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1  Introduction

The exploration of oil and gas fields in ultradeep water, 
such as the Brazilian pre-salt layer, demands a considerable 
amount of investments to be concretized. The necessity of 
long production risers, sophisticated pump and valve sys-
tems, and the conduction of maintenance services results 
in high operational costs, requiring significant oil produc-
tion to make the process feasible. In this context, seakeep-
ing analysis is a topic of great importance for the design of 
floating oil production units, since their response in waves 
will define whether the structure will operate properly or 
not. In fact, better designs should help reduce the produc-
tion downtime, especially under harsh environmental con-
ditions, which consequently improves the production effi-
ciency and reduce costs.

In current practice in the area of ocean engineering, 
experimental activities with scaled models have provided 
great knowledge and understanding of complex phenom-
ena involving the interaction between floating structures 
and environmental conditions, such as waves, wind and 
current. The constraints involved in scaled model tests are 
related to the difficulties in relation to physical limitations 
of the basins, especially in modeling systems that operate 
in deep waters. Moreover, since the tests require high costs 
and considerable time to be performed, presently they have 
been more used for final verification and not as a prediction 
tool for earlier stages of the design.

The use of a numerical approach has become increas-
ingly popular in the various stages of engineering designs, 
mainly due to the growth of computational power and 
development of new techniques for numerical processing. 
In this context, the use of numerical methods that deal with 
potential flow boundary value problems, such as the bound-
ary element method (BEM), is widely applied throughout 
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the design stages for solving hydrodynamic issues. The use 
of numerical methods reduce the demand of experimental 
tests between the stages of conception and final verifica-
tion; however, it does not eliminate their necessity, which 
usually provides essential contributions on the validation 
and extension of numerical methods.

A mixed approach based on numerical methods com-
bined with experimental data then emerges as an interesting 
approach for handling the problem. This idea is being fol-
lowed by the Numerical Offshore Tank of the University of 
Sao Paulo (TPN-USP) since 2000, which has as one of the 
main goals the development of a simulator that can handle 
a fully coupled solution of body hydrodynamics, mooring 
lines and environmental conditions. Moreover, the labora-
tory also counts on with a hydrodynamic calibrator wave 
basin (CH-TPN), which is used for the calibration of the 
simulator.

Specifically concerning the wave problem, the TPN 
simulator uses the BEM code implemented in WAMIT 
software [1] to calculate linear potential hydrodynamic 
coefficients in the frequency domain which are properly 
transposed to the time domain following the equations 
derived by [2]. However, one should realize that some 
inconsistencies may appear if the body acquires large 
amplitudes of motions around its mean initial position, dis-
obeying the original linear assumption established for the 
hydrodynamic load calculations. Another problem is the 
body seakeeping evaluation in scenarios of ultradeep water, 
in which the dynamics of the risers and mooring lines may 
play a role in the oil platform motions, but is disregarded 
in the hydrodynamic calculations. Furthermore, this proce-
dure limits the study of the fully nonlinear problem, since 
in the frequency domain only weakly nonlinear problems 
may be handled.

The calculation of the hydrodynamic problem in the 
time domain then arises as an interesting alternative to 
overcome these problems, since it may be coupled to the 
body equations of motion, solved by the dynamic simula-
tor. In comparison to models mathematically treated in the 
frequency domain, this approach allows us a straightfor-
ward addressing for future extensions of nonlinear descrip-
tions of both the hydrodynamic and the dynamic problems. 
Such extensions would enable us, for example, to consider 
the instantaneous body wetted surfaces to account for the 
body motions induced by risers and mooring lines and also 
to deal, in a more satisfactory way, with the viscous damp-
ing effects that as a nonlinear phenomena is commonly 
modeled by a quadratic term involving the body velocity.

Numerical solutions of the transient wave–body interac-
tions using BEM is normally segregated into two different 
categories based on the type of singularity employed in 
the method implementation. The first type uses the tran-
sient Green’s function as the elementary singularity, which 

satisfies Laplace’s equation and all the boundary conditions 
except the body boundary ones; see for instance [3]. The 
major advantages of such a scheme are the satisfaction of 
the radiation and linear free surface conditions and, there-
fore, only the wet body surface must be discretized.

The second type, introduced by [4, 5], applies the sim-
ple Rankine source as the elementary singularity, which is 
mainly motivated by the resulting flexibility in the choice 
of free surface conditions to be satisfied, being the sole 
alternative for the calculation of nonlinear flows and a more 
suitable choice for problems involving bodies with forward 
speed, as discussed by [6, 7]. Moreover, different bottom 
geometries than the flat shape may be analyzed by distrib-
uting the sources over its surface, as recently applied by 
[8].

Despite the fact that Rankine sources do not satisfy 
any boundary condition automatically, its application is 
simpler than using the transient Green’s function. In fact, 
Green’s function demands the use of accurate algorithms 
to be evaluated and results in extensive CPU and memory 
requirements for the convolution integral computations. 
In addition, it does not permit the method extension for 
the calculation of nonlinear wave problems, which is a 
medium-term goal of our research.

For these reasons, a time domain BEM based on the 
exclusive use of Rankine sources (Rankine panel method) 
is developed in the present paper. In this version of the 
numerical method, the nonlinear effects originated from 
the presence of the unknown free surface and body surface 
positions are neglected, whereas the three dimensionality 
feature of the fluid flow problem is retained. Independently 
of its own practical interest, which has given favorable 
results to many problems regarding floating body dynam-
ics, the robust and accurate solution of this linear problem 
is a very useful first stage before handling the complete 
nonlinear problem.

In this sense, the work of [9] was followed and a low-
order panel method is applied here, in which the mean 
surfaces are discretized by plane quadrilateral panels that 
remain fixed during all the simulation. Time domain simu-
lations require an accurate prediction of the pressure field 
to guarantee a consistent and stable numerical algorithm. 
A main concern is the properly evaluation of the velocity 
potential time derivative that depending on the numeri-
cal scheme applied may give rise to numerical instabili-
ties. Bearing this in mind, following references [10, 11], 
the problem is formulated by means of two initial bound-
ary value problems defined for the velocity and accelera-
tion potentials, the latter being used to avoid numerical 
problems in calculating the time derivatives of the velocity 
potential and consequently the pressure field.

The time marching of the problem is performed by a 
fourth-order Runge–Kutta method (RK4), which provides 
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high accuracy and stability to the algorithm. Furthermore, 
a numerical damping zone is applied to account for wave 
absorption in part of the free surface, avoiding spoil-
ing the solution by the waves reflected from the domain 
boundaries.

The implemented numerical tool is firstly tested by solv-
ing the diffraction and radiation problems with bodies of 
simplified geometries, such as the hemisphere and the cir-
cular cylinder. One step forward, free floating simulations 
with the same body geometries are presented. In these cal-
culations, different meshes varying the numbers of body 
and free surface panels are investigated. The results are 
compared to the analytical data presented in [24] and to 
numerical values obtained with the well-validated software 
WAMIT.

More complex evaluations are carried out with a float-
ing production storage and off-loading (FPSO) unit hull by 
performing free floating simulations. Based on the linear 
regime, the response amplitude operators (RAO) motions 
of the unit are compared to experimental data obtained in 
campaigns carried out in the CH-TPN. Moreover, direct 
comparisons of the motion time series induced by a regu-
lar wave is also presented. In general, all the results show 
favorable agreements with the experimental data.

The theoretical formulation of the problem is presented 
in Sect. 2, followed by the description of the numerical 
method, which is discussed in Sect. 3. Numerical test 
case results concerning the solution of the so-called dif-
fraction and radiation problems are presented in Sect. 4, 
which also includes the free floating motion calculations 
for bodies with simplified geometries. In Sect. 5, a brief 
description of the experimental campaign carried out with 
an FPSO small-scale model is presented, from which 
data is used for the verification of our numerical method. 
Finally, the conclusions of this research are presented in 
Sect. 6.

