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Abstract

The cultivation of perennial wild plant mixtures (WPMs) in biogas cropping sys-
tems dominated by maize (Zea mays L.) restores numerous ecosystem functions
and improves both spatial and temporal agrobiodiversity. In addition, the colorful
appearance of WPM can help enhance landscape beauty. However, their meth-
ane yield per hectare (MYH) varies greatly and amounts to only about 50% that of
maize. This study aimed at decreasing MYH variability and increasing accumulated
MYH of WPM by optimizing the establishment method. A field trial was estab-
lished in southwest Germany in 2014, and is still running. It tested the effects of
three WPM establishment procedures (E1: alone [without maize, in May], E2: un-
dersown in cover crop maize [in May], E3: WPM sown after whole-crop harvest of
spring barley [Hordeum vulgare L.] in June) on both MYH and species diversity of
two WPMs [S1, S2]). Mono-cropped maize and cup plant (Silphium perfoliatum
L.) were used as reference crops. Of the WPM treatments tested, S2E2 achieved the
highest (19,296 mf\I /ha, 60.5% of maize) and SI1EI the lowest accumulated MYH
(8,156 mf\l /ha, 25.6% of maize) in the years 2014-2018. Cup plant yielded slightly
higher than S2E2 (19,968 qu /ha, 62.6% of maize). In 2014, the WPM sown under
maize did not significantly affect the cover crop performance. From 2015 onward,
El and E2 had comparable average annual MYH and average annual number of
WPM species. With a similar accumulated MYH but significantly higher number
of species (3.5-10.2), WPM S2E2 outperformed cup plant. Overall, the long-term
MYH performance of WPM cultivation for biogas production can be significantly
improved by undersowing with maize as cover crop. This improved establishment
method could help facilitate the implementation of WPM cultivation for biogas pro-

duction and thus reduce the trade-off between bioenergy and biodiversity.
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1 | INTRODUCTION
The cultivation of perennial wild plant mixtures (WPMs) is a
promising new biogas cropping system for Central European
conditions (von Cossel & Lewandowski, 2016), first men-
tioned by Vollrath et al. (2012). WPMs are seed mixtures
of annual, biennial, and perennial, predominantly wild and
flower-rich plant species. The annual plant species dominate
the plant stands in the year of establishment, the biennial
species in the second year, and the perennial species from
the third year onward. Both ecosystem services (Emmerling,
2014; Emmerling, Schmidt, Ruf, von Francken-Welz, &
Thielen, 2017) and landscape beauty (Daniel, 2001; Huth,
Paltrinieri, & Thiele, 2019) have been proven to be much
higher for WPM than for common biogas cropping systems,
such as short biogas crop rotation systems with high shares
of maize.

In less than a decade since the publication of the study
by Vollrath et al. (2012), various types of WPMs have been
developed by the breeding companies Rieger-Hofmann
(Germany) and Saaten-Zeller (Germany). Both the socio-
ecological and economic performance of these WPMs have
been investigated at the field scale by several institutes and
nonprofit associations across Germany (Friedrichs, 2013;
Janusch, 2014; Vollrath, Werner, Degenbeck, & Marzini,
2016; von Cossel & Lewandowski, 2016; Wurth et al., 2016;
Ziircher, 2014). These investigations found the methane yield
per hectare (MYH) of WPM to be much lower than for silage
maize and whole-crop cereal silage (WCCS), ranging from
40% to 60% of silage maize MYH (Friedrichs, 2013; Vollrath
et al., 2016; Wurth et al., 2016; Ziircher, Stolzenburg,
Messner, Wurth, & Loffler, 2014). This is mainly caused by
both lower dry matter yields (DMY; 2.9-22.5 Mg/ha) and
lower specific methane yields (SMY; 212-289 I/kg volatile
solids [VS]; von Cossel & Lewandowski, 2016; von Cossel,
Mbohring, Kiesel, & Lewandowski, 2018; Wurth et al., 2016).
This large quantitative and qualitative variation in biomass
characteristics of the WPM species is caused by (a) high spe-
cies diversity dynamics (von Cossel & Lewandowski, 2016)
and (b) considerable differences in the species-specific sub-
strate quality (Vollrath et al., 2012).

The low and rather variable economic performance of
WPM impedes future large-scale implementations given
the increasing scarcity of arable land available for industrial
crops (Cosentino, Testa, Scordia, & Alexopoulou, 2012;
Foley et al., 2005; Galatsidas et al., 2018) due to rising land-
use demand for food and feed production, urbanization, and
other land-use requirements (Tilman et al., 2009). For this
reason, it has been suggested that biomass production should
be restricted to those kinds of agricultural lands that are
marginal in the sense that they are not suitable for food crop
production (Elbersen, Van Eupen, et al., 2018; Elbersen, Van
Verzandvoort, et al., 2018; Ramirez-Almeyda et al., 2017).

