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1 Introduction

A space X is called star P if for any open cover U of X , there exists a set Y ⊂ X such that
St(Y,U) = X and the set Y (called the kernel of U) has P; here P is a topological property.
The concept of star P space was introduced by Ikenaga in his paper [12] where he studied
the cases of star countable, star Lindelöf and star σ -compact spaces. Star P properties were
studied systematically in the survey of Matveev [16]. The paper [1] contains some results on
star P spaces for compactness-like properties P .

It is a well-known fact that every space is star discrete (and hence star metrizable) because
for any coverU of a space X , there exists a closed discrete set D ⊂ X such that St(D,U) = X .
For some concrete classesP , the starP properties were studied in the papers [4,7,10–12] and
[13] with distinct terminology in each one. In particular, star countable spaces were called
“star Lindelöf”, “spaces of countable weak extent”, “ω-star” and “∗Lindelöf”. However,
after the paper [17] was published, all subsequent authors adopted its terminology so the
term “star P” can be now considered standard.

In the paper [1] star countable and star Lindelöf P-spaces were studied and it was shown
that in the presence of normality, all these classes coincidewith the class of spaces of countable
extent. It was also established in [1] thatRκ is not star countable for any κ ≥ 2c

+
. One of the

sources of inspiration of the authors of [1] was Arhangel’skii’s problem cited by Bonanzinga
andMatveev in [4, Question 2.2.4]; Arhangel’skii asked whether for every compact space X ,
star countability of C p(X) is equivalent to its Lindelöf property. In [1] it was established that
the answer is positive for ω1-monolithic compact spaces. In this paper we show that under
the Continuum Hypothesis, the answer is positive for all compact spaces.

2 Notation and terminology

If nothing is said about the axioms of separation of a space X , then X is assumed to be a T1-
space.Given a space X , the family τ(X) is its topology; if x ∈ X then τ(x, X) = {U ∈ τ(X) :
x ∈ U }. Suppose thatA is a family of subsets of X ; then St(Y,A) = ⋃{A ∈ A : Y ∩ A �= ∅}
for any Y ⊂ X . We denote by R the real line with its natural topology.

Our set-theoretic notation is standard; in particular, any ordinal is identified with the set of
its predecessors. If κ is an infinite cardinal and A is a set, then let [A]≤κ = {B ⊂ A : |B| ≤ κ}.
Given a space X the cardinal L(X) = min{κ : every open cover of X has a subcover of
cardinality ≤ κ} + ω is called the Lindelöf number of X . Besides, hl(X) = sup{L(Y ) : Y
⊂ X}.

If X is a space and U is an open cover of X then a set Y ⊂ X is a kernel of U if
St(Y,U) = X . Suppose that P is a topological property; a space X is called star P if any
open cover U of the space X has a kernel Y with the property P . For an infinite cardinal κ , a
space X is called κ-monolithic if nw(A) ≤ κ for any set A ⊂ X with |A| ≤ κ . If X is a space
then � usually denotes its diagonal {(x, x) : x ∈ X}; however, the cardinal �(X) = min{κ :
the diagonal � is the intersection of κ-many open subsets of X × X} is the diagonal number
of X .

For any space X the extent of X (also denoted as ext (X)) is the sum of ω and the
supremum of cardinalities of closed discrete subsets of X . Let s(X) = sup{|D| : D is a
discrete subset of X} + ω; the cardinal s(X) is the spread of X . The sum of ω and the
minimal cardinality of a local base at a point x ∈ X is called the character of X at x ; it is
denoted by χ(x, X) and χ(X) = sup{χ(x, X) : x ∈ X}. If X is a space and x ∈ X then let
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ψ(x, X) = min{|U | : U ⊂ τ(X) and
⋂U = {x}} + ω and ψ(X) = sup{ψ(x, X) : x ∈ X};

the cardinal ψ(X) is called the pseudocharacter of the space X . Given an infinite cardinal
κ we say that t (X) ≤ κ if, for any A ⊂ X and x ∈ A there exists a set B ⊂ A such that
|B| ≤ κ and x ∈ B.

We say that X is a P-space if every Gδ-subset of X is open in X . A familyN is a network
of X if every U ∈ τ(X) is the union of some subfamily ofN . Let nw(X) = min{|N | : N is
a network in X} + ω. The spaces with a countable network are called cosmic.

Given spaces X and Y , we denote by C(X, Y ) the set of all continuous functions from X
to Y ; we write C(X) instead of C(X,R). The space C p(X, Y ) is the set C(X, Y ) endowed
with the pointwise convergence topology.

