the following

1
hypoelliptic properties:

(7, Yued'(JH ™), Pue #5,(J)=ue A3 k11 (J)
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(II) VseR, Y open set J = Jy, (7), holds.
The following is then the main theorem of this work:

THEOREM 1. Let P be given by (2), satisfying (4) and (5), and let P* be the adjoint
of P. Then, the following conditions are equivalent:

a) P satisfies 11

b) P* satisfies 11

¢) V m integer > 0, [, # m(k+1) and /,# m(k+1) + L

In [2], the operators that are locally solvable and hypoelliptic at t =0 were
completely characterized, when k=1. In [3], these operators were again
studied, but under a pseudodifferential form, and Theorem 1 was proved

for k=1.

3. The space “#*™ and their properties

In order to prove the theorem, we will need to construct and know some
properties of auxiliary spaces “#*™ similarly to what was done in [3] In
the case k> 1. however, there are some peculiarities that make the statement

of the results a little more complicated.

Let us first assume that d and p are real numbers such that k- p is an inte-
ger > 0. We define the space of operators *N“?(J) in the following way:
Be *N*?(J) if B is an operator like in (1), and may be written in the form:

B= Y B,

(8)
i+ﬂ5p
a,peZ +

and B,, is of the form (1), with order < d — kpk_fr/f on J.

Remark that 1*A’’ € *N**7, 4+ B if a,9,#=>0; a,feZ and yeR,.

Let now s and m be real numbers with k- m an integer > 0. We define
now “#%m(J): a distribution ue 2'(J,H ) is in *2(J) if and only if
! k(m~—p)

5 ¢ .
VBe*N“?(J), with p<m, we have Bue #,,, *'' (J), or, what 1s equi-
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fJm=at g
valente, if and only if 1% ue s, **' (J),Vo,feZ, with®+pB<m We
equip “#,0"(J) with the coarsest locally convex topology which makes all
the mappings B in the first definition, or t*3” in the second one, continuous

from “#;% (J) to the corresponding spaces. Remark that *# ¢ (J) = H5,.(J).

loc

We may define “#°™(K) and *#°*™(J) in the obvious way, and finally. if s,m
are as above, we define *#7},_™(J) as the (strong) dual of Ege—omin. The

loc

following are useful facts about these spaces:

PROPOSITION 1. a) If Be*N*?(J), then B: *#3"(J) » *#3 4"~ P(J) is con-

loc loc

tinuous, provided either m—p>0 or m<0 or meZ.

a
S = y 5
b) t*: KAm(J) » A, *(J) is always continuous.

; ; km' km

PROPOSITION 2. If <sand s — —— < s — —— then we have a con-
: k+1 k+1

tinuous injection *A'0(J) < A5 (J).

lo¢

km

COROLLARY 1. a) If m>0, then #%,.(J) 5 *A3"(J) 5 A, **1 (J)

loc

— Km
b) If m<0, then A, ** ' (J) G *#3m(J) 5 #3,. J)
PROPOSITION 3. Given a compact set K of the real line, & > 0 and a real number
S1. there is C>0 such that Yue*#:™(K), ||ully < e ully + Cllulls,.

PROPOSITION 4. Let meZ/k. If t*Au and 0u both belong to *#75, '™~ ' (J).

loc

then ue*#"(J). The converse is true (Proposition 1) if m>1 or m<0.

Let us suppose that P e “N*?(Q), where peZ,, and let J = < Q. with O e J
Let S be the set of real numbers m such that k-meZ and that: either m=>0
or m+p<0 or meZ, and let us consider the following conditions:

Dy m: Yue2'(J,H ™), Pue".%"‘""(.l)»ue"#"},:."""“’(J).

loc

)y m: VOeCP(J), Vs'eR, YK ¢ = Q, 3C>0 such that Ve CP(K.H™)

II()¢”.\+J.m+p < C(“P()d)H\m + ”d)“\)
By YO CZ(J), Vs €R, Yge kw34 m=p(J).

loc

Afe*A 7 ™(J) such that O(P*f—g)e #*(J).
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THEOREM 2. Let Pe*NY?(Q), with peZ . Then:

a) If (j)sm is true for some j € {1, 2, 3} and some (so,mo) € R x S, then it is true
for all such j's and all (s,my) with se R

b) If myeZ (and a) is satisfied), then (j), , is true for all j's and all (s.m) € R > 5:
moreover, (1), ,, is true for all (s;m)e R x Z/k (if p=2).

REMARK 1. If (1), ,, holds for a family of open sets that covers J, then of course
it holds for J. If (2). .. holds, then it holds for every J' = J. Hence, ifmes,

sm

Theoren 2 implies that (j), ,, holds if and only if it holds for a family of open
sets which ¢overs J.

