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SPHERICAL TETRAHEDRA WITH RATIONAL VOLUME,
AND SPHERICAL PYTHAGOREAN TRIPLES

ALEXANDER KOLPAKOV AND SINAI ROBINS

ABSTRACT. We study spherical tetrahedra with rational dihedral angles and
rational volumes. Such tetrahedra occur in the Rational Simplex Conjecture by
Cheeger and Simons, and we supply vast families, discovered by computational
efforts, of positive examples that confirm this conjecture. As a by-product,
we also obtain a classification of all spherical Pythagorean triples, previously
found by Smith.

1. INTRODUCTION

A spherical tetrahedron T can be defined as the intersection of a simplicial cone
in R* with the unit sphere S? centred at the origin. In other words, T has four
vertices connected by spherical geodesics on S® that comprise its edges, and each
of its vertices is the intersection of exactly three of its spherical facets. A spherical
Coxeter tetrahedron T is a spherical tetrahedron whose six dihedral angles are of
the form 7/n, with n > 2.

A complete list of spherical Coxeter tetrahedra was produced by Coxeter [3],
and shows that there are 11 types of spherical Coxeter tetrahedra in S?. Let S;,
t=1,...,11, denote these spherical tetrahedra, as presented in Table [l

In the present paper we study rational spherical tetrahedra, as generalisations
of spherical Coxeter tetrahedra, where we now allow their dihedral angles to be
arbitrary rational multiples of 7. An important focus here is the determination of
their volume, which is also called a solid angle in some of the literature.

The volume of a spherical Coxeter tetrahedron is easily seen to be a rational
multiple of the total volume of the sphere S?, which is 272. We describe a wide
class of rational spherical tetrahedra whose volumes are rational multiples of 72, in
relation to the work of Cheeger and Simons [I].

In this work, an angle « (assumed to be a plane angle of a polygon, or a dihedral
angle of a polyhedron) is called rational if @ € 7 Q. Similarly, an edge of a polygon
(or an edge length of a polyhedron) of length [ is called rational if | € 7 Q. Finally,
an n-tuple of numbers (x1,...,x,) is rational if x; € 7 Q for every 1 <i < n.

Descending to S? C R3, a spherical Pythagorean triple is defined to be a rational
solution (p,q,r) to

(1) cosp-cosq+ cosr =0,
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TABLE 1. Coxeter tetrahedra in S®

i Symbol Coxeter diagram Volume
1 Ay o—o—o0—o0| =
2
2 By O—O0—0O—0 195
ﬂ'2
3 Dy %
) ) 7T2
4 H4 O A\ % O 7200
2
5 Fy O—O0—0—0 2
6| Ayx4, |0—o0—0 o =
7| Bix4, |o—o0o—o0 o =
8| HyxA |0—0=—0 o =
7'{'2
9 | Iy(k) x Ix(1) k l -
X2 k 2
10 | Ix(k) x A o0—oO0 =
11 Axt o 0 s

where m — p, m — ¢, and ™ — r are the side lengths of a spherical right triangle T'.
The side lengths of a spherical triangle are subject to several additional constraints
on p, q and r:

0<p, q r<m, p+qg+r<2m,

p+q<m, p+r<gq, qg+r<p.

We relax the above conditions and call any solution of (), with 0 < p,q,r < 7, a
Pythagorean triple.

Question 1.1. Is there any reasonably simple classification of rational Pythagorean
triples, corresponding to the side lengths of a spherical triangle?

Returning to S?, we focus on a broader class of “Pythagorean quadruples” that
will become useful later on in the discussion of Zy-symmetric spherical tetrahedra
with rational dihedral angles (or rational tetrahedra, for short). To this end, we call
(p,q,r,s) a spherical Pythagorean quadruple if it is a solution to the equation
r—s

2
Here, we shall suppose that 0 < p,q,r, s < m. The corresponding spherical tetra-
hedron, if it exists, looks akin to the one depicted in Figure [l and is called a
Zs-symmetric (spherical) tetrahedron.

We note that a quadruple with r = s corresponds to the usual Pythagorean
triple (p, q,r).

=0.

(2) COSP - COS g + COS d cos
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/7
P :

FIGURE 1. The dihedral angles (left) and edge lengths (right) of a
Zo-symmetric tetrahedron 7.

Question 1.2. Is there any reasonably simple classification of rational Pythagorean
quadruples corresponding to the dihedral angles of a spherical tetrahedron?

We shall answer Questions [[T] and simultaneously by classifying all Pytha-
gorean quadruples.

Theorem 1.3. There exist exactly 59 sporadic Pythagorean quadruples and 42
continuous families of Pythagorean quadruples corresponding to the dihedral angles
of a Zs-symmetric spherical tetrahedron.

The proof of Theorem [[3] is contained in Section 2.1 for the case of sporadic
instances listed in Appendix A, and in Section 2.2 for the case of continuous families
listed in Appendix B. The main tool in our proof is a very basic enumeration
realised by a SageMath script Monty [9]. Thus, Theorem [[3] extends a result
(unpublished) of Smith [I5] that classifies rational spherical Pythagorean triples by
using a beautiful geometric connection with three-dimensional Coxeter simplices.

Theorem 1.4 (Theorem 2 in [I5]). Aside from the trivial continuous family of
solutions (w/2,b,7/2), 0 < b < w/2, there is exactly one solution (a,b,c) to
cosacosb = cosc with 0 < a,b,¢c < 7/2 being rational multiples of m, namely
(r/4,7/4,m/3).

