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Abstract: We employ Padé approximants in the study of the analytic structure of the four-
dimensional SU(2) Landau-gauge gluon and ghost propagators in the infrared regime. The
approximants, which are model independent, serve as fitting functions for the lattice data.
We carefully propagate the uncertainties due to the fitting procedure, taking into account all
possible correlations. For the gluon-propagator data, we confirm the presence of a pair of com-
plex poles at p2

pole = [(−0.37 ± 0.05stat ± 0.08sys)± i (0.66 ± 0.03stat ± 0.02sys)] GeV2,
where the first error is statistical and the second systematic. The existence of this pair
of complex poles, already hinted upon in previous works, is thus put onto a firmer basis,
thanks to the model independence and to the careful error propagation of our analysis. For
the ghost propagator, the Padés indicate the existence of a single pole at p2 = 0, as expected.
In this case, our results also show evidence of a branch cut along the negative real axis of
p2. This is corroborated with another type of approximant, the D-Log Padés, which are
better suited to studying functions with a branch cut and are applied here for the first time
in this context. Due to particular features and limited statistics of the gluon-propagator
data, our analysis is inconclusive regarding the presence of a branch cut in the gluon case.
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1 Introduction

The low-momentum behavior of Green functions in Yang-Mills theory for different gauges
has been an important subject of study for the past 40 years or so, mainly in connection
with the understanding of the color-confinement property of QCD [1–4]. The topic is treated
both by analytic and numerical methods, all of which involve significant technical challenges.
In particular, most studies have focused on the Landau-gauge case, giving rise to several
theoretical advances and proposals, with lively debate between researchers using different
approaches [5].

Concerning lattice simulations of Green functions, the main numerical difficulty is
somewhat unusual. Indeed, in typical lattice-QCD applications, one just needs to consider a
large enough discretized volume to ensure a physical lattice side L a few times greater than
the relevant hadronic scale (≈ 1 fm). This stems from the fact that finite-size corrections
affecting hadronic observables are suppressed by a factor of exp (−mπL) [6], where mπ is
the lattice pion mass. The effort, then, is to go to very small lattice spacing (. 0.1 fm),
in order to avoid discretization errors. In studies of the infrared (IR) region, however,
the situation is different. This happens because the IR limit, which corresponds to small
momenta, requires a large lattice side L. In fact, the smallest nonzero momentum that
can be represented on a lattice is ≈ 2π/L. As it turns out, for the Landau-gauge gluon
and ghost propagators, finite-size effects are particularly severe [7–14] (see also ref. [15] and
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references therein), implying that one needs data at momenta p well below 300 MeV in order
to obtain a clear picture of the IR region. The low-momentum behavior of the gluon and
ghost propagators is a central prediction of different theoretical frameworks — or scenarios
— for understanding the confinement mechanism. Early on, the lack of control over finite-size
effects in simulations has obscured the true qualitative behavior of these propagators in the
deep IR region. This has been settled by later studies [5]. Nevertheless, present lattice data
still accommodate descriptions based on rather different analytic predictions [11, 16–20].
On the contrary, violation of reflection positivity in the real-space gluon propagator, which
may be claimed to be a signal of color confinement [1–4], has been a directly observed
feature since early simulations [21–23]. Recently, the focus has switched from testing specific
analytic predictions to the investigation of the analytic structure of the IR gluon and ghost
propagators, more or less independently of the various scenarios. In particular, the main
effort has been in identifying the dominant singularities (poles, branch cuts) in the complex
plane. This usually involves either direct analytic studies using complex momenta [24–29]
or an analytic continuation of the Euclidean Green functions by different methods [30–36],
guided by general properties of the Källén-Lehmann spectral density.

The use of rational (or Padé) approximants provides a model-independent route to attack
this problem. Recently, Padé approximants were used to fit SU(3) propagators [37, 38] by
Falcão, Oliveira and Silva. Here, we follow this approach to study the analytic structure of the
four-dimensional SU(2) Landau-gauge gluon and ghost propagators in the IR regime. More
specifically, we carry out a consistent and systematic analysis using Padé approximants (PAs)
(and other rational approximants) as fitting functions to the lattice data from refs. [5, 9, 39–
42]. Let us recall that a Padé approximant PMN (z) is the ratio of two polynomials of degree
M (in the numerator) and N (in the denominator). Padé theory [43, 44] then provides us
with a systematic procedure to reconstruct a given function, using the same information
as its truncated Taylor expansion: the derivatives of the function at a given point in
the complex plane, often taken to be the origin. However, note that, compared with the
Taylor series — and provided sufficient information about the function is available — Padé
approximants are much more powerful. Indeed, they 1) have an extended range of validity,
2) are capable of reproducing the singularities of the original function (poles and residues),
and 3) can mimic the existence of branch cuts in the complex plane. Moreover, in certain
situations, theorems guarantee the convergence of sequences of approximants to the original
function in a given limit, except at the singularities where the function is not well defined.
Nevertheless, even when theorems are not available, Padé approximants have been shown
in practice to be extremely useful as well [45]. We refer to the procedure of building PAs
from the Taylor expansion of a function at a given point as “genuine Padés”. These have
found many applications in particle physics (for a few recent ones see refs. [46–55]).

Per contra, in the present work, we employ a variant of the above procedure, using
rational approximants as fitting functions to (lattice) data, taking advantage of the extended
range of validity of the Padé approximants compared to the Taylor expansion. This
procedure departs from the genuine Padés but it has been successfully used in several
applications to experimental data [56–61], as well as to SU(3) lattice data for Landau-gauge
propagators [37, 38]. In fact, using rational approximants as fitting functions can be a
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powerful method, especially in situations where the precise theoretical description of the data
is not feasible or is model dependent. In particular, the use of sequences of approximants
provides a model-independent way of extracting crucial information, such as resonance
poles in scattering amplitudes or the Taylor expansion of hadronic form factors. Here, we
aim at extracting information about the analytic structure of the Landau-gauge gluon and
ghost propagators.

We point out that a popular confinement scenario proposes for the IR gluon propagator
a form that can be cast as a Padé approximant. Indeed, the Gribov-like [62] (or Stingl-
like [63, 64]) function f1(p2) of ref. [41] belongs to the Padé sequence PNN+1(p2) (for N = 1).
Here we do not assume any specific rigid form for the propagators, but rather we explore their
properties by a systematic investigation of different Padé sequences, in a model-independent
way. As said above, a first analysis of the singularities of the SU(3) Landau-gauge gluon
and ghost propagators using rational approximants was presented in refs. [37, 38]. In their
work, the authors found evidence for the existence of a pair of complex poles in the gluon
propagator and of a simple pole at zero momentum in the ghost-propagator data. At the
same time, their results seem to support the presence of a branch cut — along the negative
real axis of the Euclidean p2 momenta — for both propagators. Similar outcomes are
obtained in ref. [32] for gluon and ghost propagators, both in Landau gauge and in linear
covariant gauge, using a related approach.

Although our analysis and that of refs. [37, 38] are very similar in spirit, there are a few
important differences. Firstly, we consider SU(2) lattice-gauge-theory data [5, 9, 39–41],
whereas the authors of refs. [37, 38] analyzed gluon and ghost propagators in the SU(3) case.
(We recall, however, that the propagators are very similar for these two gauge groups in
the IR limit, not only qualitatively but also quantitatively [65–67].) Secondly, we perform
a careful analysis of the uncertainties involved in the fitting procedure. Note that this
is especially relevant for results from PAs with many parameters, since these are likely
affected by uncontrolled errors, thus compromising the reliability of the final results for
the analytic structure of the propagators in the complex plane. Indeed, since we use Padé
approximants as fitting functions, a χ2 fit procedure is clearly required, and the uncertainties
in the parameters of the fit must be carefully examined. Moreover, the errors have to be
propagated to all related results, including the position of zeros and poles in the complex
plane. Consequently, these uncertainties, which ultimately reflect the information available
in the data set, restrict the number of parameters that can be reliably obtained in a given
fit, thus imposing limits on the order of the approximants PMN (z) that can be employed in
practice. In particular, we will see that, for the data sets we have, our analysis is limited to
PAs of relatively low order (up to 10 parameters). In the present study, all uncertainties
in the fits to data are carefully calculated (with more than one method), including all
correlations when necessary, and the limitations they impose on our analysis are discussed
in detail.

This paper is organized as follows. In section 2 we give an overview of Padé theory with
emphasis on the present application. In section 3 we discuss the use of the approximants
to analyze a toy data set, in order to check the applicability of our approach. In section 4
the details of the lattice simulation and of the lattice data considered here are briefly
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described. Our results are given in section 5, with section 5.1 devoted to the application of
PAs to the Landau-gauge gluon propagator, and section 5.2 to applications to the ghost
propagator using PAs and partial PAs, obtained by imposing the existence of the pole at
zero momentum. For the ghost propagator we also consider in section 5.2.1 the use of D-Log
Padé approximants [44, 53, 54], a variant of the method better suited for the application
to functions that present a branch cut. Our conclusions are given in section 6. Some
technical details on fits for highly-correlated data, and in particular a short description of
the so-called “diagonal fits”, are reported in appendix A. In appendix B, we briefly discuss
the issue of numerical precision when using higher-order Padé approximants.

2 Rational approximants

In this section we introduce the most important concepts about Padé approximants, with
emphasis on the problem we have at hand. A much more comprehensive discussion,
including the demonstration of theorems, can be found in the works by Baker and Graves-
Morris [43, 44] (see also ref. [45] for several applications in particle physics).