However, the constraining biophysical conditions often found
on these marginal lands, such as poor soils and harsh climate
(Terres et al., 2014) somewhat complicate the successful es-
tablishment and growth of WPM. This could lead to a further
decrease in both their potential methane and dry matter yield
over their whole cultivation periods (Brauckmann & Broll,
2016; Wurth et al., 2016).

In our study, however, WPMs are considered a promis-
ing option for biomass production on marginal agricultural
land because they contain a mixture of on average five spe-
cies (von Cossel & Lewandowski, 2016) and show features
of a perennial system (Emmerling et al., 2017), for example,
less soil disturbance and a well-established rooting system.
This promotes soil carbon accumulation, the development of
soil biodiversity, and reduces the risk of erosion (Emmerling
et al., 2017; Weilhuhn, Reckling, Stachow, & Wiggering,
2017). The costs of biomass production are also lower in
perennial than in annual cropping systems (Lewandowski,
2016; Lewandowski et al., 2016). In addition, WPM cultiva-
tion is expected to increase the resilience (Walker, Holling,
Carpenter, & Kinzig, 2004) of the agroecosystem, because
heterogeneous cropping systems are capable of reacting more
flexibly to both biotic and abiotic disturbances (Bucharova et
al., 2018; von Cossel & Lewandowski, 2016). This increased
resilience can be mainly attributed to the wide range of spe-
cies-specific demands and stress tolerances of the diverse
WPM species. Given the high number of species within the
WPM (von Cossel & Lewandowski, 2016), it is expected
that—for the vast majority of sites (especially marginal agri-
cultural lands)—there will be at least one species that is able
to cope with these conditions. This renders WPM even more
interesting when considering both unfavorable sites and the
projected effects of climate change on agriculture (Cosentino
et al., 2012; Pachauri et al., 2014; Tuck, Glendining, Smith,
House, & Wattenbach, 2006; von Cossel, 2019).

With regard to the overall yield performance of WPM,
a previously published study that investigated two differ-
ent WPMs cultivated on three different sites in southwest
Germany over a 5 year period came to some potentially
expedient conclusions: (a) low-field emergence rates com-
bined with low DMY levels of annual WPM species in the
first production year lead to low income and this cannot be
compensated in the following four cropping years, (b) incom-
plete canopy closure of annual WPM species can have an in-
direct negative effect on the establishment of biennial and
perennial species through higher abundance of weed species
(von Cossel & Lewandowski, 2016). Wurth et al. (2016) also
found both good weed control prior to sowing and a complete
canopy closure during the first WPM vegetation period to be
crucial to avoid weed infestation. Consequently, to optimize
the overall MYH performance of WPM biomass production,
improved establishment procedures are required that lead to
better canopy closure and increased yield level in the year of
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establishment. An improved cultivation strategy for the es-
tablishment year in particular could help to (a) make WPM a
promising tool to increase agricultural biodiversity (Pfiffner,
Ostermaier, Stoeckli, & Miiller, 2018; Warzecha, Diekotter,
Wolters, & Jauker, 2018) and thus contribute to biodiversity
conservation (Sheppard, Gillespie, Hirsch, & Begley, 2011)
on marginal agricultural lands, (b) make WPM a net-profit
low-input system for farms on marginal agricultural lands,
and (c) accelerate the potential of large-scale implementation
of WPM throughout Central European marginal agricultural
lands.

Vollrath et al. (2013) proposed the use of maize (Zea
mays L.) as a nurse crop to optimize the establishment of
WPM. Maize is known to be highly suitable for intercrop-
ping and functioning as a nurse crop (von Cossel et al., 2019;
von Cossel, Mohring, Kiesel, & Lewandowski, 2017). Von
Redwitz et al. (2019) investigated the establishment of wild-
flower strips under maize in eastern Germany. They found
these to (a) reduce maize yield by about 30%, (b) benefit
pollinators and ground beetles, and (c) improve the habitat
quality for ground-nesting, open-land birds such as skylark
(Von Redwitz et al., 2019). Brauckmann and Broll (2016) ex-
amined both the economic and ecological aspects of WPM
establishment under maize in eastern Germany over a 3 year
cultivation period. They concluded that it could be econom-
ically feasible to establish WPM under maize (Brauckmann
& Broll, 2016). However, there are no studies available that
cover the whole cultivation period of up to 5 years (as pro-
posed by Vollrath et al., 2012). For this reason, our study
aims to gain insights into the potential effects of maize as
a nurse crop for WPM establishment in terms of both MYH
performance and WPM species diversity dynamics over a
5 year cultivation period.