In terms of equation (), the nontrivial triple in the above theorem is (7/4, /4,
27 /3). All rational Pythagorean triples found by Smith belong to the continuous
families of quadruples described in Section

The following statement is an observation which had its origin in the list of
rational spherical Pythagorean quadruples and which is of interest in the context
of [6[7].

Theorem 1.5. There exists a rational tetrahedron in S® whose volume has a value
in 12 Q and which is not decomposable into any finite number of spherical Cozeter
tetrahedra.

Thus, we can show that the property of “being rational” for a spherical tetra-
hedron is very far from “being Coxeter”, even if its volume is a rational multiple
of 72, which is always true for Coxeter tetrahedra in S3. Here we recall that S?
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4 ALEXANDER KOLPAKOV AND SINAI ROBINS

has volume 272 in its natural metric of constant sectional curvature +1, and that
every Coxeter polyhedron in S? is a tetrahedron, which generates a finite discrete
reflection group by reflection in its faces.

The first open problem that Theorem vaguely relates to is Schlifli’s Conjec-
ture.

Conjecture 1.6 (Schlifli). Let T be an orthoscheme in S* with rational dihedral
angles. Then the volume of T takes values in 7% Q if and only if T is a Coxeter
orthoscheme.

The above statement can be generalised for spherical simplices of dimension > 4,
and this is how it actually appears in Schléfli’s original work [14] p. 267, Formeln
(4)—(5)]. Here, an orthoscheme is a tetrahedron with three mutually orthogonal
faces that do not share a common vertex. However, the tetrahedron mentioned in
Theorem is not an orthoscheme.

Another related open problem is the following question posed in [I] by Cheeger
and Simons, known as the Rational Simplex Conjecture.

Question 1.7. Is it true that the volume of a rational spherical tetrahedron always
takes values in 72 Q?

The putative answer would be negative for “virtually all” rational simplices. Our
results only show that the Rational Simplex Conjecture may hold for a tetrahedron
which is geometrically “far enough” from a Coxeter tetrahedron, and thus one may
still expect many “positive examples”. Finally, we can produce many pairs of non-
isometric rational tetrahedra with equal volumes and Dehn invariants. In view
of Hilbert’s 3rd problem, it would be natural to ask if our examples are scissors
congruent.

2. PYTHAGOREAN QUADRUPLES

Let a spherical tetrahedron T' be defined as an intersection of a simplicial cone
C in R* centred at the origin with the unit sphere S* = {v = (21,29, 73,74) €
R*||lv|]| = 1}. We suppose that the dihedral angles of C' belong to the interval
(0,).

The dihedral angles of T" are equal to the corresponding dihedral angles between
the three-dimensional faces of its defining cone C' measured at its two-dimensional
faces. The edge lengths of T' correspond to the plane angles in the two-dimensional
proper subcones measured at the origin.

The polar dual T* of a spherical tetrahedron T, defined by a cone C, is the
intersection of the dual cone C* with S3.

We recall that a spherical tetrahedron is called Zs-symmetric if it admits such
a distribution of dihedral angles values as shown in Figure [l A Pythagorean
quadruple of dihedral angles (p,q,r,s) of a Zs-symmetric spherical tetrahedron is
a solution to equation ().

Then, by cosidering polar duals, one can deduce from Proposition 6 of [8] the
following.

Proposition 2.1. If p, q, v, and s are the dihedral angles of a Zo-symmetric
spherical tetrahedron T, for which equation [2l) holds, then the volume of T can be
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expressed as

3) wm—%(@wuqu@_#).

Thus, once the dihedral angles of a tetrahedron T as above are rational, then
its volume has a value in 72Q. It also follows from [, Proposition 6] (and the
discussion preceding it) that a rational Zs-symmetric tetrahedron has rational edge
lengths. Namely, the following holds.

Proposition 2.2. If (p, q,r, s) is the quadruple of dihedral angles of a Zs-symmetric
spherical tetrahedron T', for which equation ([2) holds, then the lengths of its respec-
tive edges, as depicted in Figure [, are given by the quadruple ((y,4q,0r,0s) =
(p,g,m —7,7m—8).

Once we have r = s for a spherical Zs-symmetric tetrahedron 7', we get a triple
(p, g, 1), which corresponds in this case to a symmetric spherical tetrahedron, rather
than to a triangle. However, (p,q,7) is a Pythagorean triple in the sense of our
initial definition. Indeed, for each vertex v of T in this case, its link Lk, is a rational
spherical triangle with plane angles p, ¢, and r. Its dual Lk}, is a spherical triangle
with edge length 7 — p, m — ¢, m — r, while p, ¢, and r satisfy equation ().

A Pythagorean quadruple (p,q,r,s) represents the dihedral angles of a Zs-
symmetric spherical tetrahedron 7T if and only if the associated Gram matrix

1 —COST —COSp —COSq
(4) G=G(T) = —cCcosT 1 —Ccosq —Cosp
—Cosp —Cosq 1 —Cos s

—C0sq —COSp —COSS 1

is positive definite [10, Lemma 1.2].

Thus, once we have a rational solution (p,q,r,s) to (@), then we only need to
check if the Gram matrix G(T') given by (@) is positive definite. If it is indeed the
case, then we obtain a rational spherical tetrahedron T such that Vol T € 72 Q.

