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Abstract. The study of solutions with fixed energy of certain classes
of Lagrangian (or Hamiltonian) systems is reduced, via the classical
Maupertuis—Jacobi variational principle, to the study of geodesics in
Riemannian manifolds. We are interested in investigating the problem of
existence of brake orbits and homoclinics, in which case the Maupertuis—
Jacobi principle produces a Riemannian manifold with boundary and
with metric degenerating in a nontrivial way on the boundary. In this
paper we use the classical Maupertuis—Jacobi principle to show how to
remove the degeneration of the metric on the boundary, and we prove in
full generality how the brake orbit and the homoclinic multiplicity prob-
lem can be reduced to the study of multiplicity of orthogonal geodesic
chords in a manifold with regular and strongly concave boundary.

1. INTRODUCTION

The study of periodic and homoclinic orbits of Lagrangian and Hamil-
tonian systems is an extremely active research field in classical and modern
mathematics, having a huge number of applications in the physical sciences.
One of the peculiarities of the problem is that, although already very popu-
lar among classical analysts and geometers, it has never been out of fashion,
and it has been studied for a lonc time with techniques of an increasing level
of sophistication. Indeed, the study of solutions of Hamiltonian systems has
motivated many recent developments of several mathematical theories, in-
cluding calculus of variations, symplectic geometry and Morse theory, among
others, and the vaste literature on the topic witnesses the leading role of the
subject in modern mathematics.
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The central interest of the present paper is the study of solutions of
an autonomous Lagrangian (or Hamiltonian) system, having prescribed en-
ergy, in a manifold M and belonging to two special classes of solutions:
the homoclinic orbits and the brake orbits. Homoclinic orbits are solutions
x : R — M of the system for which limy_, 4 o z(¢) = limy_,_ o 2(t) = 9, and
limy—, 40 (t) = 0. The point z¢p must then be a critical point of the potential
function of the system. Brake orbits are a special class of periodic solutions
that have an oscillating character, i.e., periodic solutions x : R — M having
period 27, with (T +t) = x(T —t) and (T +t) = —&(T —t) for all t € R.
Clearly, #(kT) = 0 for all k € Z.

By a classical variational principle, known as the Maupertuis—Jacobi prin-
ciple, solutions of autonomous Lagrangian or Hamiltonian systems having
a fixed value of the energy correspond to geodesics relative to a Riemann-
ian metric, called the Jacobi metric. When dealing with homoclinic orbits
issuing from a critical point of the potential function, or with brake orbits,
then the classical formulation of the Maupertuis—Jacobi principle fails, due
to the fact that such solutions pass through a region where the Jacobi metric
degenerates in a nontrivial way. An accurate analysis of the geodesic behav-
ior near such degeneracies, that occur at the level of the prescribed energy,
has led many authors to obtain existence results by perturbation techniques.
More specifically, following an original idea by Seifert [11], some authors (see
[6]) have been able to perform a geometrical construction consisting of at-
taching a smooth, conver and sufficiently small collar (see Figure 1) to the
degenerate region, in such a way that the geodesics in the resulting manifold
could be counted by standard techniques in convex Riemannian geometry
([2, 8]). Then, a limit argument was used to obtain existence results for
geodesics in the original degenerate metric by letting the size of the collar
g0 to zero. The same idea cannot be used if one wants to obtain multiplic-
ity results, due to the fact that such a limit procedure does not guarantee
that possibly distinct geodesics in the perturbed metric converge to geomet-
rically distinct geodesics in the original Jacobi metric, unless one poses ad
hoc "nonresonance” assumptions (see [6]). Here, by geometrically distinct,
we mean geodesics having different images; the nonresonance assumptions
mentioned above guarantee that we may avoid the situation in which dis-
tinct geodesics in the perturbed metric tend to the same periodic geodesic
travelled a different number of times.

The starting point of this paper is the idea that, if one wants to preserve
the number of distinct geodesics, then one has to perform a geometrical
construction that avoids degenerate regions and limits procedure. Such a
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FiGURE 1. Gluing a collar with convex boundary to a con-
cave boundary.

construction would obviously be based on a careful investigation of the ge-
odesic behavior near the boundary of the level set of the prescribed energy.
Working in this direction has lead to the quite remarkable observation that a
noncritical level set of the potential function, or a small ball around a nonde-
generate maximum point of the potential, are near certain hypersurfaces that
are strongly concave relative to the Jacobi metric, and that have the prop-
erty that orthogonal geodesic chords arriving on one of these hypersurfaces
can be uniquely extended to geodesic chords up to the degenerate boundary.
The presence of concave hypersurfaces near the degenerate boundary can be
interpreted as an indication that Seifert’s technique of gluing a convex collar
would be somewhat unnatural in order to study the multiplicity problem in
full generality.

The main results of this paper are contained in Theorem 5.9, relating
the brake orbits problem to the orthogonal geodesic chords problem, and
Theorem 5.19, that deals with the homoclinics problem.

The issue of concavity, as opposed to the convexity property used in the
classical literature, is the key point to develop a multiplicity theory for brake
orbits and homoclinic orbits under purely topological assumptions on the
underlying manifolds. These multiplicity results constitute the topic of two
of the papers by the authors ([4, 5]).
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2. GEODESICS AND CONCAVITY

Let (M,g) be a smooth (i.e., of class C?) Riemannian manifold with
dim(M) = m > 2, let dist denote the distance function on M induced by g;
the symbol V will denote the covariant derivative of the Levi-Civita connec-
tion of g, as well as the gradient differential operator for smooth maps on
M. The Hessian H/(q) of a smooth map f : M — R at a point ¢ € M is the
symmetric bilinear form H” (¢)(v,w) = g((V,V f)(q),w) for all v,w € T, M;
equivalently, H/(¢)(v,v) = %L:Of('y(s)), where v : |—e,e[ — M is the
unique (affinely parameterized) geodesic in M with v(0) = ¢ and ¥(0) = v.
We will denote by % the covariant derivative along a curve, in such a way
that %i‘ = 0 is the equation of the geodesics. A basic reference on the
background material for Riemannian geometry is [3].

Let Q C M be an open subset; Q = Q[0 will denote its closure. There
are several notions of convexity and concavity in Riemannian geometry, ex-
tending the usual ones for subsets of the Euclidean space R". In this paper
we will use a somewhat concavity condition for compact subsets of M, that
we will refer to as “strong concavity” below, and which is stable by C?-small
perturbations of the boundary. Let us first recall the following:

Definition 2.1. Q is said to be convex if every geodesic v : [a,b] — Q
whose endpoints y(a) and y(b) are in ) has image entirely contained in Q.
Likewise, ) is said to be concave if its complement M \ ) is convex.

If 09 is a smooth embedded submanifold of M, let I,(z) : T,(092) x
T,(02) — R denote the second fundamental form of O in the normal di-

rection n € T,(0Q)*. Recall that I,(x) is a symmetric bilinear form on
T,(0€2) defined by:

Iy(z)(v,w) = g(VoW.n),  v,w € T;(0%),
where W is any local extension of w to a smooth vector field along 0f2.

Remark 2.2. Assume that a smooth function ¢ : M — R is given with the
property that Q = <Z>*1((—oo,())) and 09 = ¢~1(0), with d¢ # 0 on 9Q. !
The following equality between the Hessian H? and the second fundamental

IFor example one can choose ¢ such that |¢(q)| = dist(q,dQ) for all ¢ in a (closed)
neighborhood of 9.
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form? of 90 holds:
H?(z)(v,v) = vy (T)(v,v), x €N, ve T (00); (2.1)

namely, if x € 0Q, v € T,(92) and V is a local extension around z of v to a
vector field which is tangent to 92, then U(g(Vcb, V)) =0 on 01, and thus:

H?(2)(v,0) = v(9(V, V) = 9(V, Vo V) = ~Tlyy(s) (2) (v, v).
Note that the second fundamental form is defined intrinsically, while there

is in general no natural choice for a function ¢ describing the boundary of
Q) as above.

