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Abstract
Key message  Successful orange rust development on sugarcane can potentially be explained as suppression of the 
plant immune system by the pathogen or delayed plant signaling to trigger defense responses.
Abstract  Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange 
rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps 
of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we 
investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve 
this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential 
expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inocu-
lation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During 
the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensi-
tive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune 
response regulation provided evidence of some potential defense response. Events related to biotic stress responses were 
predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in 
carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional 
requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in 
plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient 
recognition system by a susceptible sugarcane genotype.
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Introduction

Sugarcane is currently cultivated in 27 million hectares 
worldwide, 52% of which are located in Americas, mostly 
in South America (11 million ha). Brazil is the leading 
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producer, responsible for 758.55 million tonnes (FAOSTAT, 
2017). The term sugarcane includes at least six species of 
the genus Saccharum (Daniels and Roach 1987; Kim et al. 
2014). The ancestor species are Saccharum robustum and S. 
spontaneum, which present variable ploidy levels with chro-
mosome number ranges of 2n = 60–170 and 2n = 36–128, 
respectively (Irvine 1999; Zhang et al. 2012). The octoploid 
(2n = 80) S. officinarum is an ancient cultivated sugarcane 
with high sugar content that formed the group of noble cul-
tivars  (Grivet et al. 2004; Irvine 1999; Paterson et al. 2013). 
Sugarcane plants currently used for industrial purposes are 
modern cultivars derived from interspecific crosses, mainly 
between S. officinarum and S. spontaneum. As a conse-
quence of successive backcrosses, the majority of chromo-
somes in homology groups are from S. officinarum, with a 
lower frequency of S. spontaneum chromosomes, along with 
some recombinant chromosomes and frequent aneuploidy 
(Grivet and Arruda 2002; Piperidis et al. 2010).

Sugarcane is important for sugar and ethanol production 
and, moreover, new perspectives are being emerged because 
of its capacity for energy production and due to new uses for 
the industrial residues (Carpio and Simone de Souza 2017; 
Manochio et al. 2017; Moraes et al. 2015; Rodrigues Reis 
and Hu 2017). Despite its economic importance, sugarcane 
production is affected by insect and nematode attacks, weed 
competition and diseases, leading to losses in productiv-
ity (Cheavegatti-Gianotto et al. 2011). Among the diseases 
currently affecting sugarcane crops, three important bio-
trophic fungi that stand out are: (i) Puccinia melanoceph-
ala, responsible for brown rust; (ii) Puccinia kuehnii, causal 
agent of orange rust; and (iii) Sporisorium scitamineum, 
which causes smut. Both rusts affect leaf tissue, while smut 
affects meristem development. Particularly, more attention 
was given to orange rust following an outbreak in Australia 
roughly eighteen years ago (Magarey et al. 2001). Occur-
rences were then reported in America in the last 10 years 
(Comstock et al. 2008; Funes et al. 2016), but noticeably 
with smaller diversity of isolates than that observed in the 
Eastern hemisphere, suggesting a spread of particular strains 
from Asia and Australia (Glynn et al. 2010). The impacts 
of P. kuehnii on sugarcane yield have been associated with 
variation in photosynthesis, because there are considerable 
changes in leaf physiological measures in susceptible culti-
vars where symptoms are evident (Zhao et al. 2011; Chapola 
et al. 2016).

Biotrophic pathogens require living host tissues to cap-
ture nutrients for their development. The establishment 
of biotrophic fungi consists in spore adhesion, germina-
tion on plant surface and formation of appressoria, which 
are the penetration structures. Later, the spread of fungal 
cells occurs by different modes of colonization. Obligate 
biotrophs, like the species of the genus Puccinia, initially 
grow hyphae inside the host tissues, moving to intracellular 

colonization by haustoria, side branches from these hyphae 
(O’Connell and Panstruga 2006; Spanu and Panstruga 2017). 
Haustoria act as an interface to acquire nutrients from the 
host and to deliver effectors (O’Connell and Panstruga 2006; 
Voegele and Mendgen 2003). Effectors are essential mole-
cules secreted by pathogens to control the plant immune sys-
tem. They may be recognized by plant resistance proteins, 
which is generally followed by an oxidative burst and pro-
motion of the hypersensitive response. The relevance of the 
latter is that it induces cell death to restrict pathogen devel-
opment, ensuring the non-capture of nutrients and water. 
Resistance gene products also activate hormone-dependent 
signaling, by salicylic (SA) or jasmonic acid (JA), which 
regulates the expression of other defense response genes 
(Glazebrook 2005; Spanu and Panstruga 2017).

Plant infection is a dynamic process and, at the RNA 
level, the expressed genes of host and pathogen reflect the 
so-called interaction transcriptome (Birch and Kamoun 
2000). Through this concept, it is possible to capture the 
profiles of transcripts with relevant roles, such as the mem-
bers of the signaling pathways which prevent disease estab-
lishment. Techniques that measure changes in RNA levels 
such as RNA Sequencing (RNA-Seq) are used to detect 
differentially expressed genes. This methodology is based 
on the development of Next-Generation Sequencing (NGS) 
technologies, enabling the study of variations in RNA com-
position between samples from distinct experimental condi-
tions. RNA-Seq was used in sugarcane to provide molecular 
information about transcripts from a range of superior geno-
types (Cardoso-Silva et al. 2014), understanding changes in 
lignin content (Vicentini et al. 2015) and the development 
of organs (Mattiello et al. 2015). With regard to pathogenic 
interactions, RNA-Seq has the sensitivity to capture both 
pathogen and host transcripts, not only providing catalogs 
of transcripts, but also changes in gene expression levels due 
to the infection process (Westermann et al. 2012). In plants, 
transcriptome profiling studies are covering pathosystems 
in annual (Cho et al. 2015; Dobon et al. 2016; Loarce et al. 
2016; Tremblay et al. 2013; Xia et al. 2017) and perennial 
species (Gervasi et al. 2018; Kan et al. 2017; Páez et al. 
2015; Teixeira et al. 2014; Zhu et al. 2017). Recently, studies 
concerning the interaction of sugarcane with the fungus S. 
scitamineum (McNeil et al. 2018; Que et al. 2014; Schaker 
et al. 2016), with the bacteria Acidovorax avenae subsp. 
avenae  (Santa Brigida et al. 2016) and with the bacteria 
Leifsonia xyli subsp. xyli were published  (Cia et al. 2018).