First of all, finding a solution to equation (@) is equivalent to finding a solution
to the equation

(5) cos(a) + cos(b) + cos(c) + cos(d) = 0,

while the correspondence between two sets of solutions is given by
b —-b

(6) p:a—; 7q:aTar2078:d-

We shall search for all possible solutions to ([B)—(6) such that 0 < p,q,r, s < ,
and r > s. The former condition is necessary for the dihedral angles of a spherical
tetrahedron T, and the latter can be assumed since r and s, as drawn in Figure [I]
can be interchanged by an isometry of S® without interchanging p and gq.

If (a, b, ¢, d) is a rational quadruple, then (B]) turns out to be a trigonometric Dio-
phantine equation which has been studied by Conway and Jones in [2]. All of its
solutions such that 0 < a, b, ¢, d < 7 are listed in [2, Theorem 7]. For convenience,
its statement is reproduced below, although using a slightly different notation.

Theorem 2.3 (Theorem 7 in [2]). Suppose that we have at most four rational
multiples of w lying strictly between 0 and /2 for which some rational linear com-
bination S of their cosines is rational, but no proper subset has this property. Then
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6 ALEXANDER KOLPAKOV AND SINAI ROBINS

S is proportional to one of the following list:

(1) cos§ —cos 3 (=0),

(2) —cost+cos(t+ Z) +cos(t—3%) (=0),
(3) cosg—cos%ﬂ—cosgr (=0),

(4) cos%—cosQ—’r+cos3—’T—cos— (=0),

(5) cosg cos 7= 4 cos 1= —cos & (=0),

(6) —cos & + cos 2T — cos 7= —cos 5 (=0),
(7) cos T + cos 3 — cos - + cos 5T (= 3),
(8) cos % —cos 2r +cos§—’1r —cos‘Z—’lr (=13),

(9) —cos?E +cos T+ cos 3T +cos T (= 1)
(10) —cos—+cos —i—cosl—s—cos% (: %)

According to Theorem 2.3 there is a single continuous family of linear combina-
tions of cosines, depending on a real-valued parameter ¢, which, for every instance
of t € mQ, provides a rational solution to (B]). The remaining linear combinations we
call sporadic in order to distinguish them from continuous families. Also, our meth-
ods to handle sporadic solutions to (@) and their continuous families will be slightly
different, since the former require more computations to be performed (first, nu-
merically, and then exactly by verifying the respective minimal polynomials), while
the latter need more symbolic algebra and the use of SymPy [I1].

1. Rational spherical tetrahedra: 59 sporadic instances. Let the rational
length of a quadruple (a,b, ¢, d) giving rise to the trigonometric sum S = cosa +
cosb + cosc + cosd in (@) be defined as the maximal length of its subsum S’ such
that S’ € Q, but for any proper subsum S” of S’ it still holds that S” ¢ Q.

Then, we can already notice that there is no solution to (f) of rational length
4. Indeed, each linear combination of rational length 4 would yield an expression
S equal to the right-hand side of items (7), (8), (9), or (10) in Theorem 23] up to
a sign. None of those sums evaluates to 0.

The sporadic solutions to (&) mentioned in items (4), (5), and (6) of Theorem
have rational length 3. The one mentioned in item (3) has rational length 2.
Finally, only those solutions where each cosine term of S above is a rational number
have rational length 1. The latter is possible ouly if a,b, ¢, d € {0,7/3,7/2}, given
that 0 < a, b,c,d< 3§

However, Theorem 23] provides only the subsums realising the rational length
of S, and says nothing about the remaining part of the sum, which itself may have
various rational length (e.g., if S has rational length 2 realised by a subsum S’,
then S — S’ may have rational length 1 or 2).

We shall need a wider range of dihedral angles represented by the Pythagorean
quadruple (a,b,c,d), namely 0 < a, b, ¢, d < w. Thus, for each dihedral angle in
each entry on the list of Theorem 23] we also consider its complement to 7 and
27, respectively. However, we always keep in mind that any angle in the interval
(0,7), as above, can be brought to an angle in (0,7/2) in such a way that we do
not create any new sums as compared to Theorem 23] since the only difference will
be some cosines in S changing their signs.

Moreover, if we assume that a, b, ¢, d € (0,7) instead of (0,7/2), we need to
consider one more continuous family in addition to the ones already mentioned in
Theorem 233l Namely, we need to consider cosa +cos 3 =0, with a = ¢, 8 = 7 —t,
and t € (0,7), as well as all possible complements of o and § to 7 and 2.
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SPHERICAL TETRAHEDRA AND PYTHAGOREAN TRIPLES 7

In order to simplify our search algorithm (at the cost of making it overall less
efficient), we shall for each rational length of S look at the set of possible denomina-
tors of the angles involved in S’ realising said length, and at the set of denominators
realising any possible rational length of S — S’. Then we shall obtain a list of pos-
sible denominators d,, 0y, 0., 0q that a = g—Zw, b= g—iw, c= ”—zw, d = g—jﬂ' may
have, and choose their numerators v,, vy, V., V4 so that 0 < a, b, ¢, d < 7. If any
number of the form X7 equals 0, then we assume § = co. Such an approach is still
practically reasonable and takes about 90 minutes in total to run in SageMath [13]
on a MacPro 2.3 GHz Intel Core i5 Processor with 8 Mb RAM.

An observation from Galois theory implies that if S = cosa+ cos b+ cos c+ cosd
has rational length 1, then the list of possible denominators of angles in S is Ly =
{1,2,3,00}.