Definition 2.3. We will say that that Q is strongly concave if () is
positive definite for all x € 0Q and all inward pointing normal directions n.

Remark 2.4. Strong concavity is evidently a C%-open condition. It should
also be emphasized that if Q is strongly concave, then for any smooth map
¢ : M — R as in Remark 2.2, and for all ¢ € 09, the Hessian H?(q) is
negative definite on 7, (OQ) From this observation, it follows immediately
that geodesics starting tangentially to 0€2 move inside ().

The main objects of our study are geodesics in M having image in € and
with endpoints orthogonal to 0€2. We distinguish a special class of such
geodesics, called “weak”, whose relevance will not be emphasized in the
present paper, but it will be used in a substantial way in the proof of the
multiplicity results in [4].

Definition 2.5. A geodesic v : [a,b] — M is called a geodesic chord in
Q if y(Ja,b]) € Q and v(a),y(b) € Q; by a weak geodesic chord we will
mean a geodesic 7y : [a,b] — M with image in Q and endpoints v(a),y(b) €
0. A (weak) geodesic chord is called orthogonal if (a™) € (T,(,)00)*
and (b)) € (Tv(b)GQ)L, where 4(-%) denote the lateral derivatives. An
orthogonal geodesic chord in Q whose endpoints belong to distinct connected
components of 0Q will be called a crossing orthogonal geodesic chord in Q
(see Figure 2).

For shortness, we will write OGC for “orthogonal geodesic chord” and
WOGC for “weak orthogonal geodesic chord”.

For the proof of the multiplicity results in [4], we will use a geometrical
construction that will work in a situation where one can exclude a prior: the

20bserve that, with our definition of ¢, then V¢ is a normal vector to 92 pointing
outwards from ).
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FIGURE 2. A weak orthogonal geodesic chord (WOGC) in Q
(above), and a crossing OGC (below).

existence in Q of (crossing) weak orthogonal geodesic chords in 9€2. We will
now show that one does not lose generality in assuming that there are no
such WOGC’s in €2 by proving the following;:

Proposition 2.6. Let 2 C M be an open set whose boundary 0§2 is smooth
and compact and with Q strongly concave. Assume that there are only a
finite number of (crossing) orthogonal geodesic chords in Q. Then, there
exists an open subset ' C Q with the following properties:

(1) & is diffeomorphic to Q and it has smooth boundary;

(2) ' is strongly concave;

(3) the number of (crossing) OGC’s in Q' is less than or equal to the
number of (crossing) OGC’s in Q ;

(4) every (crossing) WOGC in ' is a (crossing) OGC in (V.

Proof. The desired set ' will be taken of the form: Q' = ¢~ ((—o0, —4)),
with § > 0 small, and with ¢ a smooth map as in Remark 2.2 such that
|o(q)| = dist(g,092) for ¢ near 9. Observe that if ¢ is small enough, then
by continuity d¢ # 0 on ¢~1([—6,0]), which implies that Q' is smooth and
that Q' is diffeomorphic to Q, as we see using the integral curves of V¢.
Since strong concavity is an open condition in the C? topology, if 6 > 0 is
small enough then ' is strongly concave, proving (2).
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Moreover, § must be chosen small enough so that the exponential map
gives a diffeomorphism from an open neighborhood of the zero section of the
normal bundle of 9 to the set ¢~ ((—26,26)); the existence of such § is guar-
anteed by our compactness assumption on 92. Since ¢(q) = —dist(q, 9Q)
near 0f), then every (crossing) geodesic in 2 that arrives orthogonally at
09’ can be smoothly extended to a (crossing) geodesic in Q that arrives or-
thogonally at 9€); observe that any such extended geodesic only touches 0f2
at the endpoints; i.e., it is a (crossing) OGC in Q. This proves part (3).

We claim that there exists 0 > 0 arbitrarily small such that every (cross-
ing) WOGC is a (crossing) OGC in ¢~ ((—oc0,—d)). Assume on the con-
trary that there exists a sequence d,, > 0 with §,, — 0 as n — 00, a sequence
0 < s, < 1 and a sequence of (crossing) geodesics v, : [0,1] — Q with
¢(7n(0>) = (b(’}/n(sn)) = (b(’yn(l)) = —On, P‘)/n(()) and 7n<1) orthogonal to
¢~ 1(=0,) and ¢(yn(s)) < =6, for all s € [0,1] and all n € N. As we have
observed, for n large each geodesic 7, can be smoothly extended to a (cross-
ing) OGC in €, and clearly all such extensions cannot make a finite set of
geometrically distinct (crossing) OGC’s in Q. Namely, each v, is tangent
to the surface ¢~1(—d,), and to no other surface of the form ¢—!(—§) with
0 < &p. This says that the extensions of the ~,, are all geometrically distinct,
which contradicts the fact that there is only a finite number of (crossing)
OGC’s in Q and proves part (4). O

3. BRAKE AND HOMOCLINIC ORBITS OF HAMILTONIAN SYSTEMS
Let p = (p;), ¢ = (¢*) be coordinates on R?™, and let us consider a natural
Hamiltonian function H € C? (RQm,R), i.e., a function of the form

m

> a¥(@)pip; +V(9), (3.1)

i,7=1

where V' € C?(R™,R) and A(q) = (a”(q)) is a positive-definite quadratic
form on R™:

N =

H(p,q) =

m

> a(q)pip; = v(q)lql?

i,j=1
for some continuous function v : R™ — RT and for all (p, q) € R*™.
The corresponding Hamiltonian system is:

. oOH

b=——3;

{ . on" (3.2)
q= a—p’
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where the dot denotes differentiation with respect to time.

For all ¢ € R™, denote by L(q) : R™ — R the linear isomorphism whose
matrix with respect to the canonical basis is (ai;(q)), the inverse of (a¥(q));
it is easily seen that, if (p,q) is a solution of class C* of (3.2), then ¢ is
actually a map of class C? and

p = L(q)q- (3.3)

With a slight abuse of language, we will say that a C? map ¢ : I — R™ is
a solution of (3.2) if (p,q) is a solution of (3.2) where p is given by (3.3).
Since the system (3.2) is autonomous, i.e., time independent, then the func-
tion H is constant along each solution, and it represents the total energy of
the solution of the dynamical system. There exists a large amount of litera-
ture concerning the study of periodic solutions of autonomous Hamiltonian
systems having energy H prescribed (see for instance [7] and the references
therein).

We will be concerned with a special kind of periodic solutions of (3.2),
called brake orbits. A brake orbit for the system (3.2) is a nonconstant
periodic solution R > ¢ — (p(t), q(t)) € R?™ of class C? with the property
that p(0) = p(T) = 0 for some T" > 0. Since H is even in the variable
p, a brake orbit (p,q) is 2T periodic, with p odd and ¢ even about ¢ = 0
and about ¢t = T. Clearly, if F is the energy of a brake orbit (p,q), then
V(a(0)) = V((T)) = E.