Knowledge about the molecular mechanics of infection 
in sugarcane is important and there are efforts in identifying 
molecular markers for disease resistance  (Glynn et al. 2013; 
dos Santos et al. 2017; Yang et al. 2018). Efforts were taken 
for developing molecular markers associated with resist-
ance against both sugarcane rusts. For brown rust, markers 
associated with the Bru1 QTL have been used in sugarcane 
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research  (Glynn et al. 2013; Parco et al. 2017; Yang et al. 
2017), mainly for breeding purposes  (Glynn et al. 2013), 
as well as for investigations about its occurrence in geno-
type panels  (Parco et al. 2017). With regard to orange rust, 
cultivars have shown distinct responses when infected with 
P. kuehnii strains  (Moreira et al. 2018). Primarily, studies 
in orange rust focused on molecular detection of P. kuehnii 
using primers that amplify ITS regions  (Glynn et al. 2010), 
the characterization of pathogen developmental structures 
during infection  (Gomez 2013) or the assessment of infec-
tion degree in sugarcane cultivars  (Chapola et al. 2016; 
Zhao et al. 2011). Yang et al. (2018) detected three QTL 
associated with resistance against orange rust. They also 
identified putative resistance genes based on sugarcane tran-
scripts with orthologs in the sorghum genome. For doing 
so, they searched for homology with leucine-rich-repeat 
(LRR) and nucleotide binding (NB) sites using five com-
bined databases. The authors identified a marker associated 
with orange rust resistance as a possible candidate to be used 
for marker assisted selection. In addition, non-inoculated 
susceptible and resistant genotypes were grouped based on 
metabolite fingerprinting  (Leme et al. 2014). However, there 
are no previous studies gauging gene expression changes as 
a result of rust infections in sugarcane. To our knowledge, 
there is no information about high-throughput molecular 
analyses during orange rust establishment in sugarcane. 
Our work thus aims to study a time series of transcriptional 
changes in susceptible sugarcane infected by P. kuehnii.

Materials and methods

Plant material

Plants of the sugarcane cultivar SP89-1115, susceptible 
to orange rust  (Barbasso et al. 2010; Chapola et al. 2016; 
Moreira et al. 2018), were grown in 500 mL plastic cups 
containing sterilized substrate in a greenhouse during 
40 days and fertilized with an ammonium sulfate solution 
(30 g/L) ten days before inoculation. One day before inocu-
lation, spores of P. kuehnii were obtained using a vacuum 
pump (Prismatec 101) from the abaxial side of infected 
leaves from Centro de Tecnologia Canavieira (Piracicaba, 
São Paulo, Brazil) that contained open pustules. A solution 
was prepared by homogenizing the spores for 30 min in dis-
tilled water, with a final concentration of 103 spores/mL. 
Approximately 4 mL of this solution was sprayed over the 
plants, preferably reaching the abaxial side of leaves, and 
they were kept at 22 °C for 24 h in a dew chamber. After 
this period, they were moved to a growth chamber at 25 °C 
with a photoperiod of 12 h light/12 h dark. A more detailed 
description of these experimental procedures is available 
at Gomez (2013). For molecular analyses, five biological 

replicates of +1 leaves were taken at 12 h after inocula-
tion (hai), 24 hai, 48 hai, 5 days after inoculation (dai) and 
12 dai. Biological replicates of uninoculated control leaves 
were also collected, with an experimental design similar to 
other works (Dobon et al. 2016; Li et al. 2015; Lysøe et al. 
2011; Yadav et al. 2016; Zhang et al. 2014).

RNA extraction and sequencing

Total RNA from three biological replicates of each time 
point was extracted with the RNeasy Plant Mini Kit (Qia-
gen) in a final volume of 60 � L. We assessed the quality and 
quantity of the RNA via electrophoresis on 2% agarose gel, 
ND-1000 spectrophotometer (NanoDrop) and 2100 Bioana-
lyzer (Agilent Technologies). Next we used aliquots to pre-
pare mRNA-Seq indexed-libraries with the TruSeq Stranded 
kit (Illumina). A total of 18 libraries were sequenced in three 
lanes of an Illumina HiSeq 2500 to obtain 125 bp paired-
end reads. Some libraries were sequenced in multiple lanes, 
such that we could assess the occurrence of batch effects. 
The sequencing data has been deposited at DDBJ/EMBL/
GenBank under the BioProject ID PRJEB31605.

Data processing, de novo assembly and functional 
annotation

Following a strategy similar to Hoang and col-
leagues  (Hoang et al. 2017), adapter sequences and low 
quality bases were removed with Trimmomatic v.0.38 
(Bolger et al. 2014), using windows with a minimum aver-
age Phred quality score of 20. The first 12 bases of each 
read were removed and only reads with at least 75 bases 
were kept. We used sortMeRNA v.2.1 (Kopylova et al. 
2012) to filter contaminant rRNA, by aligning the reads to 
prokaryotic and eukaryotic rRNA databases, then selecting 
the remaining reads. The processed reads of the 18 librar-
ies were used for transcriptome assembly (Supplementary 
Table 1).

Transcriptome de novo assembly was performed using 
Trinity v.2.5.1  (Grabherr et al. 2011) using the default 
k-mer size of 25. We set the maximum number of reads 
to combine into a single path (max_reads_per_graph) to 
3,000,000. Minimum percent identity (min_per_id_same_
path) and maximum differences between two paths (max_
diffs_same_path) to merge into one were set to 90 and 10, 
respectively. Finally, minimum contig length (min_contig_
length) used for the assembly was set to 300. We established 
these values based on our previous analyses to minimize 
transcript fragmentation. We also evaluated the integrity of 
assembled transcripts by comparing with Sorghum bicolor 
coding sequences, the distribution of contig lengths and N50 
statistics. The final transcriptome comprised the longest iso-
form of each transcript.
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To remove potential transcripts from P. kuehnii, we 
compared the assembled transcripts with Viridiplantae and 
Fungi protein sequences in the Swiss-Prot database using 
BLASTX  (Altschul et al. 1990). Transcripts matching Fungi 
sequences but not plants were discarded. Next, the remain-
ing transcriptome was compared with the non-redundant 
(nr) protein database using BLASTX with an e-value cutoff 
of 10−6 , considering up to 20 homologous hits. The anno-
tation was complemented with domain and protein family 
assignments using InterProScan and all InterPro Consortium 
databases. We also used Blast2GO v.5.0.8 (Conesa et al. 
2005) to map and assign Gene Ontology (GO) terms to tran-
scripts. An additional functional annotation was performed 
with Trinotate v.3.1.1 (Bryant et al. 2017), comparing the 
assembled sequences with UniProt proteins and Pfam pro-
tein domains  (Finn et al. 2016).

