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Abstract This article presents the development of a
numerical tool for seakeeping simulations of marine sys-
tems using a time domain boundary element method based
on Rankine sources. The formulation considers two ini-
tial boundary value problems defined for the velocity and
acceleration potentials, the last being used to avoid numeri-
cal problems in calculating the time derivatives of the
velocity potential. A fourth-order Runge—Kutta method is
used for the time marching of the problem, which consists
in the integration of the free surface conditions and body
equations of motion. Numerical test cases are presented for
bodies with simplified geometries, such as an hemisphere
and a circular section cylinder. Exciting forces, added mass
and radiation damping coefficients, and motions response
amplitude operators are compared to analytical and numer-
ical data, presenting a very good agreement. Furthermore,
the numerical method is applied to a floating production
storage and Off-loading unit and the results are verified
with experimental data carried out in the hydrodynamic
calibrator of the University of Sao Paulo. By means of
these investigations, we have verified that the developments
performed so far are correct and new extensions, therefore,
may be planned for more complex applications.
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1 Introduction

The exploration of oil and gas fields in ultradeep water,
such as the Brazilian pre-salt layer, demands a considerable
amount of investments to be concretized. The necessity of
long production risers, sophisticated pump and valve sys-
tems, and the conduction of maintenance services results
in high operational costs, requiring significant oil produc-
tion to make the process feasible. In this context, seakeep-
ing analysis is a topic of great importance for the design of
floating oil production units, since their response in waves
will define whether the structure will operate properly or
not. In fact, better designs should help reduce the produc-
tion downtime, especially under harsh environmental con-
ditions, which consequently improves the production effi-
ciency and reduce costs.

In current practice in the area of ocean engineering,
experimental activities with scaled models have provided
great knowledge and understanding of complex phenom-
ena involving the interaction between floating structures
and environmental conditions, such as waves, wind and
current. The constraints involved in scaled model tests are
related to the difficulties in relation to physical limitations
of the basins, especially in modeling systems that operate
in deep waters. Moreover, since the tests require high costs
and considerable time to be performed, presently they have
been more used for final verification and not as a prediction
tool for earlier stages of the design.

The use of a numerical approach has become increas-
ingly popular in the various stages of engineering designs,
mainly due to the growth of computational power and
development of new techniques for numerical processing.
In this context, the use of numerical methods that deal with
potential flow boundary value problems, such as the bound-
ary element method (BEM), is widely applied throughout
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the design stages for solving hydrodynamic issues. The use
of numerical methods reduce the demand of experimental
tests between the stages of conception and final verifica-
tion; however, it does not eliminate their necessity, which
usually provides essential contributions on the validation
and extension of numerical methods.

A mixed approach based on numerical methods com-
bined with experimental data then emerges as an interesting
approach for handling the problem. This idea is being fol-
lowed by the Numerical Offshore Tank of the University of
Sao Paulo (TPN-USP) since 2000, which has as one of the
main goals the development of a simulator that can handle
a fully coupled solution of body hydrodynamics, mooring
lines and environmental conditions. Moreover, the labora-
tory also counts on with a hydrodynamic calibrator wave
basin (CH-TPN), which is used for the calibration of the
simulator.

Specifically concerning the wave problem, the TPN
simulator uses the BEM code implemented in WAMIT
software [1] to calculate linear potential hydrodynamic
coefficients in the frequency domain which are properly
transposed to the time domain following the equations
derived by [2]. However, one should realize that some
inconsistencies may appear if the body acquires large
amplitudes of motions around its mean initial position, dis-
obeying the original linear assumption established for the
hydrodynamic load calculations. Another problem is the
body seakeeping evaluation in scenarios of ultradeep water,
in which the dynamics of the risers and mooring lines may
play a role in the oil platform motions, but is disregarded
in the hydrodynamic calculations. Furthermore, this proce-
dure limits the study of the fully nonlinear problem, since
in the frequency domain only weakly nonlinear problems
may be handled.

The calculation of the hydrodynamic problem in the
time domain then arises as an interesting alternative to
overcome these problems, since it may be coupled to the
body equations of motion, solved by the dynamic simula-
tor. In comparison to models mathematically treated in the
frequency domain, this approach allows us a straightfor-
ward addressing for future extensions of nonlinear descrip-
tions of both the hydrodynamic and the dynamic problems.
Such extensions would enable us, for example, to consider
the instantaneous body wetted surfaces to account for the
body motions induced by risers and mooring lines and also
to deal, in a more satisfactory way, with the viscous damp-
ing effects that as a nonlinear phenomena is commonly
modeled by a quadratic term involving the body velocity.

Numerical solutions of the transient wave—body interac-
tions using BEM is normally segregated into two different
categories based on the type of singularity employed in
the method implementation. The first type uses the tran-
sient Green’s function as the elementary singularity, which
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satisfies Laplace’s equation and all the boundary conditions
except the body boundary ones; see for instance [3]. The
major advantages of such a scheme are the satisfaction of
the radiation and linear free surface conditions and, there-
fore, only the wet body surface must be discretized.

The second type, introduced by [4, 5], applies the sim-
ple Rankine source as the elementary singularity, which is
mainly motivated by the resulting flexibility in the choice
of free surface conditions to be satisfied, being the sole
alternative for the calculation of nonlinear flows and a more
suitable choice for problems involving bodies with forward
speed, as discussed by [6, 7]. Moreover, different bottom
geometries than the flat shape may be analyzed by distrib-
uting the sources over its surface, as recently applied by
[8].

Despite the fact that Rankine sources do not satisfy
any boundary condition automatically, its application is
simpler than using the transient Green’s function. In fact,
Green’s function demands the use of accurate algorithms
to be evaluated and results in extensive CPU and memory
requirements for the convolution integral computations.
In addition, it does not permit the method extension for
the calculation of nonlinear wave problems, which is a
medium-term goal of our research.

For these reasons, a time domain BEM based on the
exclusive use of Rankine sources (Rankine panel method)
is developed in the present paper. In this version of the
numerical method, the nonlinear effects originated from
the presence of the unknown free surface and body surface
positions are neglected, whereas the three dimensionality
feature of the fluid flow problem is retained. Independently
of its own practical interest, which has given favorable
results to many problems regarding floating body dynam-
ics, the robust and accurate solution of this linear problem
is a very useful first stage before handling the complete
nonlinear problem.

In this sense, the work of [9] was followed and a low-
order panel method is applied here, in which the mean
surfaces are discretized by plane quadrilateral panels that
remain fixed during all the simulation. Time domain simu-
lations require an accurate prediction of the pressure field
to guarantee a consistent and stable numerical algorithm.
A main concern is the properly evaluation of the velocity
potential time derivative that depending on the numeri-
cal scheme applied may give rise to numerical instabili-
ties. Bearing this in mind, following references [10, 11],
the problem is formulated by means of two initial bound-
ary value problems defined for the velocity and accelera-
tion potentials, the latter being used to avoid numerical
problems in calculating the time derivatives of the velocity
potential and consequently the pressure field.

The time marching of the problem is performed by a
fourth-order Runge—Kutta method (RK4), which provides
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high accuracy and stability to the algorithm. Furthermore,
a numerical damping zone is applied to account for wave
absorption in part of the free surface, avoiding spoil-
ing the solution by the waves reflected from the domain
boundaries.