If S has rational length 2 realised by a subsum S’, then the list of possible
denominators in S’ is L1 = {3,5} as indicated by item (3) of Theorem 2.3} while
the denominators in S — S’ can belong either to Lg or to L.

If S has rational length 3 realised by a subsum S’, then the denominators of
angles in 5" belong either to the list Ly = {3,7} or to Lz = {3,5,15}, as indicated
by items (4), (5) and (6) of Theorem 23] while the denominators of the remaining
term S — S’ belong to Ly.

In Monty [9] we use a brute-force search over the set of all dihedral angles with
denominators from the union of the above mentioned lists L;, i € {0,1,2,3}. This
does not result in an a priori efficient search, however, it turns out to be sufficient
to find all sporadic solutions to (Bl and, subsequently, to ().

Each time a “numerical” zero is obtained in Monty’s search, i.e., the condition
|S| < 1078 is satisfied (which is a very generous margin for a numerical zero, since
Monty’s machine precision is 10716), the minimal polynomial for S is computed.
Since S is an algebraic integer, this test is sufficient to verify that S = 0.

In each of the cases above, we check if the resulting dihedral angles p, ¢, r, s
of a “candidate” tetrahedron T belong to the interior of the interval (0,7), and
whether the corresponding Gram matrix G = G(T') is positive definite. The former
condition guarantees that the first two corner minors G; = 1 and Gy = sin?r of G,
respectively, of rank 1 and 2, are positive, and we need specifically to check only
Gs and G4 = detG. In Monty’s search, G; is considered positive if G; > 1078,
which is again a generous numerical margin to decide if a number is positive. In
order to verify that no possible solution is left out, we check if G; within the
10~ ®-neighbourhood of 0 is actually 0, by using minimal polynomials. Otherwise,
G; < —1078%, and it is indeed negative.

Finally, Monty finds 172 sporadic solutions. Since the dihedral angles of all the
listed tetrahedra satisfy equation (B), their volumes are rational multiples of 72 by
Proposition 211

There are, however, some of the sporadic solutions which belong by chance to one
of the 42 continuous families described in the next section. For brevity, we exclude
them from our final list, and only 59 genuinely sporadic solutions are presented in
Appendix A.

2.2. Rational spherical tetrahedra: 42 continuous families. By using a me-
thod analogous to the above, we find 34 one-parameter continuous families, and 8
two-parameter continuous families of rational spherical tetrahedra whose volumes
take values in m2Q). Those families are listed in Appendix B. When dealing with
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8 ALEXANDER KOLPAKOV AND SINAI ROBINS

symbolic computations in Monty [9], we employ SymPy [I1] in order to simplify
expressions and check whether S = 0, rather than using the minimal polynomial
test.

In the case of continuous families, we have only two types of subsums S’ appear-
ing in S, which depend on a parameter:

(i) either a subsum of the form indicated in item (2) of Theorem 23]
(ii) or a subsum of the form S’(t) = cos(t) — cos(t) = cos(t) + cos(m — t).

In the former case three of the angles a, b, ¢, and d is (@) belong to the list
Lo={n/3—-t,7/3+t,2r/3 —t,2n/3 +t, 7 —t,t,m+¢,57/3 —t,5w/3 + t}, with
t € (0,7/6), and the remaining one belongs to L1 = {n/2,37/2}. In the latter
case, one pair of angles from a, b, ¢, and d equals {¢, 7 —t}, with ¢ € (0, 7), and the
remaining pair equals {s, 7 — s}, with s € (0, ).

In case (i), we choose to produce graphs of the minors G3 and G4 = det G of the
Gram matrix G of each candidate tetrahedron in order to check their positivity.
The ones that appear positive on the whole interval (0,7/6) indeed turn to 0 only
at the ends, or only one of the ends of the interval (0,7/6). Then we check that
those which appear negative on the interval (0,7/6) do not turn positive near the
end-points 0 and 7/6, but at worst become equal to 0 at one or both of them. In
order to verify all of the above-mentioned inequalities we use interval arithmetic
implemented in SageMath, and for the equalities we use minimal polynomials, as
before.

In case (ii), we know that the tetrahedron T* with Coxeter diagram A;* belongs
to any possible continuous family. The tetrahedron T™ has all right angles, and
thus the minors G3(w/2,7/2) and G4(n/2,7/2) have to be positive for any family
containing geometrically realisable tetrahedra. This filter leaves us with only a few
possible families, for which G3(s,t) and G4(s,t) have very simple form, amenable
to elementary analysis for determining their positivity domains.

Finally, case (i) produces 34 continuous families of tetrahedra depending on a
single parameter, and case (ii) produces eight continuous families of tetrahedra
depending on two parameters. All of them are listed in Appendix B, together with
the domains of admissible parameter values and the corresponding volume formulas.