The link between solutions of brake orbits and orthogonal geodesic chords
is obtained in Theorem 5.9 (used in [4] to obtain a multiplicity result for
brake orbits). Its proof is based on a well-known variational principle, that
relates solutions of (3.2) having prescribed energy E with curves in the open
subset Qp C R™:

Qp =V ((-00,E)) ={z e R": V(z) < E} (3.4)
endowed with the Jacobi metric (see Proposition 4.1):
1 D
gp(z) = (E—V(z)) - 3 Zl aij(x) da’ da’. (3.5)
1,]=

Let us now consider the problem of homoclinics on a Riemannian manifold

(M, g).
Assume that we are given a map V € C? (M , R); the corresponding
second-order Hamiltonian system is the equation:

D4+ VV(g) =0. (3.6)
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Note that if M = R™ and g is the Riemannian metric
m
9=3 Z aij(z)dz’ da?, (3.7)
1,j=1
where the coefficients a;; are as above, then equation (3.6) is equivalent to
(3.2), in the sense that z is a solution of (3.6) if and only if the pair ¢ = =
and p = L(z)Z is a solution of (3.2).
Let xg € M be a critical point of V, i.e., such that VV (z¢) = 0. We recall

that a homoclinic orbit for the system (3.6) emanating from zg is a solution
qgeC? (]R, M) of (3.6) such that:

Jim qt) = Tim (1) = 20, (3.8)
Jim (1) = Tim (1) = 0. (3.9)

To the authors’ knowledge, the only result available in the literature on
multiplicity of homoclinics in the autonomous case is due to Ambrosetti and
Coti-Zelati [1], to Paturel [9], to Rabinowitz [10] and to Tanaka [12]. A
quite general multiplicity result for homoclinics, generalizing those in [1],
in [9] and in [12], is given in [4] (and announced in [5]) using the result of
Theorem 5.19 that links homoclinics to orthogonal geodesic chords.

It should also be mentioned that very likely all the results in this paper
can be extended to the case of Hamiltonian functions H more general than
(3.1). As observed by Weinstein in [13], Hamiltonians that are positively ho-
mogeneous in the momenta lead to Finsler metrics rather than Riemannian
metrics.

4. THE MAUPERTUIS PRINCIPLE

Throughout this section, (M, g) will denote a Riemannian manifold of
class C?; all our constructions will be made in suitable (relatively) compact
subsets of M, and for this reason it will not be restrictive to assume, as we
will, that (M, g) is complete.

4.1. The variational framework. The symbol H'([a,b], R™) will denote
the Sobolev space of all absolutely continuous functions f : [a,b] — R™
whose weak derivative is square integrable. Similarly, H 1([@, b, M ) will
denote the infinite-dimensional Hilbert manifold consisting of all absolutely
continuous curves z : [a,b] — M such that ¢ o 2.4 € H'([c,d],R™) for all
charts ¢ : U C M — R™ of M such that ZL‘([C, d]) CcU. By Hlloc((a, b),Rm)
we will denote the vector space of all continuous maps f : (a,b) — R™ such
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that f|i.q € H*([c,d],R™) for all [c,d] C Ja,b[; the set H\! (]a,b[,M) is
defined similarly. The Hilbert space norm of H'([a,b],R™) will be denoted
by |- ||a,p; for the purposes of this paper it will not be necessary to make the

choice among equivalent norms of H*([a,b],R™).

4.2. The Maupertuis—Jacobi principle for brake orbits. Let V €
C?(M,R) and let E € R. Consider the sublevel Qg of V in (3.4) and the
Maupertuis integral fqp @ H 1([a, b, Q2 E) — R, which is the geodesic action
functional relative to the metric gg (3.5), given by:

1

b
fap(x) = 5/ (E—V(z))g(, &) dt, (4.1)

where ¢ is the Riemannian metric (3.7). Observe that the metric gp degen-
erates on 0S)g.
The functional f,; is smooth, and its differential is readily computed as:

b
1/ g(j:,a'c)g(VV(ac),W) dt,

)
(4.2)
where W € H' ([a7 b], Rm). The corresponding Euler-Lagrange equation of
the critical points of fq 4 is

b
dfop(z)W = / (E-V(z)g(z, 2W)d

(E—V(IE(S)))%i(S)—g(VV(f(S)),fb(S))i(S)ﬂL%g(i(S)’i(S))VV(fU(S)) =0,
(4.3)

for all s € (a,b).
Solutions of the Hamiltonian system (3.2) having fixed energy E and crit-
ical points of the functional f,; of (4.1) are related by the following varia-
tional principle, known in the literature as the Maupertuis—Jacobi principle:

Proposition 4.1. Assume that F is a reqular value of the function V.
Let x € C°([a, ], R™) N H}..((a,b),R™) be a nonconstant curve such that

loc
b b
/ (E—V(x))g(d, 2W)dt — %/ g(#,2)g(VV(z),W)dt =0  (4.4)
for all W € C'(‘)’O(]a, b[,Rm), and such that

V(z(s)) < E, forallsce (a,b); (4.5)

and
V(z(a)),V(z(b)) < E. (4.6)
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Then, z € H' ([a,b],R™), and if V(z(a)) =V (x(b)) = E, then z(a) # x(b).
Moreover, in the above situation, there exist positive constants ¢, and T and
a C diffeomorphism o : [0, T] — [a,b] such that:

(E-V(2))g(#,&) =cp; onla,b], (4.7)
and, setting ¢ = x oo : [0,T] — R™, and p(s) = L(q(s))q(s), the pair
(g,p) : [0,T] — R?™ is a solution of (3.2) having energy E with ¢(0) = x(a),
q(T) = x(b). If V(z(a)) = V(z(b)) = E then q can be extended to a 2T-
periodic brake orbit of (3.2).

Proof. Proposition 4.1 is a classical result. For convenience of the reader
we give however a sketch of the proof.
Since z satisfies (4.4), standard regularization arguments show that z is

of class C? on ]a, b[, while integration by parts gives (4.3) for all s €]a,b|.
Equation (4.7) follows by contracting both sides of (4.3) with & using g.

Now set
1 /[° Co
t(S) = i/a m dr. (48)

We claim that 7" = t(b) < +oo. Indeed, fix sy €a,b[ and consider for

instance to(s) = 3 SSO m dr. Denote by og(t) the inverse of ¢, and
consider q( ) (00 (t)

Since o (t) = 2(c;)~ (B — V(2(00(t)))), a straightforward computation
shows that —q = —VV(q) and 29(q q) +V(q) = E. Since VV # 0 on
V-YE), if V(z(b)) = E, studying the second derivative of E — V(q(t))

shows that ¢ arrives in 2(b) € V~!(E) in a finite amount of time. Then to(b)
is finite. Analogously we can study the behavior near a, proving that T is
finite.

Now, denote by o : [0,T] — [a, b] the inverse map of (4.8), and set ¢(t) =
z(o(t)). As already observed, a straightforward computation shows that
Clljsq = —VV(q) and 2g(q, §) + V(q) = E. Therefore, the pair (¢, £(q)q) :
[0, 7] — R?™ is a solution of (3.2) with energy E.

Moreover, ¢(0) = z(a) and ¢(T) = x(b), and by the uniqueness of the
Cauchy problem, if V(z(a)) = V(z(b)) = E it must be that ¢(0) # ¢(T),
and ¢ can be extended to a periodic brake orbit. [l

4.3. The Maupertuis—Jacobi Principle near a nondegenerate maxi-
mum of the potential energy. The above formulation of the Maupertuis—
Jacobi principle is not suited to studying homoclinic orbits issuing from a
critical point of the potential function V. Our next goal is to establish an
extension of the principle that will be applied in this situation.
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Proposition 4.2. Let (M, g) be a Riemannian manifold, V € C? (M, ]R),
let o € M be a nondegenerate mazimum of V, and set E =V (xg). Assume

that x is a curve in the set C°([a,b], Qg) N HL,([a,b),Qr) such that:

b 1 b
/(E—V(x))g(:’n,%W)dt—ﬁ/ g(&,2)g(VV(z),W)dt=0 (4.9)

a

for allW € Cgo((a, b),Rm), and such that
V(z(s)) < E, fors € [a,b); (4.10)
x(b) = xo. (4.11)
b) such that

z(a) and

Then, there exists a C' diffeomorphism o : [0,4+00) — |a,
the curve ¢ = x o o is a solution of (3.6) satisfying q(0)
limy 4+ o0 q(t) = x0, limy— 400 G(t) = 0.