The implemented numerical tool is firstly tested by solv-
ing the diffraction and radiation problems with bodies of
simplified geometries, such as the hemisphere and the cir-
cular cylinder. One step forward, free floating simulations
with the same body geometries are presented. In these cal-
culations, different meshes varying the numbers of body
and free surface panels are investigated. The results are
compared to the analytical data presented in [24] and to
numerical values obtained with the well-validated software
WAMIT.

More complex evaluations are carried out with a float-
ing production storage and off-loading (FPSO) unit hull by
performing free floating simulations. Based on the linear
regime, the response amplitude operators (RAO) motions
of the unit are compared to experimental data obtained in
campaigns carried out in the CH-TPN. Moreover, direct
comparisons of the motion time series induced by a regu-
lar wave is also presented. In general, all the results show
favorable agreements with the experimental data.

The theoretical formulation of the problem is presented
in Sect. 2, followed by the description of the numerical
method, which is discussed in Sect. 3. Numerical test
case results concerning the solution of the so-called dif-
fraction and radiation problems are presented in Sect. 4,
which also includes the free floating motion calculations
for bodies with simplified geometries. In Sect. 5, a brief
description of the experimental campaign carried out with
an FPSO small-scale model is presented, from which
data is used for the verification of our numerical method.
Finally, the conclusions of this research are presented in
Sect. 6.

2 Theoretical formulation

The problem of a floating body interacting with free sur-
face gravity waves is considered here. In this situation,
incoming waves that propagate on a free surface are dis-
turbed by the floating bodies inducing unsteady forces and
moments due to the generation of pressure changes in the
fluid. Floating bodies then respond acquiring translational
and rotational motions, which also force the fluid to move.
Mathematical description of this problem may result in
different governing equations depending on the assump-
tions on the motions of the body and the fluid concern-
ing its free surface. Moreover, it is usual to separate the
equations that describe the behavior of the fluid and the
floating body, which are then linked again by appropriate

Fig. 1 Definition of the coordinate systems

equations and matching conditions that define the wave—
body formulations.

Let us define three mutually perpendicular unit vectors
e1, ey, and e3 that form the basis of the Cartesian coordinate
system, in which the hydrodynamic problem and the body
motions are described. Figure 1 illustrates a body floating
somewhere in the sea in which incoming gravity waves
propagate on a free surface Sgs with angular frequency o,
length A and in a direction which makes an angle 6 with the
x-axis of the established reference frame.

Focusing our analysis in the fluid, we consider an arbi-
trary control volume €2 delimited by a surface 92 with nor-
mal vector m = (ny, ny, n;) pointing outward the domain.
The fluid flow velocity field is then defined by v = (u, v, w),
in which u(x,y, z,t), v(x,y,z,t) and w(x,y, z,t) are the sca-
lar components of the velocity field at time ¢, at a point
with spatial coordinates (x, y, 7).

We consider the flow to be irrotational and incompress-
ible, whereas the fluid is assumed to be inviscid and homo-
geneous, allowing the velocity field to be defined by the
gradient of the potential scalar field or velocity potential ®:

vV=Vo. (1)

In this sense, the equation of mass conservation is stated by
Laplace’s equation (2), whereas the conservation of linear
momentum is expressed by Bernoulli’s equation (3).

Vo =0 ()
30 1 P —po

— 4+ =(V® -V =—"——+C@),

o T3¢ )+ 8z o HCw 3)

where pg is the atmospheric pressure and C(¢) is a con-
stant dependent on time, normally omitted since it can be
absorbed into the velocity potential by redefining the latter
without loss of generality of the solution.

Since there are an infinite number of solutions to
Laplace’s equation, unique solutions for & are calculated
particularizing the solutions by the imposition of boundary
conditions which, in simple words, are necessary to match
the dynamics and kinematic of the fluid with the physical
boundaries of the fluid domain €2, such as the wet surface
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of the floating body Sg (), the sea bottom surface Spp and
the free surface Sgs(?).

The free surface Sps(f) demands the description of a
kinematic and a dynamic boundary condition. Although
the air phase could also be modeled as incompressible,
since the Mach number is negligible for the application
studied, the present work only evaluates the water phase.
In the context of nonbreaking waves, the free surface
boundary should be understood as a surface that always
segregates the air phase from the water phase, acting as
a membrane that avoids the “mixture” between both. The
ideal fluid hypothesis is used and, hence, the fluid particles
may have only tangential velocities concerning the free
surface, but not normal ones.

Kinematic condition (4) states that the velocity of the
fluid and the free surface boundary must be equal. The free
surface adjacent particles remain in the free surface, with
the elevation being described as a function . The condition
obtained is nonlinear, since it is the product of the potential
and free surface elevation partial derivatives, and is applied
at the actual free surface position, which is unknown a pri-
ori, leading to a difficult condition to be satisfied generally.

Do y=9® 9 _o0®on 3%dn _
”= dy dy (4)

on z =nx,y,t).

In addition, dynamic condition imposes that, neglecting the
surface tensions, the pressure on the free surface must be
equal to the atmospheric pressure, enforcing the balance
of forces in the free surface membrane. The flow pressure
is described by Bernoulli’s equation and the atmospheric
pressure can be defined as zero, leading to Eq. (5). It should
be noticed that this condition is also nonlinear due to the
quadratic velocity term and by the fact that it is applied in
an unknown position:
o 1
E%—E(V(D-VCD)—ng:O onz =n(x,y,1). 4)
The boundary conditions associated with the floating body
wet surface Sg(¢) and sea bottom surface Spo are mathe-
matically described by Neumann conditions which impose
that the fluid particles may not penetrate these surfaces. For
the sea bottom and other time-independent surfaces that
may be present in the problem, this is represented by the
well-known zero-flux condition (6):

0P

V. n=—=0

on SBo. (6)
on

The conditions on the submerged surfaces of floating bod-
ies and other time-dependent surfaces are treated in a very
similar way as the bottom surface. Nevertheless, the motion
of these boundaries influences the motion of the fluid at
their surroundings, requiring compatibility of the fluid and
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surface velocities to guarantee an impermeability condi-
tion, as presented in Eq. (7):
dd 98

Vo -n(t) = — = — -n(t) onSp(), @)
on ot

where & is the time-dependent displacement of the

floating body defined in terms of the translational

E1(1) = (§1,62,63) and rotational &g (1) = (4,&5,86) dis-

placements, and of r that is the position vector of a point on

the body surface relative to the body center of gravity:

8(1) =&1() +&r(®) x1. (8)

Body motions, in turn, are defined by solving Newton’s
second law equation, assuming the body mass as constant,
small angles and that the only external loads are the gravity
and flow pressure:

9% F
Mﬁ N <M0>’ ©)

where & = (&1, &2, &3, &4, &5,&) and M are the matrix con-
taining the body mass and moments of inertia. Moreover,
F and My are vectors containing the external forces and
moments in relation to a pole O, respectively.

The last, but not less important than the other bound-
ary conditions is the radiation condition, which apart from
making the problem unique also enforces that the waves
generated by the bodies are outgoing waves only and do
not reflect somewhere allowing these waves to interfere
with the body motions again.