3. SPLITTING RATIONAL POLYTOPES INTO COXETER TETRAHEDRA

Below we give a proof of Theorem We begin by considering more closely
one of the many Pythagorean quadruples of Theorem [[13], namely

5 2 13 11
7 == x 20 Zp =
( ) (p7q,’r, S) <18 7T797T? 18 7T’ 18 /ﬂ-) 3
which corresponds to item 11 in Appendix B with parameter ¢ = 5.
The corresponding Zo-symmetric rational tetrahedron T has edge lengths

5 2 5 7
£y, L ‘erags: To Mg To M To
0 (ot = (g 5 g w35 7)
and volume vol T' = 72 /162.
We shall prove that T cannot be decomposed into any finite number of spherical
Coxeter tetrahedra S;, ¢ = 1,...,11; cf. Table [

Suppose that it were indeed the case: then the vertex links of T would be
decomposed into a finite number of vertex links of Coxeter tetrahedra. The latter
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SPHERICAL TETRAHEDRA AND PYTHAGOREAN TRIPLES 9

correspond to any of the Coxeter spherical triangles Az 9, 7 > 2, Ag 33, Ag 34,
or A27375.
Let us consider one of the vertices v of T" whose link Lk, is a spherical triangle

7 with angles a = 51—;;, 8= %ﬂ, and v = X2 The side lengths of this triangle

opposite to the above-mentioned angles are dlgnoted by 4., £g, and £, respectively.
The spherical law of cosines [I12, Theorem 2.5.3] grants that § < {4, {3,¢, < 5. We
can thus position 7 on the sphere S? = {(z,y,2) € R?|2? + 3? + 22 = 1} so that
one of its vertices has coordinates (1,0,0), and its adjacent vertex has coordinates
(costy,sint.,0), while the third one is in the intersection of the positive orthant
{(z,y,2) € R?|z, y, z > 0} with S?. Then we can verify that all of the vertices of
7 lie in the circle of radius 7 centred at p = (cos ‘;—75“, sin 3—?;, O); cf. Monty [9].
Thus, diam Lk, < 7, and none of the triangles As ,, is a part of the decom-
position of Lk,. The remaining cases are limited to a decomposition into & > 0
triangles of type Ag 33, { > 0 triangles of type Ay 34, and m > 0 triangles of type

A 3 5. Then the obvious sum of areas equality holds:
kAreaAg 33+l Area A 3 4 +m Area Ay 3 5 = AreaLk,,

which can be simplified down to

10k+51+2m:?

by using the angle excess formula for the area of a spherical triangle [12, Theorem
2.5.5]. The latter never holds with k,I,m € Z.

Another spherical rational tetrahedron 7" with volume 72/162 is given by the
Coxeter diagram in Figure

9 9
o———=0 o——-—=0

F1GURE 2. The Coxeter tetrahedron 7"

Both T and T’ have equal volumes and equal Dehn invariants: the former is
by construction, and the latter follows from the fact that their dihedral angles are
rational multiples of 7, which implies that their Dehn invariants vanish.

Question 3.1. Are the tetrahedra T and T”, as above, scissors congruent?

4. RATIONAL LAMBERT CUBES

A Lambert cube L := L(a,b,c) is depicted in Figure Bl Tt is realisable as a
spherical polytope L C S3, if 7/2 < «, 8,7 < 7; cf. [5]. All other dihedral angles of
L, apart from the essential ones, a, b, and ¢, are always equal to 7/2.

The following fact stated as Proposition 4 in [4] holds for the volume function
Vol L, which allows us to seek rational Lambert cubes, i.e., L = L(a,b,c) with
a,b, c € T Q, having rational volume Vol L € 72 Q.

Proposition 4.1 (Proposition 4 in []). Suppose that the essential angles of a
spherical Lambert cube L = L(a, b, c) satisfy the relation cos® a+ cos® b+ cos? c = 1.
Then

VolL:i (—2—(7T—a)2—(7r—b)2—(7r—c)2).
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10 ALEXANDER KOLPAKOV AND SINAI ROBINS

a

FIGURE 3. The Lambert cube L(a,b,c) with essential angles marked.

By using Monty [9] we find, in a way analogous to the discussion in Sections 21}
22 that there are only two sporadic rational Lambert cubes satisfying the condi-
tions of Proposition [£1l No continuous families are present in this case, as follows
from Theorem 2.3

Namely, only the following two Lambert cubes come out of our analysis: L; =
L(3r, 27, 2%) and Ly = L(%F, 27, 4?7') By applying Proposition €Il we obtain that
Vol Ly = 31/576 7% and Vol Ly = 17/360 72.

It is easy to produce a pair of spherical rational simplices 77 and 75 such that the
respective L; and T;, i = 1,2, have equal volumes and equal Dehn invariants. Let
Ty be given by the quadruple (3, 7, 7, %), and let T be given by (3, 3, 5, 197—0”).
Both T;’s belong to the family I (k) x A;? in Table @ if we allow & to take rational
values.

Question 4.2. Are the tetrahedron T3 (resp., T3) and the cube Ly (resp., Ls), as
above, scissors congruent?

By [7], we have that L; is the only spherical Lambert cube that can be repre-
sented as a union of mutually isometric Coxeter tetrahedra.

Question 4.3. Is the Lambert cube Lo decomposable into any finite number of
Coxeter tetrahedra?

5. HIGHER-DIMENSIONAL ASPECTS

As in the proof of Theorem [[L5] suppose that a rational n-dimensional, n > 3,
spherical simplex T' C S™ is given. Then the fact that T splits into a finite number
of Coxeter simplices (identified facet to facet in order to form the initial simplex T')
will imply that all the vertex links Lk,,, i =1,...,n+ 1, of T can be decomposed
into a finite number of co-dimension one Coxeter simplices T}, j=1,...,n; If one
of the vertex links in T does not have this property, then neither has 7.