Differential expression and enrichment analysis

We aligned the high quality reads of each sample to the de 
novo assembled transcriptome using HISAT2 v.2.1.0  (Kim 
et al. 2015), with the option no-spliced-alignment to disable 
spliced alignments. We quantified gene expression levels by 
assigning reads to transcripts and then counting fragments 
with featureCounts v.1.6.0 (Liao et al. 2014), independently 
for each sample. Next, differential expression analysis was 
conducted with the edgeR package v.3.20.9 (Robinson et al. 
2010). We began by selecting genes with count-per-million 
(CPM) greater than or equal to one in at least three sam-
ples, to filter out the lowly expressed genes. Using the full 
factorial model with block and time effects, we observed 
no significant effect of the sequencing runs. Therefore, we 
fitted a model considering only the time effect for all sub-
sequent analyses. Quasi-likelihood F tests were employed 
to detect differentially expressed genes (DEGs)  (Lun et al. 
2016). We conducted five different tests, each between a pair 
of adjacent time points. We also compared control plants 
with samples from 24 hai, checking whether the results were 
similar to those at 12 hai, to verify the possible influence of 
circadian rhythm. To minimize false positives, we used the 
Benjamini–Hochberg method at a specified False Discovery 
Rate (FDR) of 5% for each time point comparison.

We utilized the GOseq package v.1.30.0  (Young et al. 
2010) to identify enriched GO terms, using genes kept after 
filtering for low expression as the background set. We car-
ried out functional enrichment analyses separately for each 
test performed in the previous step. For all adjacent com-
parisons the criterion to consider a term as enriched was an 
FDR-adjusted p-value less than 0.05. This method enabled 
us to find GO terms enriched either as overrepresented or as 
underrepresented, i.e., terms for which the number of DEGs 
was greater or less than that expected by chance alone.

Graphical representation of temporal expression 
of annotated DEGs in groups of processes or specific 
pathways

Our functional annotation included information about the 
Enzyme Code (EC) for some transcripts. For each pairwise 
comparison, we built a file containing all up and downregu-
lated transcripts that had an associated EC number. Next, 
we used KEGG Mapper (https​://www.genom​e.jp/kegg/
mappe​r.html) to search for global metabolic maps contain-
ing DEGs.

To visualize processes and pathways as informative dia-
grams we used MapMan v.3.6.0 (Thimm et al. 2004). First, 
we obtained the appropriate BIN ontologies from Mercator 
v.3.6 (Lohse et al. 2014), which are based on information 
contained in specific plant annotation databases. For doing 
so, we used only the genes that were differentially expressed 
in at least one pairwise comparison. Only DEGs with an 
absolute log2 Fold Change (LFC) greater than two were 
considered to facilitate the visualization of functional BIN 
members, using the expression levels of these genes in the 
control samples as a baseline. Finally, we selected for visual-
izing the diagram of biotic stress, which contains processes 
likely involved with the response to infection by P. kuehnii.

We browsed the functional annotation description fields 
to look for transcripts with potential relevance for plant sign-
aling pathways or direct defense responses.

Expression analysis with qRT‑PCR

We used qRT-PCR to validate the results obtained with 
RNA-Seq. The primers were designed with Primer-
3Plus  (Untergasser et al. 2012) and Beacon Designer™Free 
Edition (http://www.premierbiosoft.com), with the following 
parameters: (i) fragment size between 90 and 200 bp; (ii) 
primer size ranging from 18 to 23 bp; (iii) melting tempera-
ture between 50 and 60 ◦ C; and (iv) GC content from 40 to 
60%. To verify that these primers did not spuriously amplify 
other transcripts, we mapped them to the transcriptome and 
checked that the alignments were unique.

RNA samples were treated with DNAse I 
(Sigma–Aldrich) and GoScript™Reverse Transcription Sys-
tem (Promega) was used for reverse transcription accord-
ing to manufacturer instructions. qRT-PCR reactions were 
performed in a 7500 Fast Real-Time PCR system (Applied 
Biosystems) with a GoTaq® qPCR master mix kit (Promega). 
We used two technical replicates for each biological repli-
cate. Reactions consisted in 6.25 � L of SuperMix ampli-
fication buffer, 50 nM internal standard (ROX), 0.3 � L of 
each primer at a 10 � M, 2 � L of cDNA and nuclease-free 
water to a final reaction volume of 12.5 � L. Amplification 
consisted in 95 ◦ C for five minutes, 40 cycles of 95 ◦ C for 
10  s and 58 ◦ C for 30 s. Product specificity was evaluated 

https://www.genome.jp/kegg/mapper.html
https://www.genome.jp/kegg/mapper.html
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by dissociation curves. As internal controls we used a known 
reference gene, glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH)  (Iskandar et al. 2004), and a Proteasome subu-
nit beta type that was discovered among the non-DEGs. 
Reaction efficiency and Ct values were determined with 
LinReg  (Ramakers et al. 2003). The relative changes in 
expression level were calculated with REST  (Pfaffl et al. 
2002) using the same comparisons used for RNA-Seq dif-
ferential expression analyses.

Results and discussion

Rapid changes in gene expression in the early hours 
following inoculation

We sequenced libraries from 18 leaf samples, totaling 
1.17 billion reads. After quality control and trimming, 845 
million high quality reads passed the filtering steps (Sup-
plementary Table 1). The de novo assembly with filtered 
reads produced 451,462 transcripts with an N50 of 1201 bp, 
and the final assembled transcriptome consisted of the 
259,804 longest isoforms, with an N50 of 672 bp. On aver-
age, 67.76% of our reads were mapped to this reference. 
Although we expected only a minor proportion of transcript 
fragments from Puccinia in comparison with sugarcane, it 
is possible that their frequency increased with time as in 
other pathosystems  (Dobon et al. 2016). Because our inter-
est was in the expression of sugarcane genes, we removed 
potential P. kuehnii transcripts. We applied homology search 
(BLASTX) against Swiss-Prot proteins of Viridiplantae and 
Fungi, identifying that 92.33% of the transcripts were prob-
able plant transcripts. They presented an N50 of 682 bp and 
ranged in length from 301 bp to 14.5 kbp.

For differential expression analysis, to remove lowly 
expressed genes, we only used those with a CPM greater 
than or equal to one in at least three samples. The analy-
sis resulted in a total of 51,439 expressed genes. Next, to 
evaluate the presence of DEGs over time, we tested contrasts 
between adjacent time points. Those with the largest number 
of DEGs were: (i) 12 hai compared with control: 24,359 
DEGs; (ii) 48 hai against 24 hai: 18,227; and (iii) 12 dai 
compared with 5 dai: 13,660 (Supplementary Fig. 1). These 
particular time points are of biological relevance, because 
spore germination occurs at 12 hai, and microscopic obser-
vations confirmed fungal penetration at 24 hai  (Gomez 
2013). The time frame in the first 48 hours after inoculation 
includes the events of spore germination, establishment of 
the infection and hyphae development, which were crucial 
to understand the initial plant defense responses. The later 
time points examined (days after inoculation) contributed 
to the understanding of further metabolic responses related 
to the fungal colonization to allow fungal sporogenesis. 

Indeed, the last time point sampled (12 dai) was marked by 
the confirmation of sporulation through scanning electron 
microscopy  (Gomez 2013).

