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Abstract

Integrating Internet technologies with traditional healthcare systems has enabled the emergence of cloud healthcare
systems. These systems aim to optimize the balance between online diagnosis and offline treatment to effectively
reduce patients’ waiting times and improve the utilization of idle medical resources. In this paper, a distributed genetic
algorithm (DGA) is proposed as a means to optimize the balance of patient assignment (PA) in cloud healthcare
systems. The proposed DGA utilizes individuals as solutions for the PA optimization problem and generates better
solutions through the execution of crossover, mutation, and selection operators. Besides, the distributed framework

in the DGA is proposed to improve its population diversity and scalability. Experimental results demonstrate the effec-
tiveness of the proposed DGA in optimizing the PA problem within the cloud healthcare systems.
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Introduction
The rapid advancement of Internet and information tech-
nologies [1-7] has led to a growing demand for cloud
healthcare systems [8—13] that can effectively provide
all medical services [14—16]. These systems are based on
integrating online diagnosis [17-21] and offline treat-
ment to reduce patients’ waiting time and improve the
utilization of idle medical resources. However, the devel-
opment of such systems [22-25] is contingent upon the
successful resolution of the patient assignment (PA)
problem. The PA problem is a crucial aspect of cloud
healthcare systems, as it directly impacts the efficiency
and effectiveness of the system. Therefore, it is para-
mount that the PA problem is carefully considered and
appropriately addressed in the design and implementa-
tion of cloud healthcare systems.

The PA problem in cloud healthcare systems has been
the subject of ongoing research, with various strategies
proposed to address it. One such approach is the use of

*Correspondence: yongfeng.ge@vu.edu.au

2 Institute for Sustainable Industries and Liveable Cities, Victoria University,
Melbourne, Australia

Full list of author information is available at the end of the article

discrete event simulation to develop a queuing model
[26]. This strategy aims to reduce patient waiting time
and increase the system’s overall throughput. Another
approach uses Petri nets to describe the relationship
between medical processes and resources [9]. A hybrid
ant agent algorithm has also been proposed [27], which
aims to identify the optimal path for patients, thus reduc-
ing both waiting and cycle time. Previous studies have
emphasized the importance of reducing patients’ wait-
ing time. However, it should be noted that a continuous
influx of patients characterizes cloud healthcare systems.
The balance of assignments among doctors is also crucial
in improving the system’s efficiency. Therefore, in this
paper, we optimize the balance of assignments among
doctors in the cloud healthcare systems.

The optimization of the PA problem can be achieved
through the utilization of genetic algorithms (GAs)
[28, 29]. GAs are a type of evolutionary algorithm (EA)
[30-33] that have been widely used in the field of com-
putational mathematics to solve optimization prob-
lems. Evolutionary biology concepts such as heredity,
mutation, natural selection, and hybridization are
used to construct EAs [34—36]. GAs are beneficial for
finding reasonable solutions quickly, even in complex
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spatial solutions, by using parallel studies, selection
operations, alteration operations, and mutation func-
tions [37-39]. Previous studies have demonstrated the
advantages of using EAs, including GAs, in various sce-
narios, such as reliability and performance. They have
been applied to various fields such as computer science,
engineering, and operations research and have con-
sistently shown to be effective in solving optimization
problems [40—42]. Previously, GA has been utilized in
the optimization of the PA problem [43] and its advan-
tages in terms of convergence speed and scalability
have been verified.

This paper proposes a distributed genetic algorithm
(DGA) to optimize the PA problem. Over the previous
approaches for the PA problem, DGA shows its advan-
tages of global optimization performance and diversity
maintenance (not easily trapped by local optima), robust-
ness and scalability (the capability of handling complex
and noisy problem spaces), flexibility (easily fits different
problem formulation), and increased parallelism (enables
faster convergence and reduces running time). Each indi-
vidual in the proposed DGA represents a solution to the
PA optimization problem. Several individuals in the pro-
posed DGA form multiple sub-populations. During the
evolution of each sub-population, information included
in all the individuals is exchanged by the crossover opera-
tor. Individuals are randomly adjusted in the mutation
operator. After that, the selection operator evaluates the
competitiveness of different solutions. The more com-
petitive solutions are kept in the population, and the less
competitive individuals are gradually eliminated. Then,
with a predefined interval, the elite individuals of all the
sub-populations are exchanged to accelerate the conver-
gence. Finally, the optimal solution to the PA problem is
outputted.

More specifically, the contributions of this paper are
listed as follows.