Mono-cropped maize was chosen as main reference due
to its high MYH potential (Herrmann & Rath, 2012) and its
predominant use as a biogas crop in Germany (Witt et al.,
2012). As second reference, cup plant (Silphium perfoliatum
L.) was taken. It is a perennial biogas crop with a rapidly
increasing cultivation area in Germany (about 3,000 ha in
2018; TFZ, 2019). The reasons for this are (a) its positive
effects on both biodiversity and the environment (Bufe &
Korevaar, 2018), (b) its high MYH potential (Gansberger,
Montgomery, & Liebhard, 2015; Haag, Nigele, Reiss,
Biertiimpfel, & Oechsner, 2015; Mast et al., 2014; Siaudinis
et al., 2015; Ustak & Munoz, 2018), (c) it has been accepted
as a greening measure since 2018 (Bufe & Korevaar, 2018),
and (d) there has been a breakthrough in establishment pro-
cedure (sowing instead of planting) which makes its culti-
vation more cost-efficient. It is also commonly established
under maize (Stolzenburg, Bruns, Monkos, Ott, & Schickler,
2016). However, despite the positive effects on the environ-
ment (Bufe & Korevaar, 2018; Schorpp & Schrader, 2016),
cup plant is still a monoculture. The polyculture WPM could

potentially perform much better in terms of social-eco-
logical aspects such as landscape beauty and biodiversity
conservation.

2 | MATERIALS AND METHODS

A single field trial with two WPM (S1, Rieger-Hofmann; S2,
Saaten-Zeller GmbH & Co KG) and three establishment pro-
cedures was sown at Hohenheim in southwest Germany in
2014 and is being continued ever since. This study includes
the results of the first 5 years of cultivation from 2014 to
2018. The WPMs S1 and S2 were also used in another field
trial which was conducted during the years 2011-2015 (von
Cossel & Lewandowski, 2016). But during 2011 and 2014,
the breeding companies have adjusted the species composi-
tions of WPMs S1 and S2 according to first experiences of
the farmers testing the WPM. This means that the species
compositions of S1 and S2 used for this study slightly vary
from those used in von Cossel and Lewandowski (2016).
Moreover, the differences of the species compositions of S1
and S2 have extended: While the total number of species re-
mained about the same in S2, it was nearly doubled in S1
from 27 species in 2011 (von Cossel & Lewandowski, 2016)
to 52 species in 2014 (Table S1). Detailed deviations of spe-
cies mixture compositions between the WPMs used in this
study and those described in von Cossel and Lewandowski
(2016) are shown in Table S1.

2.1 | Field trial establishment and site
characteristics

The field trial was established as a completely randomized
design. Fifteen treatments were arranged in six rows each
with nine plots; thus, the trial had 54 plots in total, each with
36 m® gross area (6 m X 6 m). Treatments were tested in
two to five replicates. For the current study, only data com-
ing from two WPMs (S1 and S2) under three types of es-
tablishment and the two monoculture crops, silage maize
(Carolinio, KWS) and cup plant, were used. No other WPMs
were included in the trial. The standard establishment (E1)
of S1 and S2 was conducted as described by von Cossel
and Lewandowski (2016), whereas the seed mixtures were
sown directly using a pneumatic seed drill at a sowing den-
sity of 10 kg/ha and a row distance of 15 cm (Kuhn, Zeller,
Bretschneider-Herrmann, & Drenckhahn, 2014). The second
establishment method was simultaneous sowing of WPMs S1
and S2 (both with Calendula officinalis L. and Phacelia tan-
acetifolia Benth. instead of sunflower) with maize (Zea mays
(L.) var. Carolinio [KWS, Germany]) as nurse crop. The third
establishment method was direct sowing (without tillage) of
S1 and S2 1 day after harvest of spring barley (Hordeum
vulgare (L.)) in June 2014. The barley straw was removed
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from the field. Each combination of WPM and establishment
method was tested on five plots. The two monoculture crops
were tested on two plots each.

The soil is a clayey loam (Luvisol) with a pH of 6.3 (spring
2014). The major agricultural measures and observations are
listed in Table 1. The weather conditions of the whole culti-
vation period are presented in Figure 1.

2.2 | Harvest and sample analysis

The evaluation of both biomass yield and biogas substrate
quality of the various cropping systems required several
work procedures in the field and in the lab. Harvest of
monoculture crops was conducted by hand from a sampling
area of 1.5 m? (maize) and 2 m? (cup plant). The WPMs

TABLE 1 Key information on the agricultural practices applied for the cropping systems presented in this study during the years 2014-2018.