To conclude this initial boundary value problem (IBVP),
an initial condition must be imposed at the free surface so
as to determine the subsequent fluid motions. As demon-
strated by [3], for flows beginning from the rest, we may
set the velocity potential at the initial instant = 0 s to:

®=0 on r=0s. (10)

Although Laplace’s equation is linear homogeneous differ-
ential, the boundary conditions present several sources of
nonlinearities and in some cases must be applied in time-
dependent surfaces not known in advance, which makes the
problem very complex for solving. Despite this complexity,
numerical algorithms that deal with this fully nonlinear prob-
lem are becoming popular in recent years, mainly because
of huge increase in computer processing capacity. However,
most of them are still limited to bi-dimensional studies or
very simple three-dimensional geometries and consequently
restrict the possibilities of simulating the behavior of real
ship vessels, oil platforms or the hydrodynamic interactions
involved in multi-body arrangements. Therefore, in this first
stage of the research, we decided to linearize the formulation
and develop a linear computational code in which the math-
ematical derivations are presented in the next items.
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2.1 Linear formulation

To linearize the problem, we use the well-known pertur-
bation technique using expansions in Stokes series, as
also applied by [3], in terms of a small parameter ¢ < 1.
With this approach, we may identify and collect terms of
order up to ¢ for a linear problem and consequently higher
orders for the other problems. The method proposes the
problem to be solved by splitting the original problem
into a collection of linear problems (one for each order),
solving them successively by imposing the solutions of
the lower-order problem into the higher-order ones. Thus,
to obtain a linear formulation, we perturb all the vari-
ables involved using the small parameter ¢ and substitute
them in the set of nonlinear equations already presented.
The velocity potential of order zero vanishes because the
problem has no forward speed, and the position and nor-
mal vectors of order zero represent their mean values, i.e.,
the vectors when the bodies are at rest. The expansions of
the velocity potential @, wave elevation 1, normal vector
n and translational £t and rotational £g body motions are
presented in (11), (12), (13), (14) and (15), respectively.
Hereafter, the horizontal bar (7) over the variables means
the zero-order values and the superscript () means the var-
iable order.

D=3 +edD 4 20? +O(e3), (11)
n=n+en® +e2@ +4+0(), (12)
n=n+en +¢n® + O<83), (13)

ST — E_T + 85(1) + 825(2)

ofe).
(53). (15)

Progressing, the velocity vector can be written by deriva-
tion of (14) and (15) in time providing (16) and (17):

Er =Ep +eEQ) + %L +

08T 3§(T1) %'(2)
o1 _ 16
or o T8 +O( ) (16)
Okr _ Oy’ kR
95R _  O5R_ 17
or e T8 +O( ) 17

The next step would be the substitution of the perturbed
quantities into the set of equations that forms the IBVP
and the collection of terms of order up to . However, one
should notice that this procedure does not solve the incon-
venience that some of the boundary conditions, such as (4),

(7) and (5), still must be applied in time-dependent sur-
faces. To overcome this problem, all the quantities of inter-
est may be locally expanded by a Taylor’s series around
their mean positions and then substituted together with the
Stokes expansions into the IBVP equations.

By following this procedure, the nonlinear free surface
conditions are linearized and applied in time-invariant
mean positions, as presented next:

1. Kinematic free surface condition

aq)(l)_ anH
9z ot

2. Dynamic free surface condition

onz=0. (18)

1
m_ _1ao®
g ot

An analytic solution may be found by the boundary
value problem defined by the Laplace’s equation with
the set of boundary conditions formed by the kinematic
and dynamic boundary conditions. Considering scenar-
ios of infinite water depth, for example, the incoming
regular wave field potential is defined by the following
expression:

n onz =0. (19)

A
d1 = €K cos (kx — wf)  onz <0, (20)
w
which needs to satisfy the wave dispersion relation for infi-
nite water depth:

k=—, 211
8

where Aj, w and k are the incoming wave amplitude, angu-

lar frequency and number, respectively.

This solution is very useful when we are dealing with a
linear theory description of the problem, because we may
decompose the total potential & in a sum of a first-order
disturbed wave field ¢" and the incoming regular wave
field ¢y, avoiding then the necessity of using a numerical
wave maker dispositive to simulate the later. Since ¢y is a
known solution, we only need to include it in the zero-flux
conditions accordingly.

From now on, the variable of the problem @& will be
changed by ¢! redefining also the set of boundary condi-
tions that must be imposed. As ¢y satisfies the free surface
conditions, these will be described by simply changing the
variable ® by 4)(1). For the other conditions, however, we
will need to include the incoming wave potential as will be
described in the next derivations.

Analogously to the free surface conditions, the float-
ing body impermeability condition is also linearized and
described by Eq. (22).
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s

_ 0 _ _ S
Vq&(”-n:T-n—V@'n on Sg. (22)

In addition, the hydrodynamic forces/moments and the
equations of motions should be calculated in a known
body surface position, which is also part of the solution.
This is overcome by assuming that the bodies’ responses
in waves are small, enabling the integration of the pres-
sure field p on the body mean surface positions Sg. More-
over, since the pressure is determined by Bernoulli’s
equation (3), it also needs to be linearized to keep the
formulation coherent with the linear theory presented so
far. Thus, the first-order pressure, forces and moments
on the body are calculated by Eqgs. (23), (24) and (25),
respectively:

3o ogn
Q) I -l
p= ﬁ)< at + ot )’ (23)
¢h)
1) _ ¢ 3¢I
’ // < o a;) nds. 24)
a¢<1> a¢1

One should notice that the static term of the pressure was
neglected in the previous equations, assuming that the
body was initially at a state of equilibrium. However, if the
body is shortly displaced from its initial position, restoring
forces and moments appear, forcing the body to establish
an equilibrium position again. For some degrees of free-
dom (normally heave, roll and pitch), these restoring forces
and moments appear directly through the hydrostatic pres-
sure integration; however, in some cases they need to be
externally imposed, aiming at controlling the body hori-
zontal offset around a mean position as, for example, in the
case of a floating oil platform. In linear theory approach,
restoring forces and moments may be shifted to the left
side of equation (26) through the use of time-independent
restoring coefficients. One last consideration is related to
the lack of external damping coefficients which are some-
times necessary, since the potential flow theory does not
account for viscous effects. Therefore, an external matrix
of linear damping coefficients will be also considered, as
can be observed in Eq. (26):

92D 9 1 FO
M= +C8+K§()—<M(Ol)), (26)

where K and C are 6 x 6 matrices containing the linear
restoring and damping coefficients, respectively. The
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vector &) = (f;‘(l) E(l) g‘” 5(1),5(1) 56(1)) contains the
first-order motions for the six degrees of freedom, cor-
responding to surge, sway, heave, roll, pitch and yaw,
respectively.

Special attention must be given for the linear pressure
calculation expressed by (23), since we do not have an
exact equation for the potential time derivative d¢! /3z. In
fact, an erroneous choice of a numerical approximation for
this term leads to unstable scheme for the time marching
of the set of equations and, therefore, an adequate proce-
dure must be chosen. In this work, we decided to apply
the method presented by [10, 11], in which the pressure
is evaluated directly using the acceleration potential (27),
which can be written as the function of the velocity poten-
tial (28).

a=vVy¥ 27)
_9 1 o4y
Y=o+ (V) (28)

In first order, the acceleration potential can be simplified
to (29), which also respects Laplace’s equation. Hence,
another boundary value problem can be written for the
acceleration potential. The body boundary condition can be
defined by derivation in time of the body boundary condi-
tion for velocity potential (22), as can be seen in (30).

9D
dt

v — , (29)

928 9
h_V o i
or? ot

Furthermore, the free surface boundary condition is deter-
mined in terms of the dynamic free surface condition for
the velocity potential, as presented in (31):

ved . p= at Sg. (30)

v = _ep  onz=0. (31)

Finally, the initial condition imposed is presented in (32):

v =0 onr=0s. (32)

From now on, the superscript (1) denoting the first-order
quantities of the formulation will be suppressed to simplify
the notations.