1. We propose the DGA to optimize the PA balance in
cloud healthcare systems.

2. We propose a distributed framework in the DGA to
improve population diversity and scalability.

3. We utilize the operators in DGA to improve the
competitiveness of the solutions to the PA problem.

The organization of this paper is as follows. In Sect. 2, a
formal problem formulation of the PA problem is illus-
trated. Then, we review the related work of the PA prob-
lem and the application of GA. In Sect. 4, we introduce
the DGA. Afterward, the proposed DGA is introduced
in detail. In Sects. 6 and 7, the experimental study is
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executed, and the experimental results are analyzed.
Finally, we conclude this paper.

Problem formulation

In Fig. 1, an example of patient assessment and assign-
ment modules is given. In the given example, the con-
dition of four patients is assessed at the beginning.
Accordingly, the estimated diagnosis time and available
doctor lists are produced. Our optimization objective in
the patient assignment module is to minimize the diag-
nosis time difference among different doctors. Finally, the
patients are assigned to the corresponding doctors for
further diagnosis.

Specifically, in PA, the i-th patient is represented by
P;; Dj represents the j-th doctor. The estimated diagnosis
time of i-th patient is indicated by T;.

The total diagnosis time of j-th doctor (represented by
Tj) is calculated as follows:

nP B )
Ti=) TixS (1)
i=1

where nP is the number of patients; S indicates a status
matrix. Sﬁ equals to one when the i-th patient is allocated
to the j-th doctor; Sﬁ equals to zero when the i-th patient
is not allocated to the j-th doctor.

Thus, the mean value of diagnosis time is calculated as:

To minimize the diagnosis time difference among doctors

J

Patient Assessment Patient Assignment

"
> —_— Estimated diagnosis time 1
== v
Available doctor list 1 ® _ﬁ
Patient 1
L Estimated diagnosis time 2
"
Available doctor list 2 m =
"
=~ — Estimated diagnosis time 3
Available doctor list 3 m L
Patient 3 J—)
:
= ﬁ Estimated diagnosis time 4
Available doctor list 4
Patient 4

Fig. 1 lllustration of the patient assignment in the cloud healthcare
systems
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where D is the number of doctors.

The time factor (TF) is then obtained by calculating the
standard deviation of diagnosis time of all the doctors.
Formally,

nD e
TF = \/ w 3)
nD

As mentioned above, the optimization objective is to bal-
ance the doctors’ diagnosis time. Therefore, the optimiza-
tion objective is to minimize the value of TF.

Related work

In [44], a positive model of the public hospital waiting
lists was established. According to the studies, doc-
tors did not necessarily treat the mildest cases on the
waiting list to have the shortest overall hospital stay. In
[45], Takakuwa and Wijewickrama created a discrete-
time simulation model and integrated the simula-
tion model into the optimization algorithm to reduce
patient waiting and physician idle time without adding
any additional resources. In [46], the dynamic patient
scheduling with different priorities in a public health-
care setting was tackled. The proposed method dynam-
ically assigns available capacity to incoming demand to
achieve cost-effective wait-time targets. This study col-
lected real-time data from Nagoya University Hospital’s
outpatient clinic to create a simulation. In [47], the Lean
Six Sigma (LSS) method was used to solve the problem
of the long waiting time of patients. The entire proce-
dure was covered, from patient registration to prescrip-
tion distribution. A causal map was created for patients
with longer waiting times, and data collected during
the process were used to verify the reasons. In [26], a
queuing model was developed using discrete event
simulation, which could reduce the patient waiting
time and improve the system’s overall throughput. To
resolve ambiguities in the present system, required data
was collected, and alternative scenarios were generated
and examined. Furthermore, the best solution concern-
ing patient satisfaction was proposed. In [48], a system
was designed to reduce the doctors’ idle time instead
of the patients’ waiting time. It provides an alterna-
tive perspective on this problem. This study aimed to
improve resource efficiency and modify how doctors
schedule visits. The results showed that patients’ wait-
ing time might be lowered without affecting doctors’
work efficiency. In [9], a Petri net was presented to
describe the relationship between the medical process
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and resources in this integrated healthcare system. A
PA scheduling problem was investigated and studied to
allocate this system’s bottleneck medical resource effi-
ciently. A mathematical model was established, and a
greedy-based heuristic algorithm was designed. In [49],
Chawasemerwa et al. developed a constraint satisfac-
tion and penalty minimization scheduling model that
satisfied “hard constraints” and minimized the cost of
“soft constraints” violations. Furthermore, since multi-
ple schedules may be obtained using the same param-
eters defined by users, an optimization protocol can
be added to the system to reduce the search space and
obtain the optimal schedule while satisfying the con-
straints. In [27], the real-time walk-in patient sched-
uling optimization problem was addressed. An overall
patient scheduling model was integrated. The status
and information of all outpatient departments were
combined. The hybrid and agent algorithm was devel-
oped to identify the best path for the patient while also
lowering cycle time (from registration to exit). In [50],
similar issues have been further refined. Conforti et al.
defined that the scheduling objective of radiotherapy
patients in the oncology department was to ensure the
best treatment in the shortest possible time. As a result,
the waiting time should be minimized, and device uti-
lization should be maximized. Various criteria were
added to the optimization model.