2 � Theoretical formulation

The problem of a floating body interacting with free sur-
face gravity waves is considered here. In this situation, 
incoming waves that propagate on a free surface are dis-
turbed by the floating bodies inducing unsteady forces and 
moments due to the generation of pressure changes in the 
fluid. Floating bodies then respond acquiring translational 
and rotational motions, which also force the fluid to move. 
Mathematical description of this problem may result in 
different governing equations depending on the assump-
tions on the motions of the body and the fluid concern-
ing its free surface. Moreover, it is usual to separate the 
equations that describe the behavior of the fluid and the 
floating body, which are then linked again by appropriate 

equations and matching conditions that define the wave–
body formulations.

Let us define three mutually perpendicular unit vectors 
e1, e2, and e3 that form the basis of the Cartesian coordinate 
system, in which the hydrodynamic problem and the body 
motions are described. Figure 1 illustrates a body floating 
somewhere in the sea in which incoming gravity waves 
propagate on a free surface SFS with angular frequency ω, 
length � and in a direction which makes an angle θ with the 
x-axis of the established reference frame.

Focusing our analysis in the fluid, we consider an arbi-
trary control volume � delimited by a surface ∂� with nor-
mal vector n = (nx, ny, nz) pointing outward the domain. 
The fluid flow velocity field is then defined by v = (u, v,w), 
in which u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the sca-
lar components of the velocity field at time t, at a point 
with spatial coordinates (x, y, z).

We consider the flow to be irrotational and incompress-
ible, whereas the fluid is assumed to be inviscid and homo-
geneous, allowing the velocity field to be defined by the 
gradient of the potential scalar field or velocity potential �:

In this sense, the equation of mass conservation is stated by 
Laplace’s equation (2), whereas the conservation of linear 
momentum is expressed by Bernoulli’s equation (3).

where p0 is the atmospheric pressure and C(t) is a con-
stant dependent on time, normally omitted since it can be 
absorbed into the velocity potential by redefining the latter 
without loss of generality of the solution.

Since there are an infinite number of solutions to 
Laplace’s equation, unique solutions for � are calculated 
particularizing the solutions by the imposition of boundary 
conditions which, in simple words, are necessary to match 
the dynamics and kinematic of the fluid with the physical 
boundaries of the fluid domain �, such as the wet surface 

(1)v = ∇�.

(2)∇
2� = 0

(3)
∂�

∂t
+

1

2
(∇� · ∇�)+ gz = −

p− p0

ρ
+ C(t),

x

Fig. 1   Definition of the coordinate systems



1572	 J Braz. Soc. Mech. Sci. Eng. (2015) 37:1569–1589

1 3

of the floating body SB(t), the sea bottom surface SBO and 
the free surface SFS(t).

The free surface SFS(t) demands the description of a 
kinematic and a dynamic boundary condition. Although 
the air phase could also be modeled as incompressible, 
since the Mach number is negligible for the application 
studied, the present work only evaluates the water phase. 
In the context of nonbreaking waves, the free surface 
boundary should be understood as a surface that always 
segregates the air phase from the water phase, acting as 
a membrane that avoids the “mixture” between both. The 
ideal fluid hypothesis is used and, hence, the fluid particles 
may have only tangential velocities concerning the free 
surface, but not normal ones.

Kinematic condition (4) states that the velocity of the 
fluid and the free surface boundary must be equal. The free 
surface adjacent particles remain in the free surface, with 
the elevation being described as a function η. The condition 
obtained is nonlinear, since it is the product of the potential 
and free surface elevation partial derivatives, and is applied 
at the actual free surface position, which is unknown a pri-
ori, leading to a difficult condition to be satisfied generally.

In addition, dynamic condition imposes that, neglecting the 
surface tensions, the pressure on the free surface must be 
equal to the atmospheric pressure, enforcing the balance 
of forces in the free surface membrane. The flow pressure 
is described by Bernoulli’s equation and the atmospheric 
pressure can be defined as zero, leading to Eq. (5). It should 
be noticed that this condition is also nonlinear due to the 
quadratic velocity term and by the fact that it is applied in 
an unknown position:

The boundary conditions associated with the floating body 
wet surface SB(t) and sea bottom surface SBO are mathe-
matically described by Neumann conditions which impose 
that the fluid particles may not penetrate these surfaces. For 
the sea bottom and other time-independent surfaces that 
may be present in the problem, this is represented by the 
well-known zero-flux condition (6):

The conditions on the submerged surfaces of floating bod-
ies and other time-dependent surfaces are treated in a very 
similar way as the bottom surface. Nevertheless, the motion 
of these boundaries influences the motion of the fluid at 
their surroundings, requiring compatibility of the fluid and 

(4)

D

Dt
(z − η) =

∂�

∂z
−

∂η

∂t
−

∂�

∂x

∂η

∂x
−

∂�

∂y

∂η

∂y
= 0

on z = η(x, y, t).

(5)
∂�

∂t
+

1

2
(∇� · ∇�)+ gz = 0 on z = η(x, y, t).

(6)∇� · n =
∂�

∂n
= 0 on SBO.

surface velocities to guarantee an impermeability condi-
tion, as presented in Eq. (7):

where δδδ is the time-dependent displacement of the 
floating body defined in terms of the translational 
ξξξT(t) = (ξ1, ξ2, ξ3) and rotational ξξξR(t) = (ξ4, ξ5, ξ6) dis-
placements, and of r that is the position vector of a point on 
the body surface relative to the body center of gravity:

Body motions, in turn, are defined by solving Newton’s 
second law equation, assuming the body mass as constant, 
small angles and that the only external loads are the gravity 
and flow pressure:

where ξξξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) and M are the matrix con-
taining the body mass and moments of inertia. Moreover, 
F and MO are vectors containing the external forces and 
moments in relation to a pole O, respectively.

The last, but not less important than the other bound-
ary conditions is the radiation condition, which apart from 
making the problem unique also enforces that the waves 
generated by the bodies are outgoing waves only and do 
not reflect somewhere allowing these waves to interfere 
with the body motions again.

To conclude this initial boundary value problem (IBVP), 
an initial condition must be imposed at the free surface so 
as to determine the subsequent fluid motions. As demon-
strated by [3], for flows beginning from the rest, we may 
set the velocity potential at the initial instant t = 0 s to:

Although Laplace’s equation is linear homogeneous differ-
ential, the boundary conditions present several sources of 
nonlinearities and in some cases must be applied in time-
dependent surfaces not known in advance, which makes the 
problem very complex for solving. Despite this complexity, 
numerical algorithms that deal with this fully nonlinear prob-
lem are becoming popular in recent years, mainly because 
of huge increase in computer processing capacity. However, 
most of them are still limited to bi-dimensional studies or 
very simple three-dimensional geometries and consequently 
restrict the possibilities of simulating the behavior of real 
ship vessels, oil platforms or the hydrodynamic interactions 
involved in multi-body arrangements. Therefore, in this first 
stage of the research, we decided to linearize the formulation 
and develop a linear computational code in which the math-
ematical derivations are presented in the next items.

(7)∇� · n(t) =
∂�

∂n
=

∂δδδ

∂t
· n(t) on SB(t),

(8)δδδ(t) = ξξξT(t)+ ξξξR(t)× r.

(9)M
∂2ξξξ

∂t2
=

(

F

MO

)

,

(10)� = 0 on t = 0 s.