Proof. Choose p € (0,dist(z(a),x0)) and define oy € Ja,b[ as the first in-
stant s at which dist(2(s),z0) = o. By (4.9), the restriction x|, 4, is a
geodesic relative to the metric gg, since x([a, al]) is contained in a region
where E—V is positive. Denote by ¢, the constant value of (E—V (z))g(Z, &);
for all s € [a, a1] set:

1 [° Co
“@:il.E—vwv»“

and denote by o : [0,¢(a1)] — [a, a1] the inverse function of s — ¢(s). Then,
a straightforward calculations shows that the map ¢ = z o ¢ is a solution of
the equation (3.6) with 3g(d,q) + V(g) = E on [0, s(cv)].

Let ag € (a1, b) be the first instant s at which dist(z(s), zo) = §; we can
repeat the construction above obtaining a solution g, of (3.6) defined on an
interval [0,¢(a2)]. The key observation here is that, in fact, such a function
g« is an extension of ¢, and therefore it satisfies the same conservation law
$9(dv.¢.) + V(g.) = E on [0,#(az)]. An iteration of this construction pro-
duces a sequence a < a1 < az < ... < b such that dist(z(ax), z0) = 527,
maps of class C!, t : [a, L) — [0,T), its inverse o : [0,T) — [a, L), where:

1 [F Cy
T=>[ % 4 L=l b
2 /a E vy O €0 ol L= i o o],
and a curve of class C?, ¢ = x oo : [0,T) — Qp, that satisfies (3.6), and
with

S9(@.0)+ Via) = B (412)

on [0,7); in particular, g(q, ¢) is bounded.
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Let us prove that 7' = +oo and that limy_,4o q(t) = z9. We know
that, by construction, limg_,o t(ag) = T and limg_o q(t(ag)) = xo; sup-
pose by contradiction that there exists p > 0, and a sequence (3 such that
limg o0 B = L and dist(q(¢(Bk)), zo) > p for all k. Since z¢ is an isolated
maximum point, we can assume p is small enough so that

inf (E-V(Q)) =€>0. (4.13)
$p<dist(Q,z0)<p

Up to subsequences, we can obviously assume that 0y € (ag, agy1] for all k;
for k sufficiently large, there exists v € (g, 3x) which is the first instant

t € (a, Bx) at which dist(q(s(t)),z0) = £. Since g(¢,q) is bounded, there
exists v > 0 such that

t(yg) — t(ag) > v, for all k; (4.14)
from (4.13) and (4.14) we get:
t(an+1) N () N
/ (E—-V(q(r)))dr > Z/ (E-V(q(r))dr =Y ev=Néev — +oc
0 k=1"t(o%) k=1

(4.15)
as N — o0o. On the other hand, for all s € ]a, L],

t(s) s —a
[ E-vaenar=1 [fea=02%,

which is obviously inconsistent with (4.15), and therefore proves that

lim ¢(t) = xo.

t—1T—
Moreover, the conservation law (4.12) implies that lim ¢(¢) = 0.
t—T—

Finally, the local uniqueness of the solution of an initial-value problem
implies immediately that 7" cannot be finite; for, the only solution ¢ of (3.6)
satisfying ¢(T) = xg and ¢(T") = 0 is the constant ¢ = xo. O

5. ORTHOGONAL GEODESIC CHORDS AND THE MAUPERTUIS INTEGRAL

In this section we will prove the main result of the paper, showing how
to reduce the brake orbit and the homoclinics multiplicity problem to a
multiplicity result for orthogonal geodesic chords.

We will begin with the study of the Jacobi metric near the level surface
V—YE), with E a regular value of V.
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5.1. The Jacobi distance near a regular value of the potential. Let
g be a Riemannian metric, g5 = (E — V(2))g, Qp as in (3.4); assume
VV(z) #0 for all z € V-1(E) and that Qp is compact.

Lemma 5.1. For all Q € Qg, the infimum:
1
dg(Q) = inf {/ (E- V(w))g(a'c,j))lﬂ dt :x € H'([0,1],Qp),
0

2(0)=Q, z(1) € aQ}
is attained on at least one curve vg € H'([0,1],Qp) such that

(E=V())9(iq: Q)

is constant, v¢([0,1)) C Q, and g is a C* curve on [0,1). Moreover,
such a curve satisfies assumption (4.4) of Proposition 4.1 on the interval
[a,b] = [0,1].

Proof. For all k£ € N sufficiently large, set ), = V_l((—oo, E— %)) C Qg,
and consider the problem of minimization of the gg-length functional:

Li(z) = / [(E — V(@))g(i, )]

in the space &y consisting of curves z € Hl([O, 1],ﬁk) with z(0) = @ and
a;(l) € 08.

It is not hard to prove, by standard arguments, that for all Q; # 0, the
above problem has a solution v which is a gg geodesic, and with fyk( [0,1 [) C
Q.

Set g = (1) € 09 and I, = Lg (7). Since g approaches 02 as k — oo,
arguing by contradiction we get:

liminfl; > dg(Q).

k—o0

NI

ds,

Now, if by contradiction it was:

liminf i, > dp(Q),
k—o0
then we could find a curve x € Hl([(), 1],5) with z(0) = Q, (1) € 99, and
with Lg(x) < liminfg_,o 5. Then, a suitable reparameterization of = would
yield a curve y € & with Lg(y) < I, which contradicts the minimality of
l; and proves that

liminfl, = dg(Q). (5.1)

k—o0
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Now, arguing as in the proof of Proposition 4.1, we see that the sequence:

1 dt
| m=vom (5:2)

is bounded. Now, fol (E = V() g( ) dr = 17 = (B = V()9 (k> &)
is bounded, which implies fol g(ﬁk, %) d7 is bounded, namely the sequence
v is bounded in H! ([0, 1],§E). Up to subsequences, we have a curve yg €
Hl([(), 1],§E) which is an H'-weak limit of the v;’s; in particular, - is
uniformly convergent to 7q.

We claim that such a curve g satisfies the required properties. First,
79([0,1)) C Qp. Otherwise, if b < 1 is the first instant where v¢o(b) € 0Qg,
by (5.1) and the conservation law of the energy for v one should have

1
(b—-1DI = /b (E =V ()9 (¥, %) dr — 0,

in contradiction with @ ¢ 0Qg. Then v satisfies (4.4) in [0, 1] since it is an
H'-weak limit of v, which is a sequence of gp geodesics.

Clearly, g is of class C? on [0, 1), because the convergence on each interval
[0,0] is indeed smooth for all b < 1.

Finally, since Lg(z) < liminf,_ I, from (5.1) it follows that Lg(yg) =
dr(Q), and this concludes the proof. O

Remark 5.2. It is immediate to see that 7 is a minimizer as in Lemma
5.1 if and only if is a minimizer for the functional
1

1
for(a) = 3 /0 (B~ V(2))g(#, ) dt (5.3)

in the space of curves

Xg = {z € H'([0,1],QF) : 2(0) = Q,2([0,1]) C Qg,z(1) € 9Qg}. (5.4)
Then, by Lemma 5.1, fo1 has at least one minimizer on Xg.

Using a simple argument, we also have:

Lemma 5.3. The map dg : Qg — [0,+00) defined in the statement of
Lemma 5.1 is continuous, and it admits a continuous extension to Qr by
setting dg = 0 on 0Qg.

Now we shall study the map

Y(y) = 5dp(y), (5.5)
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proving that it is C? and satisfies a convex condition when y is nearby Q.