Let us now suppose that the three-dimensional rational tetrahedron Tl(g) =T
from Theorem is a vertex link of a four-dimensional rational spherical simplex
T1(4) C S*. Then we obviously have an example of a four-dimensional simplex that
does not split into any finite number of Coxeter simplices. More generally, if a
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rational simplex Tl(") C S™ that is nmot decomposable into Coxeter pieces can be
realised as a vertex link of a rational simplex Tl("+1) c S+ then Tl("H) gives
us a rational simplex with the analogous property in a higher dimension.
Constructing such a family of rational spherical simplices T’ fn), n > 3, starting
from T1(3) is simple: let G3 = G(Tl(3)) be the Gram matrix of Tl(?’), and then let

Tl(n)7 n > 3, be the spherical simplex with the block-diagonal Gram matrix

Gz 0 0 O

0O 1 0 O
G, =

o o0 . 0

0O 0 0 1

The volume of Tl("), n > 4, equals Vol Tl(") = Vol Tl(s) . %, which is a rational

multiple of VolS™ once Tl(g) has rational volume.

)

If we apply the above construction to the tetrahedron T2(3 =T, then we obtain

a family of Coxeter tetrahedra Tz("), each generating the respective finite reflection
group I5(9) x I3(9) x (A1)"~2, for n > 3. The volumes and Dehn invariants of each
pair 7" and Tz(n), n > 3, are equal, although the former is not decomposable into
any finite number of Coxeter tetrahedra, and the latter is a Coxeter tetrahedron

itself.
Question 5.1. Are Tl(") and TQ("), n > 3, scissors congruent?

It is also worth mentioning that if there exists a tetrahedron 7' C S* with “ratio-
nal” dihedral angles, but “irrational” volume, i.e., a counterexample to the initial
conjecture by Cheeger and Simons [1I], then using the above construction we can
also produce a counterexample in every dimension n > 3.

6. APPENDIX A

TABLE 2. Sporadic spherical Zs-symmetric tetrahedra: — di-
hedral angles have the form (pm,qm, rm,sm), side lengths
have the form (¢,m,¢,m, ¢y, lsm), and volumes are vm?, with
D,q,7, 8, p, Ly, br, ls,v € Q.

no. (p,q,r,s) (bp, g, L, Ls) Vol

1 (2/3,1/3, 3/5, 1/5) (2/3,1/3, 2/5, 4/5) 7/90

2 (25/42, 11/42, 4/7,2/7)  (25/42, 11/42, 3/7,5/7)  67/1764
3 (2/5,4/15,3/5, 8/15) (2/5, 4/15, 2/5, 7/15) 19/900
4 (2/5,1/5,2/3, 1/2) (2/5,1/5,1/3,1/2) 7/720
5 (6/7,2/7,1/3,2/7) (6/7,2/7,2/3, 5/7) 299/1764
6 (19/30, 17/30, 11/15, 1/3)  (19/30, 17/30, 4/15, 2/3)  209/900
7 (2/3,2/3, 4/5, 2/5) (2/3,2/3,1/5, 3/5) 31/90
8 (6/7,5/7,5/7,2/3) (6/7,5/7,2/7,1/3) 1013/1764
9 (13/30, 11/30, 11/15, 1/3)  (13/30, 11/30, 4/15, 2/3)  29/900
10 (7/20, 3/20, 2/3, 3/5) (7/20, 3/20, 1/3, 2/5) 17/3600
11 (4/5, 3/5,2/3,1/2) (4/5,3/5,1/3,1/2) 59/144
12 (23/30,11/30, 7/15, 1/3)  (23/30, 11/30, 8/15, 2/3)  161/900
13 (5/7,1/7,1/3, 2/7) (5/7,1/7,2/3, 5/7) A7/1764

14 (17/30, 11/30, 2/3, 4/15)  (17/30, 11/30, 1/3, 11/15)  59/900
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TABLE 2. Sporadic spherical Zg-symmetric tetrahedra (cont.)

no. (p,q,7,5) (lp, g, b, Ls)

15 (2/3,1/5,2/5,1/3) (2/3,1/5, 3/5, 2/3)
16 (13/30,7/30,3/5,1/2)  (13/30, 7/30, 2/5, 1/2)
17 (5/7,3/7,4/7,1/3) (5/7, 37, 3/7, 2/3)

18 (1/5,2/15,4/5, 11/15) (1/5,2/15, 1/5, 4/15)
19 (31/42, 25/42,5/7,3/7)  (31/42, 25/42, 2/7, 4/7)
20  (11/15,3/5,3/5, 8/15)  (11/15, 3/5, 2/5, 7/15)
21 (23/30, 13/30, 1/2, 2/5)  (23/30, 13/30, 1/2, 3/5)
22 (17/42,11/42,5/7,3/7)  (17/42, 11/42, 2/7, 4)7)
23 (17/30,7/30,1/2,2/5)  (17/30, 7/30, 1/2, 3/5)