The Padé approximant, PMN (z), is defined as the ratio of the polynomials of order M
and N , QM (z) and RN (z), respectively, with RN (0) = 1:

PMN (z) = QM (z)
RN (z) = a0 + a1 z + · · ·+ aM zM

1 + b1 z + · · ·+ bN zN
. (2.1)

If the Taylor series of a function f(z) is known, the canonical procedure to build PAs to
this function is to determine the coefficients ak and bk by matching the expansion of PMN (z)
to the first M +N + 1 coefficients of the Taylor expansion of f(z).

In Padé theory, convergence theorems are available for analytic and single-valued
functions with multipoles or even essential singularities [44]. A class of functions that play
a prominent role are the Stieltjes functions, which can be written in integral form as

f(z) =
∞∫

0

dφ(u)
1 + zu

, (2.2)

where φ(u) is a (non-negative) measure on [0,∞). Indeed, for f(z), the Padé sequences
PN+k
N (z), with k ≥ −1, converge to Stieltjes functions, with some interesting properties.

One of them is that the poles of these Padés are always simple and are located on the
negative real axis of z with positive residues [44]. The connection with the present work is
obvious from the Källén-Lehmann representation of propagators, in terms of positive-definite
spectral functions.1 As we will see, the Padés to the gluon propagator D(p2) have poles
with an imaginary part incompatible with zero, which is in contradiction with the usual
Källén-Lehmann representation for D(p2) [68, 69]. Following ref. [29], this would also imply
the existence of several branch cuts for the gluon and ghost propagators, and the consequent
violation of the Källén-Lehmann representation (see also ref. [27]) for the ghost propagator

1We recall, however, that — as stressed in the Introduction — positivity-violation is considered well
established for the Landau-gauge gluon propagator.
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G(p2). (For general discussions of the analytic structures of these propagators see also
refs. [33, 34, 70].) This suggests that an integral representation for the gluon and ghost
propagators is only possible if the function is not Stieltjes, i.e. if one considers some modified
spectral representation [29, 32, 36].

Another important result from Padé theory that will guide our work is related to
Pommerenke’s theorem, which states that a sequence of approximants PNN+k(z) — built for
a meromorphic function f(z) — converges in any compact set of the complex plane [except
for a set of zero area containing the poles of f(z)]. Indeed, as N increases, the poles of f(z)
are well reproduced by the PAs and tend to be stable, i.e. they remain unchanged (or almost
unchanged) when N is increased. At the same time, extraneous poles can also appear in
the PAs, but they either go away when the order is increased or they appear in combination
with a nearby zero, which leads to a very small residue, partially cancelling the effects of the
pole. The latter case corresponds to the so-called Froissart doublets, which do not represent
genuine poles of f(z). Note that the appearance of transient Froissart doublets may “delay”
the convergence of a Padé sequence to a function, since they effectively reduce the order of
the approximant [53, 54]. Nevertheless, Padé approximants that have doublets can still be
used to approximate the function away from these singularities.

Functions with branch points and cuts can also be approximated by PAs, although
for such functions the expected convergence is mainly motivated by experience and not
by theorems. In this case, the approximants will mimic a cut of a given function by
accumulating poles (interleaved with zeros) along the cut in the complex plane [44, 45, 71].
Since the gluon and ghost propagators are expected to have a cut [29, 37, 38], this will be
of relevance here.

As said in the Introduction, we use the PAs as fitting functions to describe (lattice)
data sets. The advantages of this procedure are 1) its model independence, 2) the fact that
it can be applied in a systematic way, and 3) the connection with Padé theory (although
here no theorems are available). This type of application is quite common in other particle-
physics problems for which the theoretical description of the data is model dependent or
incomplete [49, 50, 56, 57, 59–61]. An application that is particularly close to ours is the
extraction of resonance poles, using the PAs as fitting functions to decay, scattering or
form-factor data [49, 50, 61]. Indeed, it has been shown that the use of PAs as fitting
functions is a reliable and model-independent method to determine resonance pole positions
from fits to data sets. The precision of this procedure is obviously limited by the quality of
the data set: with larger errors, less information is available and, eventually, adding more
parameters — i.e. increasing the order of the PA in the sequence — is no longer an advantage,
since the errors of the parameters (and of the pole positions) increase considerably. In
some applications, it has been found that the maximum number of parameters that can
be meaningfully extracted from a data set was 6 or 7, which limits the PAs of the PNN (z)
sequence to N = 3, for instance [49]. We will show that, with our lattice data for the
gluon propagator, the situation is very similar: it hardly makes sense to have more than
6 or 7 parameters in the PAs. Likewise, for the ghost data, we were able to consider at
most 7 or 8 parameters in the Padé approximants. Of course, with increased statistics, one
expects that more parameters would be allowed and that fits with higher-order PAs would
be meaningful as well.
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3 Conceptual examples

Before applying the procedure to the real lattice data, it is useful to test the method in a
fully controlled setting, i.e. applied to a function whose analytic structure is known. This is
especially important here, since the application of PAs as fitting functions is beyond the
reach of the theorems of Padé theory. We start by building genuine PAs, from the exact
knowledge of the Taylor series of the chosen function. Then, we generate a toy data set,
following the main features of the lattice data we will analyze in the next sections. Similar
tests with toy data sets were also carried out in ref. [37].

For the present analysis, we choose a function that has as many features as possible —
poles, a branch cut, as well as zeros — in order to mimic a sufficiently realistic scenario. To
this end, we employ the function

g(z) = 1.15 log (z + 2) z + 2.508
z2 + 0.7682 z + 0.722 , (3.1)

which roughly resembles the lattice data for the gluon propagator. In fact, this function
has a pair of complex poles at z0 = −0.295 ± 0.657 i, two zeros (located at z = −1 and
z = −2.508) and a branch cut from (−∞,−2], similarly to the results presented in ref. [41].
Thus, it captures the main features of models that describe the gluon propagator in the
infrared, such as a branch cut and complex poles [29, 32, 37, 38]. Note that this function is a
product of a Stieltjes function, log(z + 2), with a rational meromorphic function. Therefore,
the appearance of complex Froissart doublets is not expected in its approximation by
PAs [43, 44].

We start by building genuine PAs to the Taylor expansion of g(z) around z = 0. By
applying PAs from the diagonal and near-diagonal sequences PNN (z), PNN+1(z) and PN+1

N (z),
a number of features is evident. In particular, the reproduction of the analytic aspects is
hierarchical. Indeed, the pair of complex poles and the zero closer to the origin are already
replicated by PAs of lower order (N = 2 or 3), while the second zero (at z = −2.508), which
is further away from the origin, is reproduced only by PAs with more parameters. This is
expected, since poles and zeros closer to the origin are usually reproduced first. At the same
time, the PAs also mimic the cut by accumulating (artificial) poles interleaved with zeros
along the branch cut. This, however, requires many parameters and is salient only when a
large number of parameters is available. Furthermore, the position of the first pole of this
type tends to approach the branch point but, again, it only leads to a good reproduction of
the branch point if sufficiently many parameters are available.

To be concrete, in figure 1a, we show the analytic structure of a typical higher-order
PA, P 14

15 (z). The green circles show the pair of complex poles, which can easily be identified
with the true poles of g(z) (we refer to these poles as “physical”). The green squares show
the zeros of g(z), whereas red circles and blue squares represent artificial (or “non-physical”)
poles and zeros, respectively. The main characteristic of the physical poles and zeros is the
fact that they are stable, i.e. they remain essentially fixed as N increases. The impressive
convergence of the pole position obtained from the PAs to the correct value is shown as
a function of N + M in figure 1b, where we display the real and imaginary parts of the
physical poles of the PAs (normalized to the exact values). Finally, poles and zeros start to
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Figure 1. (a) Poles (filled circles) and zeros (empty squares) of P 14
15 (z) built to the Taylor series of

g(z) defined in eq. (3.1). The poles and zeros that can be identified with genuine poles of g(z) are
shown in green, while artifacts are shown in red (poles) and blue (zeros). (b) Real and imaginary
parts of the complex poles zPA

0 (normalized to their true values) for the sequences PNN (z) and
PNN+1(z), as a function of the number of parameters of the PA. To avoid inaccurate numerical results
for the higher-order PAs (see appendix B), the results in this figure were obtained working with 30
decimal places.

accumulate along the branch cut with branch point z = −2, where the PA places a pole. We
stress that these results are expected when using genuine PA approximants, but one should
nonetheless verify if this also happens when the PAs are used as fitting functions. Finally,
it is important to mention that when constructing Padé approximants of higher order, such
as P 14

15 (z) of figure 1a, the precision of the numerical solution becomes crucial. If insufficient
precision is used, artificial (incorrect)2 pairs of complex poles with very small residues,
resembling Froissart doublets, displaying a roughly semi-circular pattern in the complex
plane, can appear in the approximant (see ref. [72] and the discussion in appendix B).

Next, in order to investigate the use of PAs as fitting functions, as well as to test our fit
procedure, we built a toy data set for g(z) with 400 data points, for every value of z between
0.01 and 4 in steps of 0.01. We generate these data using a Gaussian distribution around
the value of g(z) with 1% error, which is in the ballpark of the errors we have in our lattice
data. The parameters of the PA are then obtained from a χ2 fit to the toy data.3 The

2Let us note that, as said before, genuine Froissart doublets should go away when higher-order approx-
imants are used. Also, there may be spurious pole-zero pairs that are due to round-off errors — which
we discuss here. The two may co-exist and it can be difficult to distinguish them. Of course, this can be
clarified by improving the numerical precision (see appendix B). As stressed in ref. [72], the term Froissart
doublets is sometimes used with different meanings: in addition to the two instances just mentioned, spurious
pole-zero pairs may also be generated by noise in the input Taylor coefficients [45, 72] and, through a similar
mechanism, by uncertainties in input data, when using the approximants as fitting functions. The latter is
especially relevant for the fits presented in this work.