Additionally, two important weather events are listed

Procedure or special event
Ploughing

Rotary harrow

Soil nitrogen (NO5-N), May 2014
Soil phosphorus (CAL), May 2014
Soil potassium (CAL), May 2014
Soil magnesium (CaCl,), May 2014
Quicklime (77% CaO) application
Sowing of summer barley®
Sowing of maize®

Planting of cup plant®
Sowing of E1 and E2¢

Field emergence maize
Field emergence WPM

N fertilization®

High radiation + temperature
Weeding of thistles

Hail damage

Harvest of summer barley
Sowing of E3¢

Harvest’ of E1, E2
Mulching of E3

Harvest® of El, E2, and E3

Details

Depth: 20-25 cm

Depth: 8-10 cm (two times)
kg/ha (depth 0-90 cm)
mg/100 g (depth 0-30 cm)
mg/100 g (depth 0-30 cm)
mg/100 g (depth 0-30 cm)
1.5 Mg/ha

350 kernels/m”

9 kernels/m’

4 plants/m’

Plot drill (Haldrup, Germany)

90 kg N/ha

8-8.5 UVR, 25-35°C

By hand

25 mm precipitation

By hand

Plot drill (Haldrup, Germany)
Species specifically (by hand)
Mechanical

Species specifically (by hand)

Date or value

February 4, 2014
February 28, 2014
109.6

9.2

15.8

13.9

February 26, 2014
April 20, 2014

May 15, 2014

May 16, 2014

May 20, 2014

May 22, 2014

June 1, 2014

June 5, 2014

June 6-9, 2014

June 6, 2014

June 10, 2014

June 25, 2014

June 27, 2014

End of September 2014
End of February 2015
Each year end of July (2015-2018)

Harvest of maize By hand Each year in October (2014-2018)
Harvest of cup plant By hand Each year in October (2014-2018)
N fertilization (maize) 90 kg N/ha May 2014

P/K/Mg/S fertilization (all treatments) 88 kg P/ha,176 kg K/ha March 2015

32 kg Mg/ha, 48 kg S/ha

N fertilization (WPM, maize, cup plant) 90 kg N/ha
N fertilization (WPM, maize, cup plant) 90 kg N/ha
N fertilization (WPM, maize, cup plant) 90 kg N/ha
N fertilization (WPM and cup plant) 25 kg' N/ha
N fertilization (maize) 90 kg N/ha

Abbreviation: UVR, ultraviolet radiation.

*Hordeum vulgare (L.) var. Grace (BayWa, Germany).

"Zea mays (L.) var. Carolinio (KWS, Germany).

“Silphium perfoliatum ssp. (mk jungpflanzen GmbH, Germany).
9Described by von Cossel and Lewandowski (2016).
‘ENTEC®26N (BASF, Germany).

"Due to technical reasons.

April-May 2015
April-May 2016
April-May 2017
April-May 2018
April-May 2018
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FIGURE 1
field trial site from 2014 to 2018 (LTZ, 2019)

were harvested by hand separately for each species from a
sampling area of 4 m?. Samples of each species were then
chopped manually in the field immediately after harvest to
determine the fresh matter biomass yields. For most of the
wild plant species, the whole fresh matter samples were
used for dry matter determination. For other dominant spe-
cies, about 500 g of fresh matter was used as subsamples.
The fresh matter samples were immediately put into the
drying chamber and dried at 60°C to constant weight for
48 hr to determine the water content. A similar procedure
was also applied by von Cossel and Lewandowski (2016).
After sample preparation, biomass attributes relevant for
the performance as feedstock for biogas production were
determined. These attributes comprise biochemical com-
positions of lignin, cellulose, hemicellulose, and ash which
were measured according to von Cossel et al. (2017).
Additionally, the SMY was determined as described in the
following subsection.

2.3 | Biogas batch tests

The biogas yield of the different raw materials was evalu-
ated through biogas batch tests at lab scale. These tests were
conducted with milled subsamples of the dry matter samples
under mesophilic conditions (39°C) according to VDI direc-
tive 4630 (VDI, 2016). The biogas production was measured
according to the pressure increase in bottles of hermetic di-
gesters (100 ml) as described by von Cossel et al. (2017), and
later standardized to norm conditions.

2.4 | Statistical analysis

The data were analyzed using a mixed model approach. The
model was as follows:

Vi =H+Ti+ @+ a+(T@);+(Ta)y +(9a); + (Tea) i + ey,

FS5
A N 1l
L | | | | || | | i | [l 1y
93535250220 35743 98 L 0B g Ry RS0 U3 R TG AN T8 T3 YRR FE AR
2014 2015 2016 2017 2018

Overview of weather conditions (bars = monthly precipitation; line = monthly average temperature 2 m above ground) in the