2.2 Integral equations

The method adopted for solving the aforementioned prob-
lem is the boundary element method, developed by using
Green’s second identity (33), where 92" is the domain
boundary and 92, is the boundary of a small sphere of
radius a at a point (x,y,z) where the function G (Green’s
function) is singular.
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// [¢_G ]dm/ // {¢—G ]dBQ’.

There are several Green’s functions available and already
tested in the literature, see for instance [15, 16] and more
recently [17]. In this work, we applied the Rankine sources
(34), which are the fundamental solutions of Laplace’s
equation in polar coordinates. The use of Rankine source
as the elementary singularity is mainly motivated by the
resulting flexibility in the choice of the free surface con-
ditions to be satisfied, which in the future may render the
extension of the code for problems with forward speed and
nonlinear flows problems:

1
N S

Supposing that the domain contains only regular regions
and analyzing the residue associated with the Rankine
sources, the integral equation for the velocity potential
can be summarized in (35), where P are field points and Q
source points.

G(P.Q) =

(34)

—4x¢p if P inside Q'
—2m¢p if Pisat 92
0 if P isoutside Q’

(35)

3Gpg d¢o

— Gpop—=doQ =
// {qﬁQ ong PO ong
0,

Analogously, the same procedure may be followed for the
definition of an integral equation for the acceleration poten-
tial (36).

) —47Wp if P inside '
GPQ 0‘1’ , . ,
3 doQY =< —27Wp if Pisat 0Q
b, e 0 if P is outside &
(36)

3 Numerical method

In a general description, the majority of the numerical algo-
rithms which deal with the wave-body formulations in
time domain solves the elliptical problem for the velocity
and acceleration potential at a certain time step, whereas a
time-marching scheme is used to update the boundary con-
ditions to a new time step. In this work, the solution of the
integral equations which compose the elliptical problem
will be calculated by means of a boundary element method
and the time-marching one will be performed by a fourth-
order Runge—Kutta method (RK4).

3.1 Boundary element method

The boundary element method (panel method) is applied to
solve the integral Eqgs. (35) and (36). In this work we apply

a low-order panel method which uses plane quadrilateral/
triangular panels (surface elements) to discretize the sur-
faces and assume that the variable quantities are constant
over each panel, simplifying reasonably the integration of
the singularities. Reference [9], which was followed in this
work, is considered a pioneering development in this topic,
applying it to a wide variety of flow problems with bodies
in infinite fluid.

With this approach, the boundary surfaces 92’ are dis-
cretized in N, plane quadrilateral/triangular panels, in
which a unique point is selected to be a collocation point
where the boundary conditions are imposed and the vari-
able quantities are determined. It is quite obvious that the
larger the number of panels, the better is the domain sur-
face representation and also the assumption that the vari-
able quantities are constant over each panel.

Therefore, we consider a sum of N, integrals over sep-
arated surfaces BQ’ for all collocatlon points P, obtaining
Egs. (37) and (38) for the velocity and acceleration poten-
tial, respectively:

2n¢1+2¢] // (rl/)dasz’

- BQ/
3
Z i //fdag’_o i=1:N, (37)
3&2’
/
271\1114—2\1’ // an(r,,>dm
- BQ’
// —dij=0 i=1:N,. (38)
rij
BQ/

In a more compact notation, Eqgs. (37) and (38) may be
replaced by Egs. (39) and (40):

Ny -

Dj— Pis| = omg i=1:N
D (8D — S S| = =2mgi i=1:N), (39)

j=1=

oW
S wpy - = SU} =27 i=1:N, (40)

where §;; and D;; are known in the literature as source and
dipole influence coefficients, respectively.

In this method, a Neumman type condition is imposed
on the submerged body surface to guarantee its imperme-
ability condition. The choice of a boundary condition type
to be imposed on the free surface is more flexible, since
we can choose for Neumann or Dirichlet type. However,
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by applying a Neumman condition it is possible to realize
that after the integral equation is solved, only the velocity
potential ¢ would be known at all the boundary surfaces
and an additional numerical spatial differentiation would
be necessary to define the free surface elevation. To sim-
plify the numerical method, we chose for a Dirichlet type,
adopting the flux as variable in the free surface. Therefore,
the potential ¢ is imposed, which allows the free surface
conditions to be written as ordinary differential equations
(ODEs).

Concluding, substitution of ¢; and W; for Dirichlet
boundaries (i.e free surface) and d¢;/0n and 0W;/dn for
Neumann boundaries (i.e body surface, bottom etc.) results
in two linear systems of N, linear equations, which may be
solved by simple matrix inversion.

3.2 Time integration

The time integral method is very important to ensure the
accuracy and stability of the present numerical tool, which
in practice leads to the application of higher-order schemes
such as RK4, fifth-order Runge-Kutta—Gil method (RKG)
and fourth-order Adams—Bashforth—-Moulton (ABM). As
stated by [12], the application of any of these methods to
simulate problems involving ordinary waves and floating
body motions provides substantial stability to the method.
Therefore, following other authors such as [13, 14], we
choose the RK4 method.

To update the boundary conditions of the IBVPs to a
new time level, the time progressing is conducted by the
integration of the kinematic and dynamic free surface con-
ditions. In case of free floating bodies, the equations of
motion must also be considered. These steps are followed
until the desired simulation time 7 is reached. A summary
of this procedure is presented in Fig. 2.

In the numerical scheme, the incident waves, velocities,
accelerations, etc. are increased gradually using the ramp
function f;(#) which guarantees a smooth and slow increase
of the solution until the achievement of a steady state. The
ramp function is defined by:

f) = %{1_“’5(?)} i ii 1)

where T, is the ramp period which is normally set as a
multiple of a characteristic wave period involved in the
simulations.

3.3 Numerical damping zone
As mentioned before, the imposition of a radiation condi-

tion is mandatory to ensure a correct representation of a
body floating in open sea, in which the incident, diffracted
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Fig. 2 Loop structure of the numerical method

and irradiated waves cannot reflect back and influence the
body motions again. In the ocean, this naturally occurs
because the boundaries that could reflect part of the wave
energy are usually far away and, then, the associated energy
is dissipated by nonconservative forces or wave breaking.

In the experimental approach, there is always a beach or
active absorbers to partially account for the dissipation or
absorption of the waves, reducing the influence of reflect
waves in the measurements of interest. The beach basic
function, for example, is to dissipate the energy transported
by the waves, but in a numerical simulation it is impossible
to impose its physical behavior because all mathematical
formulation is based on conservative fields and therefore no
dissipation is expected.

Since computer memory is finite, we are then obliged to
truncate the free surface somewhere and impose a numeri-
cal scheme in our model by the inclusion of a damping
zone, which is also known as sponge boundary condition
or numerical beach, first proposed by [18]. The relatively
easy way of implementing leads to a widespread use of this
condition, which is demonstrated by the vast quantity of
works related to different approaches that we may find as,
for example, [19-23].

In practice, this is performed by the inclusion of an
energy dissipation term in the free surface boundary condi-
tions, as follows:

9 ]
fn—ﬁ—v(x,y)n at z=0

ar oz
and /x4 y% > Lgz (42)
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%=—gn—V(x,y)¢ at z=0

ot
and \/x24+y? > Lgz, (43)

in which Lyz is the distance from the global coordinate ori-
gin until the beginning of the damping region and v(x,y)
is a function that defines the dissipation of this region,
described by:

VX2 +y*—Laz
b

v(x,y) = aw s (44)

where a defines the intensity of dissipation and b the damp-
ing zone length. These values must be tuned by preliminary
tests to avoid the occurrence of reflected waves which may
spoil the solution. In general, we observe that the damp-
ing zone must have a minimum length of one wave length
b = 1, whereas the intensity must be set in such a way that
permits a progressive and smooth dissipation of the waves.
Damping zones with large values of a (i.e a > 3) may
behave as a fixed wall.