Our first strategy to compare DEGs in adjacent time 
points was to use the Blast2GO enrichment annotation 
tool to identify relevant molecular events associated with 
different biological moments of disease progression. We 
thus found over and underrepresented GO terms in enrich-
ment tests for each comparison (Supplementary File 1). 
Additional enrichment tests performed with the Trinotate 
annotation yielded similar results (Supplementary File 2), 
such that we will discuss them jointly, pointing occasional 
differences when necessary.

Modulation of pathways related to biotic stress 
responses promoted by the Puccinia kuehnii 
infection

P. kuehnii infection caused significant changes in the expres-
sion of sugarcane genes involved in the known molecular 
processes in response to biotic stresses. However, our data 
suggest that the immune system was activated lately, two 
days after the inoculation (Supplementary File 3-A). Sup-
posedly, P. kuehnii was not immediately perceived by this 
particular susceptible sugarcane genotype as a threat.

Sets of repressed DEGs were found in almost all of these 
processes at 12 hai (Fig. 1). At this time point transcripts 
associated with basal defenses, such as those encoding �
-1,3-glucanases, were repressed. �-1,3-glucanases in com-
bination with other antifungal proteins are involved in 
degradation of fungal cell walls (Supplementary File 3-H 
and Fig. 1). As the infection progressed more transcripts 
of this enzyme were detected above the basal level. The 
same profile was observed for transcripts involved in host 
cell wall reinforcements. Several genes encoding enzymes 
of the the phenylpropanoid biosynthesis pathway leading 
to lignin formation were identified as downregulated until 
24 hai. Only later they were detected as upregulated (Sup-
plementary File 3 H-K). For the GO term response to stress 
(GO:0006950) the transcripts with higher absolute LFC at 
12 hai were downregulated (Supplementary File 3-C). The 
innate immune system was positively regulated two days 
after the inoculation (Supplementary File 3-A). GO term 
defense response to bacterium (GO:0042742) was among 
the overrepresented GO terms at 48 hai (Supplementary 
File 1) and response to stress was overrepresented at 5 dai. 
The latter included transcripts encoding proteins involved 
in the biosynthesis of thiamine upregulated at 12 dai (Sup-
plementary File 3-C). Thiamine is a known activator of 
plant disease resistance by inducing transient expression of 
pathogenesis-related (PR) genes  (Ahn et al. 2005).

Assessment of plant signaling indicated that genes 
related to hormones commonly involved with resistance 
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against biotrophs, abscisic acid (ABA) and SA, were 
repressed at 12 hai (Fig. 1). The biosynthesis of JA and 
ethylene were also modulated, however, some genes 
were up and others downregulated. Waves of expression, 
marked by downregulation followed by upregulation (or 
vice-versa) of these genes commonly associated to biotic 
stress response were evident during disease progression. 
Many coding transcripts relevant to the redox state (Figs. 1 
and   2d) and most of the photosynthesis/chloroplast-
related (Fig. 2c) showed changes in opposite directions 
in the samples collected at 12 and 48 hai. Sets of genes 
encoding ROS scavenging enzymes and others in response 
to oxidative stress were mostly variable in expression, with 
subgroups of similar expression (Supplementary File 3 
K-N). It has been demonstrated that smut-susceptible 
sugarcane plants have a delay in initiating the oxidative 
burst after fungal infection when compared to resistant 
plants  (Peters et al. 2017).

Possible late pathogen recognition by sugarcane 
cultivar SP89‑1115

The molecular basis of plant defense mechanisms against 
pathogens is often explained by a two-branched immune 
system. The first one is based on transmembrane recep-
tors that recognize pathogen-associated molecular patterns 
(PAMPs), called PAMP-triggered immunity (PTI), and 
the second is based on the recognition of pathogen effec-
tors, also called effector-triggered immunity (ETI)  (Fesel 
and Zuccaro 2016; Jones and Dangl 2006; Hammond-
Kosack and Jones 1997). Pathogen perception by the host 
involves the expression of resistance genes which encode 
proteins that typically have an NB domain and an LRR 
motif  (McDowell and Woffenden 2003; Jones and Dangl 
2006), followed by the induction of the hypersensitive 
response, production of reactive oxygen species, cell wall 

Fig. 1   Expression profiles of genes mapped to processes of the Map-
Man biotic stress pathway. For each functional class (indicated in 
bold in each ellipsis), results for 12, 24 and 48 hai are presented by 
adjacent heatmaps separated by dashed lines. Each square in each 
of the heatmaps represents a different gene mapped to the same pro-
cess. The color scale indicates the log2 Fold Change of each gene in 
comparison to the baseline expression level in the control samples. 

Blue, white and red represent the downregulated, non-differentially 
expressed and upregulated genes, respectively. This figure was 
adapted from the MapMan representation of the biotic stress (Thimm 
et al. 2004). Genes within the grey area are those with experimental 
indication of involvement in biotic stress, while those outside the grey 
area are putatively involved in biotic stress pathway
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reinforcement and hormone signaling  (Jones and Dangl 
2006; Hammond-Kosack and Jones 1996, 1997).

An early fungal perception by the sugarcane plants was 
likely hampered. None of the GO terms usually associ-
ated with hypersensitive response (GO:0009626), defense 
response (GO:0006952) or response to stress (GO:0006950) 
were enriched until 24 hai (Supplementary File 1). In fact, 
enrichment analysis with the Trinotate annotation showed 
that plant-type hypersensitive response underrepresentation 
started at 12 hai and persisted until 48 hai (Supplementary 
File 2), and defense response was significantly underrep-
resented with DEGs at 48 hai (Supplementary File 2). It is 
possible that sugarcane cultivar SP89-1115 either was late 
to recognize the molecular patterns of P. kuehnii to activate 
defense responses, or fungal effectors may have suppressed 

this form of defense. Later as disease progressed, defense 
response to bacterium (GO:0042742) transcripts were over-
represented at 48 hai (Supplementary File 1). Although 
transcripts related to the immune response regulation 
(GO:0050776) were upregulated at 48 h, the term was not 
significantly enriched (Supplementary File 2 and Supple-
mentary File 3-A). Curiously, comparing 12 dai with 5 dai, 
the positive regulation of defense response was underrep-
resented, with no DEG annotated with this GO term (Sup-
plementary File 2).