Proposition 5.4. If Q is sufficiently close to 0Qg, then the minimizer of
the functional (5.3) in the space X is unique.

Proof. Let z = z(t,0,Q) be the solution of the Cauchy problem

Z’(t) =J- DzH(Z(t))
{Z(O) =(0,Q), Q €, (5.6)

where H is the Hamiltonian function (3.1), and J is the matrix

0 —I,
7o )

and I, is the m x m identity matrix. Since V' and a;; are C? 2 = (p,q)
is of class C! with respect to (¢,Q), therefore 2 = 2(t,Q) is of class C*
with respect to (t,Q) so ¢ = ¢(t,Q) is C'. Since ¢ = ¢(0,Q) = 0, in a
neighborhood of a fixed point Qg € Qg we have

q(t, Q) =tG(0,Qo) + »(t, Q) = —tVV(Qo) + ¢(t, Q) (5.7)

where ¢ is of class C! and de(0, Qo) = 0. Moreover,

2
(t,Q) = @ SVV(Qo) + (1, Q) (538)

where po(t,Q) = fg ©(s,Q)ds. Then, if {y1,...,ym—1} is a coordinate sys-
tem of V~1(E) in a neighborhood of Qq, by (5.8) we deduce that, setting
7 =12 theset {y1,...,Ym—_1,7} is a local coordinate system on the manifold
with boundary 0Qp and (7, Q) — ¢q(7,Q) defines a local chart.

Then, due to the compactness of 9Qg, and denoting by dist(-,-) the dis-
tance induced by g, there exists p > 0 having the following property:

Vy € Qg with dist(y, 0Qg) < p there exists a unique solution (py, qy)
of (3.2) with energy E, and a unique t, > 0

such that q,(0) € 0QE, q,(ty) =y. (5.9)
Then, by Proposition 4.1, for all y € Qg with dist(y, 0Q2g) < p there exists
a unique minimizer v, for fo1 on X,. O

Remark 5.5. Note that g,(t) = q(t, Qy), where @, is implicitly defined by
q(ty,Qy) = y. By the variable change used in Proposition 4.1, it turns out
that

4(t,Qy) = (1 —0), where t(o) = (1) /0 ’ m dr. (5.10)
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In particular, since o = o(t) is the inverse of ¢(o) we have

D()q(ty, Qy) = —(E = V(y))7y(0). (5.11)
Note also that t, = /7 is of class C' when 7, > 0 since (7,Q) is a local
coordinate system.

In the following result we are assuming Qg C R™.

Proposition 5.6. Let p satisfy property (5.9). Whenever 0 < dist(y, 0Qg)
< p, ¥ is differentiable at y and

dp(y)[g] = —(E - V(1)g9(1(0),§) V¢ eR™ (5.12)

Proof. Given the local nature of the result, it will not be restrictive to
assume that M is topologically embedded as an open subset of R". Consider

Ug(S) = (1 - 28)+£7
where ()T denotes the positive part. For e sufficiently small (with respect

to §) the curve 7,(s) + cve(s) belongs to X, ¢ (see (5.4)). Then, by the
definition of ¥ as minimum value,

Yy + &) < fo1(yy + eve)
and therefore

Yy +e8) —Y(y) < for(vy +eve) — fo(m)-
Now

gli%é (fO,l('Yy + 51}5) - fO,l('Yy)) =

1
| (E=Veuati Boe) = 50(TV ) 0)a (i) ds

uniformly as |¢| < 1. Moreover, since v¢ = 0 in the interval [, 1], using the
differential equation satisfied by =, and integrating by parts gives

1
| @ = Ve Bre) = 50(TV ). ve)al ) ds =
— (B = V(%(0)))9(7(0),v¢(0)) = = (E = V(y)) 9(74(0), &)

Therefore, uniformly as || < 1,

tim sup ~ (6(y +<vg) — w(y) + (B~ V()g(3y(0),6) <0 (513)

e—0t

Moreover, since 1 (y +¢£) = fo,1(Vy+e¢) and ¥(y) < fo,1(Vy+ec —€ve) one has
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?/)(?/ + 55) - ¢(y) > fO,l(’YerEE) - f0,1(7y+6§ - 5”5) =

€2

e(fo1 (Vyree), ve)1 — §<f6',1(’7y+55 — Jeevg)[vel, ve)1,  (5.14)

for some 9. € (0,1). Here (-,-); denotes the standard scalar product in H*
and f’, f” are respectively gradient and Hessian with respect to (-,-)1.

Now, we have 7,4+.¢(0) = y + ¢ and y ¢ V~}(E). Moreover, by the
uniqueness of the minimizer it is not difficult to prove that, for all 6 > 0
there exists €(6) > 0 such that

dist(7y+2¢(s), () <3 for any < € (0,2(3)], |¢] < 1, s € [0,1]

Then, since 7, is uniformly far from V~1(E) on the interval [0, 5], the same
holds for y4.¢ whenever ¢ is small and |£| < 1. Thus, recalling the definition
of dg in Lemma 5.1, the conservation law satisfied by the minimizer 7y, .¢ is

(E - V(’Yy+aé))g(;7y+€£7 "Yy+€£) = dQE(y + €€).

This implies the existence of a constant C' > 0 such that

1/2
/0 9("Yy+sg, "Yy+z-:£) ds<C

for any e small and [¢] < 1.

Therefore (fq'y(Vy+ee — Vecve)[ve], ve)1 is uniformly bounded with respect
to € small and |£| < 1, due to v¢ = 0 on [3, 1], and by (5.14) we get

.1 .
21_)1% - (fo,1(vy+ee) = fO,l(’Yy—s-EE—E”&)) = §%<f6,1(7y+e§)7 ve)1 (5.15)

uniformly as [£] < 1.

Now, using the differential equation (4.3) satisfied by vy 4.¢ and integrating
by parts one obtains

<f6,1(’7y+5§)a U§>1 = _(E - V(y + 55))9(’%}-&-55(0), g))
while by (5.11) and the continuity of ¢(t,, Q) and ¥(y) we have
lim (B V(y+20)3y0(0) = (E- V()3 (0)  (5.16)

uniformly as |£| < 1. Therefore, by (5.14)—(5.16) it is

lim inf = (b(y + £6) — () + (B~ V()9 (3,(0,6) 20 (517)

e—0 ¢

uniformly as |{| < 1. Finally, combining (5.13) and (5.17) one has (5.12). O
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Remark 5.7. By (5.11) we deduce that (E — V(y))%,(0) is continuous,
therefore by (5.12), ¢ is of class C'. Again by (5.11) and the C! regularity
of ¢y(ty,Qy) we deduce that (E — V(y))¥,(0) is of class C' whenever y ¢
V=YE), and by (5.12) it turns out that 1 is of class C2.