where uis the intercept, ;, @, and (z¢) jare the fixed effects for
the ith establishment method, the jth WPM and their interac-
tion effects, respectively. ay, (ta)y., (9pa);, and (zgpa);; are the
effect of the kth year and its interactions with establishment
method and WPM, respectively. e, is the error of observa-
tion y;;; with establishment procedure-specific variance. To
account for possible gradients in the field, random row and
column effects are included in the model if they decreased
the Akaike information criterion (AIC; Wolfinger, 1993).
Different error variance—covariance structures (compound
symmetry, first-order autoregressive both with homogeneous
and heterogeneous variances as well as unstructured) were
fitted to account for temporal correlation, because repeated
measures were taken from each plot across years. Again, we
selected the best model based on the AIC. Assumptions of
normality and deviations from homogeneous error variance
(except the deviations already accounted for by the model)
were checked graphically. We tested the influence of factors
using a global F test. In case of significant differences, a mul-
tiple 7 test was conducted to provide a letter display (Piepho,
2004). Note that the number of weed-relevant species in
monoculture maize and cup plant is always one. Thus, means
for WPM treatments were estimated without these data. To
complete the letter display, these means were tested against
a fixed value of one using a simple 7 test. In all analysis, both
standard errors and degrees of freedom were approximated
based on the Kenward—Roger method (Kenward & Roger,
1997). All analyses were performed using the PROC MIXED
procedure of the SAS ® Proprietary Software 9.4 TS level
1M5 (SAS Institute Inc.).

3 | RESULTS

Both maize and most of the perennial cropping systems (WPM
E1, WPM E2, and cup plant) were successfully established in
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2014. This was indicated by homogeneous species-rich plant
stands end of July 2014 (Figure 2). The WPM establishment
procedure E3 developed rather slow due to low precipita-
tion from end-June to mid-July. However, the perennial wild

plant species emerged homogeneously in all establishment
procedures for both S1 and S2 (Figure S1). The plant spe-
cies of E3 were growing until December 2014, and many
species flowered until mid of December such as Borago of-
ficinalis L., Calendula officinalis L., Coriandrum sativum
L., Fagopyrum esculentum Moench, Malva verticillata L.,
and Phacelia tanacetifolia Benth (Figure S1c). Overall, both
S1 and S2 showed a high species diversity ranging from 3
to 22 yield-relevant species per year (Figures 2—4, Table 2;
Figure S1). Significant threefold interactions (a dependency
on the interaction of year, WPM, and establishment proce-
dure) were found for DMY, DMC, the lignocellulosic com-
ponents (lignin, cellulose, and hemicellulose), SMY, and the
number of yield-relevant WPM species (Table S2). The in-
florescences of the wild plant species attracted a high number
of various insect species, some of which are shown in Figure
4. The establishment procedure did not influence the aver-
age number of yield-relevant species across years from year
2015 onward (Table 2). From 2015 onward, the most domi-
nant species were yellow chamomile (Anthemis tinctoria L.),
yellow melilot (Melilotus officinalis L.), common knapweed

(Centaurea nigra L.), fennel (Foeniculum vulgare Mill.),
lucerne (Medicago sativa L.), mugwort (Artemisia vulgaris
L.), and common tansy (Tanacetum vulgare L.; Table S3).
E2 showed slightly higher weed occurrence measured by the
number of weed species occurring compared to other estab-
lishment methods (E1 and E3; Table 2). However, the pro-
portions of total DMY of weed species and thus their overall
impact on the economic performance of the WPM cultivation
were higher for S1 than for S2 (Table 2).

Additionally, the total DMY of S1 treatments were lower
than those of S2 (Table 2). The highest DMY was reached by
cup plant in 2018 (27.8 + 1.9 Mg/ha), the lowest by WPM S1
in 2018 (4.6 + 1.9 Mg/ha). Even though the DMY of maize
was significantly lower than cup plant in 2018, maize reached
a significantly higher MYH of 7,646.7 + 544.5 mf\l /ha (Table
2). This was due to a much better biogas substrate quality
of maize compared to cup plant (Table 2). Biogas substrate
quality here means that the biomass is easier digestible during
anaerobic fermentation. In this study, it was shown that maize
has higher contents of hemicellulose and lower contents of
both lignin and ash (Table 2) compared with all other crops
and cropping systems investigated here (Table 2). A com-
parison of the 5 year performance of all cropping systems
investigated in this study revealed that mono-cropped maize
gained about 30% higher DMY and about 65% higher MYH

FIGURE 2 Plant stands of mono-
cropped maize (a), wild plant mixture S1
sole established (b) and under maize (¢),
wild plant mixture S2 sole established (d)
and under maize (e), and cup plant (f).
Pictures taken on July 28, 2014
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FIGURE 3 Plant stands of sole established wild plant mixtures S1 (a) and S2 (b) mono-cropped maize (c) and cup plant (d) on July 23, 2015.
The other wild plant mixture establishment procedures (under maize and after barley) are not shown, because they did not differ visually from the
sole establishment