One of the steps in the proof of Theorem 2 uses the following

PROPOSITION 5. If (2),, m, iS true for P, then it is also true for P—R. if
Re*N"1r=1 (and if m=>0 or m+p—1<0 or meZ).

4. A stronger version of the main theorem and some partial results

We keep all the notations of section 2, including that of J,, and we consider
the following conditions ((7), and II appear in pg.2) and 3):

1) 3 open neighborhood J of 0, with J = J,, and 3se R such that (7), holds.

111) Jopen neighborhood J of 0, with J < J;, 3(s,m)e R x 7, and 3je |1.2.3]
such that (j),,, holds.

) [V W € <UL VismeR xS, Ve (12,3}, (), holds
)V < J,, Y(s,meR xZ/k, (1),,, holds.

We will prove that I <> IT <> Il <> IV for an operator P, and then the following
more precise version of Theorem 1I:

THEOREM 3. Let P be as in Theorem 1. Then, the following conditions are
equivalent :

a) I, 11, 11T or IV for P,
b) I, I, 111 or IV for P*;
¢) Vm integer > 0, [, # m(k+1) and 1, #m (k+1)+ L.
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For the proof of Theorem 3, we need 2 partial results. The first is easily ob-
tained. as in [2] and [3]:

PROPOSITION 6. If P is as in Theorem 1 and Re ly = = g,then 31C,, C; >0,
such that Vo € CP(J, H*) (where 0 € J, J is bounded and contained in the domain
of definition of P),

ﬁnw,ué B IR dt < G,

J(%»(b)odf

+ G [l 0108 + 4 fy
where || || and (), are those of H® = H.

COROLLARY 2. If P is as in Proposition 6, then there is an open neighborhood
J of 0. and C>0 such that ¥ € CX(J,H*), we have ||$||, , < C||Poll

The second result which we need is also easy, similar to what was done in
[1]. We give below the result and the algebraic lemma in which it is based:

LEMMA. Let E, F be two abelian groups, F a subgroup of E, and let P, o.uV
be four endomorphisms of E whuh map F into itself. If UP = QV and
VY F)AP YF)c F, then Q" (F) < F =P (F)c F.

PROPOSITION 7. Let P = P(c) = (0, — at*A) (0, — bt*A)+ ct* Y A. If, for some
med.,, we have I, = m(k+1) or l, = mk+1) + 1, then P is not hypoelliptic
at t = 0.

5. Proof of Theorem 3

Throughout this section, P will be of the form (2), satisfying (4) and (5). We
associate to P the operator

9) P = (0,— at*A) (0, — bt*4) + ct* ' A.

The following propositions reduce the proof of Theorem 3 for the general
operator P to that of the simpler operator P:

PROPOSITION 8. The following conditions are equivalent:
a) III holds for P:

b) IV holds for P;

¢) 11 holds for P:

d) IV holds for P (for P, J, =R).
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ProoF. That b) = a) and d) = ¢) is evident. Suppose a) holds; on J\{o} P

is elliptic, so (1),,, holds for all (s,m)e R xZ/k on J\{o}, and by a) it .llsn
holds on some neighborhood of 0; now Remark 1 and Theoren 2 gives b).

Similarly, ¢) = d).

We use now the fact that P— P =R, + R,, where R, e *N"''(Q) and R, =tU,
with U € *N2-3(Q). Hence, Proposition 5 and Theorem 2 show that b) for P
implies a) for P— R,. To end the proof, it is enough to prove the following

analog of Proposition 5:
(10) If (2)g o holds for P on the neighborhood J of 0, then it also holds for P —
on a possibly smaller neighborhood J' of 0, if R=tU, with Ue*N?*(Q)

Now., [[tdlloo < €ll¢lloo if ¢eCx(—ee), H), and since U: *#7(J)
— k' 20(J) is continuous, given a compact neighborhood K of 0, with K < J,
there is C > 0 such that

U ¢lloo < Cll@pllo. VoeCIKH™),

hence

1R$llo.o = 1Ulloo < & 1UBllo.o < ¢l blls.

o0 = 1: t o0
Ve C; (( ek C) NnK,H )
Since,

Ve > 0, 3¢ > 0 such that |Rolloo < &l|@|l,2. Ybe COW(—¢".&). H™).

it is now easy to prove (10).