The limitations of previous PA approaches are mani-
fold. Firstly, previous PA approaches emphasized the
importance of reducing patients’ waiting time, ignor-
ing the balance of assignments among doctors, which is
crucial for cloud healthcare systems’ efficiency and scal-
ability. Secondly, previous optimization approaches did
not provide sufficient global optimization performance,
easily trapped by the local optima. Thirdly, no distributed
computation framework was proposed. Therefore, the
convergence speed is limited and the running time can-
not be reduced.

The application of GAs also has remarkable achieve-
ments in the medical and healthcare fields. Yadav et al.
[51] focused on optimizing blood bank inventory con-
trol, a healthcare system, on enhancing its determinism.
The problems of inbound and outbound logistics and
inventory inflation were solved by a multi-objective GA
and reliability application using minimum cost optimiza-
tion of other parameters. Ahmed et al. [52] improved the
modeling of building degradation to alleviate budgetary
constraints on the maintenance of medical resources and
to reduce the incidence of accidents. Developing a fuzzy
Markov model based on a hybrid GA with a nonhomo-
geneous transition probability matrix based on fuzzy
membership functions representing the hospital system’s
condition, age, and relative deterioration rate is utilized
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to address the inherited uncertainties. Mutingi and
Mbohwa [53] tackled the home healthcare worker sched-
uling problem. Considering the accelerating demand for
home care requires careful task allocation and scheduling
of limited healthcare resources, Mutingi and Mbohwa
proposed a group GA for scheduling the dispatch of
healthcare while considering the minimum economic
cost of time.

Genetic algorithm

GAs are potent meta-heuristics that improve and refine
Darwin’s theory of natural evolution. Based on ini-
tialization methods, GAs usually start by constructing
initial populations in a randomized and uniform man-
ner. Each population is evaluated for its fit to the target
problem using a fitness function. New populations are
formed through a series of processes, such as crossover
and mutation, and new individuals replace the origi-
nal ones to form a new population. The great advantage
of GAs is that they can process problems of different
dimensions in parallel, considering several factors and
characteristics simultaneously. It is possible to optimize
the computational speed by managing the task alloca-
tion between off-the-shelf. In terms of application areas
and problem areas, we focus on the typical characteris-
tics of applications and the classification of GAs, respec-
tively, and optimize solutions from different dimensions
through examples. The overall procedure of GA is given
as follows.

First, the program creates a set number of individu-
als representing the solutions to the optimized prob-
lem at random. When the operator interferes with this
randomly produced process to increase the quality of
the first population, the quality of the initial population
improves. After that, each generation’s individuals are
given a value, and the fitness value is calculated using
the fitness function. Dominant populations obtain a
higher degree of adaptation compared to disadvantaged
populations.

The next step is to generate the next generation of indi-
viduals to form the population. This process is done by
selection and replication, which involves crossover and
mutation in algorithmic studies. Selecting the winners
from the population and eliminating the inferior ones is
called selection. The goal of selection is to pass on their
directly optimized genes to the next generation or gener-
ate new individuals through crossover pairing and gen-
eration, which are then passed on to the next generation.
Selectivity is based on assessing the individual’s physical
condition in the population. Selection is based on the
fitness of new individuals. However, it does not mean at
the same time that it is entirely oriented toward fitness
because simply selecting individuals with high fitness will
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lead to a rapid local conversion of the algorithm to the
optimal solution rather than to the optimal global solu-
tion, which we call the initial stage. As a compromise,
GAs follow the principle that the higher the fitness, the
higher the chance of being selected, and the lower the fit-
ness, the lower the chance of being selected. The initial
data can be selected to form a relatively optimal group.

After that, the selected individuals enter the mating
process. The core of biological evolution in nature is the
recombination of biogenetics (coupled with mutation).
After this series of processes (selection, crossover, muta-
tion), a new generation of individuals differs from the
first generation. Each generation moves toward improved
overall fitness Because individuals with greater adapt-
ability are more likely to survive and produce the next
generation. Conversely, poorly adapted individuals are
gradually eliminated.