1573J Braz. Soc. Mech. Sci. Eng. (2015) 37:1569–1589	

1 3

2.1 � Linear formulation

To linearize the problem, we use the well-known pertur-
bation technique using expansions in Stokes series, as 
also applied by [3], in terms of a small parameter ε ≪ 1.  
With this approach, we may identify and collect terms of 
order up to ε for a linear problem and consequently higher 
orders for the other problems. The method proposes the 
problem to be solved by splitting the original problem 
into a collection of linear problems (one for each order), 
solving them successively by imposing the solutions of 
the lower-order problem into the higher-order ones. Thus, 
to obtain a linear formulation, we perturb all the vari-
ables involved using the small parameter ε and substitute 
them in the set of nonlinear equations already presented. 
The velocity potential of order zero vanishes because the 
problem has no forward speed, and the position and nor-
mal vectors of order zero represent their mean values, i.e., 
the vectors when the bodies are at rest. The expansions of 
the velocity potential �, wave elevation η, normal vector 
n and translational ξξξT and rotational ξξξR body motions are 
presented in (11), (12), (13), (14) and (15), respectively. 
Hereafter, the horizontal bar (¯) over the variables means 
the zero-order values and the superscript (i) means the var-
iable order.

Progressing, the velocity vector can be written by deriva-
tion of (14) and (15) in time providing (16) and (17):

The next step would be the substitution of the perturbed 
quantities into the set of equations that forms the IBVP 
and the collection of terms of order up to ε. However, one 
should notice that this procedure does not solve the incon-
venience that some of the boundary conditions, such as (4), 

(11)� = �̄+ ε�(1)
+ ε2�(2)

+O

(

ε3
)

,

(12)η = η̄ + εη(1) + ε2η(2) ++O

(

ε3
)

,

(13)n = n̄ + εn(1) + ε2n(2) +O

(

ε3
)

,

(14)ξξξT = ξ̄ξξT + εξξξ
(1)
T + ε2ξξξ

(2)
T +O

(

ε3
)

,

(15)ξξξR = ξ̄ξξR + εξξξ
(1)
R + ε2ξξξ

(2)
R +O

(

ε3
)

.

(16)
∂ξξξT

∂t
= ε

∂ξξξ
(1)
T

∂t
+ ε2

∂ξξξ
(2)
T

∂t
+O

(

ε3
)

,

(17)
∂ξξξR

∂t
= ε

∂ξξξ
(1)
R

∂t
+ ε2

∂ξξξ
(2)
R

∂t
+O

(

ε3
)

.

(7) and (5), still must be applied in time-dependent sur-
faces. To overcome this problem, all the quantities of inter-
est may be locally expanded by a Taylor’s series around 
their mean positions and then substituted together with the 
Stokes expansions into the IBVP equations.

By following this procedure, the nonlinear free surface 
conditions are linearized and applied in time-invariant 
mean positions, as presented next:

1.	 Kinematic free surface condition 

2.	 Dynamic free surface condition 

An analytic solution may be found by the boundary 
value problem defined by the Laplace’s equation with 
the set of boundary conditions formed by the kinematic 
and dynamic boundary conditions. Considering scenar-
ios of infinite water depth, for example, the incoming 
regular wave field potential is defined by the following 
expression:

which needs to satisfy the wave dispersion relation for infi-
nite water depth:

where AI, ω and k are the incoming wave amplitude, angu-
lar frequency and number, respectively.

This solution is very useful when we are dealing with a 
linear theory description of the problem, because we may 
decompose the total potential � in a sum of a first-order 
disturbed wave field φ(1) and the incoming regular wave 
field φI, avoiding then the necessity of using a numerical 
wave maker dispositive to simulate the later. Since φI is a 
known solution, we only need to include it in the zero-flux 
conditions accordingly.

From now on, the variable of the problem � will be 
changed by φ(1) redefining also the set of boundary condi-
tions that must be imposed. As φI satisfies the free surface 
conditions, these will be described by simply changing the 
variable � by φ(1). For the other conditions, however, we 
will need to include the incoming wave potential as will be 
described in the next derivations.

Analogously to the free surface conditions, the float-
ing body impermeability condition is also linearized and 
described by Eq. (22).

(18)
∂�(1)

∂z
= −

∂η(1)

∂t
on z = 0.

(19)η(1) = −
1

g

∂�(1)

∂t
on z = 0.

(20)φI =
AIg

ω
ekz cos (kx − ωt) on z ≤ 0,

(21)k =
ω2

g
,
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In addition, the hydrodynamic forces/moments and the 
equations of motions should be calculated in a known 
body surface position, which is also part of the solution. 
This is overcome by assuming that the bodies’ responses 
in waves are small, enabling the integration of the pres-
sure field p on the body mean surface positions S̄B. More-
over, since the pressure is determined by Bernoulli’s 
equation (3), it also needs to be linearized to keep the 
formulation coherent with the linear theory presented so 
far. Thus, the first-order pressure, forces and moments 
on the body are calculated by Eqs. (23), (24) and (25), 
respectively:

One should notice that the static term of the pressure was 
neglected in the previous equations, assuming that the 
body was initially at a state of equilibrium. However, if the 
body is shortly displaced from its initial position, restoring 
forces and moments appear, forcing the body to establish 
an equilibrium position again. For some degrees of free-
dom (normally heave, roll and pitch), these restoring forces 
and moments appear directly through the hydrostatic pres-
sure integration; however, in some cases they need to be 
externally imposed, aiming at controlling the body hori-
zontal offset around a mean position as, for example, in the 
case of a floating oil platform. In linear theory approach, 
restoring forces and moments may be shifted to the left 
side of equation (26) through the use of time-independent 
restoring coefficients. One last consideration is related to 
the lack of external damping coefficients which are some-
times necessary, since the potential flow theory does not 
account for viscous effects. Therefore, an external matrix 
of linear damping coefficients will be also considered, as 
can be observed in Eq. (26):

where K and C are 6 × 6 matrices containing the linear 
restoring and damping coefficients, respectively. The 

(22)∇φ(1)
· n̄ =

∂δδδ(1)

∂t
· n̄ −∇φI · n̄ on S̄B.

(23)p(1) = −ρ

(

∂φ(1)

∂t
+

∂φI

∂t

)

,

(24)F
(1)

=

∫∫

S̄B

−ρ

(

∂φ(1)

∂t
+

∂φI

∂t

)

n̄ dS,

(25)M
(1)
O =

∫∫

S̄B

−ρ

(

∂φ(1)

∂t
+

∂φI

∂t

)

(r̄ × n̄) dS.

(26)M
∂2ξξξ (1)

∂t2
+ C

∂ξξξ (1)

∂t
+Kξξξ (1) =

(

F
(1)

M
(1)
O

)

,

vector ξξξ (1) = (ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3 , ξ

(1)
4 , ξ

(1)
5 , ξ

(1)
6 ) contains the 

first-order motions for the six degrees of freedom, cor-
responding to surge, sway, heave, roll, pitch and yaw, 
respectively.

Special attention must be given for the linear pressure 
calculation expressed by (23), since we do not have an 
exact equation for the potential time derivative ∂φ(1)/∂t. In 
fact, an erroneous choice of a numerical approximation for 
this term leads to unstable scheme for the time marching 
of the set of equations and, therefore, an adequate proce-
dure must be chosen. In this work, we decided to apply 
the method presented by [10, 11], in which the pressure 
is evaluated directly using the acceleration potential (27), 
which can be written as the function of the velocity poten-
tial (28).

In first order, the acceleration potential can be simplified 
to (29), which also respects Laplace’s equation. Hence, 
another boundary value problem can be written for the 
acceleration potential. The body boundary condition can be 
defined by derivation in time of the body boundary condi-
tion for velocity potential (22), as can be seen in (30).

Furthermore, the free surface boundary condition is deter-
mined in terms of the dynamic free surface condition for 
the velocity potential, as presented in (31):

Finally, the initial condition imposed is presented in (32):

From now on, the superscript (1) denoting the first-order 
quantities of the formulation will be suppressed to simplify 
the notations.

2.2 � Integral equations

The method adopted for solving the aforementioned prob-
lem is the boundary element method, developed by using 
Green’s second identity (33), where ∂�′ is the domain 
boundary and ∂�′

a is the boundary of a small sphere of 
radius a at a point (x, y, z) where the function G (Green’s 
function) is singular.