4 Numerical test cases
4.1 Verification of hydrodynamic load calculations

This section presents the computations of the hydrody-
namic loads resulting from diffraction and radiation prob-
lems in infinite water depth, considering simple geometries
as a hemisphere and a circular section cylinder. Benchmark
results were obtained from calculations performed with the
software WAMIT which solves the same boundary value
problem defined here, but in the frequency domain. For the
hemisphere radiation problem, the added mass and poten-
tial damping coefficients are compared to the closed solu-
tions presented by [24].

The hemisphere surface of unitary radius r, = 1 m was
discretized in three different grids with 200, 800 and 3200
panels and the circular section cylinder of radius r, = 1
m and draught 7, = 1 m, in 120, 500 and 2000 panels. In
the cylinder case, the panels are more concentrated near
the intersection region formed by the encountering of the
free surface and the body surface. This was done to guar-
antee a minimum resolution of panels for cases involving
high-frequency waves in which their lengths are small and
the velocity profiles are confined to this region. In fact, as
observed by [9], if several small elements are in the vicin-
ity of a larger one, the accuracy of the solution is associ-
ated with the larger elements. For the hemisphere, this was
guaranteed by increasing the total number of panels. The
six body meshes considered in the calculations are dis-
played in Fig. 3.

The free surface length depends directly on the wave-
lengths that will be simulated. For these computations,
we considered circular free surfaces meshes with radius
ris = 30 m, providing sufficient space for most of the
waves herein considered. As well as the body surfaces,
three different panel meshes are considered containing 289,
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Fig. 3 Cylinder and hemisphere panel meshes used in the computa-
tions. a, ¢, e 120, 500 and 2000 cylinder panel meshes, respectively.
b, d, f 200, 800 and 3200 hemisphere panel meshes, respectively

Fig. 4 Free surface panel meshes used in the computations. a—c refer
to the 289, 1225 and 4900 free surface panel meshes, respectively
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Table 1 Main numbers of

; Hemisphere Cylinder

the panel meshes used in the

computations Coarse Medium Fine Coarse Medium Fine
Body mesh 200 800 3200 120 500 2000
Free surface mesh 289 1225 4900 289 1225 4900
Final mesh 489 2025 8100 409 1725 6900

Table 2. Regular incoming D o (rad/s) T (s) 2 (m) D o (rad/s) T (s) 2 (m)

waves used in simulations
1 1.716 3.662 20.932 13 4.429 1.419 3.142
2 1.981 3.172 15.707 14 4.952 1.269 2.514
3 2.215 2.837 12.563 15 5.425 1.158 2.094
4 2.426 2.590 10.473 16 5.860 1.072 1.795
5 2.620 2.398 8.979 17 6.264 1.003 1.571
6 2.801 2.243 7.856 18 6.644 0.946 1.396
7 2971 2.115 6.983 19 7.004 0.897 1.256
8 3.132 2.006 6.284 20 7.672 0.819 1.047
9 3.431 1.831 5.236 21 8.287 0.758 0.898
10 3.706 1.695 4.488 22 8.859 0.709 0.785
11 3.962 1.586 3.927 23 9.396 0.669 0.698
12 4.202 1.495 3.491 24 9.905 0.634 0.628

1225 and 4900 panels. Figure 4 displays the meshes used in 2000¢ [~-Coarse = Medium —Fine]

the computations, where it is possible to observe that a high 1500¢ i 4 4 A & A A

number of panels are concentrated near the body surface. 1000l ! A T L S 4

A set of six panel meshes is then constructed by group-

ing the body and free surface meshes in pairs. Denoting the z S0

meshes with the lowest number of panels as coarse meshes, & 0

the intermediates as medium meshes and the one with -500;

greatest resolution as fine mesh, Table 1 presents the main ~1000}

numbers of the panel meshes that will be simulated. _1500% ;:,‘ ‘IR § |

We begin our numerical result presentation, simulating 2000 ? S
cases of fixed bodies under the action of incoming regular 0 5 Time (9 10 15

waves. Table 2 presents the main features of the set of 24
regular waves in a frequency range between 1.716 and 9.905
rad/s, which were tested in our numerical model. All the
waves present unitary amplitudes A; = 1 m. For all the simu-
lations, the time step was set to At = T/60 s and the numeri-
cal beach coefficients were set to a = 1and b = 1, with these
parameters being defined after a convergence analysis [25].
Figures 5, 6 and 7 present the time series of the verti-
cal hydrodynamic forces F, obtained for each one of the
panel meshes, considering incoming waves of frequencies
w =4.202 rad/s, w = 6.264 rad/s and @ = 9.905 rad/s,
respectively. It is possible to realize that as the angular
frequency increases, larger differences in terms of ampli-
tude and phase between the forces calculated with the dif-
ferent meshes are observed. Amplitude modulations are
clearly observed for the coarse mesh when simulating
waves with frequency higher than @ = 6.264 rad/s. This
may be explained by the insufficient number of panels per
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Fig. 5 Hydrodynamic vertical force F, induced by a wave with fre-
quency of w = 4.202 rad/s for cylinder body

wavelength that is required to correctly satisfy the disper-
sion relation of waves in infinite water depth. For the high-
est frequency, for example, the vertical forces calculated by
the coarse mesh present nonphysical results with order of
magnitude much larger than those obtained with the other
meshes. Moreover, for this frequency we may also observe
variations of phase calculated when using each of the con-
sidered panel meshes. Results for the medium and fine
meshes present better agreement for all the frequencies,
but for the highest one, indicating that only the fine mesh is
capable of correctly propagating waves of such small length.
The results for the hemisphere body are not presented,
since the same behavior was observed. This was expected,
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Fig. 6 Hydrodynamic vertical force F, induced by a wave with fre-
quency of w = 6.264 rad/s for cylinder body
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Fig. 7 Hydrodynamic vertical force F, induced by a wave with fre-
quency of w = 9.905 rad/s for cylinder body

since the propagation of waves is related to the free surface
meshes which are the same for both body geometries.

To check the convergence of the results, we compare the
horizontal and vertical non-dimensional forces for all panel
meshes and wave frequencies presented in Table 2. For the
cylinder, the non-dimensional moment M, around the y-
axis is also presented.

The non-dimensional forces and moments are calculated
by:

Hemisphere Cylinder
oo b Fo— T
YT Sanes Tt T pemrlT.
- - 45
Fo= ok F= < (45)
3T, P8 pgrreTe
My

— Y
Y Pgnrch

where fy, f, and m, are the amplitudes of the forces F, and
F, and moment M,, respectively.

The convergence analysis for the non-dimensional
horizontal and vertical hydrodynamic forces for the hemi-
sphere body is presented in Figs. 8 and 9, respectively. As

[—Wamit = Coarse ® Medium ¢ Finc|

4 6
w (rad/s)

Fig. 8 Convergence analysis of the non-dimensional horizontal
hydrodynamic force Fy for the hemisphere body and comparison with
Wamit data
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Fig. 9 Convergence analysis of the non-dimensional vertical hydro-
dynamic force F, for the hemisphere body and comparison with
Wamit data

expected, deviations among the meshes tend to be more
pronounced for the highest frequencies, where a very
refined free surface mesh becomes essential for an accurate
calculation of the diffraction wave fields. In a general view,
the present values recovered very well the values calculated
by the WAMIT higher-order scheme.