3For the χ2 minimizations reported in this paper we use Wolfram Mathematica’s function FindMinimum
(with the method PrincipalAxis). We checked that our results are independent of the minimization function
employed. In particular, we checked that the use of the function NMinimize, as in refs. [37, 38], leads to the
same results.
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Figure 2. (a) Poles (filled circles) and zeros (empty squares) of P 3
4 (z) fitted to the toy data set

generated from g(z), eq. (3.1). The poles and zeros that can be identified with genuine poles of
g(z) are in green, while artifacts are shown in red (poles) and blue (zeros). (b) Real and imaginary
parts of the complex pole zPA

0 predicted by the PAs, normalized to their corresponding true value,
for approximants belonging to the sequences PNN (z) and PNN+1(z), as a function of the number of
parameters of the PA.

errors of the parameters were estimated with four different methods: Hessian matrix, Monte
Carlo error propagation, ∆χ2 variation (see, for example, the Particle Data Group review
on Statistics [73]), and a linear error propagation (discussed in appendix A). In all cases
the errors we obtain from the four methods are in good agreement. A few observations are,
however, in order. If the number of parameters exceeds 8 or so, the statistical uncertainties
grow dramatically and the fit parameters are not meaningful anymore. Consequently, since
the errors propagate to pole positions and zeros, these become equally meaningless. The
bottom line is that, with our toy data set, which is similar to our real lattice data, we must
limit the number of parameters in the PA to at most 8 or 9. (These conclusions also apply
to fits to the real data, as we discuss further below.) An important point about the toy
data is that, due to statistical fluctuations, we can no longer guarantee that no complex
Froissart doublets will appear (see e.g. ref. [72]), even though the underlying function is a
product of a Stieltjes function with a meromorphic function.

In figure 2a we show the analytic structure of the PA P 3
4 (z), with 8 parameters, built

to the considered data set. In green, we see that the PA reproduces the poles of g(z), albeit
not very precisely, and places a zero that can be identified with the true zero at z = −1. A
Froissart doublet is also clearly seen, as well as a pole and a zero along the real axis, which
could be the beginning of the manifestation of the branch cut. In figure 2b we show the
behavior of the pole position with increasing values of N . We see that the pole is relatively
stable, which is very important to identify it as a physical one. Furthermore, it is clear that
lower values of N can, in fact, be advantageous, since they lead to smaller errors in the
pole position. Finally, for more than 8 or 9 parameters, the errors on the pole position are
so large that the results are no longer meaningful.
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This analysis shows that using the PAs as fitting functions is also a reliable method to
extract the main features of the analytic structure of g(z). However, the limitations imposed
by the data errors are evident: we cannot go to very high orders in the Padé sequences,
and the reproduction of pole positions and zeros has uncertainties stemming from the fit
parameters. These errors must be carefully propagated, and grow significantly once the
order of the PA is larger than 8 or 9. In particular, in this situation, it becomes difficult to
see the footprints of the branch cut, which would require a larger number of parameters.

4 Lattice data for the Landau-gauge propagators

The data for the (four-dimensional) SU(2) Landau-gauge gluon and ghost propagators used
in the present work have been previously presented and discussed in refs. [5, 9, 39–42],
which contain technical details of the simulations. Here, we recall the main parameters and
properties that are relevant for our analysis.

We have considered symmetric lattices with various lattice sides, allowing us to keep
finite-size effects under control. In the following, we use only the data from our largest
lattice volume, V = n4 = 1284, which can be essentially considered as infinite volume. The
lattice parameter was taken to be β = 2.2. This yields, approximately, a lattice spacing
a of 0.210 fm, obtained by considering the input value σ1/2 = 0.44 GeV for the string
tension [74]. The resulting physical lattice volume is about (27 fm)4, which is clearly much
larger than a typical hadronic scale. Correspondingly, the smallest non-zero (physical)
momentum pmin = 2 a−1 sin(π/n) allowed is about 46 MeV.

The lattice gluon propagator D(p2) in Landau gauge is evaluated using

Dbc
µν(p) =

∑
x, y

e−2πip̂·(x−y)/n

V
〈Abµ(x)Acν(y)〉 = δbc

(
gµν −

pµ pν
p2

)
D(p2) . (4.1)

Here, 〈 〉 stands for the path-integral average, x, y are lattice points, µ, ν correspond to
Lorentz indices, and b, c to color indices. Also, Aµ(x) is the lattice gluon field, defined as
Aµ(x) = [Uµ(x)−U †µ(x)]/(2i), where Uµ(x) are the usual link variables of the Wilson action.
Note that, with this definition, the gluon propagator evaluated on the lattice corresponds
to the propagator g2D(p2) in the continuum [75]. As for the ghost propagator G(p2), it is
obtained by inverting the Landau-gauge lattice Faddeev-Popov matrix M(b, x; c, y) — for
example, defined in eq. (22) of ref. [76] — through the relation

Gbc(p2) =
∑
x, y

e−2πi p̂·(x−y)/N

V
〈M−1(b, x; c, y) 〉 = δbcG(p2) , (4.2)

where b and c are again color indices. For the data considered here, the matrixM(b, x; c, y)
was inverted by using a conjugate-gradient method with even/odd preconditioning and
point sources [77, 78].

For the ghost propagator G(p2), the data are displayed [42] simply as a function of the
(unimproved) lattice momenta

p2 =
∑
µ

p2
µ , (4.3)
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with the components pµ given by pµ = 2 sin(πp̂µ/n), where p̂µ takes values 0, 1, . . . , n− 1.
Note that, since the Landau-gauge Faddeev-Popov matrix has a trivial null eigenvalue
corresponding to a constant eigenvector, one cannot evaluate the ghost propagator at zero
momentum, i.e. with p̂µ = 0 for all directions µ.

The data for the gluon propagator D(p2), instead, are considered [41] in terms of the
improved momenta [79]

p2 =
∑
µ

p2
µ + 1

12
∑
µ

p4
µ , (4.4)

in order to reduce effects due to breaking of rotational symmetry, which are usually more
serious at higher momenta. This definition does not affect the value of p2 in the IR limit, but
modifies its value significantly for large momenta. In particular, the largest momentum pmax
— obtained when p̂µ = n/2 for all directions µ — is given, for the β value considered here,
by about 3.75 GeV in the unimproved case and about 4.33 GeV using improved momenta.

Let us stress that different lattice quantities are subject in general to different dis-
cretization effects. Thus, it is not surprising that gluon- and ghost-propagator data require
different definitions of the lattice momenta when one tries to connect lattice data to the
continuum analysis. At the same time, while the improved definition in eq. (4.4) is expected
to reduce discretization effects for the gluon propagator D(p2), this may not hold for
functions of D(p2). This is probably the case, for example, for the derivative of logD(p2),
which is required in connection with the D-Log Padés, discussed in section 5.2.1. The same
observation applies to the derivative of logG(p2), presented in section 5.2.1, and which can
be seen in figure 10a. However, the rather large error bars obtained for these derivatives do
not allow us to draw any conclusions regarding the breaking of rotational symmetry (at
large momenta) for these quantities.

The gluon propagator was evaluated by considering 168 independent pure-gauge-field
configurations and momenta with components (p, 0, 0, 0), (p, p, 0, 0), (p, p, p, 0) and (p, p, p, p).
Moreover, we allowed all possible permutations of the components for momenta of the type
(p, 0, 0, 0). On the contrary, we did not consider permutations for the momenta (p, p, p, 0)
and in the case (p, p, 0, 0) we selected only permutations satisfying the constraint p4 = 0. At
the same time, since the inversion of the Faddeev-Popov matrix M(b, x; c, y) is extremely
time consuming, the data for the ghost propagator were obtained using only a subset of 21
configurations, among those considered for the gluon propagator. Moreover, in this case, we
considered momenta of the type (p, 0, 0, 0),(p, p, 0, 0), (p, p, p, 0) and (p, p, p, p), with p > 0
and with all possible permutations of the momentum components pµ. For both propagators
— when permutations of the components pµ were available — an average over the different
permutations was taken for each configuration.

Finally, we note that for momenta larger than about 1.5–2.0 GeV both propagators
are essentially perturbative. Indeed, as one can see in figure 3, the data are well fitted by
the expression

f(p2) = c log−13/22(p2/Λ2) / p2 , (4.5)

for
√
p2 ≥ 2.0 GeV in the gluon case and by the expression

f(p2) = c log−9/44(p2/Λ2) / p2 , (4.6)
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Figure 3. Fit of the gluon (a) and ghost (b) propagators using perturbation-theory predictions [see
eqs. (4.5) and (4.6)]. Note the logarithmic scale in the y axis. Also, recall that the variable p in the
x axis corresponds to the square root of p2, defined in eq. (4.4) for the gluon propagator and in
eq. (4.3) for the ghost propagator.

for
√
p2 ≥ 1.5 GeV in the ghost case. [Note that we have included in the fitting functions

the (one-loop) anomalous dimensions (with Nf = 0) for the two propagators.] In particular,
in the first case we find c = 2.31± 0.05 and Λ = 0.31± 0.03 GeV with χ2/dof = 1.73, while
in the second one we obtain c = 1.71± 0.04 and4 Λ = 0.43± 0.07 GeV with χ2/dof = 0.54.
Thus, below we will focus the Padé analysis mostly in the IR region. We note that,
although we are allowed to consider at small momenta Padé approximants PMN (p2) that do
not necessarily satisfy the leading p−2 ultraviolet (UV) behavior of the propagators, the
sequences that have the correct UV behavior are expected to display a faster convergence.