(27)a = ∇�

(28)� =
∂φ

∂t
+

1

2
(∇φ)2.

(29)�(1)
=

∂φ(1)

∂t
,

(30)∇�(1)
· n̄ =

∂2δδδ(1)

∂t2
· n̄ −∇

(

∂φI

∂t

)

· n̄ at S̄B.

(31)�(1)
= −gη(1) on z = 0.

(32)�(1)
= 0 on t = 0 s .
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There are several Green’s functions available and already 
tested in the literature, see for instance [15, 16] and more 
recently [17]. In this work, we applied the Rankine sources 
(34), which are the fundamental solutions of Laplace’s 
equation in polar coordinates. The use of Rankine source 
as the elementary singularity is mainly motivated by the 
resulting flexibility in the choice of the free surface con-
ditions to be satisfied, which in the future may render the 
extension of the code for problems with forward speed and 
nonlinear flows problems:

Supposing that the domain contains only regular regions 
and analyzing the residue associated with the Rankine 
sources, the integral equation for the velocity potential 
can be summarized in (35), where P are field points and Q 
source points.

Analogously, the same procedure may be followed for the 
definition of an integral equation for the acceleration poten-
tial (36).

3 � Numerical method

In a general description, the majority of the numerical algo-
rithms which deal with the wave–body formulations in 
time domain solves the elliptical problem for the velocity 
and acceleration potential at a certain time step, whereas a 
time-marching scheme is used to update the boundary con-
ditions to a new time step. In this work, the solution of the 
integral equations which compose the elliptical problem 
will be calculated by means of a boundary element method 
and the time-marching one will be performed by a fourth-
order Runge–Kutta method (RK4).

3.1 � Boundary element method

The boundary element method (panel method) is applied to 
solve the integral Eqs. (35) and (36). In this work we apply 

(33)

∫∫

∂�′

[

φ
∂G

∂n
− G

∂φ

∂n

]

d∂�′
= −

∫∫

∂�′
a

[

φ
∂G

∂n
− G

∂φ

∂n

]

d∂�′.

(34)
G(P,Q) =

1
√

(

xp − xq
)2

+
(

yp − yq
)2

+
(

zp − zq
)2

.

(35)

��

∂�′
−P

�

φQ
∂GPQ

∂nQ
− GPQ

∂φQ

∂nQ

�

d∂�′
=











−4πφP if P inside �′

−2πφP if P is at ∂�′

0 if P is outside �′

(36)

��
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�

�Q
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∂nQ
− GPQ

∂�Q

∂nQ

�

d∂�′
=











−4π�P if P inside �′

−2π�P if P is at ∂�′

0 if P is outside �′

a low-order panel method which uses plane quadrilateral/
triangular panels (surface elements) to discretize the sur-
faces and assume that the variable quantities are constant 
over each panel, simplifying reasonably the integration of 
the singularities. Reference [9], which was followed in this 
work, is considered a pioneering development in this topic, 
applying it to a wide variety of flow problems with bodies 
in infinite fluid.

With this approach, the boundary surfaces ∂�′ are dis-
cretized in Np plane quadrilateral/triangular panels, in 
which a unique point is selected to be a collocation point 
where the boundary conditions are imposed and the vari-
able quantities are determined. It is quite obvious that the 
larger the number of panels, the better is the domain sur-
face representation and also the assumption that the vari-
able quantities are constant over each panel.

Therefore, we consider a sum of Np integrals over sep-
arated surfaces ∂�′

j for all collocation points P, obtaining 
Eqs. (37) and (38) for the velocity and acceleration poten-
tial, respectively:

In a more compact notation, Eqs. (37) and (38) may be 
replaced by Eqs. (39) and (40):

where Sij and Dij are known in the literature as source and 
dipole influence coefficients, respectively.

In this method, a Neumman type condition is imposed 
on the submerged body surface to guarantee its imperme-
ability condition. The choice of a boundary condition type 
to be imposed on the free surface is more flexible, since 
we can choose for Neumann or Dirichlet type. However, 

(37)

2πφi+
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∑
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φj

∫∫
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j

∂

∂n

(

1

rij

)

d∂�′
j

−

Np
∑

j=1

∂φj

∂n

∫∫

∂�′
j

1

rij
d∂�′

j = 0 i = 1 : Np,

(38)
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(39)

Np
∑

j=1

[

φjDij −
∂φj

∂n
Sij

]

= −2πφi i = 1 : Np,

(40)
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∑

j=1

[

�jDij −
∂�j
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Sij

]

= −2π�i i = 1 : Np,
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by applying a Neumman condition it is possible to realize 
that after the integral equation is solved, only the velocity 
potential φ would be known at all the boundary surfaces 
and an additional numerical spatial differentiation would 
be necessary to define the free surface elevation. To sim-
plify the numerical method, we chose for a Dirichlet type, 
adopting the flux as variable in the free surface. Therefore, 
the potential φ is imposed, which allows the free surface 
conditions to be written as ordinary differential equations 
(ODEs).

Concluding, substitution of φj and �j for Dirichlet 
boundaries (i.e free surface) and ∂φj/∂n and ∂�j/∂n for 
Neumann boundaries (i.e body surface, bottom etc.) results 
in two linear systems of Np linear equations, which may be 
solved by simple matrix inversion.

3.2 � Time integration

The time integral method is very important to ensure the 
accuracy and stability of the present numerical tool, which 
in practice leads to the application of higher-order schemes 
such as RK4, fifth-order Runge–Kutta–Gil method (RKG) 
and fourth-order Adams–Bashforth–Moulton (ABM). As 
stated by [12], the application of any of these methods to 
simulate problems involving ordinary waves and floating 
body motions provides substantial stability to the method. 
Therefore, following other authors such as [13, 14], we 
choose the RK4 method.

To update the boundary conditions of the IBVPs to a 
new time level, the time progressing is conducted by the 
integration of the kinematic and dynamic free surface con-
ditions. In case of free floating bodies, the equations of 
motion must also be considered. These steps are followed 
until the desired simulation time Ts is reached. A summary 
of this procedure is presented in Fig. 2.

In the numerical scheme, the incident waves, velocities, 
accelerations, etc. are increased gradually using the ramp 
function fr(t) which guarantees a smooth and slow increase 
of the solution until the achievement of a steady state. The 
ramp function is defined by:

where Tr is the ramp period which is normally set as a 
multiple of a characteristic wave period involved in the 
simulations.

3.3 � Numerical damping zone

As mentioned before, the imposition of a radiation condi-
tion is mandatory to ensure a correct representation of a 
body floating in open sea, in which the incident, diffracted 

(41)fr(t) =

{

1
2

[

1− cos
(

π t
Tr

)]

if t ≤ Tr,

1 if t > Tr

and irradiated waves cannot reflect back and influence the 
body motions again. In the ocean, this naturally occurs 
because the boundaries that could reflect part of the wave 
energy are usually far away and, then, the associated energy 
is dissipated by nonconservative forces or wave breaking.

In the experimental approach, there is always a beach or 
active absorbers to partially account for the dissipation or 
absorption of the waves, reducing the influence of reflect 
waves in the measurements of interest. The beach basic 
function, for example, is to dissipate the energy transported 
by the waves, but in a numerical simulation it is impossible 
to impose its physical behavior because all mathematical 
formulation is based on conservative fields and therefore no 
dissipation is expected.

Since computer memory is finite, we are then obliged to 
truncate the free surface somewhere and impose a numeri-
cal scheme in our model by the inclusion of a damping 
zone, which is also known as sponge boundary condition 
or numerical beach, first proposed by [18]. The relatively 
easy way of implementing leads to a widespread use of this 
condition, which is demonstrated by the vast quantity of 
works related to different approaches that we may find as, 
for example, [19–23].