Distributed genetic algorithm for patient
assignment

This section illustrates the proposed DGA for optimizing
the PA problem. Firstly, we introduce the representation
manner and initialization strategy of DGA. Secondly, the
distributed framework of DGA is illustrated in detail.
Afterward, the crossover and mutation operators of DGA
are described. Finally, the entire procedure of DGA is
described.

Representation and initialization

In GA, each individual represents a solution for PA. In
each individual, each gene indicates the assignment of
each patient. An example of this representation manner
is given in Fig. 2. In this example, three doctors allocated
to for each patient (represented by A, B,..., F). Different
digits with different colors represent different doctors.
In total, six doctors are included in this example. There-
fore, one doctor is chosen from the candidature lists for

PID DID; DID, DID;

A 1 2 5]

B 2 4 6 A B C D E F
C 3 4 5 M I 1 4 3 2 B 1
D 1 2 3 I 2 6 5 3 6 5

E 3 4 6

F 1 5 6

Fig. 2 lllustration of the representation manner in DGA
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each patient. In this example, two individuals are given
(represented by I; and I,). For the first patient (patient A),
doctor 1 is allocated to in individual I, while doctor 2 is
allocated to individual I. For each complete individual,
it can be directly evaluated according to the definition of
the PA problem.

In the initial population of the proposed DGA, all the
individuals are generated randomly according to the
above manner. More specifically, the doctor is randomly
chosen from the corresponding candidature list for each
patient listed in each individual.

Distributed framework

As we introduced, GA with the distributed framework
has shown its advantages in terms of population diversity,
convergence speed, and optimization speed. The initial
population is divided into several sub-populations in the
distributed framework, each completing the evolutionary
process independently. Based on the predefined topol-
ogy, sub-populations share their elite individuals (e.g., the
best individuals) with the predefined migration interval
(M1I). Once one sub-population receives the elite individ-
ual from the neighbors in the topology, the current sub-
population will randomly select an existing individual
(not the best one) to replace.

The proposed DGA uses a distributed framework with
a ring communication topology. An example of the dis-
tributed framework is given in Fig. 3. As shown in this
figure, each big hexagon represents a sub-population.
The small triangle and five hexagons represent the best
individual and the other five individuals in each big hexa-
gon. During the migration operator, the best individuals
in sub-populations are sent to the corresponding neigh-
bor sub-populations according to the ring topology with
the predefined migration topology. Afterward, one hexa-
gon in the sub-population is replaced by the triangle,
representing one random individual replaced by the best
individual.

In DGA, the distributed framework is effective in main-
taining population diversity. Thus, the exploration search
ability of DGA is guaranteed. Besides, by migrating elite
individuals among the sub-populations, the population

o'‘e o‘e A
08 'R
‘e - o'

@
6,6,.,0,8
'R ¢

Fig. 3 lllustration of distributed framework in DGA
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quality of each sub-population is improved, which helps
improve the exploitation search ability of DGA. With
the help of the distributed framework and migration
operator, DGA is likely to achieve the trade-off between
exploration and exploitation during the evolution. Fur-
thermore, the distributed framework helps improve the
execution speed of DGA.

Crossover operator

In genetics, the crossover operator is an algorithmic
procedure that encapsulates the phenomena of chro-
mosomal crossover exchange and biological hybridiza-
tion. For example, the act of recombining and assigning
genes on the chromosomes of two parents to form the
next generation of humans may combine the dominant
genomes of the two parents to produce new individuals
more adaptable and closer to the ideal solution via cross-
ing over.

Similarly, the core of GAs is the internal operation of
genetic manipulation. By crossover, we mean the func-
tion of replacement and recombination of parts of the
structure of biparental individuals, resulting in new indi-
viduals. The searchability of GAs is greatly improved by
crossover. First, general GAs have a mating probability
(crossover probability). This mating probability reflects
the probability of two selected individuals mating. Each
pair of parent individuals produces one or multiple new
individuals as the offspring, while the unmated individu-
als remain unchanged. In the produced child individual,
part of the information comes from the father individual,
while the left comes from the mother individual.

An example of the crossover operator in GA is given
in Fig. 4. In the example, two individuals (represented by
I; and I). The information included these two individu-
als is then exchanged. In this example, each individual
includes six genes representing six patients. The values
on six genes indicate the assignment of these six patients.
For each gene, with the same possibility, one value is ran-
domly chosen from two individuals during the crosso-
ver operator. For instance, on the first gene (gene A), the
value in individual I; is chosen. Thus, in the child indi-
vidual (represented by C), the value on the first bit is 1.