In the following proposition we will show that 1 satisfies a strongly convex
assumption near V~1(E).

p with the property that, for any y € Qg
the Hessian (with respect to the Jacobi

Proposition 5.8. There exist
such that 0 < dist(y, V~1(E))
metric gg) of U at y satisfies

HY (y)[v,v] > 0 Yo @ d(y)[v] =0, v #D0. (5.18)

Proof. Recall that

sp <
<p

2

HY ()0, =~ (00000

where 7(s) is a geodesic with respect to the Jacobi metric gg, namely a
solution of the differential equation (4.3) satisfying the initial data conditions

n0)=y,  n0)=¢
Now, by (5.11) and (5 12)
¥(n ( )9 ( ( s)uQn(s )777(8))

Since lims—.o Qy(s) = Qy, using (5.7) we can write

(tv Qn (s) ) - —tVV(y) + So(tv Qn(s))
as dp(0,Qy) =0, and
2
5 W (5)) = $(n5)) (9t @) 7(5)))”
+9(10(5))9(d(ty(s)> Quis))s 3571(5)) +1(1(s))g( = dtyo[(s)] VV (y)
+ Gt Qoo i(5)] + 55 G (5)
Since n(s) satisfies (4.3) and de(0,Q,) = 0, it suffices to show that for any
y sufficiently close to 052,

D(n(s)) (9(dty, Qy)sv))* +v(y)dty[o]lg( — YV (y),v)

s (7Y (0,000 Q). 0) = 0t @), TV )g(0,0)) >0

E—-V(y
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for any v such that d¢(y)[v] = 0. This means that g(§(ty, Qy),v) = 0 so it
will suffice to show

1/2 1 .
|i}1=p1 |dty[v]|g(VV(y),VV(y)) - WQ(Q(% Qy),VV(y)) >0
(5.19)
for any y close to V~(E). Since g(t,, Qy) = y we get
- 9q 9Qy
ty 01d(1, Q) + 5 S0 =

Moreover, g—é(ty, @Qy) goes to the identity map as y tends to 0f2, while % [v]

tends to v uniformly as |v] < 1, since (0,Q) is a coordinate system for
V~Y(E). Then, as y — VL(E), dt,[v]§(t,, Qy) — 0 uniformly in v .
Note that %g(q, q) = E —V(q), therefore

Q(Q(tyv Qy)7Q(tya Qy)) = 2(E - V(y)) (5‘20)
hm VE —=V(y)l|dtylv]| =0 (5.21)

SO

uniformly in |v| < 1.
Finally, by (5.7) we have

( (tszy) VV( ) ) — 1

N oty @) it @) \Ja(TV (). TV ()

therefore by (5.20)

hm
y—V-1

) (Q(tya Qy)v VV(y))

lim  inf >0 (5.22)

y—>V71(E) E — V(y)
and combining (5.21) with (5.22) one obtains (5.19) and the proof is com-
plete. O

By Proposition 5.6, Remark 5.7, and Proposition 5.8 one immediately
obtains the following proposition, which is the main result of the section:

Theorem 5.9. Let E be a reqular value for V(z), and let dg : 2 — [0, +00)
be the map defined in the statement of Lemma 5.1, and assume that Qp is
compact. There exists a positive number d, such that, setting:
Q, = {:c € Qg : dE > Os }
the following statements hold:
(1) 09, is of class C?;
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(2) Q. is homeomorphic to Qf;

(3) Q. is strongly concave relative to the Jacobi metric gg;

(4) if  : [0,1] — Q. is an orthogonal geodesic chord in Q. relative to
the Jacobi metric gg, then there exists [, 5] D [0,1] and a unique
extension T : [, B] — Q of x with T € H! ([a, ﬂ],ﬁ) satisfying:

e assumption (4.4) of Proposition 4.1 on the interval [, (];
e T(s) € dg'((—0.,0)) for all s € (,0)J (1, );
o V(3(a)) = V(@)  E.

Remark 5.10. Theorem 5.9 tells us that the study of multiple brake orbits
can be reduced to the study of multiple orthogonal geodesic chords in a
Riemannian manifold with regular and strongly concave boundary.

5.2. The Jacobi distance near a nondegenerate maximum point of
the potential. Let us now assume that x¢o € M is a nondegenerate maxi-
mum point of V', with V(xg) = E, and let us make the following assumptions:

° V‘l(]—oo,E]) is compact;

o V71(E)\ {z0} is a regular embedded hypersurface of M.
We will show how to get rid of the singularity of the Jacobi metric at xg,
while the singularity on V~1(E) \ {zo} can be removed as in the case of
brake orbits, using Theorem 5.9.

First, we need a preparatory result. Let § > 0 be fixed in such a way that
the set:
{peM:vp)>E-0}

has precisely two connected components; let €25 denote the connected com-
ponent of the point xg.

Lemma 5.11. Let Q € Q5 \ {zo} be fized; then, the infimum:

1/2

1
dp(Q) = inf{[/o (E - V(2))g(4, ©) dt}
z € CO([O’ 1]’9_5) N Hlloc( [Oa 1[’9_5), 35(0) == Q, x(l) = JI()} (523)

is attained on some curve g with the property that (E — V(v9))g(7qQ,Yq)
is constant and o ([0,1]) C Qs \ {zo}. Moreover

lim dg(Q) =0, (5.24)
Q—1o

lim { sup dist('yQ(s),xg)} =0. (5.25)
Q—wo Lgeo,1]
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In particular, for Q sufficiently close to xg,
7Q([0,1]) C Qs (5.26)

s0 it is of class C? and satisfies assumption (4.9) of Proposition 4.2 on the
interval |a,b] = [0, 1].

Proof. Let z,, € C° ([O, 1], Q_g) ﬂHl( [0,1) ,Q_g) be a minimizing sequence for
the length functional fol [(E -V (x))g(i,#))"? dt, leaving (E — V (z))g(d, &)
constant. Choose p > 0 such that dist(Q,xg) > p and, for all n € N, define
of € (0,1) to be the first instant s such that dist(zn(s),z0) = p.

The sequence of stays away from 0 and 1, because for all intervals I C
x,1([5, p]) the integral [, g(&n,dn)ds is bounded. We can therefore find a
subsequence af* converging to a; € (0,1).

Furthermore, since foal g(&n, ) ds is bounded, taking a subsequences

n
we can assume that :L',ll is H'-weakly and uniformly convergent to some z; €
Hl([O,al],Q_g); then, dist (m(al),xo) = p. Repeating the construction, we
can find ay € (aq, 1) and a subsequence x2 of x1 which is H!-weakly and uni-
formly convergent to a curve xo € Hl([(),oeg],ﬂ_g) with dist (x(ag), xo) = £
and Tg|[0,q,) = Z1. Iteration of this construction yields a weak-H imit of 27,

which is a curve x € HllO .

= gr- Now, for all k£ > 1:

([0, d),Q—(s), where & = limy, o, and dist (m(ak), xo)

/alC ((E B V(l’))g(x',x’))lﬂ ds < lim inf /ak ((E - V(l‘n))g(imfbn))lm ds
0 0

n—oo

1
< liminf /0 (B = V(@) glin, ) * ds = dp(Q),

n—oo

hence,

(&35

/O (B -V@)g(d ) ds = lim [ ((E=V(@))g(s )

k—oo 0

N|—=

ds < dE(Q)7

and we can assume, as usual, (F — V(x))g(&,) is constant (and positive
since @) # zp). The curve = can be extended continuously to @ by setting
z(a) = xp. Indeed, if by contradiction there exists a sequence 3, < a, < @
such that limy O = @ and a positive number 7 such that dist(x(8x), zo) > 7,
there exists 8 €]8%, ai[ such that dist(z(8}), z0) = § and dist(z(s), zo) > 5,
for all s € [8},B]. But E — V(x(s)) is far from zero in [3}, Bx] therefore
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g(i,#) < K € RT on [BL, Bk for some K, and then

o Bk
o < dist(a(3)), 2(31)) < /B gl @) dt < K(B— ) — 0
k

which is a contradiction.

Clearly, up to reparameterizations on x we can assume @ = 1 and x([0,1))
C Qs \ {zo}. Taking 7o = x we have the existence of a minimizer satisfying
the conservation law (E — V' (v9))g(Yq,7¢q) constant.

Now, taking a chord Cg joining @ and x¢ we have that I[(Cg) — 0 as
Q — w9, and since dp(Q) < I[(Cg) we obtain (5.24).

Moreover, if by contradiction (5.25) does not hold for any @ sufficiently
close to xg, there exists sg such that

dist(vg(s@),zo) > 7 > 0.