FIGURE 4 Some impressions of inflorescences and benefitting insects within the WPM stands: Cichorium intybus L. (a), Oenothera biennis
L. (b), Silene vulgaris MOENCH) GARCKE (c), Centaurea jacea L. (d), Melilotus officinalis (L.) PALL. with Apis mellifera (LINNAEUS, 1758)
(e), Tanacetum vulgare L. with Apis mellifera (LINNAEUS, 1758) (f), Trifolium pretense L. with Bombus terrestris (LINNAEUS, 1758) (g),
Argiope bruennichi (SCOPOLI, 1772) with Gomphocerinae (FIEBER, 1853) (h), Trifolium incarnatum L. with Bombus pascuorum (SCOPOLI,
1763) (i), Anthemis tinctoria L. with Eristalis tenax (LINNAEUS, 1758) (j). The pictures were taken in the field trial presented in this study during
the years 2015-2017

compared to the best performing WPM treatment (S2E2; with about 60% of maize accumulated 5 year MYH (Figure
Figure 5). For each establishment procedure, S2 outper- 5). Note that there was no MYH for cup plant during its es-
formed S1 in both DMY and MYH. Cup plant outperformed  tablishment year 2014 (Figure 2f).

all WPM treatments except for S2E2 which was almost equal
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FIGURE 5 Absolute 5 year accumulated dry matter yield (DMY) and methane yield (MYH) (years 2014-2018) of the seven perennial
cropping systems (WPM: wild plant mixture; S1: Rieger-Hofmann; S2: Saaten-Zeller; E1: sole establishment; E2: under maize establishment;

E3: after barley establishment and cup plant: Silphium perfoliatum L.); and maize: Zea mays L. Identical lower and uppercase letters show

nonsignificant DMY and MYH differences between systems, respectively

4 | DISCUSSION

The research object of this study constitutes an example of the
trade-off between economic and ecosystemic performances
of more diverse biogas cropping systems (von Cossel, 2019).
While mono-cropped maize provides best MYH performance
(Table 2 and Figure 5), WPM relevantly increase the ecosys-
temic functions of biomass production (Table 2; Emmerling
et al., 2017) and also improve its aesthetical appearance in
the landscape (Figures 2—4; Huth et al., 2019). Here, three
alternative WPM establishment strategies were investigated
aiming at improving the MYH performance of the WPM and
reducing the risks of establishment failures for the farmers.
This could enable a faster practical implementation of WPM
into biogas cropping systems across Europe and thereby con-
tribute to a more wildlife friendly agriculture (Gevers, Hgye,
Topping, Glemnitz, & Schroeder, 2011; Tscharntke et al.,
2012).

In the following sections, the effects of the establishment
procedures on (a) the MYH performance and (b) the biodi-
versity effects of the WPM will be discussed. Thereafter, a
general outlook for WPM cultivation and the conclusions on
the findings of this study will be provided.

4.1 | Methane yield performance of WPM
compared to maize and cup plant

Overall, the highest accumulated MYH was observed for
mono-cropped maize (Figure 5). This was expected due to
the high biomass productivity of maize and its high suit-
ability for methane production through anaerobic digestion
(Herrmann & Rath, 2012; Rath, Heuwinkel, & Herrmann,
2013). Whereas, WPM and cup plant not only show a lower
5 year accumulated DMY than maize (Table 2), they are

also less suitable for anaerobic digestion. This was indi-
cated by lower SMYs of WPM and cup plant compared to
maize (Table 2). Low SMY was caused by higher contents
of ash and lignin in WPM and cup plant (von Cossel et al.,
2018; Table 2) which is in line with findings from available
studies (Carlsson, Martensson, Prade, Svensson, & Jensen,
2017; Schmidt, Lemaigre, Delfosse, von Francken-Welz,
& Emmerling, 2018). Both lignin and ash are not digestible
during anaerobic fermentation (Oleszek, Krdl, Tys, Matyka,
& Kulik, 2014; Triolo, Pedersen, Qu, & Sommer, 2012; von
Cossel et al., 2017, 2018). Therefore, the contents of lignin
and ash within the biogas substrate should be as low as possi-
ble. In this study, maize and summer barley (E3) showed the
lowest contents of lignin and ash (Table 2). The optimal bio-
chemical composition of maize results from its long breeding
history (Barriere et al., 2006). For WPM, the composition
was not bred at all, since the most yield-relevant perennial
WPM species such as common tansy (Tanacetum vulgare L.)
and knapweed (Centaurea spp. L.) are wild species (Vollrath
et al., 2012). This means that they have not exclusively been
bred for biogas production or forage use over decades such
as maize. We propose that breeding (for cup plant) and both
a better selection and combination of wild plant species (for
WPM) could help improving the SMY's and thus, closing the
genetic and agronomic MYH gaps of cup plant and WPM,
respectively.

Among different WPM establishments, E2 (under maize)
enabled the highest accumulated biomass yield of the WPM
cultivation compared to the other establishment procedures
El (solely) and E3 (after WCCS; Figure 5 and Table 2). This
was mainly a result of (a) the replacement of sunflower in its
function as major annual crop in both WPM with a high-bred
silage maize variety and (b) a good suitability of maize as
nurse crop for WPM establishment. Maize generally allows
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for a constant yield and processability compared to sunflower
due to several reasons:

1. The distribution of sunflower plants on the field is not
comparably uniform to that of maize (Figure 2a-e).
Maize can be sown precisely, and both best practice
planting geometry and sowing density of maize are
much better known than for sunflower. Therefore, there
may be agronomic yield gaps for sunflower based on
suboptimal planting geometries. A suboptimal planting
geometry can cause a decreased mechanical stability of
the plants (Gardiner, Berry, & Moulia, 2016), which
are then more affected to wind damage.