In practice, this is performed by the inclusion of an 
energy dissipation term in the free surface boundary condi-
tions, as follows:

(42)

∂η

∂t
=

∂φ

∂z
− ν(x, y)η at z = 0

and

√

x2 + y2 > Ldz

Initial Conditions

∂ n = ∂ n = 0 on Neumann Boundaries
φ
φ

=Ψ
Ψ

= 0 on Dirichlet Boundaries

Solution of the BVPs
φ andΨ on Neumann Boundaries

∂ n and ∂ n on Dirichlet Boundaries

Updating of the Dirichlet Conditions
η and φ by free surface conditions
Ψ by free surface dynamic condition

Updating of the Neumann Conditions
F and M by pressure integration

∂ 2ξ ξ
∂ t2 , ∂ t , by ξ by equations of motion

t < Ts? End
Yes

t+∆ t

No

∂ ∂

φ∂

∂

Ψ∂

Fig. 2   Loop structure of the numerical method
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in which Ldz is the distance from the global coordinate ori-
gin until the beginning of the damping region and ν(x, y) 
is a function that defines the dissipation of this region, 
described by:

where a defines the intensity of dissipation and b the damp-
ing zone length. These values must be tuned by preliminary 
tests to avoid the occurrence of reflected waves which may 
spoil the solution. In general, we observe that the damp-
ing zone must have a minimum length of one wave length 
b = 1, whereas the intensity must be set in such a way that 
permits a progressive and smooth dissipation of the waves. 
Damping zones with large values of a (i.e a ≥ 3) may 
behave as a fixed wall.

4 � Numerical test cases

4.1 � Verification of hydrodynamic load calculations

This section presents the computations of the hydrody-
namic loads resulting from diffraction and radiation prob-
lems in infinite water depth, considering simple geometries 
as a hemisphere and a circular section cylinder. Benchmark 
results were obtained from calculations performed with the 
software WAMIT which solves the same boundary value 
problem defined here, but in the frequency domain. For the 
hemisphere radiation problem, the added mass and poten-
tial damping coefficients are compared to the closed solu-
tions presented by [24].

The hemisphere surface of unitary radius rh = 1 m was 
discretized in three different grids with 200, 800 and 3200 
panels and the circular section cylinder of radius rc = 1 
m and draught Tc = 1 m, in 120, 500 and 2000 panels. In 
the cylinder case, the panels are more concentrated near 
the intersection region formed by the encountering of the 
free surface and the body surface. This was done to guar-
antee a minimum resolution of panels for cases involving 
high-frequency waves in which their lengths are small and 
the velocity profiles are confined to this region. In fact, as 
observed by [9], if several small elements are in the vicin-
ity of a larger one, the accuracy of the solution is associ-
ated with the larger elements. For the hemisphere, this was 
guaranteed by increasing the total number of panels. The 
six body meshes considered in the calculations are dis-
played in Fig. 3.

(43)

∂φ

∂t
= −gη − ν(x, y)φ at z = 0

and

√

x2 + y2 > Ldz,

(44)ν(x, y) = aω

(

√

x2 + y2 − Ldz

b�

)2

,

The free surface length depends directly on the wave-
lengths that will be simulated. For these computations, 
we considered circular free surfaces meshes with radius 
rfs = 30 m, providing sufficient space for most of the 
waves herein considered. As well as the body surfaces, 
three different panel meshes are considered containing 289, 

(a) (b)

(c) (d)

(e) (f)

Fig. 3   Cylinder and hemisphere panel meshes used in the computa-
tions. a, c, e 120, 500 and 2000 cylinder panel meshes, respectively. 
b, d, f 200, 800 and 3200 hemisphere panel meshes, respectively

(a) (b)

(c)

Fig. 4   Free surface panel meshes used in the computations. a–c refer 
to the 289, 1225 and 4900 free surface panel meshes, respectively
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1225 and 4900 panels. Figure 4 displays the meshes used in 
the computations, where it is possible to observe that a high 
number of panels are concentrated near the body surface.

A set of six panel meshes is then constructed by group-
ing the body and free surface meshes in pairs. Denoting the 
meshes with the lowest number of panels as coarse meshes, 
the intermediates as medium meshes and the one with 
greatest resolution as fine mesh, Table 1 presents the main 
numbers of the panel meshes that will be simulated.

We begin our numerical result presentation, simulating 
cases of fixed bodies under the action of incoming regular 
waves. Table 2 presents the main features of the set of 24 
regular waves in a frequency range between 1.716 and 9.905 
rad/s, which were tested in our numerical model. All the 
waves present unitary amplitudes AI = 1 m. For all the simu-
lations, the time step was set to �t = T/60 s and the numeri-
cal beach coefficients were set to a = 1 and b = 1, with these 
parameters being defined after a convergence analysis [25].

Figures 5, 6 and 7 present the time series of the verti-
cal hydrodynamic forces Fz obtained for each one of the 
panel meshes, considering incoming waves of frequencies 
ω = 4.202 rad/s, ω = 6.264 rad/s and ω = 9.905 rad/s, 
respectively. It is possible to realize that as the angular 
frequency increases, larger differences in terms of ampli-
tude and phase between the forces calculated with the dif-
ferent meshes are observed. Amplitude modulations are 
clearly observed for the coarse mesh when simulating 
waves with frequency higher than ω = 6.264 rad/s. This 
may be explained by the insufficient number of panels per 

wavelength that is required to correctly satisfy the disper-
sion relation of waves in infinite water depth. For the high-
est frequency, for example, the vertical forces calculated by 
the coarse mesh present nonphysical results with order of 
magnitude much larger than those obtained with the other 
meshes. Moreover, for this frequency we may also observe 
variations of phase calculated when using each of the con-
sidered panel meshes. Results for the medium and fine 
meshes present better agreement for all the frequencies, 
but for the highest one, indicating that only the fine mesh is 
capable of correctly propagating waves of such small length. 
The results for the hemisphere body are not presented, 
since the same behavior was observed. This was expected, 

Table 1   Main numbers of 
the panel meshes used in the 
computations

Hemisphere Cylinder

Coarse Medium Fine Coarse Medium Fine

Body mesh 200 800 3200 120 500 2000

Free surface mesh 289 1225 4900 289 1225 4900

Final mesh 489 2025 8100 409 1725 6900

Table 2   Regular incoming 
waves used in simulations

ID ω  (rad/s) T (s) �  (m) ID ω  (rad/s) T (s) � (m)

1 1.716 3.662 20.932 13 4.429 1.419 3.142

2 1.981 3.172 15.707 14 4.952 1.269 2.514

3 2.215 2.837 12.563 15 5.425 1.158 2.094

4 2.426 2.590 10.473 16 5.860 1.072 1.795

5 2.620 2.398 8.979 17 6.264 1.003 1.571

6 2.801 2.243 7.856 18 6.644 0.946 1.396

7 2.971 2.115 6.983 19 7.004 0.897 1.256

8 3.132 2.006 6.284 20 7.672 0.819 1.047

9 3.431 1.831 5.236 21 8.287 0.758 0.898

10 3.706 1.695 4.488 22 8.859 0.709 0.785

11 3.962 1.586 3.927 23 9.396 0.669 0.698

12 4.202 1.495 3.491 24 9.905 0.634 0.628
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Fig. 5   Hydrodynamic vertical force Fz induced by a wave with fre-
quency of ω = 4.202 rad/s for cylinder body
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since the propagation of waves is related to the free surface 
meshes which are the same for both body geometries.

To check the convergence of the results, we compare the 
horizontal and vertical non-dimensional forces for all panel 
meshes and wave frequencies presented in Table 2. For the 
cylinder, the non-dimensional moment My around the y-
axis is also presented.

The non-dimensional forces and moments are calculated 
by:

where fx, fz and my are the amplitudes of the forces Fx and 
Fz and moment My, respectively.