Manual inspection of the 36 DEGs annotated with the 
term defense response to bacterium showed that in fact they 
represent general defense mechanisms that may act against 
fungi as well. They were related to protein-like kinases, 
heat-shock, ubiquitin and others (Supplementary File 3-B). 
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Fig. 2   Time series profiles of differentially expressed genes (DEGs) 
in different Gene Ontology categories. The y-axis represents expres-
sion levels in normalized counts-per-million, and each solid black 
line corresponds to one DEG. The x-axis breaks indicate each sam-
pled time point—T0: Control; T12: 12 hai; T24: 24 hai; T48: 48 

hai; T5D: 5 dai; and T12D: 12 dai. Gene ontology categories are: 
(a) plant-type hypersensitive response (GO:0009626), (b) pepti-
dyl-prolyl cis-trans isomerase activity (GO:0003755) (c) photo-
synthesis (GO:0015979), (d) cellular response to oxidative stress 
(GO:0034599)
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Expression profiles of these genes did not show any clear 
pattern, except for a restoration to basal level at 48 hai. A 
small set of upregulated genes encoded two peptidyl-prolyl 
isomerase activity (PPIase) enzymes and a peroxiredoxin at 
this time point. Moreover, 62.82% of the transcripts anno-
tated with the PPIase term (GO:0003755) were differentially 
expressed, resulting in a significant overrepresentation (Sup-
plementary File 1). Examining the profile of these DEGs, 
it is clear that they were stimulated at 48 hai (Fig. 2b). PPI-
ases were initially associated with protein folding, but some 
groups are immunophilins which are involved in diverse 
processes  (Galat 2003; Vasudevan et al. 2015). One cyclo-
philin, a protein with enzymatic PPIase activity, was accu-
mulated in potato from 14 to 72 h after a combination of 
wounding and Fusarium solani inoculation. In that study, 
the expression of this gene was influenced by the presence of 
ABA and JA and by abiotic stresses, in a plant tissue depend-
ent manner  (Godoy et al. 2000), which agrees with the wide 
range of functions of the PPIases  (Vasudevan et al. 2015). 
Peroxiredoxin, in turn, is a thiol peroxidase that controls 
redox homeostasis, photosynthesis and the transmission of 
redox signal  (Liebthal et al. 2018).

The heatmap of the defense response to bacterium tran-
scripts encoding a Barwin homolog revealed upregulation 
from 12 to 48 hai. The Barwin domain in plant pathogenesis-
related (PR) proteins is known to be involved in a response 
to stimulus against phytopathogenic fungi  (Li et al. 2010; 
Marra et al. 2006; Svensson et al. 1992). Another transcript, 
the 70 kDa heat shock protein (Hsp), showed significant 
downregulation at all time points. Members of this family 
are stimulated when plants are submitted to mechanical, 
heat or biotic stress  (Piterková et al. 2013). The chaperones 
Hsp70 and Hsp90 trigger the expression of PR genes and 
defense-related transcription factors  (Kanzaki et al. 2003).

Regarding response to stress, most differentially 
expressed calmodulin-binding encoding transcripts (CaM-
binding) were repressed at 12 hai, with an increasing expres-
sion over time (Supplementary File 3-C). Calmodulins act 
in transduction of Ca+ signaling, playing a role in basal 
defense  (Reddy et al. 2003; Takabatake et al. 2007). Loss 
of a CaM-binding domain in an MLO (Mildew resistance 
locus) protein increased susceptibility of barley to powdery 
mildew fungus  (Kim et al. 2002). An upregulated CaM-
binding gene was a member of the enriched immune system 
biological process in the transgenic papaya resistant to rings-
pot virus  (Fang et al. 2016).

Five transcripts annotated with terms thiamine and thia-
zole were repressed in most of the time points compared 
(GO:0006950 in Supplementary File 3-C). However, sam-
ples collected at 24 and 48 hai showed slightly higher expres-
sion, followed by an intense repression 5 dai, which resulted 
in the significant enrichment of thiazole biosynthetic terms 
(Supplementary File 1). Thiamine has an important role in 

systemic acquired resistance, which is shown to reduce dis-
ease severity over time  (Ahn et al. 2005; Kamarudin et al. 
2017). In fact, both overexpression and silencing of a rice 
resistance gene induced a gene involved in thiamine syn-
thesis and increased the content of this compound (Wang 
et al. 2016). This work revealed that resistance genes can 
also balance the pathways that drive thiamine biosynthesis in 
chloroplasts. Our results suggest that the late expression of 
thiamine biosynthesis genes can indicate a failure of timely 
resistance signaling.

We also investigated the DEGs that composed the hyper-
sensitive and defense response terms (GO:0009626 and 
GO:0006952), where transcripts homologous to resistance 
genes were present. They were annotated as RGA (Resist-
ance Genes Analogs), RPP (resistance to Hyaloperonospora 
parasitica) and RPM1 (Resistance to Pseudomonas syringae 
pv. maculicola 1). The proteins encoded by these genes have 
domains in common with those found in the NB-LRR pro-
tein family  (McDowell and Woffenden 2003). Activation 
of resistance genes such as NB-LRR can trigger immunity 
by increasing PR proteins  (Wang et al. 2016). Of the 614 
transcripts annotated with defense response, 104 were differ-
entially expressed at 12 hai. At later time points the number 
of DEGs for this term did not exceed 70 (Supplementary 
File 3-D). Additionally, half of the DEGs involved in plant-
type hypersensitive response were upregulated at 12 hai, 
although with a low LFC (Fig. 2f and Supplementary File 
3-F). Only a small portion of transcripts from these groups 
showed expression changes with high LFC, and the presence 
of many non-DEGs explained the significant underrepresen-
tation. Given these results, we suggest that defense systems 
may not have been adequate to initiate a coordinated plant 
response against P. kuehnii.

WRKY transcription factors, cell wall reinforcement 
and stress‑regulated transcripts altered in the first 
two days following inoculation

Several transcripts encoding transcription factors, physi-
cal barrier precursors or proteins that operate directly on 
pathogen structure can be involved in avoiding pathogen 
establishment. We investigated a group of transcription fac-
tors belonging to the WRKY family (Supplementary File 
3-I). They are key regulators in many processes in plants 
and are also involved in responses to abiotic and biotic 
stresses  (Rushton et al. 2010). They are regulators of the 
defense response via the mitogen-activated protein kinase 
(MAPK) cascade, SA and JA pathways   (Eulgem and 
Somssich 2007; Pandey and Somssich 2009; Rushton et al. 
2010). Genes encoding the transcription factors WRKY-
75, WRKY-90, WRKY-48 and WRKY-33 were among the 
most upregulated in resistant plants of a papaya pathosys-
tem  (Fang et al. 2016). In our study, the contact with the 
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fungus repressed one of the genes encoding a WRKY-33 at 
12 hai and the other two showed increased expression over 
time. We observed a different behavior for the genes encod-
ing WRKY-24, WRKY-45, WRKY-51 and an uncharacter-
ized WRKY transcription factor. The upregulation occurred 
since the first contact and expression levels were increased 
as the disease progressed (24 and 48 hai) (Supplementary 
File 3-I). An allele of WRKY-45 was reported as a negative 
regulator of bacterial infection in rice, while the other allele 
conferred resistance  (Tao et al. 2009). Interestingly, both 
alleles positively regulated the resistance against the fungus 
Magnaporthe grisea  (Tao et al. 2009).