5 Results

We now turn to the use of the Padé approximants of eq. (2.1) as fitting functions to the
lattice data for gluon and ghost propagators described in section 4. The central values of the
parameters are obtained through the minimization of a χ2 function taking into account all
errors and correlations (when necessary). The fit uncertainties were calculated with several
different methods (Hessian matrix, Monte Carlo error propagation, ∆χ2, and linear error
propagation, as discussed in section 3) and we always find good agreement between the
results. For the final statistical errors we quote the values from the Hessian matrix. The fit
quality is judged by the χ2 per degree of freedom (dof) and we give the associated p-value in

4Let us stress that it is not immediate to compare the two values of Λ obtained for the two fits. Indeed,
these values depend strongly on the interval of momenta used for the fit. For example, in the ghost case, if
one considers the interval

√
p2 ≥ 2.0 GeV, as in the gluon case, the fitted value is Λ = 0.262 ± 0.097 GeV,

in reasonable agreement with the result obtained for the gluon propagator.
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each case. We limit our fits to approximants of relatively low orders (up to 10 parameters),
which keeps the errors under control given the limitations imposed by the data set. Finally,
when extracting pole positions, zeros, and other quantities from the rational approximants
we always propagate all the errors, taking into account the correlations between the fit
parameters (obtained from the Hessian matrix of the fit).

The above analysis ensures a good control of the statistical errors of our results and,
as described below, it has been directly applied to the gluon-propagator data. However,
when dealing with the ghost-propagator data, this procedure requires some adaptations,
due to the stronger correlations present in these data. In particular, the fit quality has to
be modified, considering only the diagonal elements of the covariance matrix, and the error
propagation is evaluated using a linear approximation, taking into account all correlations.
This is discussed in detail in section 5.2 and in appendix A.

5.1 Padé approximants to the Landau-gauge gluon propagator

For the gluon propagator we limit our fitting procedure, described above, to approximants
of relatively low orders (at most 7 parameters), which keeps the errors under control, given
the limitations imposed by the data set (see discussion in the previous section). As a
first step, comparing fits with and without correlations between the lattice data points,
we have checked explicitly that the correlations in the data sets are negligible and thus
can be disregarded in the fitting procedure, in agreement with refs. [30, 80]. Then, we
performed trial fits, using different numbers of data points, and compared our results
with those presented in ref. [41]. We find that, by restricting the fits to

√
p2 < 1.63 GeV

(corresponding to 100 data points) the fit quality is very good — with high p-values —
but the obvious trade-off is that the parameters have larger errors, due to the reduced
information. Conversely, by increasing the number of data points, the errors become smaller
but the fit quality decreases. It turns out that by restricting the fits to

√
p2 < 2.4 GeV

(corresponding to 160 data points) we obtain acceptable fits — with p-values of the order
of a percent — while having errors on the parameters that are small in comparison to
fits with fewer data points. Thus, with this choice, we restrict our analysis mostly to the
IR region, which is the main focus of our study, since in this limit the propagator is not
described by the perturbative behavior. Therefore, all the fits reported below are performed
for

√
p2 < 2.4 GeV, with 160 data points in total. In any case, we checked that the results

do not show a strong dependence on this choice.
Before presenting our general results for the gluon propagator, we analyze in detail,

as an example, the case of a low-order approximant. Of course, one could start with the
simplest option P 1

1 (p2),5 but fits with Padés of the type PN1 (p2) lead to very bad fits, with
extremely small p-values. Indeed, due to the trivial structure of their denominator, these
Padés are forced to have a real pole, which turns out to be incompatible with a precise
description of the lattice data for the gluon propagator in the IR region. Therefore, these
approximants are not included in our analysis and we start our study with the Padé P 1

2 (p2),

5Occasionally, in the text, as well as in tables and figures, we will simplify the notation by omitting the
p2 argument in the PAs, i.e. denoting PM

N (p2) by PM
N .
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whose expression is given by

P 1
2 (p2) = a0 + a1 p

2

1 + b1 p2 + b2 p4 . (5.1)

As already stressed above, this approximant corresponds to the function f1(p2) of ref. [41],
which arises in the context of the Gribov-Zwanziger scenario [3, 62, 81] for the description
of the gluon propagator. At the same time, note that this approximant is the first in the
sequence PNN+1(p2), which is considered here, allowing us to analyze the data in a systematic
and model-independent way. Using this Padé approximant as the fitting function to perform
a χ2 minimization, we obtain χ2/dof = 1.28 and a p−value of 0.010, which indicates an
acceptable — although not impressive — fit quality. The corresponding PA’s parameters
with their statistical uncertainties, as determined by the fit, are

a0 = (3.82± 0.02) GeV−2 , a1 = (1.21± 0.06) GeV−4 ,

b1 = (1.18± 0.02) GeV−2 , b2 = (1.65± 0.05) GeV−4 , (5.2)

with the following non-trivial correlation coefficients

a1 b1 b2
a0 −0.426 0.821 −0.436
a1 − −0.586 0.995
b1 − − −0.632

. (5.3)

We remark that some of the fit parameters are quite strongly correlated, which must be
taken into account in subsequent error propagations.

Using the fit results we can now extract the poles and the zeros of this approximant,
carefully propagating the uncertainties by taking into account the correlations between the
fit parameters. The PA P 1

2 (p2) has a pair of complex poles located at

p2 = [(−0.36± 0.02)± i (0.690± 0.005)] GeV2 , (5.4)

and a zero on the negative real axis at

p2 = (−3.2± 0.2) GeV2 . (5.5)

We will see below that these complex poles and the zero are still present in higher-order
PAs, which is a strong indication of the fact that they are genuine features of the gluon
propagator in the IR and not transient artifacts.

We can also study the behavior of the propagator near p2 ≈ 0 by obtaining an estimate
of its Taylor-series coefficients. By writing the Taylor series of the gluon propagator around
p2 = 0 as

D(p2) = c0 + c1 p
2 + c2 p

4 + c3 p
6 + c4 p

8 + · · · , (5.6)

and by expanding the Padé given in eq. (5.1) (again taking into account the correlations in
the error propagation), we find the coefficients

c0 = 3.82± 0.02 GeV−2, c1 = −3.3± 0.1 GeV−4, c2 = −2.4± 0.4 GeV−6,

c3 = 8.3± 0.4 GeV−8, c4 = −5.9± 0.6 GeV−10, c5 = −7± 2 GeV−12. (5.7)
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PA complex poles (GeV2) χ2/dof p-value

P 1
2 (−0.36± 0.02)± i (0.690± 0.005) 1.28 0.010
P 1

3 (−0.32± 0.02)± i (0.65± 0.03) 1.27 0.012
P 2

2 (−0.32± 0.02)± i (0.65± 0.02) 1.28 0.012
P 2

3 (−0.47± 0.05)± i (0.66± 0.03) 1.19 0.055
P 3

2 (−0.27± 0.01)± i (0.49± 0.04) 1.18 0.060
P 3

3 (−0.5± 0.7)± i (0.07± 3.3) 1.18 0.068

Table 1. Complex poles of the Padé approximants used as fitting functions to the Landau-gauge
gluon-propagator lattice data, together with the χ2/dof and the p-value of the respective fits. Results
from P 3

2 (p2) and P 3
3 (p2) do not enter our final values (see text).

We can see that the first few coefficients have rather small errors, which could serve as an
additional constraint to the theoretical description of the gluon propagator in the IR.

The results obtained using the PA P 1
2 (p2) for the complex pole, the zero, and the

Taylor-series coefficients should, of course, be corroborated by the investigation of PAs of
higher orders, in the same sequence as well as in other near-diagonal sequences. In table 1,
we display our findings for the complex pole position extracted from PAs belonging to
the sequences PNN , PN+1

N , PNN+2, and PNN+1. In each case we also give the value of the
χ2/dof, as well as the accompanying p-value. All fits are reasonable from the point of
view of the fit quality. The parameter errors and the errors entailed in the pole position,
however, grow rapidly once the number of parameters exceeds 6. Indeed, the PAs P 2

3 (p2)
and P 3

3 (p2) have parameters ai and bi with errors of the order of (or larger than) 100%,
and some of the parameters are more than 99% correlated. Thus, these PAs have a number
of parameters that are already at the limit of what can be done with the lattice data at
hand and, therefore, we refrain from showing any results for PAs of even larger orders.
Nevertheless, somewhat surprisingly, the pole position obtained with P 2

3 (p2) has acceptable
(even though larger) errors, and corroborates the outcomes from the lower-order PAs. These
not-so-large errors, in this case, are the result of the interplay between the large parameter
errors and their strong (mostly positive) correlations, which leads to a partial cancellation
of the final error in the pole position. On the contrary, in the case of P 3

3 (p2), the large
parameter errors do translate into very large errors for the pole position, as shown in the
final row of table 1. Because of these huge errors and correlations, we do not use P 3

3 (p2) —
or P 3

2 (p2), as discussed below — for our final values.
The results of the fits of table 1 are also shown, compared to the lattice data, in figure 4.