The simulations with the cylinder presented very similar
trends in comparison to the hemisphere ones. Again, conver-
gence of the results is confirmed increasing the number of
panels and very low relative errors are observed for the major-
ity of wave frequencies. Once more, the data are illustrated
in Figs. 10, 11 and 12. Again, a good agreement between the
WAMIT results and the present calculations is observed.

Next, we present the simulations of forced harmonic oscil-
lations imposed on both the hemisphere and cylinder body. In
contrast to fixed body simulations, this study does not contain
incident waves and the hydrodynamic loads are generated
only by body motions with unitary amplitude. Again, all the
simulations were run with a time step of Ar = T/60 s.
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Fig. 10 Convergence analysis of the non-dimensional horizontal
hydrodynamic force F, for the cylinder body and comparison with
Wamit data
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Fig. 11 Convergence analysis of the non-dimensional vertical hydro-
dynamic force F; for the cylinder body and comparison with Wamit
data

In wave linear theory, it is quite usual to decompose the
total hydrodynamic force induced by harmonic oscillations
in two different components denoted by added mass and
radiation damping, which are in phase with the body accel-
eration and velocity, respectively.

A time series example of vertical force obtained with a
pure heave forced motion simulation considering the hemi-
sphere body (fine mesh) is presented in Fig. 13. Moreover, the
figure also presents moving window Fourier analyses of the
signal, which provide the time traces for the added mass As3
and radiation damping B33. Notice that the coefficient curves
present some oscillations at the beginning of the simulation,
alerting us that the hydrodynamic forces are still in a transient
period. Going further, we observe that after a certain instant
of time, the signals become practically constant, indicating
that the force is in steady state. After a constant behavior of
the curve is observed, the added mass and radiation damping
coefficients are then determined by an average of its values.

The calculations of the added mass and radiation
damping coefficients are then repeated using the same
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Fig. 12 Convergence analysis of the non-dimensional hydrodynamic
moment My, for the cylinder body and comparison with Wamit data

5000F T T T T T T T m
=
-5000¢ . h . . ! . . ]
0 5 10 15 20 25 30 35 40
Time (s)
2000 T T T T T T
Z 10001 1
0 L L L L L L
0 5 10 15 20 25 30 35
Time (s)
1500 T T T T T T
.. 10001 1
2
q
500 1
0 L L L L L L
0 5 10 15 20 25 30 35

Time (s)
Fig. 13 Determination of A33 and B33 coefficients

angular frequencies described in Table 2. Convergence
analysis of the results are performed simulating each
case for the coarse, medium and fine mesh presented in
Table 1. Aiming at verifying the results, the coefficients
obtained with the hemisphere body are compared to the
analytical solution presented by [24], whereas the ones
for the cylinder body are compared to data calculated by
the software WAMIT. The non-dimensional added mass
and radiation damping coefficients A,-j and Bij are deter-
mined by:

Hemisphere Cylinder
_ . _ A
Aj=5—5 Aj=—3— for i,j<3
3R P prreTe
_,-jzzBij B = Bzij for i,j<3
ST p@ prreTew
_ A
ij = 7% for i,j>4
prr2Te
Bi=—2Y  for ij<A4 46
Y pnrdTew I = (46)
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Fig. 14 Convergence analysis of the added mass coefficient A for
the hemisphere body and comparison with data obtained in reference
[24]
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Fig. 15 Convergence analysis of the radiation damping coefficient
By for the hemisphere body and comparison with data obtained in
reference [24]

The non-dimensional added mass and radiation damping
coefficients for heave and surge modes of the hemisphere
body are presented in Figs. 14, 15, 16 and 17. Notice that
the present calculations agree very well with the analyti-
cal solutions derived by [24] for all the analyzed angular
frequencies. In addition, differences between the results
obtained with each panel mesh are very small, pointing out
that for this body geometry very low computational costs
are necessary for a reasonable numerical prediction of
these coefficients.

The same trend is not observed in the cylinder results,
displayed in the Figs. 18, 19, 20 and 21. Although fine
results are observed for the medium and fine meshes, cal-
culations performed with the coarse mesh do not provide
accurate results as, for example, for the added mass coef-
ficients for the heave mode presented in Fig. 20. Looking

‘—HUIIIIE(WS?) = Coarse ® Medium 4 Fine‘

w (rad/s)

Fig. 16 Convergence analysis of the added mass coefficient As; for
the hemisphere body and comparison with data obtained in reference
[24]
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Fig. 17 Convergence analysis of the radiation damping coefficient
B33 for the hemisphere body and comparison with data obtained in
reference [24]
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Fig. 18 Convergence analysis of the added mass coefficient A;; for
the cylinder body
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Fig. 19 Convergence analysis of the radiation damping coefficient
By for the cylinder body
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Fig. 20 Convergence analysis of the added mass coefficient As; for
the cylinder body
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Fig. 21 Convergence analysis of the radiation damping coefficient
B33 for the cylinder body

for the pitch mode coefficients A55 and Bss, we conclude
that even the fine mesh is insufficient to accurately predict
the same values calculated by the WAMIT higher-order
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Fig. 22 Convergence analysis of the added mass coefficient Ass for
the cylinder body
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Fig. 23 Convergence analysis of the radiation damping coefficient
Bss for the cylinder body

scheme and, therefore, highest panel resolutions should be
applied (Figs. 22, 23).

4.2 Free floating simulations

The results presented so far still did not involve calculations
considering the body equations of motions coupled with the
integral equations derived from the hydrodynamic problem
and, therefore, we cannot conclude whether the coupling
scheme, previously proposed by [10, 11], is implemented
correctly or not. In this sense, we apply our numerical code
for the evaluation of free motions of hemisphere and cylin-
der bodies. The calculations are performed with the panel
meshes presented in Table 1. In the simulations, the inci-
dent regular waves with unitary amplitude A; = 1 m prop-
agate in x positive direction with the angular frequencies
presented in Table 2. Again, the time step and the numeri-
cal beach zone coefficients were setto At = T/60s,a =1
and b = 1, respectively.
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Table 3 Principal characteristics of the cylinder and hemisphere and
settings of the simulations

Parameters Cylinder Hemisphere
Radius (m) 1.00 1.00
Draught (m) 1.00 1.00

Mass (kg) 3.14E+43 2.09E+3
Pitch inertia® (kg m?) 1.57E+3 -

COG X coordinate® (m) 0.00 0.00

COGYY coordinate® (m) 0.00 0.00

COG Z coordinate® (m) —0.50 —0.50

C55 (kg m?/s) 4.35E+2 -

# Values were calculated in relation to the body center of gravity

® Values are described in relation to the global coordinate system (x,
v, 2)=1(0,0,0)

;
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Fig. 24 Time history of the cylinder heave motion for the coarse,
medium and fine meshes. Incoming wave with angular frequency
o = 2.51rad/s

For the calculation of the body motions in waves, we also
had to define matrices of mass/inertias for each of the geom-
etries evaluated. Moreover, for the calculations involving
the cylinder, in which the pitch D.O.F was also evaluated,
the linear external damping coefficient Css was also consid-
ered to account for viscous effects neglected in our model.
The main parameters considered in the simulations are pre-
sented in Table 3.