Let tg > s be such that dist(vq(tg),z0) = § and dist(yq(s),zo) > 5 for
all s € [sg,tg]. Since g(§g,7q) is bounded in [sq, tg] we must have tg — sg
far from zero as Q — x¢. But also £ — V(yg) and g(§¢9,%q) are far from
zero in [sqg, tg] so we deduce that

tQ 1 o 1/2
/ (/ (E—-V(z))9(,Y) dt) is far from zero

sQ 0

SN

which is in contradiction with (5.24).

Note that (5.25) immediately implies (5.26) and since 7 is a minimizer
satisfying (£ — V(79))g(jq,Jq) constant, we immediately see that (4.9) is
satisfied in the interval [0, 1]. O

As for Lemma 5.3 a simple argument shows

Lemma 5.12. The map dg : Qs — [0,+00) defined in the statement of
Lemma 5.11 s continuous.

For any y sufficiently close to xg, let g, be the reparameterization of v,
given by Proposition 4.2. We have

Ry + VY (g) =0, (0) =y,
lim gy (t) = o, . ligrn 4y(t) = 0.

t——+o0

(5.27)

The following estimate holds:

Proposition 5.13. Let q, be as above. Then there exist p and a constant
a > 0 such that
dist(qy(t), vo) < dist(y, xg)e ™ (5.28)
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for any y such that dist(y, xo) < p.
To obtain the above result we need the following maximum principle in R.

Lemma 5.14. Let ¢ : [0,+00) — R be a C? map with lim;_ 40 ¢(t) = 0.
Let v > 0 such that ©"(t) > vp(t), for allt > 0. Then ¢ < @(0)e V¥,

Proof. Consider the map 1 = ¢ — o where @g(t) = p(0)e V¥t Clearly
¥(0) = limp— 4100t (t) = 0 and so 1 has a global maximum at some t €
[0, +00). If £ > 0, then 9 (f) < L¢"() <0. O

Remark 5.15. Clearly, an analogous result as in the above Lemma 5.14
holds, reversing all inequalities.

Proof of Proposition 5.13. Let ¢ be a solution of (5.27) (with ¢(0) = y),
and let o(t) = 1dist(q(t), z0)?. By (5.25) we can choose p sufficiently small
so that

dist(q(t),z0) < po, for any t >0,

where py is chosen so that the function 9(z) = 1dist(z,2¢)?, in the open

ball B(xg,po) of center zo and radius po, it is of class C2, strictly convex
and, calling z, the unique minimal geodesic with respect to g such that
2,(0) = g, x,(1) = z (see [3]), one has

Vo(z) = z,(1).
Now ¢/(t) = g(VO(q(t)),cj(t)) and
¢ (t) = H(q()[4(t), 4(t)] + g (Vo(q(t)), Fq(t)) > g(Vo(q(t), VV (q(t))).

Now, take z in B(xg, po), consider the minimal geodesic x, as above, and
define the map

p(s) 1= 9(T0(.(s)), =YV (2:(5))).
By the choice of z, we have V0(z,(s)) = si,(s), so
p(s) = g(@=(s), =VV(22(5))) — sH (22(5))[d2(5), i2(s)]
> g(#:(s), —VV(2:(s))) + svg(d=(s), i=(s))

for a suitable choice of v (z¢ is a nondegenerate maximum point). Since
p(0) = 0 then
1
9(V0(2), ~VV(2)) = (1) = /O p(s)ds

1
> / 9(&:(5), ~VV (2:(5))) + svg(25(s), &2(s)) ds
0
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1
= —V(acz(s)Eié + VdiSt(Z,xo)z/ sds
0

=(E-V(2)+ gdist(z, z0)? > —dist(z,29)?,

NN

where V(zo) = E has also been used. Therefore ¢ (t) > Ldist(q(t), z0)* =
vq(t), and by Lemma 5.14

dist(q(t), z0)? < dist(g(0), z¢)e V",
and (5.28) follows taking the square root of both members above. O

The regularity of the distance function from xy with respect to the Jacobi
metric is based on the following proposition.

Proposition 5.16. For any y close to xq there exists a unique q, satisfying
(5.27). Moreover, the map
q — qy(0) (5.29)

is of class C' and its differential satisfies dq,(0)[v] = £(0), where £(t) is the
unique solution of

2 . .
a€(t) + R(dy €(1)dy + LY (a)8(1) =0, £(0) =0, 550
Jim €0 = i €0 =0
where %5 is the second covariant derivative and R(-,-) the Riemann ten-
sor with respect to g, and LY (x)[v] € T, M is the vector defined through
g(LY (z)[v],w) = HY (z)[v,w] for all w € T,M.
Proof. Consider the ball B(xg, p), with p > 0 small, and the spaces
Xy = {q € C*(R*, B(xo,p)) : lim q(t) =0, lim §(t)= lim §(t) = 0}

t—+o00 t——+o00 t—+o00

with the norm (we can assume we are working in a local chart)

la2—all := sup |q2(t) —qu(t) |+ sup |g2(t) =G (t)|+ sup |G2(t)—G1(t)] (5-31)

teR+ teR+ tER+

and
Xo={q¢€ C’O(R+,Rm) : lim |q(t)| =0}

t—-+o0

with the norm

lg2 — @1l :== sup |q2(t) — q1(¢)],
teR+
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that are clearly Banach spaces. Now, consider the open set
Ay ={q € Xy : sup dist(q(t),z0) < p} C X>
teR+

and the map F': Ay x B(xg, p) — Xo x R™ given by
F(q.y) = (24 +VV(q),9(0) — y).

Thanks to the behaviour at infinity, we can use the same standard arguments
exploited in finite intervals to prove that F is differentiable and (see [3])

dF(q,9)[€,v] = (256 + R(4.€)d + LY (¢)[€), £(0) — ).

Moreover, thanks again to the behaviour at infinity, it is a straightforward
check to verify that dF(q,y) is continuous (recall that g and V are of class
C?).

Now consider a—F(xo,O)[f] = (5 + LY(0)[¢],£(0)) where xg denotes the
constant curve Wlth image xg. We claim that

oF
8—(:1}0, 0) : X2 [— XO x R™ (532)
q
is an isomorphism.

Recalling the definition of LY, and since H (0) is symmetric and negative
definite, using a base consisting of eigenvectors for HY (0), it is sufficient to
show that for any function h € CY(R*,R) such that lim;_, 1o, h(t) = 0 and
for any 6 € R, the solution of

{fé—a2x:h, z(0) =46,

i o(0) = lim () =0

(5.33)

exists and is unique (where z : RT — R).
The general solution of the differential equation above is

x(t) = a—l——/h _O‘Sds o b——/h O‘Sds —ot,

Since limy_, 4 o0 h(t) = 0 we have

1i 1(/th()asd)—oct_0.
Jim - ; s)e* ds)e”* = 0;

then lim; 1o 2 () = 0 only if we choose

1 [t

a=—5 h(s)e”**ds.
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With such a choice indeed lim;_, o0 2(t) = limy— 4 o (t) = 0, while 2(0) = 0
for

1 [T _
bz@—az@%—%/o h(s)e™**ds,

proving that the solution of (5.33) exists and is unique, and therefore the
map defined in (5.32) is an isomorphism.

Then, by the implicit function theorem and Proposition 5.13 we have the
uniqueness of g, for any y close to zo and its C! differentiability in X5. In
particular the map (5.29) is of class C2. Denoting by ¢ the differential dg,[v],
and differentiating the expression F(gy,,y) = 0, in particular we obtain that
€ solves (5.30). Since, as we have already seen, the solution exists and is
unique for y = xzg, Proposition 5.13 ensures that this remains true for y
close to xq also.

Finally, C! regularity of g, with respect to the norm (5.31) immediately
implies that

dgy(0)[v] = £(0),
where £ is the solution of (5.30), and then dg,[v](t) = £(t). O

Now set

U(y) = 5ds()’ (534)

where [ is the map defined in (5.23) of Lemma 5.11. Thanks to the above
proposition we can repeat the proof of Proposition 5.6 to get its counterpart
in the case of a nondegenerate maximum point.