I, 2 6 5 3 6 5

Fig. 4 lllustration of crossover operator in DGA
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Similarly, on the second gene (gene B), the value in C
comes from individual I5.

Mutation operator

There are always individual differences between the
parents and offspring of an organism, i.e., differences in
the genetic material of different individuals in the same
gene pool are called mutations.

The mutation operator’s primary goal is to change the
gene values at a specific location in individual strings in
the population. The probability of the mutation opera-
tor is represented by a constant in the general GA for
fixed mutations (the probability of mutation). Based
on this probability, a random mutation on the chromo-
some of a new individual is usually a change of one byte
of the chromosome. There are two reasons for intro-
ducing mutations into GAs: First, give the GA a local
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random search function. The variation operator’s local
random search capability can speed up the convergence
in the optimal solution when the GA approximates the
optimal solution neighborhood by the crossover opera-
tor. In this case, the variance probability should take a
small value. Otherwise, the variation will destroy the
building blocks close to the optimal solution. The sec-
ond is to enable the GA to maintain population diver-
sity and prevent premature convergence. In this case,
the convergence probability should take a more mean-
ingful value.

In Fig. 5, an example of the mutation operator
is given. With the mutation rate MR, each gene of
the child individual (represented by C) is randomly
adjusted. The third gene (gene C) is chosen randomly in
this example. Therefore, its value is randomly adjusted,
and its value is changed from 5 to 4.

Algorithm 1 Pseudo-code of DGA

procedure MASTER NODE
Set initial generation g = 0

1:
2
3: Divide the population into N.SP sub-populations
4

while terminal condition is not met do

5 if ¢ % MI =0 then > with the predefined migration interval
6 Receive elite individuals from slave nodes

7: Send the elite individuals to corresponding slave nodes

8 end if

9 g=9g+1

10: end while

11: Output the best solution
12: end procedure

14: procedure SLAVE NODE

15: for every generation do

16: for each pair of parent individuals do

17: Perform the crossover operator

18: Perform the mutation operator

19: Evaluate the mutant child individual

20: if the child individual is better than any of the parent individuals then
21: Replace one of the parent individuals with the child individual

22: end if

23: if the child individual is better than the existing best individual then
24: Replace the best individual with the child individual

25: end if

26: end for

27: if g % MI =0 then > with the predefined migration interval
28: Send the best individual to the master node

29: Receive the elite individual from the master node

30: Use the migrated individual to replace a randomly chosen individual

31: end if

32: end for

33: Send the best solution to the master node

34: end procedure
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M 1 6 4 2 3 5

Fig. 5 lllustration of mutation operator in DGA

Overall procedure

The pseudo-code of DGA is given in Algorithm 1. As
shown in the pseudo-code, a master—slave model is uti-
lized to implement the DGA algorithm. At the master
node, the generation index g is set as zero. Then the entire
population is divided into NSP sub-populations and sent
to the corresponding NSP slave nodes. With the prede-
fined migration interval MI, the master node receives the
elite individuals from all the slave nodes. Then it sends
these elite individuals to the corresponding slave nodes
according to the ring topology. The migration process is
executed until the terminal condition is satisfied. Finally,
the best solution to the PA problem is outputted.

At the slave node, each sub-population evolves inde-
pendently. During the evolution, in each generation, for
each pair of parent individuals, the crossover operator is
executed to exchange the allocation information in par-
ent individuals and generate the child individual. After-
ward, the mutation operator is carried out on the child
individual to improve the population diversity. After the
mutation operator, the mutant child individual is evalu-
ated and compared with the parent individuals by the

Table 1 Properties of 16 test instances

Test instances nP nD T

Ty 100 10 [5,20]
T 100 20 [5,20]
T3 100 30 [5,20]
Ta 100 40 [5,20]
Ts 200 10 [5,20]
Te 200 20 [5,20]
Tz 200 30 [5,20]
Ts 200 40 [5,20]
Ty 300 10 [5,20]
Tio 300 20 [5,20]
Th 300 30 [5, 20]
T2 300 40 [5,20]
Ti3 400 10 [5,20]
Tia 400 20 [5,20]
Tis 400 30 [5,20]
Te 400 40 [5,20]
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selection operator. If the mutant child individual is better
than any parent individual, one of the parent individuals
will be replaced. Otherwise, the mutant child individual
will not be kept in the population. Then, the migration
operator is carried out with the predefined mutation
interval MI. Each slave node sends the best individual to
the master node and receives one elite individual from
the master node. Afterward, one randomly chosen indi-
vidual in the sub-population that is not the best individ-
ual will be replaced by the received migrated individual.
Finally, the best individual is returned to the master node.