Typical time histories of the cylinder and hemisphere
heave motions are exemplified in Figs. 24 and 25, respec-
tively. These simulations were carried out with incoming
waves with frequencies equal to the heave natural frequencies
of each body. For a better visualization of the curves, only a
part of the steady-state portion of the signals are presented. It
is worth mentioning that the time histories presented a regular
behavior, even simulating the body responses for more than a
100 wave cycles, demonstrating the stability of the code. In
fact, the simulation could be continued for much more time,
maintaining the quality of the results.

) ) .
‘-'-Coarse o Medium —Fine‘

&s(m)

12 114 116 118 120
Time (s)

Fig. 25 Time history of the hemisphere heave motion for the coarse,
medium and fine meshes. Incoming wave with angular frequency
o = 3.13rad/s

— Wamit ® Coarsc ® Medium ¢ Fine

0.8f

0.6f

&/Ar

0.4

0.2r

4 6
w (rad/s)

Fig. 26 Convergence analysis of the cylinder surge RAO and com-
parison with Wamit data

The convergence of the bodies’ motion results for each
one of the wave frequencies described in Table 2 is evalu-
ated next. Furthermore, the results are compared with
data provided by the software WAMIT. This evaluation is
done in the frequency domain by calculating the motions
of RAOs by a fast Fourier transform (FFT) analysis on the
steady-state portion of each motion time series.

The cylinder RAOS of surge, heave and pitch motions
obtained with the present method and WAMIT are plot-
ted in Figs. 26, 27 and 28, respectively. Overall, a good
agreement is observed with the WAMIT results. As can be
seen, the results converge with the increasing of the num-
ber of panels, which is demonstrated by very similar results
obtained with the medium and fine meshes. Notice, how-
ever, that by applying the coarse mesh, the curves tend to
present an oscillatory behavior, which is intensified with
the increase in the wave frequency. As discussed before,
this occurs due to the low resolution of panels per wave-
length, which causes the appearance of an amplitude modu-
lation in the signal.
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Fig. 27 Convergence analysis of the cylinder heave RAO and com-
parison with Wamit data
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Fig. 28 Convergence analysis of the cylinder pitch RAO and com-
parison with Wamit data
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Fig. 29 Convergence analysis of the sphere surge RAO and compari-
son with Wamit data

The analogous results for the hemisphere body are pre-

sented in Figs. 29 and 30 for surge and heave motions,
respectively. In general, the same conclusions pointed
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Fig. 30 Convergence analysis of the sphere heave RAO and compari-
son with Wamit data

out for the cylinder are maintained, in which the medium
and fine mesh results agreed very well with the WAMIT
data. Furthermore, these results demonstrate the capabil-
ity of our code to predict the motions of floating bodies
in waves, confirming that the second integral equation
defined for the acceleration potential was correctly imple-
mented and the equilibrium between the dynamic and
hydrodynamic forces was conserved during the whole
simulation.

5 Free floating simulations with an FPSO

Numerical simulations are now conducted to a converted
FPSO VLCC hull type. The results are compared to
experimental data obtained in wave tests carried out at the
CH-TPN-USP, in Sao Paulo, Brazil, which is a wave basin
with dimensions of 14 mx 14 m and water depth of 4 m.
This tank is equipped with a set of 148 independent flaps
for the generation and active absorption of waves, which
provides great precision and stability to the wave field
during the experimental measurements; see for instance
[26]. A perspective view of the wave basin is illustrated
in Fig. 31.

For the execution of the tests, a 1:90 small-scale model
of the VLCC hull was positioned at the middle of the
tank and equipped with reflective targets used by an opti-
cal tracking system which was mounted on the carriage
for the measurement of 6 D.O.F model motions. In addi-
tion, a set of four soft springs was attached to the model
and fixed to four vertical bars positioned at the corners of
the wave basin to control its horizontal displacements. The
equivalent restoring coefficient in the horizontal plane was
determined by pullout tests. As the main goal of the tests
was the study of roll motions, only beam waves were con-
sidered in the test matrix, which included regular, transient
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Fig. 31 Hydrodynamic calibrator of the numerical offshore tank on
the University of Sao Paulo (CH-TPN-USP)

Fig. 32 Hydrodynamic calibrator of the numerical offshore tank in
the University of Sao Paulo (CH-TPN-USP)

and sea wave conditions. Figure 32 presents a view of the
model during the tests.

Concerning the regular waves, a study increasing the
incoming wave amplitude for a fixed wave frequency
w1 = 0.443 rad/s (near the roll resonance frequency) was
conducted aiming at investigating the nonlinear roll motion
response and its associated damping coefficients. For this
study, however, only the regular wave of smallest steepness
will be considered, in accordance with the linear wave theory
considered here. The transient wave, in turn, was used for a
fast RAO determination, in which a wave package with a con-
stant amplitude of 3 m, in full scale, and frequencies between
0.349 and 0.785 rad/s was applied. In this wave package, the
maximum wave steepness was around 3 %, being also within
the scope of the linear wave theory. By now, the irregular
waves were not used for comparison purposes.

The main characteristics of the FPSO model (in full
scale) are listed in Table 4. Model center of gravity and
inertia of roll, pitch and yaw were calibrated using ballast
weights.

Table 4 Principal characteristics of the FPSO VLCC hull and the
settings of the simulations

Length over all 334.44 (m)
Beam moulded 54.72 (m)
Depth moulded 21.51 (m)
Draught 21.51 (m)
Mass 3.09E4-08 (kg)

Roll inertia® 1.05+11 (kg m?)
1.79E+12 kg m?

1.83E+12 kg m?

Pitch inertia®

Yaw inertia®

COG X coordinate” 10.10 (m)

COG Y coordinate® 0.00 (m)

COG Z coordinate® —6.76 (m)

K22 8.67E+05 (kg/s)
C44 (5 % Cerit) 5.48E+09 (kg m/s)
C44 (6 % Cerir) 6.03E+09 (kg m/s)

% Values were calculated in relation to the body center of gravity

 Values are described in relation to the global coordinate system
(x, ¥, 2)=1(0,0,0)

The numerical simulations for the RAO determination
were conducted considering a set of 44 regular waves,
which covered a frequency range between 0.307 and 0.873
rad/s, as observed in Table 5. As viscous damping effects
may not be neglected when evaluating roll motions, the
numerical results are presented for two different external
roll damping coefficients C44, also presented in Table 4,
which were calculated as 5 and 6 % of the critical damping
Cerit-

The FPSO VLCC body and the free surface mesh used
in the simulations are illustrated in Figs. 33 and 34, respec-
tively. The meshes designed for the FPSO and the free sur-
face were defined after a convergence test and resulted in
1088 and 3600 panels, respectively. The free surface mesh
was constructed with radius rr,g = 2000 m and with a high-
est panel concentration near the FPSO position. Once more,
the time step was set to At = 7'/60 s and the damping zone
coefficientstob = land a = 1.