2. One important consequence of the above-mentioned sub-
optimal planting geometry of sunflowers would be an in-
creased risk of earth contaminations within the harvested
biomass. This is because the plants often happen to be
entangled which causes that they are pulled out of the
soil including the roots instead of being cut and harvested
without the roots (Frick & Pfender, 2019).

3. A higher oil content compared to silage maize renders
sunflower biomass a crucial challenge for biogas process-
ing. Therefore, it is more common to use sunflower oil
cake for biogas processing rather than silages from whole
sunflowers (Raposo et al., 2009).

This study focuses on reducing the establishment-related ag-
ronomic risks of WPM cultivation such as variable yields and
weed infestation (von Cossel & Lewandowski, 2016). A lower
risk of establishment failures is meant to help overcoming the
risk adversity of those farmers who are latently motivated to give
WPM cultivation a try (Frick & Pfender, 2019). In many cases,
these farmers hesitate to grow WPM because of the potentially
lower and variable MYH compared to maize during the first year
(von Cossel & Lewandowski, 2016). Here, E2 was found to be
one option for making it less risky for farmers to test WPM cul-
tivation. Undersowing WPM with other annual industrial crops
than maize such as hemp (Cannabis sativa L.) and false flax
(Camelina sativa L.) should be investigated in the future.

The third WPM establishment procedure investigated in
this study, sowing after barley (E3), resulted in significantly
lower total accumulated MYH in the long term compared to
E1 and E2. This could be explained by two reasons:

1. Suboptimal growth conditions. The summer-annual barley
variety was sown in April 2014 and harvested end of
June 2014 (Table 1) which means that the vegetation
period accounted for less than 90 days. Additionally,
there was evidence for heat and radiation stress for
plants in June (Table 1). In combination with hetero-
geneously distributed precipitation events, the climatic
growth conditions were suboptimal for a summer-annual
crop that is harvested at the end of June.

0w LEY-1"

2. Weak weed suppressiveness. The summer-annual barley
developed slowly due to the above mentioned suboptimal
climatic growth conditions and low top-soil wetness dur-
ing the weeks after sowing. Similar suboptimal growth
conditions were observed for the WPM sown after WCCS
harvest (E3). This paved the way for several weed spe-
cies such as thistle, amper, and honey grass which became
dominant over time in E3 of both S1 and S2. Following
Baraibar, Hunter, Schipanski, Hamilton, and Mortensen
(2018), we assume that a winter-annual cereal would have
been more weed suppressive than summer barley.

We assume that winter-annual cereal species such as winter rye
and winter-triticale would be likely preferable for the purpose
of establishing WPM after WCCS harvest. This is because win-
ter-annuals already have an established root system in April and
could use the whole vegetation period. Baraibar et al. (2018)
reported that winter-annual cereal would have been more weed
suppressive than summer barley. Thus, winter-annual could
be more efficient compared to summer-annual cereals. Here,
“more efficient” means both a higher MYH and a better sup-
pression of weed species.

For WPM, fertilization was applied from the second
year onward. The fertilization rate was set at 90 kg based
on experiences from another field trial with WPM (von
Cossel & Lewandowski, 2016). In other studies, higher fer-
tilization rates of about 130 kg N/ha were used; however,
no higher yields have been reported (Wurth et al., 2016;
Ziircher et al., 2014). The DMYs of both WPMs (S1, S2)
in this study were similar to those reported by Wurth et al.
(2016) and Ziircher et al. (2014), who investigated simi-
lar wild plant seed mixtures than those presented in our
study. In 2018, the DMY of WPM (S2) was even similar
to those of Wurth et al. (2016) and Ziircher et al. (2014)
despite the fact that the WPMs were only 25 kg N/ha fer-
tilized in our study (due to technical reasons). Therefore,
this study also revealed that WPM maybe economically vi-
able under low-input fertilization regimes, which is in line
with other studies (Carlsson et al., 2017). We suggest that
the proportions of the WPM of legumes such as melilot
(Melilotus officinalis L.) and lucerne (Medicago sativa L.;
Table S3) are the main drivers for a successful low-input
WPM cultivation regarding the aim of low nitrogen fertil-
ization. Additionally, the deep rooting systems of many of
the biennial and perennial species such as common tansy
and knapweed are also of great importance. Thus, WPMs
are potentially suitable for agricultural low-input practices.
This renders WPM cultivation even more socio-ecologi-
cally benign under aspects of GHG mitigation (substitution
of synthetic or digestate N), groundwater protection (less
N leaching), and soil protection (less prone to erosion than
annual crops) as was also concluded by von Cossel and
Lewandowski (2016).
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Biodiversity effects of the WPM