In this figure one can see the extrapolation of the PA results beyond the fit region. In
all cases, with the exception of P 3

2 (p2), the PAs follow the expected behavior, at least
qualitatively. Note that the bad UV behavior of P 3

2 (p2) can be understood, since this
approximant goes as a4p

2 for large p2, with a positive — although statistically compatible
with zero — coefficient a4 = 0.05(20) GeV−10. Clearly, the known fall-off of the propagator
in the perturbative regime disfavors the sequences PN+k

N (p2), with k > 0, for a precise
description of the propagator in the full energy range. It is customary to exclude PAs with
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Figure 4. Comparison of the Padé approximants used to determine the final results and the lattice
data. The shaded region — corresponding to p =

√
p2 ≥ 2.4 GeV — is not included in the fits.

the wrong high-energy behavior from analyses of this type, since this will necessarily delay
the convergence of the approximants [46]. Due to this behavior of P 3

2 (p2) at higher energies,
we do not include it in our final estimate for the complex pole position, since this inclusion
leads to an artificial increase of the systematic error.

The results of table 1 show in all the PAs a consistent pair of complex poles that pass
the consistency checks discussed above. We can then extract our final value for the pole
position using the results of P 1

2 , P 1
3 , P 2

2 , and P 2
3 . We quote as our final central value the

(arithmetic) average of the results obtained from these four PAs. Because the different
results are based on the same data set and are therefore obviously correlated, it does not
make sense to reduce the uncertainty through a weighted-average procedure and — to
remain conservative — we quote, as our final statistical uncertainty, the largest one from the
individual PAs. Finally, it is crucial to include a systematic uncertainty due to the method
we employ. We estimate this uncertainty dividing by 2 the maximum spread between results
from two different PAs. This leads to the following value for the position of the complex pole

p2
pole = [(−0.37± 0.05stat ± 0.08sys) ±

± i (0.66± 0.03stat ± 0.02sys)] GeV2 , (5.8)

where “stat” and “sys” denote the statistical uncertainty and systematic error from the PA
method, respectively.6 This shows very clearly that the PAs favor the existence of a pair of

6Note that if we include the result from P 3
2 (p2) — also shown in table 1 — the final pole position changes

very little and would read

p2
pole = [(−0.35 ± 0.05stat ± 0.10sys) ± i (0.63 ± 0.04stat ± 0.10sys)] GeV2 ,

with an increased systematic error in the imaginary part. Due to the wrong UV behavior of the sequence
PN+1

N (p2), this result is disfavored and our final value is that of eq. (5.8).
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Figure 5. Padé approximants used to determine the final results. In (a) we have the poles of each
PA and in (b) the zeros. In both cases, we show our final prediction in black. Note that the Padés
P 1

2 and P 2
3 belong to the same sequence PNN+1. Also note that in this plot we added in quadrature

the two types of errors.

c0 (GeV−2) c1 (GeV−4) c2 (GeV−6) c3 (GeV−8) c4 (GeV−10)

P 1
2 3.82± 0.02 −3.3± 0.1 −2.4± 0.4 8.3± 0.4 −5.9± 0.6
P 1

3 3.81± 0.02 −3.0± 0.2 −3.7± 0.9 10± 1 −5.5± 0.9
P 2

2 3.81± 0.02 −3.1± 0.2 −3.5± 0.8 10± 1 −5.6± 0.8
P 3

2 3.78± 0.02 −2.1± 0.4 −9± 2 23± 6 −11± 4
P 2

3 3.74± 0.03 1± 3 −86± 109 1257± 2653 −18149± 54434
P 3

3 3.76± 0.03 −0.8± 1.5 −25± 24 119± 207 −397± 1230

Table 2. Values for the first five Taylor coefficients cn of the gluon propagator predicted by the
Padé approximants (with statistical errors). Shaded results have uncertainties larger than 25% and
do not enter our final values.

complex poles, with an imaginary part incompatible with zero. The results for the pole
position in the complex plane are summarized in figure 5a.

Another salient feature of all the PAs shown in table 1 is the presence of a zero along
the real axis. This indicates that this zero is physical and we can estimate its position using
the same procedure described above for the pair of complex poles. This leads to

p2
zero = (−2.9± 0.4stat ± 0.9sys) GeV2 . (5.9)

The results for the zero of the PAs are shown in figure 5b.
We now turn to the determination of the Taylor coefficients for the expansion of

the Landau-gauge gluon propagator around p2 = 0. The results for the first five Taylor
coefficients obtained with the PAs are shown in table 2. In all cases, the constant c0 is very
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c0 (3.79± 0.03stat ± 0.04sys) GeV−2

c1 (−2.9± 0.4stat ± 0.6sys) GeV−4

c2 (−5± 2stat ± 3sys) GeV−6

c3 (9.4± 1.0stat ± 0.9sys) GeV−8

c4 (−5.7± 0.9stat ± 0.2sys) GeV−10

Table 3. Final estimates for the Taylor-series coefficients of the gluon propagator. In each line, the
first uncertainty is statistical while the second is systematic, obtained from the spread of values
from the different PAs.

well determined. The statistical uncertainties grow with the order of the coefficients cn, as
well as with the order of the PAs. We include in our final determination of the coefficients
cn the results with relative statistical uncertainty smaller than 25%, as shown in table 2.
We follow again the procedure outlined above, i.e. we obtain the final Taylor coefficients
from the average of the central values. Also, the final statistical uncertainty is the largest
among the individual PAs that contribute to the final value, and the systematic uncertainty
is half of the maximum spread between the individual determinations. The final results are
shown in table 3. The final values for the cn coefficients, up to order four, are then used to
plot the propagator obtained from the Taylor expansion, eq. (5.6), compared with the data
points. This result is shown in figure 6 and represents a model-independent constraint on
the behavior of the lattice gluon propagator for p =

√
p2 < 0.6 GeV. The error band of

figure 6 is obtained from a Monte Carlo error propagation by randomly generating 5000
values for each of the Taylor coefficients, assuming that they follow a uniform distribution,
since the errors are dominated by the systematic component. The central value is then
the median of the 5000 values obtained for the Taylor series and the uncertainty band
represents the 68% confidence level interval.

5.2 Padé approximants to the Landau-gauge ghost propagator

We now turn to the analysis of the Landau-gauge ghost propagator. The method is the
same as in the previous section, which allows for a streamlined discussion of the results.
The main difference with respect to the gluon-propagator case concerns the correlations in
the data sets from different configurations. Indeed, for the ghost-propagator data, these
correlations are substantial.7 As a matter of fact, the correlation matrix has several non-
diagonal entries with values as large as 0.75. Fits to strongly correlated data are known
to be problematic, since they can lead to biased [82], or simply unreliable, results [83].
In particular, in strongly correlated data, the correlation (or covariance) matrix has very
small eigenvalues. As a consequence, its numerical inversion is problematic and its inverse
contains very large numbers, which contribute with large and quasi-random fluctuations
in the χ2 value, spoiling the fit results. In this situation, one often resorts to fits where
the off-diagonal correlations do not enter the fit quality, simply by considering a diagonal
covariance matrix. We refer to fits of this type as “diagonal fits” [83] and, in this case, we

7We note, however, that this is not the case in ref. [30].
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Figure 6. Landau-gauge gluon-propagator Taylor series (gray) up to fifth order, from the results of
table 3. The uncertainty band is the 68% confidence level, assuming a uniform distribution for the
Taylor-series coefficients. The lattice data from refs. [9, 39, 40] are shown in purple.

denote the fit quality by Q2, instead of the usual χ2. Thus, for the analysis of the ghost
propagator, we will perform diagonal fits. We will, however, include all correlations in the
error propagation, following the procedure of ref. [83], which is described in appendix A.
This method allows for unbiased fits with reliable errors. On the other hand, since we use a
diagonal covariance matrix, we do not have a strict statistical interpretation for the measure
of the fit quality given by Q2/dof. Therefore, we cannot judge the fit quality in absolute
terms, but only by comparison with other similar fits. For this reason, we do not quote
p-values in association with Q2-type fits.

We start again our analysis with the Padé approximant P 1
2 (p2), since the PAs with

fewer parameters led to very bad fits. All fit parameters in this case turn out to be of the
order of 1010, which can be seen as a manifestation of the existence of a pole very close to
the origin, namely at p2 ≈ −1.2 × 10−10 GeV2. The appearance of a pole at p2 ≈ 0 and
of very large fit parameters occurs for higher-order PAs as well. This is a clear indication
that this pole at the origin is a physical one and thus must be explicitly enforced in the
structure of the PAs, in order to obtain fit parameters of a natural size. This can be done
using the so-called partial Padé approximants (PPAs) [84] that we define as

PMN,k(p2) = QM (p2)
RN (p2)Tk(p2) , (5.10)

where the polynomials QM (p2) and RN (p2) are the same as before and in Tk(p2) we impose
the existence of k poles. In particular, here, we use simply k = 1 with

T1(p2) = p2 , (5.11)

which imposes the pole at p2 = 0. In order to simplify the notation, we denote these PPAs
PMN,1(p2) just as PMN (p2). Let us note that an alternate procedure, which leads to the same
results, is to fit the data for p2G(p2), effectively removing the singularity at the origin.
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PPA pole (GeV2) Q2/dof

P1
1 −0.30± 0.05 0.65

P1
2 −0.33± 0.05 0.60

P2
1 −0.33± 0.05 0.60

P2
2 −0.32± 0.05 0.59

P1
3 −0.27± 0.04 0.54

P3
3 −0.29± 0.04 0.32

P3
4 −0.28± 0.03 0.32

P3
5 −0.24± 0.05 0.28

P4
4 −0.1± 0.1 0.27

P4
5 −0.16± 0.08 0.25

Table 4. Location of the pole, on the negative real axis of p2, from the partial Padé approximants
— used as fitting functions to the Landau-gauge ghost-propagator lattice data — together with the
corresponding Q2/dof value. Results from P4

4(p2) and P4
5(p2) do not enter our final values, due to

their large errors.