The convergence analysis for the non-dimensional 
horizontal and vertical hydrodynamic forces for the hemi-
sphere body is presented in Figs. 8 and 9, respectively. As 

(45)

Hemisphere Cylinder

F̄x =
fx

2
3πr

3
hρg

F̄x =
fx

ρgπr2cTc

F̄z =
fz

2
3πr

3
hρg

F̄z =
fz

ρgπr2cTc
M̄y =

my

ρgπr3cTc

expected, deviations among the meshes tend to be more 
pronounced for the highest frequencies, where a very 
refined free surface mesh becomes essential for an accurate 
calculation of the diffraction wave fields. In a general view, 
the present values recovered very well the values calculated 
by the WAMIT higher-order scheme.

The simulations with the cylinder presented very similar 
trends in comparison to the hemisphere ones. Again, conver-
gence of the results is confirmed increasing the number of 
panels and very low relative errors are observed for the major-
ity of wave frequencies. Once more, the data are illustrated 
in Figs. 10, 11 and 12. Again, a good agreement between the 
WAMIT results and the present calculations is observed.

Next, we present the simulations of forced harmonic oscil-
lations imposed on both the hemisphere and cylinder body. In 
contrast to fixed body simulations, this study does not contain 
incident waves and the hydrodynamic loads are generated 
only by body motions with unitary amplitude. Again, all the 
simulations were run with a time step of �t = T/60 s.
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Fig. 6   Hydrodynamic vertical force Fz induced by a wave with fre-
quency of ω = 6.264 rad/s for cylinder body
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Fig. 7   Hydrodynamic vertical force Fz induced by a wave with fre-
quency of ω = 9.905 rad/s for cylinder body
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Fig. 8   Convergence analysis of the non-dimensional horizontal 
hydrodynamic force F̄x for the hemisphere body and comparison with 
Wamit data
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Fig. 9   Convergence analysis of the non-dimensional vertical hydro-
dynamic force F̄z for the hemisphere body and comparison with 
Wamit data
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In wave linear theory, it is quite usual to decompose the 
total hydrodynamic force induced by harmonic oscillations 
in two different components denoted by added mass and 
radiation damping, which are in phase with the body accel-
eration and velocity, respectively.

A time series example of vertical force obtained with a 
pure heave forced motion simulation considering the hemi-
sphere body (fine mesh) is presented in Fig. 13. Moreover, the 
figure also presents moving window Fourier analyses of the 
signal, which provide the time traces for the added mass A33 
and radiation damping B33. Notice that the coefficient curves 
present some oscillations at the beginning of the simulation, 
alerting us that the hydrodynamic forces are still in a transient 
period. Going further, we observe that after a certain instant 
of time, the signals become practically constant, indicating 
that the force is in steady state. After a constant behavior of 
the curve is observed, the added mass and radiation damping 
coefficients are then determined by an average of its values.

The calculations of the added mass and radiation 
damping coefficients are then repeated using the same 

angular frequencies described in Table 2. Convergence 
analysis of the results are performed simulating each 
case for the coarse, medium and fine mesh presented in 
Table 1. Aiming at verifying the results, the coefficients 
obtained with the hemisphere body are compared to the 
analytical solution presented by [24], whereas the ones 
for the cylinder body are compared to data calculated by 
the software WAMIT. The non-dimensional added mass 
and radiation damping coefficients Āij and B̄ij are deter-
mined by:

(46)

Hemisphere Cylinder

Āij =
Aij

2
3
πr3hρ

Āij =
Aij

ρπr2cTc
for i, j ≤ 3

B̄ij =
Bij

2
3
πr3hρω

B̄ij =
Bij

ρπr2cTcω
for i, j ≤ 3

Āij =
Aij

ρπr3cTc
for i, j ≥ 4

B̄ij =
Bij

ρπr3cTcω
for i, j ≤ 4.
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Fig. 10   Convergence analysis of the non-dimensional horizontal 
hydrodynamic force F̄x for the cylinder body and comparison with 
Wamit data
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Fig. 11   Convergence analysis of the non-dimensional vertical hydro-
dynamic force F̄z for the cylinder body and comparison with Wamit 
data
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Fig. 12   Convergence analysis of the non-dimensional hydrodynamic 
moment M̄y for the cylinder body and comparison with Wamit data
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Fig. 13   Determination of A33 and B33 coefficients
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The non-dimensional added mass and radiation damping 
coefficients for heave and surge modes of the hemisphere 
body are presented in Figs. 14, 15, 16 and 17. Notice that 
the present calculations agree very well with the analyti-
cal solutions derived by [24] for all the analyzed angular 
frequencies. In addition, differences between the results 
obtained with each panel mesh are very small, pointing out 
that for this body geometry very low computational costs 
are necessary for a reasonable numerical prediction of 
these coefficients.

The same trend is not observed in the cylinder results, 
displayed in the Figs.  18, 19, 20 and 21. Although fine 
results are observed for the medium and fine meshes, cal-
culations performed with the coarse mesh do not provide 
accurate results as, for example, for the added mass coef-
ficients for the heave mode presented in Fig. 20. Looking 
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Fig. 14   Convergence analysis of the added mass coefficient Ā11 for 
the hemisphere body and comparison with data obtained in reference 
[24]
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Fig. 15   Convergence analysis of the radiation damping coefficient 
B̄11 for the hemisphere body and comparison with data obtained in 
reference [24]
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Fig. 16   Convergence analysis of the added mass coefficient Ā33 for 
the hemisphere body and comparison with data obtained in reference 
[24]
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Fig. 17   Convergence analysis of the radiation damping coefficient 
B̄33 for the hemisphere body and comparison with data obtained in 
reference [24]
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Fig. 18   Convergence analysis of the added mass coefficient Ā11 for 
the cylinder body
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for the pitch mode coefficients Ā55 and B̄55, we conclude 
that even the fine mesh is insufficient to accurately predict 
the same values calculated by the WAMIT higher-order 

scheme and, therefore, highest panel resolutions should be 
applied (Figs. 22, 23).     

4.2 � Free floating simulations

The results presented so far still did not involve calculations 
considering the body equations of motions coupled with the 
integral equations derived from the hydrodynamic problem 
and, therefore, we cannot conclude whether the coupling 
scheme, previously proposed by [10, 11], is implemented 
correctly or not. In this sense, we apply our numerical code 
for the evaluation of free motions of hemisphere and cylin-
der bodies. The calculations are performed with the panel 
meshes presented in Table 1. In the simulations, the inci-
dent regular waves with unitary amplitude AI = 1 m prop-
agate in x positive direction with the angular frequencies 
presented in Table 2. Again, the time step and the numeri-
cal beach zone coefficients were set to �t = T/60 s, a = 1 
and b = 1, respectively.
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Fig. 19   Convergence analysis of the radiation damping coefficient 
B̄11 for the cylinder body
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Fig. 20   Convergence analysis of the added mass coefficient Ā33 for 
the cylinder body
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Fig. 21   Convergence analysis of the radiation damping coefficient 
B̄33 for the cylinder body
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Fig. 22   Convergence analysis of the added mass coefficient Ā55 for 
the cylinder body

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

ω (rad/s)

B̄
55

Wamit Coarse Medium Fine

Fig. 23   Convergence analysis of the radiation damping coefficient 
B̄55 for the cylinder body
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For the calculation of the body motions in waves, we also 
had to define matrices of mass/inertias for each of the geom-
etries evaluated. Moreover, for the calculations involving 
the cylinder, in which the pitch D.O.F was also evaluated, 
the linear external damping coefficient C55 was also consid-
ered to account for viscous effects neglected in our model. 
The main parameters considered in the simulations are pre-
sented in Table 3.

Typical time histories of the cylinder and hemisphere 
heave motions are exemplified in Figs. 24 and 25, respec-
tively. These simulations were carried out with incoming 
waves with frequencies equal to the heave natural frequencies 
of each body. For a better visualization of the curves, only a 
part of the steady-state portion of the signals are presented. It 
is worth mentioning that the time histories presented a regular 
behavior, even simulating the body responses for more than a 
100 wave cycles, demonstrating the stability of the code. In 
fact, the simulation could be continued for much more time, 
maintaining the quality of the results.