Experimental setup

This section illustrates the test instances, parameter set-
tings, and algorithm implementation in the following
experiments.

In the subsequent experimental studies, 16 test
instances are utilized to investigate the performance of
the proposed DGA. Table 1 outlines the properties of
these test instances, including the number of patients nP,
the number of doctors nD, and the range of estimated
diagnosis time 7.

In the proposed DGA, the sub-population size SPS is
set as 20; the number of sub-population NSP is set as 4;
the mutation rate MR is set as 0.1; the migration interval
MI is set as 5. For all the algorithms, the maximum fit-
ness evaluation number is set as nP x nD.

The distributed framework of DGA is implemented by
the Message Passing Interface (MPI). Each sub-popula-
tion is assigned to an independent computation core in
the CPU. The communication between sub-populations
is implemented by the message passing between CPU
cores. DGA and all the compared algorithms in this
paper are implemented in C++.

Experimental result

Comparison with existing approaches

To verify the performance of the proposed DGA, it is
compared with three existing algorithms, i.e., Random,
Greedy, differential evolution (DE) [54], and GA [43].
These algorithms are described as follows:

1. Random: This algorithm uses a random manner to
solve the PA problem. Random solutions are continu-
ously generated and compared with the best solution.
The best solution is replaced once a more competi-
tive solution is generated.

2. Greedy: This algorithm uses a greedy manner to
solve the PA problem. Each patient is greedily allo-
cated to a doctor.

3. DE [54]: This DE algorithm utilizes the “DE/best/1”
mutation schema to generate the mutant individu-
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Table 2 TF values of DGA and compared algorithms on all text instances

Test instances Random Greedy DE GA DGA

Avg Std Result Avg Std Avg Std Avg Std

Ty 1.28E+01 1.81E400 2.40E+01 T.11E+01 1.90E4-00 6.90E4-00 9.27E—-01 5.68E+00" 8.68E—01
T 1.49E4-01 1.01E4-00 1.22E401 1.24E+01 8.55E—-01 745E+4+00 6.43E—01 6.28E+00" 6.86E—01
T3 1.40E+01 8.01E-01 9.66E+00 1.13E+01 8.18E—01 7.30E+00 4.94E—-01 5.72E+00" 6.85E—01
Ta 1.37E401 5.67E-01 8.98E+00 1.14E+01 6.25E—01 8.05E4-00 2.76E—01 6.41E4+00" 3.58E—-01
Ts 1.91E401 1.72E4-00 4.83E401 1.60E+01 1.80E4+00 9.42E4-00 1.26E4-00 7.85E4+00" 9.04E—-01
Te 2.03E401 1.47E4-00 2.54E+01 1.64E+01 1.16E4-00 1.00E+01 1.05E4-00 7.79E+00" 8.33E—-01
T7 1.91E4-01 1.01E+00 1.73E+01 1.50E4-01 7.02E-01 9.50E400 6.93E—01 7.58E+00" 5.52E-01
Ts 1.86E401 7.84E—-01 1.22E4-01 1.51E4+01 6.48E—01 9.69E+00 4.59E—-01 7.88E+00" 6.03E—01
To 2.08E+401 3.02E+00 8.06E+01 1.63E+01 2.31E+00 1.05E401 1.23E4-00 8.16E+00" 1.27E+00
To 261E4+01 1.91E+00 3.58E401 1.96E401 1.50E-+00 1.22E+01 8.68E—01 9.21E4+00" 8.82E—01
T 2.43E+01 1.04E4-00 2.54E+01 1.94E+01 1.30E4-00 1.22E+401 8.33E-01 9.97E+00" 8.09E—01
Ti> 2.07E4-01 9.75E-01 1.33E+01 1.72E401 847E—01 1.11E401 5.24E—-01 9.19E+00" 4.46E-01
T13 2.24E4-01 3.51E4+00 9.62E401 1.91E401 3238400 1.12E+01 1.64E+00 8.51E+4007 1.18E400
Tia 2.93E4-01 2.25E4-00 3.89E4-01 2.24E4-01 2.05E+00 1.37E4+01 9.76E—01 1.06E4+017 9.58E—01
Tis 2.78E4-01 1.28E4-00 2.61E401 2.15E4-01 1.44E4+00 1.34E401 9.04E—-01 1.09E4017 6.53E—01
Tie 2.57E401 1.18E4-00 1.91E401 2.03E4-01 1.03E4-00 1.32E4-01 9.04E-01 1.06E+01" 6.58E—01

"indicates that the difference among the compared results is significant based on the Wilcoxon rank-sum test with a 5% level

als, which can help accelerate the exploitation search
ability during the optimization of the PA problem.