As a preliminary step, we have again investigated fits using different fit windows. The
results we report below are for fits restricted to the interval

√
p2 ≤ 3.12 GeV, which contains

220 data points and enters the region that is well described by the perturbative prediction,
as shown in figure 3b. (We stress, however, that our main results are largely independent
of the chosen fit window.) The primary reason for our final decision is that this choice
avoids, in some of the PPAs, the appearance of Froissart doublets located in the region
where lattice data are available. We recall that these doublets are expected to appear, in a
transient form, in some of the approximants and that they are harmless, as long as we use
the PPAs away from these singularities. However, they can spoil the extrapolation of the
fit results beyond the fit window.

We employed partial Padés, belonging to the sequences PNN , P
N+1
N , PNN+1, and PNN+2,

to fit the ghost-propagator data. Here, the approximants that play a special role are those
belonging to the sequence PNN (p2), since they have a built-in 1/p2 behavior at large p2,
which should lead to a faster convergence. We note that a salient feature of all approximants
is the appearance of a pole located on the negative real axis of p2. These results are shown
in table 4, together with the associated values of Q2/dof from each fit. Clearly, the position
of this pole on the negative real axis is remarkably stable, which strongly suggests that
it has a physical nature. At the same time, approximants with more than 8 parameters,
such as P4

4(p2) and P4
5(p2) in table 4, have strongly correlated fit parameters, of the order

of 99%, and fit-parameter errors larger than 100%. Since such large uncertainties lead to
predictions with substantial errors, these PAs will not enter our final estimates. We stress
that a similar behavior has already been observed for the PAs with more than 6 parameters
in the analysis of the gluon-propagator data.

From the results shown in table 4, we can obtain a final estimate for the location of
the pole predicted by the PPAs, by employing the same procedure used for the gluon-
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Figure 7. Location of the (a) pole and (b) zero from the partial Padé approximants, fitted to the
Landau-gauge ghost-propagator lattice data. Results from approximants belonging to the same
sequence are shown in the same color [blue for PNN (p2), orange for PNN+1(p2) and pink for PNN+2(p2)].
Our final values are shown in black at the bottom of each plot. As before, in this plot we add in
quadrature the statistical and systematic errors. The pole followed by a zero points towards the
presence of a branch cut along the negative real axis of p2. (See discussion in the text.)

propagator analysis: the central value is the mean of all the results obtained from the
PPAs, the statistical uncertainty is the largest error from a single Padé, and the systematic
uncertainty is half the maximum difference of two PPA results. Thus, our final estimate for
the pole position on the real axis is

p2
pole = (−0.30± 0.05stat ± 0.05sys) GeV2 . (5.12)

The results for the pole position of individual PPAs, as well as our final result, are summarized
in figure 7a. At the same time, the fitted approximants also suggest the existence of a zero
on the negative real axis of p2, which, by applying the same method as before, is predicted
to be at

p2
zero = (−1.0± 0.3stat ± 0.4sys) GeV2 . (5.13)

The location of the zeros from the different PPAs are shown in figure 7b (together with
our final estimate). It is important to remark that the existence of a pole followed by a
zero along the negative real axis may be, in fact, the manifestation of a branch cut — a
possibility that we discuss further below.

The results from the PPAs considered in table 4 and in figure 7 are exhibited in figure 8,
compared to the lattice data for G(p2); the shaded area indicates the region not included in
the fit window. We note that the approximant P2

2(p2) has a Froissart doublet, i.e. a pole
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Figure 8. Plot of the partial Padé approximants, used to determine our final results, and of
the lattice data for the Landau-gauge ghost propagator. The shaded region — corresponding to
p =

√
p2 > 3.12 GeV — is not included in the fits.

partially cancelled by a nearby zero, on the positive real axis, but located outside the fit
region. As said above, this is, typically, a transient artifact of the rational approximants.
Indeed, the doublet disappears when the order of the PPA is increased and it is already not
present in the approximant P3

3(p2).
As recalled above, the pattern of a pole (at about p2 = −0.3 GeV2) followed by a zero

(at about p2 = −1.0 GeV2) suggests that this may be the manifestation of a branch cut in
G(p2). Indeed, as described in section 3, PAs mimic the existence of a cut by accumulating
a series of poles interleaved with zeros along the cut. On the other hand, this is clearly
observed only in very-high-order Padés, since Froissart doublets may also appear in the
process, as seen in figure 1a. At the same time, if we go to higher orders (i.e., Padés with
more than 8 parameters), pole positions and zeros have — as already noted above — a very
large uncertainty, of the order of 100%, which obscures the results. Their central values,
however, do show a clear pattern of poles interleaved with zeros. For example, in P4

4(p2) we
have (apart from two new Froissart doublets) a pole at −0.10 GeV2, followed by a zero at
−0.11 GeV2, and again a pole at −0.43 GeV2, and finally a zero at −1.3 GeV2. Similarly,
in P4

5(p2) one finds poles at −0.16 GeV2 and −0.84 GeV2, which are interleaved with two
zeros, at −0.25 GeV2 and −2.4 GeV2. This pattern corroborates the idea that the pole and
the zero we find in lower-order approximants may be the first manifestation of a branch
cut, along the negative real axis of p2. We will investigate this possibility further in the
next section, using the so-called D-Log Padé approximants.

Finally, as we did for the gluon propagator, we can extract the Taylor-series coefficients
for p2G(p2) around p2 = 0, which can be written as

p2G(p2) = r0 + r1 p
2 + r2 p

4 + r3 p
6 + r4 p

8 + · · · . (5.14)

The first five coefficients rn predicted by the PPAs are shown in table 5. One can notice
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r0 r1 (GeV−2) r2 (GeV−4) r3 (GeV−6) r4 (GeV−8)

P1
1 4.17± 0.01 −10± 1 33± 10 −111± 51 369± 228

P1
2 4.17± 0.01 −9± 1 29± 8 −89± 39 275± 161

P2
1 4.17± 0.01 −9± 1 29± 8 −90± 39 276± 161

P2
2 4.17± 0.01 −10± 1 30± 8 −94± 40 293± 168

P1
3 4.17± 0.01 −10± 1 38± 10 −138± 58 503± 288

P3
3 4.17± 0.01 −10± 1 34± 9 −117± 48 398± 221

P3
4 4.17± 0.01 −10± 1 37± 9 −131± 47 466± 225

Table 5. Values for the first five Taylor coefficients rn of the ghost propagator predicted by the
partial Padé approximants (with statistical errors). Shaded results have uncertainties larger than
45% and do not enter our final values.

r0 4.17± 0.01stat
r1 −9.7± 1.0stat ± 0.5sys GeV−2

r2 33± 10stat ± 5sys GeV−4

r3 −110± 58stat ± 25sys GeV−4

Table 6. Final estimates for the Taylor-series coefficients of the ghost propagator. In each line, the
first uncertainty is statistical while the second is systematic, obtained from the spread of values
from the different PPAs.

that the determination of the coefficient r0 is very consistent for the various Padés used and
that the uncertainties increase considerably for higher orders. In order to obtain our final
Taylor coefficients, we will employ all results with errors smaller than 45%, as indicated in
table 5. Our final estimates for the coefficients rn up to third order are displayed in table 6,
where the systematic and statistical errors are calculated using the same procedure as before.
Assuming these values, we compare the Taylor-expanded result for p2G(p2) with the lattice
data in figure 9. We see that our findings, which are model-independent, reproduce well
the behavior of the ghost-propagator data up to p =

√
p2 = 0.5 GeV.

5.2.1 D-Log Padé approximants

The results of the previous section, obtained with PPAs as fitting functions to the Landau-
gauge ghost-propagator data set, are robust and show a pole and a zero on the negative
real axis of p2. However, as already stressed above, since the pole is accompanied with a
zero, one cannot exclude that this is the manifestation of a branch cut along the negative
real axis. This possibility is, in fact, corroborated by the investigation of higher-order
approximants, which do show a pattern of poles interleaved with zeros (albeit with very
large uncertainties in their positions). We stress that, working only with the usual PAs
(and PPAs), it is quite difficult — given the limitations imposed by the data — to establish
whether the pole is mimicking a branch point or is, in fact, a physical pole. In this section,
we perform a first exploration of a different strategy to extract information about a possible
cut in the ghost propagator, namely we use the so-called D-Log Padé approximants [44]
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Figure 9. Landau-gauge ghost-propagator Taylor series (gray) up to third order, using the results
of table 6. The uncertainty band is the 68% confidence level, assuming a uniform distribution for
the Taylor-series coefficients. The lattice data are shown in purple.

(see also refs. [53, 54] for recent applications). The main goal of this explorative analysis is
to discuss the prospects, the advantages, and the limitations of D-Log PAs when applied to
the Landau-gauge ghost-propagator data.