Proposition 5.17. There exists p > 0 such that for any y with dist(y, xg) <
p the map 1 defined in (5.34) is of class C? and its differential is given by

dp(y)[v] = —(E = V())g(3y(0),v) = =¥ (y)g(dy(0),v). (5.35)

Note that the variable change used in the proof of Proposition 4.2 yields
qy(t) = vy (o) where t(o) = 9 (y) foa m dr.

We now are going to show the counterpart of Proposition 5.8. We cannot

repeat, of course, the same argument as before: indeed, since F is not a

regular value for the potential V(x), the curve g,(t) = ¢(t,Qy) (see Remark

5.5) does not reach the boundary 012 in a finite amount of time and therefore
it cannot be reparameterized in a bounded interval.

Proposition 5.18. There exists p < p such that for any y with dist(y, xg) <
P we have
HY (y)[v,v] > 0, Yo @ diy(y)[v] = 0.
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Proof. We need to evaluate
32
@ (¢(n(5)))|3:07

where 7(s) is the geodesic with respect to the Jacobi metric gg such that
n(0) = y, 7(0) = v, where d¢(y)[v] = 0. We also recall that 7n(s) satisfies
equation (4.3). By (5.35)

0? 0 0
55 (00(8) = - (@mENIE)]) = 5= (<m()g(dys (0),i(5)))
(

= —dy(1(5))[1(5))9 (dn(s) (0), 7(5)) = ¥ (1(5))9 (T (dy() (0)), 71(5))
_Q;Z)( ( ) (Qn s)( )a%n(s))

then, using again (5.35), and exploiting (4.3), one gets

HY (y)[v, 0] = ()9 (dy(0),v)” — ¥(y)g(ddy(0)[v], v)

_Ef(;‘y/(y)<_%g(v,v)g(qy(o),v1/(y))+g(VV() v)g(dy(0), ))-

Since g(gy(0),v) = dy(y)[v] = 0, it suffices to show the existence of vy > 0

such that ( 0.9V ))
. . 9(4y(0), Yy
ﬁglg(dqy(m[v],v) F o E-v) 2 (5.36)

for any y close sufficiently to xg. Let us consider the map

1(t) = g(dy(t), VV(gy(t))).

By (5.27) we have

() —pu(0) = /0 W (r)dr = /O [0( = VV(a,), YV(ay)) + H ()ldy. dy]] dr:

then, by Proposition 5.13 and nondegeneracy of the maximum point xg, we

see that there exists v > 0 such that
t

p(0) =) < v [ 510, ar = v [ (B V() ar

0
and since limy_, ;o p(t) = 0 we have

+oo
o(0,(0).5V0w) = 00 > v [ (= Vi) dr
Now, consider the map k(t) = E — V(qy(t)): we have
H/,(t) =-H" (Qy)[q'yﬂly] + Q(VV(Qy): VV(Qy))-
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Again, by nondegeneracy of xg as the maximum point and Proposition 5.13
there exists A > 0 such that

9(VV(gy(1)), VV(gy(t))) < A(E = V(gy(1)))

while the conservation law of the energy for ¢, gives % g(q'y, q'y) =FE—-V(qy).
Then there exists B > 0 such that £”(t) < Bk(t) for t > 0, and by Remark
5.15

E - V(gy(t) > (E - V(y))e VB
Then

9(4,(0), VV () > v(E -V (y)) /0 T VB,

Finally, by Proposition 5.16, dd,(0) — dds,(0) while dd.,(0)[v] = &(0)
where () is the unique solution of
€0+ LY (0)[&] = 0, &(0) =,

tl}gloo fo(t) = tll+moo fo(t) = 0.

But, denoting by e; a basis of eigenvectors for LY (x9) and by \; < 0 the
corresponding eigenvalues we have

t) =Y vie Ve,
i=1

Since ddy, (0)[v] = &(0) and —H" (x0) is positive definite, there exists yup > 0
such that
9(ddo(0)[v],v) > po g(v,v),
and (5.36) is completely proved. O
Finally, we give the result needed to prove our multiplicity result for ho-
moclinics in [4]. To this aim, take y € {z : V(z) < E'} and consider
d(y) = distg(y, V() (5.37)
where distg is the distance with respect to the Jacobi metric. Combining
the results of Theorem 5.9, Lemma 5.11, and Propositions 5.17-5.18 and
using the function (5.37) gives us the following:
Theorem 5.19. Assume that:
(a) V71(]—o0, E[) U{zo} is homeomorphic to an open ball of R™;
(b) dV(z) # 0 for all x € V7YH(E) \ {z0};
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moreover, let d be as in (5.37). Then, there exists a positive number 0, such
that, setting Q. = {z € RM : d(x) > §,} and denoting by Dy the connected
component of ), close to xg and by D1 the connected component of 02,
near V=Y(E) \ {xo}, the following results hold:

1]

[7]
8]
[9]
(10]
(11]
(12]

(13]

(1) 98 is of class C?;

(2) Q. is homomorphic to an annulus;
(3) Q. is strongly concave with respect to the Jacobi metric gg;
(4) if = : [0,1] — Q. is an orthogonal geodesic chord in Q. relative

to the Jacobi metric gg such that x(0) € Do and x(1) € Dy, then
there exists |a, 3] D_[O, 1] and a unique extension T : [a, ] — €,
reC'nH} ([a,ﬁ], QE) satisfying

loc
e T is a geodesic with respect to the Jacobi metric;

o Z(s) € d7*(]—0.,0[) for all s € ]a,0[U]1, B];
o Z(a) = xo, (B) € VI(E) \ {zo}.

REFERENCES

A. Ambrosetti and V. Coti Zelati, Multiple Homoclinic Orbits for a Class of Conser-
vative Systems, Rend. Sem. Mat. Univ. Padova, 89 (1993), 177-194.

W. Bos, Kritische Sehenen auf Riemannischen Elementarraumstiicken, Math. Ann.
151 (1963), 431-451.

M.P. do Carmo, “Riemannian Geometry,” Birkh&user, Boston, 1992.

R. Giambo, F. Giannoni, and P. Piccione, Multiple brake orbits and homoclinics in
Riemannian manifolds, preprint.

R. Giambo, F. Giannoni, and P. Piccione, On the multiplicity of brake orbits and
homoclinics in Riemannian manifolds, to appear on Atti Acc. Naz. Lincei.

H. Gluck, W. Ziller, Ezistence of Periodic Motions of Conservative Systems, in “Sem-
inar on Minimal Surfaces” (E. Bombieri Ed.), Princeton University Press, 65-98,
1983.

Y. Long, Yiming, and C. Zhu, Closed characteristics on compact convex hypersurfaces
in R*™ Ann. of Math., (2) 155 (2002), 317-368.

L. Lusternik and L. Schnirelman, “Methodes Topologiques dans les Problemes Vari-
ationelles,” Hermann, 1934.

E. Paturel Multiple homoclinic orbits for a class of Hamiltonian systems, Calc. Var.
PDE, 12 (2001), 117-143.

P. H. Rabinowitz, Periodic and Eteroclinic Orbits for a Periodic Hamiltonian System,
Ann. Inst. H. Poincaré, Analyse Non Lineaire, 6 (1989), 331-346.

H. Seifert, Periodische Bewegungen Machanischer Systeme, Math. Z., 51 (1948), 197—
216.

K. Tanaka, A Note on the Existence of Multiple Homoclinic Orbits for a Perturbed
Radial Potential, No. D. E. A.; 1 (1994), 149-162.

A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math., 108
(1978), 507-518.