Disease resistance can also be initially triggered by genes 
that act over pathogen structure after PAMP recognition, 
such as �-1,3-glucanase and chitinase  (Balasubramanian 
et al. 2012; Fesel and Zuccaro 2016). We found two groups 
of �-1,3-glucanases with different expression patterns, par-
ticularly during the first 48 hai. The first group contained 
downregulated genes, with some members reaching a mini-
mum LFC of − 2.0 at 12 hai and 24 hai. The second group 
showed LFC values up to 5.0 at 24 hai, indicating a strong 
stimulus to expression (Supplementary File 3-H). These 
enzymes are hydrolases and are classified as PR because 
they act by directly degrading �-1,3-glucans, the most abun-
dant polysaccharides present in fungal cell walls, and that 
serve as PAMPs  (Balasubramanian et al. 2012; Fesel and 
Zuccaro 2016). A �-1,3-glucanase 5 was highly upregulated 
at 3 hai in a peach cultivar resistant to Xanthomonas arbo-
ricola pv. pruni  (Gervasi et al. 2018). During smut infec-
tion in sugarcane, RNA-Seq analysis revealed an induced �
-1,3-glucanase gene at 48 hai (McNeil et al. 2018). Addi-
tionally, their qRT-PCR analyses revealed �-1,3-glucanase 
repression in a susceptible sugarcane cultivar, while a culti-
var with external resistance exhibited upregulation.

A widely studied fungal PAMP is chitin, which is a 
structural polymer that composes part of the cell wall and is 
degraded by another kind of hydrolase, the chitinase  (Fesel 
and Zuccaro 2016). Supplementary File 3-J shows that eight 
chitinase-annotated transcripts presented a pattern similar to 
that of the second group of �-1,3-glucanases, with expres-
sion levels always above the basal level. Only three genes 
showed expression levels below that observed in the control 
samples. Others presented varying expression profiles across 
time points. Chitinase genes were reported as differentially 
expressed even in sugarcane cultivars susceptible to smut 
(Que et al. 2014; Su et al. 2015). A similar mixed expression 
pattern was also described in these cultivars, while in the 
case of resistance they were upregulated in a tissue-depend-
ent manner at 24 or 48 hai  (Su et al. 2015). Other studies 
reported chitinases as primary temporal responses in apple 
and peach plants infected with Alternaria alternata and 
Xanthomonas arboricola pv. pruni, respectively (Socquet-
Juglard et al. 2013; Zhu et al. 2017), differentially expressed 

in coconut infected with phytoplasma  (Nejat et al. 2015) and 
in the cacao-Moniliophthora perniciosa pathosystem  (Teix-
eira et al. 2014). Genes involved in the synthesis of this 
enzyme were first induced 1 dai and most prominently 11 
dai in wheat susceptible to yellow rust  (Dobon et al. 2016).

Among the physical barriers against infection, lignin dep-
osition in the cell wall is considered a localized response that 
can be hampered in susceptible plants as a result of pathogen 
modulation  (Nicholson and Hammerschmidt 1992). Tran-
scripts annotated with the lignin biosynthetic process term 
(GO:0009809) showed a substantial decrease in expression 
in the first time point after inoculation, with some reestab-
lishment at 48 hai (Fig. 3a). Lignin deposition in the epider-
mis is an important event to prevent sugarcane infection by 
S. scitamineum at 24 hai  (Marques et al. 2018). We observed 
that almost all genes of cinnamyl-alcohol dehydrogenase 
(CAD), a precursor of lignin biosynthesis, returned to their 
basal expression level after marked downregulation at 12 
hai. In contrast, it is noticeable that three genes were highly 
upregulated from 12 hai to 12 dai (Fig. 3b). To achieve an 
overview of the phenylpropanoid biosynthesis, we selected 
DEGs annotated as enzymes of this pathway to visualize 
their expression profiles. Among them there were a CAD 
(EC:1.1.1.195) and a caffeic acid 3-O-methyltransferase 
(EC:2.1.1.68) upregulated in the transition from 12 to 24 hai 
(Fig. 3d). Also, Puccinia induced all phenylalanine/tyrosine 
ammonia-lyase (PTAL, EC:4.3.1.25), four 4-coumarate-
CoA ligase (EC:6.2.1.12) and all cinnamoyl-CoA reductase 
(EC:1.2.1.44) 48 hai. Curiously, upregulation of the bifunc-
tional PTAL instead of the phenylalanine ammonia-lyase 
(PAL, EC:4.3.1.24) and tyrosine accumulation after whip 
emission in the smutted cane is a hallmark of whip emis-
sion, probably associated with tissue lignification  (Schaker 
et al. 2017). Various studies describe the enrichment of dif-
ferentially expressed genes involved in the pathway of phe-
nylpropanoids with diverse outcomes  (McNeil et al. 2018; 
Santa Brigida et al. 2016; Xia et al. 2017; Zhu et al. 2017). 
For instance, poplar infected by a necrotroph shows a tem-
porary activation of 4-coumarate-CoA ligase and cinnamoyl-
CoA reductase at 36 hai  (Zhang et al. 2018). Other authors 
observed that upregulation of these genes could be associ-
ated with resistance  (Fang et al. 2016; Que et al. 2014). Oth-
erwise, the compatible interaction of an apple cultivar and A. 
alternata resulted in phenylpropanoid biosynthesis activa-
tion at 12 hai  (Zhu et al. 2017). Our results indicated that the 
last component of the pathway, peroxidase (EC:1.11.1.7), 
was represented by groups of genes with variable expression, 
as well as some with a more constant expression pattern 
along the investigated time interval (Fig. 3d and Supplemen-
tary File 3-K). This pattern of expression can be partly due 
to the many functions attributed to the enzyme  (Passardi 
et al. 2005).
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Fig. 3   Genes in the phenylpropanoid biosynthesis pathway. (a) 
Expression profile of genes annotated with term lignin biosynthetic 
process (GO:0009809); (b) Heatmap of genes annotated as cinnamyl-
alcohol dehydrogenase (CAD); (c) Heatmap of genes annotated as 
phenylalanine ammonia-lyase (PAL); (d) Simplified representation of 
the KEGG phenylpropanoid biosynthesis pathway with differentially 
expressed Enzyme Codes (ECs). Only ECs containing differentially 
expressed genes are shown in the pathway. The expression profiles 
of the genes annotated with these ECs are shown in the heatmaps on 
the sides, with colors matching the annotation in the pathway. Heat-
map cells in (b), (c) and (d) present the log2 Fold Change for each 