The idea behind D-Log PAs is to manipulate a function having a cut in the complex
plane into a form that can be better approximated by PAs, and later unfold the procedure.
To this end, let us suppose we are interested in the following function

f(z) = A(z) 1
(µ− z)γ +B(z) , (5.15)

where A(z) and B(z) have a simple structure and are analytic at z = µ, and γ is not
necessarily an integer — so that f(z) can have a cut with branch point z = µ. Instead of
working directly with f(z), we use a related function F (z) given by

F (z) = d
dz ln f(z) ≈ γ

(µ− z) , (5.16)

where on the right-hand side we assume z ≈ µ. Clearly, the function F (z) is, in this case,
meromorphic and the usual convergence theorems apply. We stress that the exponent of
the cut is now the residue of the simple pole of F (z), which can, in principle, be determined
in an unbiased way using Padé approximants — denoted in this context by P̄MN (z) — to
F (z). Then, by unfolding this procedure, the original function f(z) is approximated by a
non-rational function, the so-called D-Log Padé approximant, given by

DlogMN (z) = fnorm(0) exp
{∫

dz P̄MN (z)
}
, (5.17)

where the constant fnorm(0) has to be adjusted to reproduce the function f(z) at zero, since
the constant value f(0) — in the Taylor expansion of f(z) — is lost due to the derivative
in eq. (5.16).
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In view of the fact that in this work we use the PAs as fitting functions to lattice
data, the application of D-Log PAs to our problem requires some additional steps, in
comparison with the usual PAs. Indeed, we need (lattice) data for the function F (p2), i.e.,
the derivative of the logarithm of the ghost propagator G(p2). Clearly, these data for F (p2)
can be obtained from the propagator data, by first evaluating the logarithm and, then, by
taking the numerical derivative, using finite differences. However, the application of the
standard formulas for the derivative requires equally-spaced data points, a property that is
not satisfied by lattice data for the ghost propagator. Thus, in order to circumvent this
problem, we need first to interpolate between the data points, as a means to generate a
new set of data on a uniform grid. We do this using a linear interpolation, which should be
sufficient for our purposes. More specifically, after taking the logarithm of the central values
of the ghost-propagator data, we interpolate them and generate equally-spaced data points,
with a separation of ∆p2 = 0.035 GeV2. We also propagate the errors accordingly. One
should note, however, that the linear interpolation introduces correlations between some
of the new data points, since they may share information of the original ghost-propagator
data. We calculate these correlations using standard methods [85, 86] and take them into
account carefully, in all of the subsequent results. Next, the derivative at the i-th point of
this uniform grid, pi, can be calculated using, for example, the usual first-order formula

f ′(1)(p
2
i ) ≈

f(p2
i+1)− f(p2

i−1)
2 ∆p2 . (5.18)

This procedure introduces, in principle, another source of correlations in the data, since the
derivative obtained at nearby points may share information from the same underlying data
point. This problem can be circumvented exactly by skipping the appropriate number of
points, in such a way that each derivative depends on different entries of the original data
set. (For example, in the case of the above first-order formula, this is achieved when the
derivative is evaluated at every third point.) Another possibility, which we will use here, is
to compute the first-order derivative at every second point, calculating all the correlations
involved in the process, which again can be done in a rather straightforward manner. The
advantage of this procedure is that the final data set contains enough points, while keeping
the correlations relatively mild. (On the other hand, when computing the derivative at
every point p2

i , the correlations become too strong to allow for a meaningful fit.) We have
also considered higher-order numerical derivatives. The number of data points, however,
decreases rapidly when the order is larger than two (if one wants to reduce correlations in
the data by skipping some of the points) and, for this reason, we will only consider below
first-order derivatives.

As a check, we also did the same analysis described above using the bootstrap method
with 5000 samples (and verified that results do not change when using 2500 samples). In all
cases we find very good agreement between the data sets produced by the two analyses. In
figure 10a, we show the results for the derivative of the logarithm of the ghost-propagator
data, evaluated numerically at every second point, computing all the ensuing correlations to
the data. It is evident that the uncertainties in the final data set are rather large — of the
order of 100% in some cases — with significant statistical fluctuations (as one could expect).

– 24 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
4

0.0 0.5 1.0 1.5 2.0
-3

-2

-1

0

1

2

(a)

0 1 2 3

0.1

1

10

100

1000

(b)

Figure 10. (a) First-order numerical derivative of the logarithm of the ghost-propagator data
together with the Padés P̄NM (p2) used to build the D-Log PAs. (b) The lattice data for the ghost
propagator and the D-Log Padé approximants built from the first-order numerical derivative of the
logarithm of the data. The shaded region — corresponding to p =

√
p2 > 2.0 GeV — is excluded

from the fit.

We, nevertheless, carry on with our analysis in order to understand the applicability and
the limitations of the D-Log method for the data set considered here.

We first perform the minimization to the (generated) data set, using the PAs P̄MN (p2) as
fitting functions. The result is shown in figure 10a. We again use diagonal fits, i.e., as said
above, we consider in the fit quality only the diagonal elements of the covariance matrix.
In this case, for the fit, we select data in the interval p ≤ 2.0 GeV, since at larger momenta
the errors and fluctuations are very large. Moreover, as clearly seen from figure 10a, the
data at p = 2.0 GeV are already described by the perturbative 1/p2 behavior. After the
minimization, eq. (5.17) is employed to build the D-Log Padés to the ghost-propagator data.
We performed fits using the D-Log sequences DlogNN+1, DlogNN+2, DlogNN and DlogN+1

N . As
before, the maximum value of N that can be considered is limited by the quality of the
fitted data. In particular, in this case, the maximum number of parameters that lead to
meaningful results is only 5, which is a consequence of the large errors and fluctuations of
the data set. We find that these approximants have a branch cut of the form

1
(pc − p2)γ . (5.19)

The branch point pc and the multiplicity γ of the cut obtained from different D-Log
approximants are reported in table 7, together with the corresponding Q2/dof value. One
can observe that the approximants that pass all reliability tests have indeed a cut on the
negative real axis, with a branch point not too far from the pole at −0.30 GeV2, determined
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D-Log PA pc (GeV2) γ Q2/dof

Dlog0
1 −0.11± 0.03 0.31± 0.05 0.81

Dlog0
2 −0.14± 0.07 0.4± 0.2 0.81

Dlog1
1 −0.13± 0.05 0.4± 0.1 0.81

Dlog2
1 −0.12± 0.09 0.3± 0.2 0.83

Dlog1
2 −0.12± 0.04 0.3± 0.2 0.83

Dlog1
3 −0.12± 0.08 0.3± 0.2 0.85

Table 7. Branch point pc and the multiplicity γ, alongside the corresponding Q2/dof value, from
fits of D-Log Padé approximants to the Landau-gauge ghost-propagator lattice data.
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Figure 11. Comparison of the largest (real and nonzero) pole position from four partial Padés
sequences with the branch point position obtained form the D-Log approximants, eq. (5.20), shown
as the gray band. At higher-orders the position of the first pole tends to approach the D-Log branch
point, indicating that the PPAs are mimicking the cut. We note that the uncertainty on the gray
band may be underestimated, since the application of the D-Log Padés requires the calculation of
numerical derivatives from the original data set.

in the previous section. Our final value for the branch-point position is

pc = (−0.12± 0.08stat ± 0.02sys) GeV2 . (5.20)

One should stress, however, that our systematic uncertainty for pc may be underestimated,
since the evaluation of the numerical derivative inevitably introduces an additional source of
error. At the same time, the exponent γ is clearly not compatible with one, which reinforces
that the function has indeed a cut (in the negative real axis) and not a pole. Our results
for the D-Log Padés, together with the original lattice data, are shown in figure 10b, where
it is possible to observe a reasonably good agreement, even beyond the fit region.

Let us now compare the results from the D-Log approximants with the results from
the PPAs, described in the previous section. It is evident that the analysis using D-Log
approximants does corroborate the existence of a branch cut on the negative real axis of
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p2. Then, if the cut is indeed present, one would expect that the pole — found with the
PPAs — should indicate the position of the branch point. As a matter of fact, the final
results we obtain for pc and for the pole extracted from the PPAs [see eqs. (5.20) and (5.12)]
are compatible within 1.7σ. Furthermore, we observe that, for higher-order PPAs, the
position of the pole tends to larger values, i.e. to −0.10 GeV2 and −0.16 GeV2 respectively
when considering P 4

4 (p2) and P 4
5 (p2), thus approaching the value of pc from the D-Log

approximants, although with larger errors. This can be clearly seen in figure 11, where we
compare pc from eq. (5.20) with the largest (nonzero) pole positions from different PPA
sequences, with up to 10 parameters. It is evident that higher-order PPAs show a pole
position in better agreement with the location of pc obtained from the D-Log approximants.
This may indicate a possible convergence between the two methods.

In conclusion, the results of this section support, apart from the pole at p2 = 0, the
existence of a branch cut along negative values of p2. Our best estimator for the branch
point pc is obtained from the D-Log approximants, and this value is in reasonably good
agreement with the results from the PPAs.

6 Conclusions

In this work we have used rational approximants in order to study the analytic structure of
the IR Landau-gauge gluon and ghost propagators from a model-independent point of view.
With this method, we do not rely on any specific theoretical description of the propagators
in the IR. Instead, the main analytic features are obtained from a systematic use of Padé
approximants (and also of partial Padé and D-Log Padé approximants) as fitting functions
to the lattice data for the SU(2) gluon and ghost propagators. A closely related work,
applying Padé approximants to the SU(3) propagators, may be found in refs. [37, 38]. The
results we present here have more robust uncertainties, since we have performed, in all
cases, a careful error propagation, including all correlations in the data set as well as in
the fit parameters. Apart from the statistical error, we have also estimated a theoretical
systematic error, inherent to the method. Another important difference with respect to
refs. [37, 38] is that we have exploited variants of the usual Padé approximants, namely
the partial Padés and the D-Log Padés, which were particularly useful in the study of the
ghost propagator.