The high species diversity of both WPMs (Figures 2—4,
Tables 2; Table S3) was in accordance with both find-
ings from other studies (Vollrath et al., 2012; von Cossel
& Lewandowski, 2016; Von Redwitz et al., 2019; Wurth
et al., 2016; Ziircher et al., 2014) and observations by
farmers who have cultivated WPM for 8 years (Frick &
Pfender, 2019). The high diversity of WPM is known to
have positive effects on both above- and belowground
fauna (Carlsson et al., 2017; Emmerling, 2014; Vollrath
et al., 2016). Within the aboveground fauna, the potential
benefits of WPM for pollinators are highly relevant, be-
cause of the ongoing great losses of pollinator abundances
during the past 27 years (Hallmann et al., 2017). The ex-
tend of these potential benefits depends on the growth (and
thus, the establishment success) of the wild plant species:
In low-height plant stands, there will only be a weak ef-
fect on pollinator abundances than in tall plant stands due
to the higher number of flowers (Frick & Pfender, 2019).
In this study, there were no significant differences in plant
species diversity and biomass yield between El, E2, and
E3 (Table 2) across years starting from the second year
onward. Therefore, a somewhat similar amount of food and
shelter was provided for the pollinators across all estab-
lishment procedures. This indicates that the establishment
procedures investigated in this study will probably not in-
fluence the effects of WPM on the pollinator abundances
from the second year onward. In the first year, however,
the proportion of total biomass of the wild plant species
was rather low in E2 (on average about 3% of total DMY).
This may result in a much lower support for pollinators of
E2 compared to E1 and E3. Nevertheless, the spaces be-
tween maize rows in E2 were almost covered completely
by WPM species during the vegetation period of year 2014.
Most of these WPM species also developed inflorescences
(Figure 2c,e) and thus improved soil cover compared to
mono-cropped maize (von Redwitz et al., 2019).

4.3 | General evaluation and outlook

Overall, we conclude that E2 allows for a less risky estab-
lishment of the WPM from an agronomic perspective. This
conclusion is based on the following facts:

1. The MYH of maize was not significantly affected by
the establishing WPM underneath—this enables both a
safe income for the farmers and a sufficient supply of
biomass for the local biogas plants during the initial
year of WPM cultivation.

2. The WPM established well under maize and showed simi-
lar yield levels to sole establishment of WPM (E1) from
the second year onward.

3. Both WPM and maize share the same seedbed preparation
in one year, which (in combination with the high MYH of
maize) also reduces the MYH-related establishment costs
of WPM cultivation in E2 compared to E1 and E3.

von Cossel and Lewandowski (2016) and Wurth et al. (2016)
found a trade-off between the number of WPM species and
the biomass productivity of the WPM plant stands. The re-
sults of our study did not disprove this trade-off: While the
number of yield-relevant species was significantly higher in
S1 than in S2, the opposite was observed for the MYH (Table
2, Figure 5). This may have caused a stronger interspecific
competition between the wild plant species which resulted
in significantly lower biomass production in S1 than in S2.
Furthermore, a similar trade-off between species diversity
and biomass yield performance was also found by Bonin et
al. (2018) who investigated a diverse mixture of forbs and
grasses and compared it with mono-cropped switchgrass
(Panicum virgatum L.) and a mixture of three grasses. We
suggest that an average number of six to eight yield-relevant
species in S2 already renders a great improvement of the
spatial agricultural diversity (Altieri & Letourneau, 1982;
Letourneau et al., 2011; von Cossel, 2019) compared with
mono-cropped maize or cup plant. Furthermore, S2 appears
to be a more reliable WPM compared to S1 under economic
aspects. The lower number of yield-relevant species makes
S2 probably much easier to handle than S1 under aspects
of harvest date determination and biogas substrate quality
prediction (von Cossel et al., 2018). Therefore, we draw a
similar conclusion as von Cossel and Lewandowski (2016)
who recommended a moderately low number of yield-rele-
vant wild plant species of up to five for a successful WPM
cultivation under both ecosystemic and economic aspects.
The silage quality of WPM was found to be suitable due
to the high DMC. Instead, the DMC of cup plant is critically
low in some cases given that a DMC of about 28% (Eberl,
Fahlbusch, Fritz, & Sauer, 2014) is required for a successful
ensilage of the harvested biomass. Further advantages of WPM
over cup plant are a higher species diversity and that species in
WPM are no neophytes in mid-European ecosystems.
Altogether, the establishment of WPM under maize was
found being a reasonable improvement of the WPM estab-
lishment procedure under both social-ecological and eco-
nomic aspects. A faster implementation of WPM cultivation
into practice could help making biogas crop cultivation more
environmentally benign—especially in times of dramatically
decreasing pollinator abundances (Hallmann et al., 2017).
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