4. GA [43]: In this algorithm, a GA is specifically
designed for the PA problem, including the repre-
sentation manner, crossover operator, and mutation
operator.

Table 2 lists the mean (Avg) and standard deviation (Std)
of TF values (defined in Sect. 2) over 25 independent
runs. Therefore, a lower TF value indicates that the cor-
responding algorithm can provide better optimization
performance with regard to the balance of doctors’ diag-
nosis time. The best results (i.e., the lowest Avg values) in
Table 2 are highlighted in boldface. The Greedy approach
only lists its results since it can generate determinis-
tic results. The proposed DGA can achieve significant
advantages on all 16 test instances. The benefits of DGA
in heuristic strategies are confirmed compared to Ran-
dom. With the help of the crossover and mutation opera-
tors, information allocation among different individuals
is effectively exchanged, and more competitive individu-
als are generated and inserted into the population. Com-
pared with Greedy, the stronger feasibility of DGA in
population diversity is verified. The greedy technique is
more likely to get trapped by the local optima during the
PA problem optimization. Unlike the Greedy approach,
the population diversity of DGA can effectively guarantee

the exploration search ability of DGA. The benefit of
DGA in discrete-domain optimization is demonstrated
when compared to DE. The mutation strategy of DE,
such as “DE/best/1’} is efficient in the continuous-domain
calculation. For this discrete PA problem, its mutation
strategies are challenging to transfer information among
individuals. Compared with GA, the advantage of the
distributed framework in DGA is verified. Moreover,
with the architecture of the distribution framework, the
population diversity in DGA is maintained. Furthermore,
the migration of elite individuals among sub-populations
accelerates the optimization process. As a result, the
advantage of convergence speed is based on the ring
topology.

Besides, the Wilcoxon rank-sum test with a 0.05 level
is utilized to investigate the performance of these algo-
rithms in a statistical sense. In Table 2, the symbol '
shows that the corresponding result is significantly better
than the other compared results. The advantage of DGA
obtained in all the test instances is significant.

According to the problem formulation in Sect. 2,
the time complexity of calculating a given solution to
the PA problem is O(nP). Therefore, the time com-
plexity of the proposed DGA is O(nP? x nD). Simi-
larly, the time complexity of Random, DE, and GA is
OnP? x uD), the same as DGA. Different from these
algorithms, the time complexity of the Greedy method
is O(nP x nD). Although the Greedy method is of lower
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Fig. 6 Convergence curves of DGA and compared algorithms on six typical test instances

time complexity, due to the limitation of search diver-
sity, its optimization performance is significantly worse
than the proposed DGA. Regarding the space com-
plexity, the space complexity of Random and Greedy
is O(nP x nD), while the space complexity of DE, GA,
and the proposed DGA is O(nP x (nD + SPS)).

In Fig. 6, the convergence curves of Random, DE, GA,
and DGA on six typical test instances are plotted. A line
with unique color indicates each approach. The num-
ber of fitness evaluations is indicated on the horizontal
axis, and the value of TF is represented on the vertical
axis for each point on the line. The Greedy approach
is not given in the figure since no eligible solution is
generated during the greedy construction. Compared
with the Random approach, the advantage of DGA in
search efficiency is verified. Furthermore, with the help
of the population crossover and mutation operators,
DGA is more likely to achieve the trade-off between
exploration and exploitation. Compared with DE, the
advantage of DGA in discrete-domain optimization is
verified. In addition, compared with GA, the advantage
of DGA in information exchange efficiency and popula-
tion diversity is shown. In summary, DGA achieves the
best convergence performance in all six test instances.

Impact of proposed components

In this section, we will experiment to verify the impact of
the proposed components in the DGA. Besides the pro-
posed DGA, we have implemented three variants.

1. DGA-no-crossover: This variant is implemented by
removing the crossover operator from DGA.

2. DGA-no-mutation: In this variant, the mutation
operator is removed. Accordingly, the crossover
operator and distributed framework are kept.

3. DGA-no-distributed: In this variant, the proposed
distributed framework is proposed. Therefore, this
variant is implemented serially.