The convergence of the bodies’ motion results for each 
one of the wave frequencies described in Table 2 is evalu-
ated next. Furthermore, the results are compared with 
data provided by the software WAMIT. This evaluation is 
done in the frequency domain by calculating the motions 
of RAOs by a fast Fourier transform (FFT) analysis on the 
steady-state portion of each motion time series.

The cylinder RAOS of surge, heave and pitch motions 
obtained with the present method and WAMIT are plot-
ted in Figs. 26, 27 and 28, respectively. Overall, a good 
agreement is observed with the WAMIT results. As can be 
seen, the results converge with the increasing of the num-
ber of panels, which is demonstrated by very similar results 
obtained with the medium and fine meshes. Notice, how-
ever, that by applying the coarse mesh, the curves tend to 
present an oscillatory behavior, which is intensified with 
the increase in the wave frequency. As discussed before, 
this occurs due to the low resolution of panels per wave-
length, which causes the appearance of an amplitude modu-
lation in the signal.

Table 3   Principal characteristics of the cylinder and hemisphere and 
settings of the simulations

a   Values were calculated in relation to the body center of gravity
b   Values are described in relation to the global coordinate system (x,  
y,  z) = (0, 0, 0)

Parameters Cylinder Hemisphere

Radius (m) 1.00 1.00

Draught (m) 1.00 1.00

Mass (kg) 3.14E+3 2.09E+3

Pitch inertiaa (kg m2) 1.57E+3 –

COG X coordinateb (m) 0.00 0.00

COG Y coordinateb (m) 0.00 0.00

COG Z coordinateb (m) −0.50 −0.50

C55 (kg m2/s) 4.35E+2 –
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Fig. 24   Time history of the cylinder heave motion for the coarse, 
medium and fine meshes. Incoming wave with angular frequency 
ω = 2.51 rad/s
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Fig. 25   Time history of the hemisphere heave motion for the coarse, 
medium and fine meshes. Incoming wave with angular frequency 
ω = 3.13 rad/s
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Fig. 26   Convergence analysis of the cylinder surge RAO and com-
parison with Wamit data
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The analogous results for the hemisphere body are pre-
sented in Figs. 29 and 30 for surge and heave motions, 
respectively. In general, the same conclusions pointed 

out for the cylinder are maintained, in which the medium 
and fine mesh results agreed very well with the WAMIT 
data. Furthermore, these results demonstrate the capabil-
ity of our code to predict the motions of floating bodies 
in waves, confirming that the second integral equation 
defined for the acceleration potential was correctly imple-
mented and the equilibrium between the dynamic and 
hydrodynamic forces was conserved during the whole 
simulation.

5 � Free floating simulations with an FPSO

Numerical simulations are now conducted to a converted 
FPSO VLCC hull type. The results are compared to 
experimental data obtained in wave tests carried out at the 
CH-TPN-USP, in Sao Paulo, Brazil, which is a wave basin 
with dimensions of 14 m×14 m and water depth of 4 m. 
This tank is equipped with a set of 148 independent flaps 
for the generation and active absorption of waves, which 
provides great precision and stability to the wave field 
during the experimental measurements; see for instance 
[26]. A perspective view of the wave basin is illustrated 
in Fig. 31.

For the execution of the tests, a 1:90 small-scale model 
of the VLCC hull was positioned at the middle of the 
tank and equipped with reflective targets used by an opti-
cal tracking system which was mounted on the carriage 
for the measurement of 6 D.O.F model motions. In addi-
tion, a set of four soft springs was attached to the model 
and fixed to four vertical bars positioned at the corners of 
the wave basin to control its horizontal displacements. The 
equivalent restoring coefficient in the horizontal plane was 
determined by pullout tests. As the main goal of the tests 
was the study of roll motions, only beam waves were con-
sidered in the test matrix, which included regular, transient 
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Fig. 27   Convergence analysis of the cylinder heave RAO and com-
parison with Wamit data
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Fig. 28   Convergence analysis of the cylinder pitch RAO and com-
parison with Wamit data
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Fig. 29   Convergence analysis of the sphere surge RAO and compari-
son with Wamit data

0 2 4 6 8 10 12
0

0.5

1

1.5

2

ω (rad/s)

ξ̄ 3
/A

I

Wamit Coarse Medium Fine

Fig. 30   Convergence analysis of the sphere heave RAO and compari-
son with Wamit data
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and sea wave conditions. Figure 32 presents a view of the 
model during the tests.

Concerning the regular waves, a study increasing the 
incoming wave amplitude for a fixed wave frequency 
ωI = 0.443 rad/s (near the roll resonance frequency) was 
conducted aiming at investigating the nonlinear roll motion 
response and its associated damping coefficients. For this 
study, however, only the regular wave of smallest steepness 
will be considered, in accordance with the linear wave theory 
considered here. The transient wave, in turn, was used for a 
fast RAO determination, in which a wave package with a con-
stant amplitude of 3 m, in full scale, and frequencies between 
0.349 and 0.785 rad/s was applied. In this wave package, the 
maximum wave steepness was around 3%, being also within 
the scope of the linear wave theory. By now, the irregular 
waves were not used for comparison purposes.

The main characteristics of the FPSO model (in full 
scale) are listed in Table 4. Model center of gravity and 
inertia of roll, pitch and yaw were calibrated using ballast 
weights.

The numerical simulations for the RAO determination 
were conducted considering a set of 44 regular waves, 
which covered a frequency range between 0.307 and 0.873 
rad/s, as observed in Table 5. As viscous damping effects 
may not be neglected when evaluating roll motions, the 
numerical results are presented for two different external 
roll damping coefficients C44, also presented in Table 4, 
which were calculated as 5 and 6 % of the critical damping 
Ccrit.

The FPSO VLCC body and the free surface mesh used 
in the simulations are illustrated in Figs. 33 and 34, respec-
tively. The meshes designed for the FPSO and the free sur-
face were defined after a convergence test and resulted in 
1088 and 3600 panels, respectively. The free surface mesh 
was constructed with radius rfs = 2000 m and with a high-
est panel concentration near the FPSO position. Once more, 
the time step was set to �t = T/60 s and the damping zone 
coefficients to b = 1 and a = 1.

Figures 35, 36 and 37 present the comparisons between 
numerical results and experimental data for sway, heave 
and roll D.O.F., respectively. As expected, the change of 
the external roll damping coefficients brought higher devia-
tions at frequencies near the FPSO roll natural frequency. 
In addition, this variation did not influence the heave 
motions and slightly impacted the sway motions, which is 
justified by the existence of a nonzero hydrodynamic cross 
term coefficient relating these two D.O.F. In general, the 
numerical method recovered well the experimental curves 
for sway and heave D.O.F., being capable of predicting 
the motion amplitudes reasonably well, mainly if we con-
sider the presence of uncontrolled uncertainties inherent to 

Fig. 31   Hydrodynamic calibrator of the numerical offshore tank on 
the University of Sao Paulo (CH-TPN-USP)

Fig. 32   Hydrodynamic calibrator of the numerical offshore tank in 
the University of Sao Paulo (CH-TPN-USP)

Table 4   Principal characteristics of the FPSO VLCC hull and the 
settings of the simulations

a   Values were calculated in relation to the body center of gravity
b   Values are described in relation to the global coordinate system  
(x,  y,  z) = (0, 0, 0)

Length over all 334.44 (m)

Beam moulded 54.72 (m)

Depth moulded 21.51 (m)

Draught 21.51 (m)

Mass 3.09E+08 (kg)

Roll inertiaa 1.05+11 (kg m2)

Pitch inertiaa 1.79E+12 kg m2

Yaw inertiaa 1.83E+12 kg m2

COG X coordinateb 10.10 (m)

COG Y coordinateb 0.00 (m)

COG Z coordinateb −6.76 (m)

K22 8.67E+05 (kg/s)

C44 (5%Ccrit) 5.48E+09 (kg m/s)

C44 (6%Ccrit) 6.03E+09 (kg m/s)
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the model test, such as small model geometry errors and 
its calibration parameters, as well as slight differences in 
the horizontal restoration coefficient input in the simulation 
and also the linearization hypothesis established by our lin-
ear numerical model.