time point—indicated in the columns—compared to control sam-
ples. In (d), the ECs correspond to: EC:4.3.1.24— phenylalanine 
ammonia-lyase; EC:4.3.1.25— phenylalanine/tyrosine ammonia-
lyase; EC:6.2.1.12— 4-coumarate-CoA ligase; EC:1.2.1.44—cin-
namoyl-CoA reductase; EC:1.1.1.195—cinnamyl-alcohol dehydro-
genase; EC:3.2.1.21—beta-glucosidase; EC:1.11.1.7— peroxidase; 
EC:2.1.1.68—caffeic acid 3-O-methyltransferase; EC:2.3.1.133—
shikimate O-hydroxycinnamoyltransferase; EC:1.14.14.91— trans-
cinnamate 4-monooxygenase; EC:2.3.1.99—quinate O-hydroxycin-
namoyltransferase 
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The phenylpropanoid pathway is commonly associated 
with plant defense, not only by providing molecules for lig-
nification but also antimicrobial compounds such as cou-
marins and flavonoids  (Naoumkina et al. 2010). One well-
studied enzyme that is at the onset of the biosynthesis of 
these components is PAL. High expression of PAL-encoding 
genes is a common attribute of resistant cultivars  (Loarce 
et al. 2016; Gervasi et al. 2018), including those of sugar-
cane  (McNeil et al. 2018; Que et al. 2014; Santa Brigida 
et al. 2016). In our results, we identified that P. kuehnii 
repressed initially (12 hai) PAL DEGs in sugarcane; three 
of them were induced in the following hours, returning to 
the basal level at 5 dai (Fig. 3c, d). We suggest the involve-
ment of both PAL and PTAL in infected sugarcane plants, 
which although activated, was not timely enough to control 
the Puccinia colonization.

Examination of other enriched terms revealed additional 
information relevant to stress responses. We identified at 
48 hai terms related to transposable elements (TE) and the 
regulation of immune response as highly induced when com-
pared to any other time point. The transposition related term 
with the lowest p-value was GO:0032199 (reverse transcrip-
tion involved in RNA-mediated transposition), detected in 
homologs of LINE-1 retrotransposons, endonucleases, exo-
nucleases and reverse transcriptases. Trinotate also detected 
TE as relevant at this same time after inoculation (48 hai) 
revealing terms such as RNA-mediated (GO:0032197) and 
viral processes (GO:0044826 and GO:0075713) (Supple-
mentary File 2). TEs compose approximately 50% of the 
sugarcane genome (de Setta et al. 2014), are tightly regu-
lated (De Araujo et al. 2005) and were previously shown as 
differentially expressed in sugarcane interacting with sym-
bionts, pathogenic virus and other fungi (Belarmino et al. 
2013; Medeiros et al. 2014; Thokoane and Rutherford 2001). 
Plants commonly activated TE gene expression in stress con-
ditions, including when infected with fungus (Melayah et al. 
2001). In rice, for instance, more than 10% of the transpos-
able elements showed changes in expression in seedlings 
infected by the stripe virus (Cho et al. 2015). The infec-
tion by and development of P. kuehnii in sugarcane cultivar 
SP89-1115 did not seem to lead to a coordinated expression 
of these genes until 24 hai, which was remarkably changed 
48 hai (Supplementary File 3-G).

Expression waves of genes involved 
in photosynthesis and oxidative processes

Puccinia infection also modulated sugarcane genes associ-
ated with photosynthesis and metabolism of reactive oxygen 
species (ROS) (Supplementary File 1). Changes in the pri-
mary plant metabolism of plants, including those related to 
carbohydrate partition, are a consequence of biotic stresses 
and necessary to meet the nutritional requirements of the 

pathogen  (Berger et al. 2007). All the genes associated with 
the term carbon utilization (GO:0015976) expressed differ-
entially at 12 hai, simultaneously with transcripts encoding 
proteins of the photosynthetic apparatus. Out of 76 DEGs 
annotated with photosynthesis terms (GO:0015979 and 
GO:0009765), sugarcane repressed 77.63% at 12 hai. Later 
(24 hai), 30 of these genes were upregulated. Addition-
ally, 48 hai showed an increased expression of 64 genes. 
Downregulation of genes associated with photosynthesis is 
a general phenomenon observed in defense response shortly 
after infection  (Berger et al. 2007; Bilgin et al. 2010; Ger-
vasi et al. 2018; Nejat et al. 2015; Teixeira et al. 2014). We 
identified the same response in our data, where repression 
occurred for the majority of genes 12 hai, then later (48 hai) 
restored the basal expression levels (Fig. 2c).

Because circadian rhythm could potentially influence the 
observed repression, we investigated the contrast between 
24 hai and the basal expression level in the control. This 
comparison revealed 9978 downregulated genes, of which 
88.34% were also downregulated at 12 hai. Only 30 DEGs 
were upregulated at 12 hai and downregulated at 24 hai 
against control. We identified 84 DEGs annotated with the 
photosynthesis terms at 24 hai against control, 89.29% of 
which with the same profile as at 12 hai.

Terms associated with chlorophyll, chloroplast and pho-
tosystems were highly represented in our observations from 
12, 24 and 48 hai (Supplementary File 1). Various studies 
demonstrated the negative impact of pathogen infection in 
the expression of photosynthesis-related genes (Bilgin et al. 
2010). The physiological impact of orange rust measured by 
chlorophyll content and net photosynthetic rate of sugarcane 
leaves revealed a reduction according to susceptibility to 
P. kuehnii (Zhao et al. 2011). Other studies, such as gene 
expression analysis using microarray in Arabidopsis infected 
by P. syringae, revealed the repression of nuclear genes with 
chloroplast functions in the early stages of infection (de Tor-
res Zabala et al. 2015). From 6 to 8 hai there was a decrease 
in photosynthetic CO

2
 accumulation, reducing net photosyn-

thesis in comparison to mock and the infection with a non-
virulent P. syringae strain (de Torres Zabala et al. 2015). 
Similar responses identified in susceptible cucumber and 
rice plants have also shown repression of genes associated 
with chlorophyll, chloroplast and photosynthesis functions 
(Ahmed et al. 2017; Xia et al. 2017).

One of the most consistent defense responses activated 
in plants resistant to pathogens is the oxidative burst. ROS 
can either directly suppress pathogen growth or act as sig-
nal molecules to induce defense mechanisms such as the 
expression of plant pathogenesis-related proteins, activate 
localized cell death and cell wall reinforcement (Demidchik 
2015; Inzé and Montagu 1995; Lehmann et al. 2015; Mit-
tler et al. 2011; Santa Brigida et al. 2016). In all the time 
points evaluated in our experiment, P. kuehnii altered the 



884	 Plant Cell Reports (2020) 39:873–889

1 3

overall balance of redox reactions in sugarcane. We identi-
fied enrichment of the terms GO:0055114; GO:0016491; 
GO:0016705; GO:0045454 in genes up and downregulated 
in inoculated plants (Supplementary File 1). Oxidoreduc-
tase activity (GO:0016491 and GO:0016705) included 743 
downregulated genes at 12 hai, 588 of them upregulated at 
48 hai. Redox homeostasis (GO:0045454) represented by 
redoxins were downregulated at 12 and upregulated at 24 
hai.