24 (23/30, 19/30, 2/3, 8/15)  (23/30, 19/30, 1/3, 7/15)
25 (1/3,1/3, 4/5, 2/5) (1/3,1/3,1/5, 3/5)
26 (4/7,2/7,4/)7,1/3) (4/7,2/7, 37, 2/3)
27 (3/5,3/5, 2/3, 2/5) (3/5, 3/5,1/3, 3/5)
28 (1/3,1/5,2/3,3/5) (1/3,1/5,1/3, 2/5)
29 (11/30, 7/30, 2/3,8/15)  (11/30, 7/30, 1/3, 7/15)
30 (3/5,2/5,3/5,1/3) (3/5,2/5, 2/5, 2/3)
31 (13/15,4/5,4/5,11/15)  (13/15,4/5, 1/5, 4/15)
32 (5/7, 47, 2/3, 3/7) (5/7, 4)7,1/3, 4/7)
33 (3/5,4/15, 7/15, 2/5) (3/5, 4/15, 8/15, 3/5)
34 (23/30,17/30, 3/5,1/2)  (23/30, 17/30, 2/5, 1/2)
35 (2/5,2/5, 2/3, 2/5) (2/5,2/5,1/3, 3/5)
36 (17/20,7/20,2/5,1/3)  (17/20, 7/20, 3/5, 2/3)
37 (4/5,2/5,1/2,1/3) (4/5,2/5,1/2, 2/3)
38 (3/7,2/7,2/3,3/7) (3/7,2/7,1/3, 4)7)
39 (13/15,1/5,4/15,1/5)  (13/15, 1/5, 11/15, 4/5)
40 (19/30,7/30, 7/15,1/3)  (19/30, 7/30, 8/15, 2/3)
41 (2/3,2/5,2/3,1/5) (2/3,2/5,1/3, 4/5)
42 (3/5,1/5,1/2,1/3) (3/5,1/5,1/2, 2/3)
43 (3/5,1/3,2/3,1/5) (3/5,1/3,1/3, 4/5)
44 (4/5,1/3,2/5,1/3) (4/5,1/3, 3/5, 2/3)
45 (19/30, 13/30, 2/3, 4/15) (19/30, 13/30, 1/3, 11/15)
46 (4/5,1/5,1/3, 1/5) (4/5,1/5, 2/3, 4/5)
47 (17/20,13/20,2/3,3/5)  (17/20, 13/20, 1/3, 2/5)
48 (4/5,2/3,4/5,1/2) (4/5,2/3,1/5,1/2)
49 (4/5,2/15, 4/15, 1/5) (4/5, 2/15, 11/15, 4/5)
50 (2/5,1/3,4/5,1/3) (2/5,1/3,1/5, 2/3)
51 (1/5, 1/5, 4/5, 2/3) (1/5,1/5,1/5,1/3)
52 (2/7,1/7,5/7, 2/3) (2/7,1/7,2/7,1/3)

53 (11/15,2/5,7/15,2/5)  (11/15,2/5, 8/15, 3/5)
54 (31/42,17/42, 4/7,2/7)  (31/42,17/42, 3/7, 5/7)

55 (4/5, 4/5, 4/5, 2/3) (4/5, 4/5,1/5,1/3)
56 (4/5,2/3,2/3,3/5) (4/5,2/3,1/3, 2/5)
57 (11/15,2/3,11/15,1/2)  (11/15, 2/3, 4/15, 1/2)
58 (2/3,3/5,4/5,1/3) (2/3,3/5,1/5, 2/3)

59 (13/20, 3/20,2/5,1/3)  (13/20, 3/20, 3/5, 2/3)
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6/(x +1g)x (e/x+1—‘¢/re+r‘c/xr'c/x+1) (2 —xg/124 ve/ere/1 1+ 22/1)
€/1x (g/xg+1—‘g/x+1‘9/x+1C/x) (2 —xg/gr+2rg/12+29/128/T)
6/(x+1g—)x (¢/x+1'¢/xg+1—‘¢/x+1—‘C/¥) (r+xe/19—2e/T ' — xg/1%g/1)
Y1/ gL€1 + 8/ — ¥/ 12— (¢/xz+r1—‘¢/rxg+1v/xr+c/1—v/xe+c/1—) (@ —xrg/T2+2e/198/1 — 2¥/19¢/T — 1¥/€)
8V/ %S +e/1xe + v/ 5 (¢/x'e/xg +31—"‘e¢/x+1'e/x1T) (#+2ve/1'vg/1%+ 2e/1°2E/T)
gL/ g (2 —39) (¢/x‘g/x 9/x +1—"g/x) (xg/12g/10 — 29/1 xg/1)
8V/ xS+ e/1 + v/ % (e/xg+1'e/v'e/v'e/re +1) (vg/1% —2g/1'2e/1'9 + 2€/T)

YOI/ g% + ¥/ 4 — (¢/r+r¢/r+1—v/x+2/1—¥/x+2/1) (1+xe/ce—re/Tc1g/1 — 2¥/19C/1T + £¥/1)
VYT/ L€l +T/3% + ¥/ 1— (¢/xz +1—‘¢/rz+1v/x+c/1'v/re+2/1) (#—xg/12+re/19¢/1+29/192/1 + Lv/¢€)
Y1/ Y€1 +8/4% + ¥/ 34— (e/xz+1'e/xg +1—v/x +T/1'v/2e+2/1) (2+xe/19—xe/192/1 +2¥/192/1 + 2¥/¢€)