Direct comparisons between numerical and experi-
mental motion time series for sway (ξ2), heave (ξ3)  
and roll (ξ4) are presented in Fig. 38, considering 
C44 = 0.05Ccrit, and in Figure 39 for C44 = 0.06Ccrit. 
These motions are results of the FPSO interaction with 
a regular wave of frequency ω = 0.443 rad/s and ampli-
tude AI = 0.92 m, both in full scale. The time series are 
synchronized considering only the motion data of one 
D.O.F. (sway) so as to preserve the phase information 
with the other D.O.F. A good agreement is observed for 

the heave motion time series, in which the experimental 
and numerical curves are practically equal. On the other 
hand, although the roll and sway motion phases were pre-
dicted accurately, small discrepancies in amplitude may 
be noticed, especially in Fig. 39, where an external coef-
ficient of C44 = 0.06Ccrit was applied. This result is con-
tradictory to the comparisons made for the roll RAO, see 
Fig. 37, obtained with the transient wave, in which the 
consideration of the higher damping coefficient clearly 
improved the curves’ agreement. However, as could also 
be observed in the figure, the roll RAO measured in the 

Table 5   Regular incoming 
waves used in the FPSO VLCC 
hull simulations

ID ω  (rad/s)  T (s) �  (m) ID ω  (rad/s) T (s) � (m)

1 0.307 20.466 653.992 23 0.517 12.153 230.605

2 0.323 19.453 590.805 24 0.534 11.766 216.156

3 0.340 18.480 533.201 25 0.550 11.424 203.762

4 0.356 17.649 486.350 26 0.566 11.101 192.405

5 0.372 16.890 445.413 27 0.582 10.796 181.971

6 0.388 16.194 409.435 28 0.598 10.507 172.364

7 0.390 16.111 405.247 29 0.614 10.233 163.498

8 0.395 15.907 395.052 30 0.631 9.958 154.807

9 0.400 15.708 385.238 31 0.647 9.711 147.245

10 0.404 15.552 377.647 32 0.663 9.477 140.224

11 0.405 15.514 375.784 33 0.679 9.254 133.693

12 0.415 15.140 357.893 34 0.695 9.041 127.608

13 0.420 14.960 349.422 35 0.711 8.837 121.930

14 0.425 14.784 341.249 36 0.728 8.631 116.302

15 0.430 14.612 333.359 37 0.744 8.445 111.353

16 0.435 14.444 325.739 38 0.760 8.267 106.714

17 0.437 14.378 322.765 39 0.776 8.097 102.359

18 0.443 14.183 314.081 40 0.792 7.933 98.265

19 0.453 13.870 300.367 41 0.808 7.776 94.412

20 0.469 13.397 280.223 42 0.825 7.616 90.561

21 0.485 12.955 262.039 43 0.841 7.471 87.148

22 0.501 12.541 245.569 44 0.857 7.332 83.924

45 0.873 7.197 80.876

Fig. 33   FPSO VLCC hull panel mesh

Fig. 34   Free surface panel mesh for the FPSO VLCC simulations
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experiment considering transient and regular waves pre-
sented different amplitude values, which makes a perfect 

tuning of the damping coefficient impossible for both 
cases with the linear approach herein applied. In fact, for 
being a D.O.F. more susceptible to nonlinear effects, its 
results, especially on the resonant frequency range, are 
highly dependent on the incoming experimental wave 
amplitude, which justifies the differences observed also 
in the experimental results obtained by the two tech-
niques applied in the experimental test (regular and tran-
sient waves). In spite of this fact, good predictions were 
obtained with the numerical method, pointing out the 
code capability to predict the motions of a floating body 
with more complex geometries than hemispheres and cyl-
inders bodies.
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Fig. 35   Comparison between numerical results and experimental 
data of sway response amplitude operator for the FPSO VLCC hull
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Fig. 36   Comparison between numerical results and experimental 
data of heave response amplitude operator for the FPSO VLCC hull
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Fig. 37   Comparison between numerical results and experimental 
data of roll response amplitude operator for the FPSO VLCC hull
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Fig. 38   Comparison between numerical and experimental motion 
time series for sway (ξ2), heave (ξ3) and roll (ξ4), considering 
C44 = 0.05Ccrit
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Fig. 39   Comparison between numerical and experimental motion 
time series for sway (ξ2), heave (ξ3) and roll (ξ4), considering 
C44 = 0.06Ccrit
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6 � Conclusion

The development of an in-house numerical code that deals 
with wave–body formulations which describe the inter-
action between floating bodies and free surface gravity 
waves under the assumption of potential flow theory was 
presented. This development is a first stage of a research 
that aims at, in a medium-term goal, considering nonlinear 
wave effects and the coupling of the present code to the 
TPN dynamic simulator of offshore systems, which also 
takes into account the effects of wind, current, risers and 
mooring lines.

The problem was addressed in a linear version, which 
enabled us to split up the total velocity potential in a sum 
of a disturbed wave potential and an analytic solution of an 
incoming wave field. This allowed us to change the prob-
lem variable to the disturbed wave potential only, avoid-
ing the necessity of including a numerical wave maker to 
account for the incoming sea waves. Moreover, as the dis-
turbed waves are generated from the body toward the free 
surface edge, we did not need to concentrate on a great 
number of free surface panels along all the domain, but to a 
very confined region near the body.

The inclusion of a second initial boundary value prob-
lem over the first one defined for the disturbed wave veloc-
ity potential was also discussed. Time domain simulations 
require a coupled treatment of the equations of the fluid 
motion and the body dynamics to guarantee an equilibrium 
of forces between the fluid and floating body at all times. 
Therefore, an accurate scheme for the calculation of time 
derivative of the velocity potential and consequently the 
pressure determination is essential for a consistent formula-
tion. For the present calculations, we applied the linear accel-
eration potential which also satisfies Laplace’s equation.

The numerical code was first tested by the calculation of 
the hydrodynamic loads in hemisphere and cylinder bod-
ies, resulting from the well-known problems of diffraction 
and radiation. In addition, free floating simulations were 
also conducted to verify whether the procedures adopted to 
couple the fluid and body equations were correctly imple-
mented or not. Convergence of the results with the increas-
ing of the number of panels was also verified by performing 
several simulations with meshes of different resolutions. As 
expected, the higher the number of panels, the lower were 
the relative errors between the present calculations and the 
adopted reference values from WAMIT and [24]. As could 
be observed, these comparisons presented very good agree-
ments, demonstrating that the numerical code developed so 
far was capable of predicting the hydrodynamic loads and 
motions caused by the wave–body interaction problem.

Free floating simulations with an FPSO hull were also 
conducted and the RAO of motions were verified through 
comparisons with experimental data obtained from tests 

carried out at the CH-TPN. The RAOS were obtained by 
applying an FFT analysis on the regular regime of the 
motion time series. Despite some small deviations spe-
cially concerning resonance peak values, the present 
results presented a good agreement with experimental 
data. Moreover, a direct comparison of numerical and 
experimental time series was also presented, in which not 
only the amplitudes but also the phases between the model 
motions could be verified. The results demonstrated that 
the numerical code developed was correctly implemented 
and capable of predicting the motions of a real offshore 
floating structure under the action of incoming regular 
waves.

Further development of the code has been done toward 
the implementation of higher-order methods, in which both 
the geometry and the solutions are described in terms of 
non-uniform rational B-spline (NURBS) surfaces. With 
this approach, the inclusion of current effects and the solu-
tion of the second-order problem becomes more suitable 
for tackling, since the spatial derivatives of the velocity 
potential may be calculated straightforwardly.
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