Figures 35, 36 and 37 present the comparisons between
numerical results and experimental data for sway, heave
and roll D.O.F,, respectively. As expected, the change of
the external roll damping coefficients brought higher devia-
tions at frequencies near the FPSO roll natural frequency.
In addition, this variation did not influence the heave
motions and slightly impacted the sway motions, which is
justified by the existence of a nonzero hydrodynamic cross
term coefficient relating these two D.O.F. In general, the
numerical method recovered well the experimental curves
for sway and heave D.O.F.,, being capable of predicting
the motion amplitudes reasonably well, mainly if we con-
sider the presence of uncontrolled uncertainties inherent to
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Table 5 Regular incoming D

waves used in the FPSO VLCC @ (radfs) T® A (m) 1D @ (rad/s) T® A (m)

hull simulations 1 0.307 20.466 653.992 23 0.517 12.153 230.605
2 0.323 19.453 590.805 24 0.534 11.766 216.156
3 0.340 18.480 533.201 25 0.550 11.424 203.762
4 0.356 17.649 486.350 26 0.566 11.101 192.405
5 0.372 16.890 445.413 27 0.582 10.796 181.971
6 0.388 16.194 409.435 28 0.598 10.507 172.364
7 0.390 16.111 405.247 29 0.614 10.233 163.498
8 0.395 15.907 395.052 30 0.631 9.958 154.807
9 0.400 15.708 385.238 31 0.647 9.711 147.245
10 0.404 15.552 377.647 32 0.663 9.477 140.224
11 0.405 15.514 375.784 33 0.679 9.254 133.693
12 0.415 15.140 357.893 34 0.695 9.041 127.608
13 0.420 14.960 349.422 35 0.711 8.837 121.930
14 0.425 14.784 341.249 36 0.728 8.631 116.302
15 0.430 14.612 333.359 37 0.744 8.445 111.353
16 0.435 14.444 325.739 38 0.760 8.267 106.714
17 0.437 14378 322.765 39 0.776 8.097 102.359
18 0.443 14.183 314.081 40 0.792 7.933 98.265
19 0.453 13.870 300.367 41 0.808 7.776 94.412
20 0.469 13.397 280.223 42 0.825 7.616 90.561
21 0.485 12.955 262.039 43 0.841 7471 87.148
22 0.501 12.541 245.569 44 0.857 7.332 83.924
45 0.873 7.197 80.876

Fig. 33 FPSO VLCC hull panel mesh
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the model test, such as small model geometry errors and
its calibration parameters, as well as slight differences in
the horizontal restoration coefficient input in the simulation
and also the linearization hypothesis established by our lin-
ear numerical model.

Direct comparisons between numerical and experi-
mental motion time series for sway (&), heave (&3)
and roll (&) are presented in Fig. 38, considering
Cqq = 0.05Ci, and in Figure 39 for Cgq = 0.06Ci;.
These motions are results of the FPSO interaction with
a regular wave of frequency @ = 0.443 rad/s and ampli-
tude Ay = 0.92 m, both in full scale. The time series are
synchronized considering only the motion data of one
D.O.F. (sway) so as to preserve the phase information
with the other D.O.F. A good agreement is observed for
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Fig. 34 Free surface panel mesh for the FPSO VLCC simulations

the heave motion time series, in which the experimental
and numerical curves are practically equal. On the other
hand, although the roll and sway motion phases were pre-
dicted accurately, small discrepancies in amplitude may
be noticed, especially in Fig. 39, where an external coef-
ficient of C44 = 0.06Cj; was applied. This result is con-
tradictory to the comparisons made for the roll RAO, see
Fig. 37, obtained with the transient wave, in which the
consideration of the higher damping coefficient clearly
improved the curves’ agreement. However, as could also
be observed in the figure, the roll RAO measured in the
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Fig. 35 Comparison between numerical results and experimental
data of sway response amplitude operator for the FPSO VLCC hull
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Fig. 36 Comparison between numerical results and experimental
data of heave response amplitude operator for the FPSO VLCC hull
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Fig. 37 Comparison between numerical results and experimental
data of roll response amplitude operator for the FPSO VLCC hull

experiment considering transient and regular waves pre-
sented different amplitude values, which makes a perfect
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Fig. 38 Comparison between numerical and experimental motion
time series for sway (&), heave (£3) and roll (&4), considering
Cy4 = 0.05Ci
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Fig. 39 Comparison between numerical and experimental motion
time series for sway (&), heave (§3) and roll (§4), considering
C44 = 0.06Cci

tuning of the damping coefficient impossible for both
cases with the linear approach herein applied. In fact, for
being a D.O.F. more susceptible to nonlinear effects, its
results, especially on the resonant frequency range, are
highly dependent on the incoming experimental wave
amplitude, which justifies the differences observed also
in the experimental results obtained by the two tech-
niques applied in the experimental test (regular and tran-
sient waves). In spite of this fact, good predictions were
obtained with the numerical method, pointing out the
code capability to predict the motions of a floating body
with more complex geometries than hemispheres and cyl-
inders bodies.
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6 Conclusion

The development of an in-house numerical code that deals
with wave-body formulations which describe the inter-
action between floating bodies and free surface gravity
waves under the assumption of potential flow theory was
presented. This development is a first stage of a research
that aims at, in a medium-term goal, considering nonlinear
wave effects and the coupling of the present code to the
TPN dynamic simulator of offshore systems, which also
takes into account the effects of wind, current, risers and
mooring lines.

The problem was addressed in a linear version, which
enabled us to split up the total velocity potential in a sum
of a disturbed wave potential and an analytic solution of an
incoming wave field. This allowed us to change the prob-
lem variable to the disturbed wave potential only, avoid-
ing the necessity of including a numerical wave maker to
account for the incoming sea waves. Moreover, as the dis-
turbed waves are generated from the body toward the free
surface edge, we did not need to concentrate on a great
number of free surface panels along all the domain, but to a
very confined region near the body.

The inclusion of a second initial boundary value prob-
lem over the first one defined for the disturbed wave veloc-
ity potential was also discussed. Time domain simulations
require a coupled treatment of the equations of the fluid
motion and the body dynamics to guarantee an equilibrium
of forces between the fluid and floating body at all times.
Therefore, an accurate scheme for the calculation of time
derivative of the velocity potential and consequently the
pressure determination is essential for a consistent formula-
tion. For the present calculations, we applied the linear accel-
eration potential which also satisfies Laplace’s equation.

The numerical code was first tested by the calculation of
the hydrodynamic loads in hemisphere and cylinder bod-
ies, resulting from the well-known problems of diffraction
and radiation. In addition, free floating simulations were
also conducted to verify whether the procedures adopted to
couple the fluid and body equations were correctly imple-
mented or not. Convergence of the results with the increas-
ing of the number of panels was also verified by performing
several simulations with meshes of different resolutions. As
expected, the higher the number of panels, the lower were
the relative errors between the present calculations and the
adopted reference values from WAMIT and [24]. As could
be observed, these comparisons presented very good agree-
ments, demonstrating that the numerical code developed so
far was capable of predicting the hydrodynamic loads and
motions caused by the wave—body interaction problem.

Free floating simulations with an FPSO hull were also
conducted and the RAO of motions were verified through
comparisons with experimental data obtained from tests
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carried out at the CH-TPN. The RAOS were obtained by
applying an FFT analysis on the regular regime of the
motion time series. Despite some small deviations spe-
cially concerning resonance peak values, the present
results presented a good agreement with experimental
data. Moreover, a direct comparison of numerical and
experimental time series was also presented, in which not
only the amplitudes but also the phases between the model
motions could be verified. The results demonstrated that
the numerical code developed was correctly implemented
and capable of predicting the motions of a real offshore
floating structure under the action of incoming regular
waves.

Further development of the code has been done toward
the implementation of higher-order methods, in which both
the geometry and the solutions are described in terms of
non-uniform rational B-spline (NURBS) surfaces. With
this approach, the inclusion of current effects and the solu-
tion of the second-order problem becomes more suitable
for tackling, since the spatial derivatives of the velocity
potential may be calculated straightforwardly.
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