8/ g% +9/4% — ¥/t (g/x 41— ¢/rig/r+1—‘¢/x) (xz/1'2+vg/T'e —vg/128/T)
8/ (¥ —1%) (¢/x‘g/x‘g/x +1—‘g/v) (xg/1%g/10 — 2g/1 %g/1)
2L/ (¥ +29) $¢ ‘ou — T -ou 10§ (¢/x‘g/r9/x+1g/x) (2g/12g/T9+ 29/12g/T)
6/(x +1g)x 9/ >1>0 (e/xz+2'¢/x+1—‘g/xc/x+1) (2 +xe/g2—ve/1 2z /10 + 22/1)
VYT /g% + ¥/ 34— (¢/x+1—‘¢/x 419/ +c/1—v/2+3/4) (# —xg/ze+re/c9e/1T — 2¥/19C/1 + 2¥/1)
6/(x +19—)x (e/xz +1'¢/x+1—‘¢/x+1—"‘¢/x%) (r+xe/gr —xre/10 — 2g/12E/1)
8/ 4G+ €/2LT + ¥/ ;3 (e/xg+1—‘g/r'e/r+1'e/1e) (xz/10+ ve/1 9+ re/128/T)
8/ 4G +€/4%T — ¥/ 5t (¢/x'e/xe+3'e/x+31—‘e/xry) (# —vg/1vg/1'9 — vg/1'2E/T)
87/ g% +9/1u 7/ 3 (¢/x'e/x+12'e/x'e/x+1) (3 — vg/z vz /T /T + 28/T)
6/(x+1g—)x (¢/xg+1—‘¢/x+ar‘c/x+1—"‘C/¥) (r—xg/gr+re/10— xg/1%e/T)
8/ Le+ e/t — ¥/ 52 (e/xz +1—‘¢g/x‘g/r'e/rg +1—) (xz/1'2+vg/12e/1 — 28/T)
€/1e (e/x+1¢/xg +1—‘9/x+1C/x) (24 xe/12—ve/T 2+ 19/1 2g/1)
6/(x +19)x (e/xz+1—‘e/x+1g/xc/x+1) (2 —xg/ga+ve/1 2T /1 0+ 22/1)
YL/ L€1 +2/3% — ¥/ 34— (e/xz+1'e/xe +1—v/r+g/1—‘v/re+c/1—) (+re/19—2e/192/1 — 2¥/19¢/1 — L¥v/¢€)
8/ (% +12) (g/x‘g/xg/vrig/x+1) (2g/1‘2g/T2g/T 2+ 2g/T)
oA urewop (59 49 Py <dy) (5w b d)

RIPAYRIJO) [ROLIOYdS JLIJPMUIAS-%77 JO SOI[IUIe] SNONUIYIO)) ‘¢ HTAV],

g XIANAdAY ),

AT 0O~ 0

3

a
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g/ne+zg/ n—g/re+a/ 4
g/nr g/ n—e/+e/ g
g/ne+7g/ n—g/1e =2/t
g/ne 4/ n—g/1e =g/
g/ne+zg/ n+g/1e+7g/ 0
g/nx+zg/ nte/1e e/ -
z/ne —g/ nt+e/re e/ 0
g/ne —g/ 42/ +7T/ 0
VYT/ LEL + ¥/ g1~
6/ (% +29)x
8Y/ 1S +€/1%e — ¥/ 52
8%/ xS+ €/1% + ¥/ ;3
6/(x+19-)x
8V/ L +9/22 =¥/
8/ Lo+ e/1x — /3
8/t +9/4L + ¥/
YY1/ g€l + ¥/ g4 —

g urewo(g
g urewo(
¢ urewo(y
g urewo(
V urewo(q
V urewo(q
V urewo(q
Vv urewo(q

mS mZ g
‘LS9iSo0| xS150
‘wSnSo | ‘£3SnSo
M—QM‘NEOQ ”< EAMEOQ

(x+n—‘n‘g/rg/r+1)
(n‘x+n—r‘g/rg/L+1)
(r+n—‘n‘g/r+11—‘g/ur)
(n‘x+n—‘g/x+1—°g/x)
(v +3-"2g/r'g/x+n)
(32 +1—‘g/xg/x+n)
(v +32—"2g/r+n—"g/x)
(32 +9—"‘g/x+n—"g/x)

(g/x+1—‘g/r+2'y/re +c/1— ‘V/re+12/2)

(¢/xr+12'¢/rg+1—‘g/rc/r+1)
(¢/xg +1'c/x'e/x+1—"‘¢/xT)
(c/x‘¢/vg+1'g/r‘g/xg+1)

(¢/xr+31—‘¢/rg+1'c/xL+1—g/x)

(g/r‘g/x+1—‘g/r4+3—"‘g/x)
(¢c/v‘e/veg +1—‘e/vr‘e/ug +1—)
(g/x+arg/x'g/rig/x+1)

(e/x+r'e/r+r—"v/re+c/t—v/xre+12/1)

(n —x‘niyg/T'2 4+ 2g/1)
(n‘n —wug/1 + 2g/1)
(n—x‘n‘g—ug/12g/1)
(n‘n —x9 —ug/10g/T)
(2 —23ug/T1n + 1g/1)
(12— xriug/1n+ 2g/1)
(2 —29n —2g/1 2g/1)
(39 —x‘n—ug/1'27/1)

(1 —2g/c2+2e/c9c/1 — 2¥/€‘9c/1 + 1¥/¢€)
(#+rg/1'2 —2g/grg/T 2+ 2g/T)
(xg/12 —2e/1'2— 2g/T'2E/T)

(2 — vg/1 2g/1 2e/1 2+ 2£8/T)

(3 —xvg/T9+2g/T e — 1g/12g/1)

(2 +2xg/z xg/1 — 2g/1 2e/T)
(#+vg/12g/T28/T1 0 — 2E/T)
(2g/12 — 2g/g‘re/1 2+ 1g/1)

(1 +xrg/zr—re/c9g/1 — 2/ 9T/1 + 1¥/€)

(1y100) eIpaTRIDY [BILIOYAS JIIPUIAS-¢77 JO SOI[IUIe] SNONUIIUO)) " ATAV],

[44
184
ov
6¢
8¢
LE
9¢€
g€
ve
€€
ce
1€
oe
62T
8¢
LT
9¢
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