We identified other possible connections between the 
oxidative pathways and the results discussed previously. 
Examples of these are the involvement of ROS with Hsp70 
accumulation  (Piterková et al. 2013) and for the activity 
of calmodulins, amine oxidases and other types of peroxi-
dases  (Demidchik 2015; Liebthal et al. 2018; Gervasi et al. 
2018; He et al. 2018). Amine oxidases were detected as 
repressed 12 hai in our analysis showed an LFC less than 
− 2.0 until 24 hai (Supplementary File 3-O). The expres-
sion profiles of genes associated with cellular response to 
the oxidative burst followed a pattern similar to that for 
genes involved in photosynthesis described before (Fig. 2d). 
Approximately 70% of all the genes in this category dif-
fered in expression 48 hai (Supplementary File 1). The term 
response to oxidative stress (GO:0006979) composed mainly 
by peroxidases was assigned to genes up and downregulated 
in about equal amounts (Supplementary File 3-E). To pro-
tect their cells, in response to ROS, plants induce enzymes 
such as catalases (CAT), superoxide dismutases (SOD), and 
glutathione transferases (GST) (Demidchik 2015). We did 
not detect a common expression pattern of genes encoding 
these enzymes in our study (Supplementary File 3 L-N). Our 
data suggests that ROS may be involved in signaling rather 
than directly affecting the pathogen, and that this response 
was late probably because of the susceptibility of the sugar-
cane genotype. Similar results were described for sugarcane 
infected with smut (Peters et al. 2017).

qRT‑PCR validation of differentially expressed genes

We selected 11 transcripts for validation based on their dif-
ferential expression analysis and their biological relevance 
to the infection process. They were selected among the 
genes related to lignin biosynthesis, hormones, transcrip-
tion factors, response to stress, response to oxidative stress 
and photosynthesis. The first group of genes showed sig-
nificant differential expression at all time points and were 
functionally assigned as orthologs of probable cinnamyl 
alcohol dehydrogenase 8D, calmodulin binding protein2, 
putative ethylene response sensor 2 and glutathione trans-
ferase. The second group presented differential expression 
in at least two time points and were functionally assigned 
as orthologs of catalase, probable WRKY transcription 
factor 70, Superoxide dismutase, small heat shock protein, 

Glucan endo-1,3-beta-glucosidase, bZIP transcription fac-
tor and chloroplast ribulose-1,5-bisphosphate carboxylase/
oxygenase small subunit. The only non-DEG selected was a 
Proteasome subunit beta type, used as internal control along 
with GAPDH. Each primer pair was designed to ensure 
effective amplification of a unique transcript (Supplemen-
tary Table 2). Overall, we performed 55 experiments. Of 
these, only seven did not confirm the RNA-Seq differential 
expression results. The correlation of both evaluation strat-
egies was high ( r = 0.85 ), showing good correspondence 
between RNA-Seq and qRT-PCR results (Supplementary 
Figs. 2 and 3).

We only detected two situations in disagreement between 
both techniques. The first one was the detection of signifi-
cance in only one technique, and second, we detected signifi-
cant changes in opposite directions for each technique. For 
the first situation, RNA-Seq results detected significant small 
fold changes for BZIP 12 hai, and SOD and GST 24 hai, not 
detectable in our qPCR analysis. Otherwise, qPCR detected 
a significant variation of GLU 48 hai. We believe the latter 
case was due to the variation of CPMs among biological 
replicates, which resulted in higher residual variance. The 
second situation was seen for HEAT at 48 hai, which showed 
repression using RNA-Seq data and upregulation using RT-
qPCR. Both the forward and reverse primers aligned to four 
isoforms of this gene, but only the forward primer aligned 
against the longest isoform. There is a possibility that these 
primers amplified other heat shock transcripts.

Successful infection of susceptible sugarcane 
genotype

Biotrophic fungi typically germinate on the leaf surface, 
form appressoria to invade the host, feed from the host 
cells using haustoria and propagate producing numerous 
uredospores  (Lo Presti et al. 2015). Oppositely, plants 
avoid tissue colonization using the first line of defense 
mechanism (PTI) responsible for the recognition of patho-
gen molecular patterns (PAMPs), resulting in the activa-
tion of defense responses. A second and more specific 
defense mechanism, ETI, occurs when resistance proteins 
recognize pathogen effectors resulting in unsuccessful tis-
sue colonization (Jones and Dangl 2006). One of the most 
used strategies to capture the dynamics of these molecular 
events is to detect changes in gene expression following 
the progress of plant infection (Loarce et al. 2016). In 
the sugarcane-P. kuehnii pathosystem, appressoria and 
pustules were observed (Gomez 2013) at 24 hai and 12 
dai, respectively, and symptoms detected 9 dai, following 
sporulation two days later. Our analyses revealed specific 
genes induced at the beginning of the infection process. 
Among these, we identified genes involved in cell wall 
reinforcement (lignification), and encoding chitinases and 
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other PR proteins. These results suggested that sugarcane 
can recognize the presence of the microorganism. How-
ever, we also identified repressed genes indicating an inef-
ficient and/or late plant counteraction. Some of these are 
genes encoding proteins related to the hypersensitive and 
defense responses, CaM-binding, photosynthesis-related, 
PPIases, �-1,3-glucanase, thiamine-thiazole biosynthesis, 
PALs and CADs.

The description of waves of expression in the various 
molecular events following the interaction was a hallmark 
in our work. The overall impact of P. kuehnii on the cul-
tivar SP89-1115 involved recognition of the pathogen 
shortly after inoculation (12 hai), repressing the expres-
sion of genes involved in this biotic stress and a gradual 
return to basal levels (24 hai) (Fig. 1). Next, 24 hai we 
identified repression of SA potentially favoring pathogen 
growth, and again a return to normal levels 48 hai. Bio-
trophic pathogens, in turn, change the signals to avoid host 
cell death (Kazan and Lyons 2014). For instance, the bio-
trophic fungus Ustilago maydis secretes the chorismate 
mutase into the plant cell, modulating the SA pathway 
during the infection in maize  (Djamei et al. 2011; Pat-
kar and Naqvi 2017). Genes related to ABA metabolism 
were downregulated in our analysis at 12 hai and remained 
repressed at 24 hai (Fig. 1, Supplementary File 2). ABA 
induces resistance favoring signal transduction associ-
ated with defense response (Fang et al. 2016; Loarce et al. 
2016). These modulations of plant hormones are usually 
known as crucial to establishing defense signaling against 
many biotrophs (Glazebrook 2005; O’Connell and Pan-
struga 2006).

Early responses are essential to initiate a success-
ful defense strategy in sugarcane resulting in resistance 
(McNeil et al. 2018; Peters et al. 2017; Que et al. 2014). 
Our study unveiled two possible causes associated with 
SP89-1115 susceptibility, the inefficiency of the defense 
response, and the effectivity of P. kuehnii to disable the 
existing defense mechanisms after initial contact.
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