Table 3 lists the average (Avg) and standard deviation
(Std) values of TF (defined in Sect. 2) obtained by three
variants and DGA. The best results (i.e., the lowest Avg
values) in all the test instances are labeled in boldface.
Overall, the complete-version DGA can outperform the
compared variants on all 16 test instances. Compared
with DGA-no-crossover, DGA shows its advantage in
terms of the crossover operator, effectively exchanging
allocation between parent individuals. Compared with
DGA-no-mutation, DGA shows its advantage in terms
of the mutation operator, which can effectively improve
population diversity. Finally, compared with the variant
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Table 3 TF values of DGA and three variants on all text instances

Test instances DGA-no-crossover DGA-no-mutation DGA-no-distributed DGA

Avg Std Avg Std Avg Std Avg Std

Ty 6.50E+00 9.99E—-01 6.91E4+00 1.07E+00 6.90E+00 9.27E—01 5.68E+4+00" 8.68E—01
T, 7.57E4+00 5.36E—01 7.67E400 8.24E—01 745E+00 6.43E—01 6.28E4+00" 6.86E—01
T3 7.18E4-00 5.86E—01 7.04E4-00 7.05E—01 7.30E4-00 4.94E-01 5.72E+00" 6.85E—01
Ty 7.87E4-00 4.23E-01 7.79E4-00 4.42E-01 8.05E+00 2.76E—01 6.41E4+00" 3.58E—-01
Ts 8.39E4+00 1.15E4-00 1.02E4-01 1.64E4+00 9.42E400 1.26E+00 7.85E4+00" 9.04E—01
Te 9.23E4+00 1.09E+00 9.60E+00 9.93E—-01 1.00E+01 1.05E4+00 7.79E+00" 8.33E—01
T7 8.72E400 6.58E—01 8.71E4+00 8.33E—01 9.50E4-00 6.93E—01 7.58E+4+00" 5.52E—01
Ts 9.05E+4-00 6.25E—-01 9.25E4-00 495E—-01 9.69E+00 4.59E—-01 7.88E+00" 6.03E—01
Ty 9.44E+00 1.37E+00 1.05E+01 1.30E+00 1.05E+01 1.23E400 8.16E+00" 1.27E4-00
Tio 1.06E+01 1.17E400 1.16E4-01 8.93E—01 1.22E4-01 8.68E—01 9.21E4+00" 8.82E—01
Tiy 1.10E4-01 8.59E—-01 1.15E401 9.84E—01 1.22E401 8.33E—-01 9.97E+00" 8.09E—01
Ty 1.03E4-01 5.75E—01 1.04E401 6.27E—01 1.11E401 5.24E—01 9.19E4+00" 4.46E—01
T3 1.05E+01 1.39E4-00 1.15E4-01 1.79E400 1.12E4-01 1.64E4-00 8.51E4+00" 1.18E400
Tia 1.24E401 1.05E+00 1.30E+01 9.91E—01 1.37E4+01 9.76E—01 1.06E4+017 9.58E—01
Tis 1.24E4-01 8.24E—01 1.26E4-01 741E-01 1.34E4-01 9.04E—01 1.09E+01" 6.53E—01
Ti6 1.23E401 7.32E-01 1.22E401 5.55E—-01 1.32E401 9.04E—01 1.06E4+01" 6.58E—01

"indicates that the difference among the compared results is significant based on the Wilcoxon rank-sum test with a 5% level

DGA-no-distributed, DGA shows the advantage of the
distributed framework, which can effectively balance the
exploration and exploitation searching abilities.

Besides, the Wilcoxon rank-sum (significance level
0.05) is employed to verify DGA’s advantage in a statisti-
cal sense. As shown in the table, the symbol " shows that
the labeled results are significantly better than the com-
pared results. In all 16 test instances, the advantages of
the complete DGA are significant.

Conclusion

In this paper, a DGA has been proposed to optimize the bal-
ance of PA schedules. Each individual in the proposed DGA
represents a solution for the PA optimization problem. Fur-
thermore, three operators in the proposed DGA, i.e., cross-
over, mutation, and selection, have been utilized to improve
the competitiveness of these solutions. The distributed
framework in the proposed DGA helps improve population
diversity and scalability. Through the analysis of the experi-
mental results, we have verified that the proposed DGA
effectively optimizes the PA problem. In addition, we have
verified the effectiveness of all the proposed components.

In the future, it would be crucial to include more objec-
tives in the PA problem. Thus, some practical multi-
objective optimization algorithms should be designed
accordingly.
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