PROPOSITION 9. a) Conditions 1. 11, 111, 1V are equivalent. b) If Pue*#"(J)

k+ 1
s+2—j,m+2— ’L__J

but ug*#:32m*2(J), then u¢*#,,, & W) for j=10,1,2

loc

Proor. a) We already know that 11«1V, and it is evident that 11 = L
That TV = 11 follows by remarking that we have a continuous injection

2
Wi #,m "“(J) (Corollary 1).

la(
Finally, 1= III: in fact, suppose that (7), holds. Then. if ue 2'(J.H ™)
2_
is such that Pue #,(J), we get by (7), that ue.#':‘:.“' '(J), which is con-
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=N

S,
tained in *#

loc

(J) (Corollary 1).
Hence, by b) case j =2, we have ue*#}%*(J), so that (1), o, hence III holds.

loc

b) We begin with the following claim (which is but b) in the case Ji=1):

K+ 1
st 1.m+ 2———— i
(1) If Pue*aym(J) and ue*n,,, R T, thew we A2
. ‘.s+l,m+2— k*% K T
In fact, since ue*#,, (J), we have t* 'Aue*#3™J). Let now

o be a sufficiently great positive real number. Then P, =P —adt* 'A has
Re I, < —% hence (by Corollary 2 and Theorem 2) P, satisfies (1), ,,. Since
Pyu=Pu—adt* " Aue*n*"J), we get uer#*2"*2(J). Suppose now

that b) case j was proved and let us prove b) case j+ 1. Let Pue*# g (),

Akt 1)
§F 2= fomdRi= J S
ug “A5 2" 2(J). By b), we have u¢tn,, ") Since
S—jm— ALy » s—j,m -i“»\'*'“
) s ", K (J). (Corollary 1), we have Pue*#,, )
X 4/,\'+27j_m+2>j(~k—:—l—) s . ) . (I\ + I)
and u¢*#,, (J), which by (11) (with s—j and m —j N

substituded for s and m, respectively) gives b) j+ 1.

COROLLARY 3. The following 8 conditions are equivalent: 1, 11, 111, 1V for P
and 1, 1L, 111, 1V for P.

PrOOF OF THEOREM 3. The remark that l,% = [, immediately shows that.
if we prove a) = c) = a), then we will also have b) = ¢) = b).

a)=¢): a)=1II for P= P hypoelliptic = c¢). The last implication is Pro-
position 7.

¢)=>a): Since [z = [, it is enough to prove c) = a) for P. given by (9). Let
us call P(c) = (6, — at*4) (0, — bt*A) + ct*" 1A, X = 0, — at*A, Y =06, — bt*A.
It is enough to prove, for j =0,1,2,...

(12), ¢)= a) when Re e, < (j—1) (k+1).

By Corollary 2 (and Theorem 2), (12), is true. For the inductive step. it is
enough to prove:
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(13) if ¢ %0 ¢+, and P(c—(k+ 1)9) satisfies IV, then P(c) satisfies (1),,,
(for m>5). For this, we use the following identity, which concatenates P(c)
and P(c — (k+1)d):

(14) P(c—(k+1)0) (tY —%) = (Y —5+2) P(o)
Let ue 2'(J,H™*) be such that

(15) P(cyue*#3m(J) (hence, by Corollary 1,

loc

1
S=1m— 1=

(15) P(cue*s#y, “(J).

1

0 =
Since tY —§+2e*N ¥, we have
kt1

(tY —§+2) P(cue* W,m k (J), and since by hypothesis P(c—(k+ 1)d)
satisfies (1), ,, for all (s,m)e R x Z/k, we get from (14):

\+lm+l~*

(16) (tY —Sue s, “ ().
We also have

(17) ¢X+§5—1) (Y —§—t*Plc) = §(1—-5).

0

1

. 0, .
Since (X+5—1e N "% and 12e N 'k, (15), (16) and (17) give:

2
k s,m— — .
S(1—%ue A, *(J). and since ¢+#0, ¢+ we get

k s,m
(18) ue ’”,lm' , (J)
Now we remark that
(19) P(c—(k+ 1)0) = P(c)— (k+ 1)dt* ' A

1
s=1,m=1==

From (15, (18) and (19) we get P(c—(k+ 1)o)ue //,m “(J), hence
k st+im+1- l’
(20) ue A, k().
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From (15), (19) and (20) we get P(c — (k+ 1)é)u e #35™(J). hence
TR Wl ¥ ) Q.E.D.

FINAL REMARK. After this, it is not difficult to prove that a). b), ¢) are also
equivalent to:

d) Y(s,m)e R xS, V open J' = = J,, P defines an isomorphism from
k //f.)&l,»: + Z(J') "‘,‘ onto k # ’;",'(”(JI) /
| C*(J .H®) [ CT(J H™).

e) Same as d). but for P* instead of P.
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