In the case of the gluon propagator, the Padé approximants show distinct evidence for
a pair of complex poles located at

p2 = [(−0.37± 0.09)± i (0.66± 0.04)] GeV2 , (6.1)

where we added in quadrature the statistical and systematic errors of eq. (5.8). This result
is of course in good agreement with the analysis presented in ref. [41] (see their table IV)
for the same set of lattice data. It is also remarkable that the pole position turns out very
similar to those found in the SU(3) gluon propagator, namely p2 = −0.28(6)± i 0.4(1) GeV2

or p2 = −0.19(4)± i 0.4(1) GeV2 — depending on the method used in the analysis of ref. [37]
— and p2 = −0.30(7)± i 0.49(3) GeV2 from ref. [32]. At the same time, we find evidence for
a zero in the gluon propagator, located at p2

zero = (−2.9± 1.0) GeV2.
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As for the ghost propagator, the analysis with PAs reveals that the approximants require
a pole at the origin. This input has, therefore, been used to build the so-called partial Padé
approximants, which provide evidence for a pole — along the negative real axis — followed
by a zero. At the same time, higher-order PPAs also show additional intercalated poles and
zeros. As stressed in the text, this result is an indication that the approximants may be
mimicking a branch cut of the function by accumulating poles (and zeros) along the cut [44].
In order to test this hypothesis, we considered in section 5.2.1 the so-called D-Log Padé
approximants, which are particularly useful to study functions with a branch cut. Indeed,
we found evidence for a cut with a branch point located at p2 = (−0.12± 0.08) GeV2, in
excellent agreement with refs. [37, 38], which report a cut starting around p2 ∼ −0.1 GeV2.
One should stress, however, that the quoted uncertainty in our branch-point location may
be underestimated, since the application of D-Log approximants requires the calculation of
numerical derivatives of the data for G(p2), which inevitably introduces additional errors.
The value of this branch point is, nevertheless, in reasonable agreement with the pole
position p2

pole = (−0.30 ± 0.07) GeV2 found using the PPAs. This corroborates, in our
opinion, that the poles and zeros displayed by the PPAs for p2 < 0 are, in fact, mimicking
a cut along the negative real axis of p2. We also note that these results go along with the
analysis presented in ref. [40], where the ghost dressing function p2G(p2) is well described
by a fitting form displaying a logarithmic cut in the negative real axis of p2, with a branch
point very close to zero.

We note that a similar analysis with PPAs and D-Log PAs in the gluon-propagator case
is inconclusive regarding the presence of a branch cut. This is due to the limitations imposed
by the lower quality of the data and by the richer structure of the function, which did not
enable us to consider — in a controlled way — approximants of sufficiently high order for
the gluon propagator. Finally, the PAs (for gluon) and PPAs (for ghost) also allowed for a
model-independent determination of the first few coefficients of the Taylor-series expansion
of D(p2) and G(p2) around p2 = 0, which serve as an additional constraint to the theoretical
description of gluon and ghost propagators at small momenta.

As said above, our analysis strongly supports the existence of a pair of complex-conjugate
poles in the analytic structure of the gluon propagator, in agreement with refs. [32, 37, 38]
and with the so-called Gribov-Zwanziger scenario [3, 62, 81]. Furthermore, the Padé analysis
strongly disfavors the possibility of real poles in the gluon sector, as considered, e.g., in
ref. [31]. Note also that the presence of complex poles in the gluon propagator has been
recently criticized in ref. [29], since this would imply the violation of the Källén-Lehmann
representation for the ghost propagator (as already recalled in the Introduction). The
authors claim that no such violation has yet been observed, quoting refs. [26, 30, 32, 37].
We note, however, that the cited references do not make such a claim. In fact, ref. [37] does
not make any statement about the existence of the Källén-Lehmann representation for the
ghost propagator. At the same time, in refs. [30, 32] the existence of this representation is
the starting point of the analyses, i.e. these two works have verified that numerical data are
well described by using such a representation. Of course, as discussed below, this does not
constitute a proof of its validity. Lastly, ref. [26] does not appear to be conclusive on the
matter since, as stressed by the authors in their conclusions, the results strongly depend on
the details of the chosen model for the gluon-ghost vertex.
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As a final remark, we would like to reinforce that our analysis clearly highlights the
limitations imposed by the data sets: fits with too many parameters do not add new
information, since they lead to quantities with huge errors and parameters that are 100%
correlated. In fact, we know — for example from refs. [41, 42] — that a very good
description of lattice data for Landau-gauge gluon and ghost propagators may be easily
achieved with reasonably simple functions, depending on just a few parameters. For this
reason, reproducing lattice data via complicated analytic expressions, depending on a large
set of parameters (such as those considered in refs. [30, 32, 37, 38]) is very likely to work,
but it is not, by itself, a sufficient criterion to validate the considered fitting functions. As
a consequence, the extraction of information from this type of analysis, without careful
consideration of uncertainties and correlations, should be taken with caution.
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A Fits to highly correlated data

When dealing with strongly correlated data, standard χ2 fits can lead to biased or unreliable
results. This stems from the tiny eigenvalues of the covariance matrix, which must be
inverted in the usual χ2-fit construction. An alternate procedure is to employ a method,
which we will call “diagonal fits”, where only the diagonal elements of the covariance matrix
are considered in the fit quality, named, in this case, Q2 [83].

The fit quality Q2 is obtained from the diagonal elements of the data covariance matrix,
C. We denote by C0 the diagonal matrix obtained from C neglecting off-diagonal terms.
Both C and C0 are symmetric and positive-definite matrices. We consider then the fit quality

Q2 = [di − fi(~a)]
(
C−1

0

)
ij

[dj − fj(~a)] , (A.1)

where di are elements of binned data set and fi(~a) is the fitting function (the PAs in this
work) with a vector of parameters ~a that describes the data. (In the above equation repeated
indices are summed over.) Since off-diagonal correlations are not being considered in the fit
quality, we lose the statistical interpretation of the χ2 and it does not make sense to judge
the fit quality in absolute terms; in particular, the usual p-value cannot be used.

With this setup, the parameters ~a are determined by minimizing Q2, i.e. by solving the
system of equations

∂Q2

∂aα
= −2 ∂fi(~a)

∂aα

(
C−1

0

)
ij

[dj − fj(~a)] = 0 , (A.2)

which can be done numerically or, in a linear case, for example, even analytically.
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We now turn to the evaluation of the errors on the parameters aα. By varying the
parameters and the data by δaα and δdi, respectively, in eq. (A.2) we can relate δaα and
δdi as

δaα = A−1
αβ

∂fi(~a)
∂aβ

(
C−1

0

)
ij
δdj , (A.3)

where we considered that the fit is good, i.e., the difference (di − fi(~a)) is small and can be
ignored (which kills the term with the second derivative), and we defined the matrix

Aαβ = ∂fi(~a)
∂aα

(
C−1

0

)
ij

∂fj(~a)
∂aβ

. (A.4)

The fit-parameter covariance matrix 〈δaα δaβ〉 is then given by

〈δaα δaβ〉 = (A−1)αγ
∂fi(~a)
∂aγ

(
C−1

0

)
ik
Ckl

(
C−1

0

)
lj

∂fj(~a)
∂aσ

(A−1)Tσβ , (A.5)

where Cij = 〈δdi δdj〉 is the complete data covariance matrix, including all off-diagonal
terms. The equation above is an estimative for the full covariance matrix of the parameters
of the fit ~a. We stress that, if the fit is good enough to disconsider terms proportional
to (di − fi(~a)) and when the matrix C0,ij is replaced by the full matrix Cij this method
gives a covariance matrix equivalent to the one obtained from the Hessian of the usual χ2

procedure. The advantage of eq. (A.5) is that the full data covariance matrix C is never
inverted in the procedure, avoiding the issues related to its small eigenvalues. The effects of
the data correlation are, nevertheless, fully taken into account in the error propagation, as
shown in eq. (A.5).

B Numerical precision in higher-order Padé approximants

As mentioned in section 3, when building higher-order Padé approximants, it is very
important to work with sufficiently high numerical accuracy or, otherwise, the results can
be contaminated with spurious poles and zeros. In order to illustrate this, we consider
again the use of the genuine Padés to approximate the function g(z) of eq. (3.1) for the
case P 14

15 (z), which corresponds to 30 parameters. As said before, we do not expect any
complex Froissart doublets to appear in this case. This is because log(z + 2) is a Stieltjes
function, which generates only real poles in the PAs [43, 44], while the remainder of g(z)
is a rational meromorphic function, very easily reproduced by the Padés. However, if
insufficient numerical precision is used, the solution to the system of 30 equations can lead
to wrong results, in which some of the poles move from the real axis into the complex plane,
resembling Froissart doublets (see section 3). These numerical artifacts may appear in a
semi-circular pattern [72], as can be clearly seen in figure 12, and are similar to the doublets
that appear due to the presence of random noise in the input Taylor coefficients [45, 72].
Let us mention that this feature is also visible in the results of ref. [37], both in the analysis
of their toy data and of the lattice data.

In order to circumvent this problem, in the results of section 3, we employed a precision
of 30 decimal places for our analysis of the function g(z). In particular, the approximants
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Figure 12. Results obtained with insufficient numerical precision (see discussion in the text) for the
poles (filled circles) and zeros (empty squares) of P 14

15 (z), built to the Taylor series of g(z) defined in
eq. (3.1). The poles and zeros that can be identified with genuine poles of g(z) are shown in green,
while artifacts are shown in red (poles) and blue (zeros). It is possible to see a number of spurious
complex poles and zeros (shown in dark gray), resembling Froissart doublets, that are the result of
round-off errors. The correct result can be seen in figure 1a.

shown in figure 1 were obtained applying the built-in function PadéApproximant of Wolfram
Mathematica, imposing this precision. On the contrary, in the above (wrong) solution the
same function was used with default precision. Of course, in the presence of spurious pairs
of complex zeros and poles generated by round-off errors, it is more difficult to identify the
cut of the function g(z). This occurs since some of the poles and zeros that would appear
along the cut are now displaced into the complex plane.
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