The rest of our notation is standard and follows the book [8]; the definitions of cardinal
invariants can be consulted in the survey of Hodel [9]. All necessary facts and notions of
C p-theory can be found in the books [22–24].

3 Countable domination of discrete subspaces

Wewill define and study a property calledω-domination of discrete sets. This concept, which
is stronger than star countability, will enable us to solve an open question published in [1].
Besides, we will see that spaces in which discrete sets are ω-dominated, are interesting in
themselves.

Definition 3.1 Given a space X , we will say that a class A of subsets of X is dominated by
a class B if for any set A ⊂ X with A ∈ A, there exists a set B ⊂ X such that B ∈ B and
A ⊂ B. In particular, all (closed) discrete subsets of X are countably dominated (which we
frequently abbreviate as ω-dominated) if, for any (closed) discrete set D ⊂ X , there exists a
countable set B ⊂ X such that D ⊂ B.

The following proposition showswhy domination of discrete subspaces is worth studying.

Proposition 3.2 Suppose that X is a space in which Lindelöf (countable) subsets dominate
closed discrete subsets. Then X is star Lindelöf (countable).

Proof If U is an open cover of X , then there exists a closed discrete set D ⊂ X such that
X = St(D,U). Take a Lindelöf (countable) set L ⊂ X such that D ⊂ L . Then St(L ,U) = X
and hence X is star Lindelöf (countable). 
�

It is easy to see that countable domination of closed discrete sets is strictly stronger than
star countability. However, there is an important class of spaces in which they coincide.

Proposition 3.3 A first countable space X is star Lindelöf (countable) if and only if Lindelöf
(countable) subsets of X dominate closed discrete subsets of X.

Proof We must only prove necessity, so assume that X is star Lindelöf (countable) and D
is a closed discrete subset of X . Fix a countable decreasing local base {On

d : n ∈ ω} at the
point d ∈ D in such a way that O0

d ∩ D = {d} for every d ∈ D.
For the open cover Un = {On

d : d ∈ D} ∪ {X\D} of the space X we can find a Lindelöf
(countable) set Ln ⊂ X such that X = St(Ln,Un) and hence Ln ∩ On

d �= ∅ for any d ∈ D.
The set L = ⋃

n∈ω Ln is Lindelöf (countable) and L ∩ On
d �= ∅ for any d ∈ D and n ∈ ω.

Therefore D ⊂ L . 
�
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Theorem 3.4 A first countable ω-monolithic space X is star countable if and only if X has
countable extent.

Proof Only necessity has to be established, so assume that X is a first countableω-monolithic
star countable space. If D ⊂ X is a closed discrete subset of X , then we can apply Proposition
3.3 to find a countable set A ⊂ X such that D ⊂ A. By ω-monolithity of X , the set A is
cosmic and hence |D| ≤ s(A) ≤ nw(A) = ω. This proves that ext (X) ≤ ω. 
�

The following corollary answers Question 2.2 from the paper [1].

Corollary 3.5 If X is strongly monotonically monolithic and star countable, then X is Lin-
delöf.

Proof Just observe that X is first countable and ω-monolithic so ext (X) = ω by Theorem
3.4. Since in monotonically monolithic spaces the extent coincides with the Lindelöf number
(see [21, Theorem 2.14]), the space X must be Lindelöf. 
�

It is Question 2.10 of the paper [25] where the authors ask whether a first countable star
Lindelöf normal space must have countable extent. The following example gives a consistent
negative answer.

Example 3.6 LetA be an almost disjoint family of infinite subsets ofω. Then M(A) = ω∪A
is the Mrowka space in which all points of ω are isolated and the local base at A ∈ A is
given by all sets {A} ∪ (A\F) where F is a finite subset of ω. The space M(A) is even star
countable being separable and the setA is closed and discrete in M(A). It was proved in [19]
that there exists an uncountable familyA such that M(A) is normal if and only if there exists
a Q-set in R. Since the existence of a Q-set in R is consistent with ZFC, it is consistent that
there exists an uncountable normal Mrowka space and hence there exists a first countable
star Lindelöf normal space of uncountable extent.

The following theorem gives a consistent answer to Question 2.2.4 from the paper [4].

Theorem 3.7 Suppose that the Continuum Hypothesis (CH) holds and K is a compact
Hausdorff space such that C p(K ) is star countable. Then the space K is ω1-monolithic and
hence C p(K ) is Lindelöf.

Proof Wewill showfirst that t (K ) ≤ ω. Striving for a contradiction, assume that the tightness
of X is uncountable. By Theorem 1.2 of [14] there exists a free sequence S = {xα : α

< ω1} ⊂ X that converges to a point p ∈ X . Let Sα = {xβ : β < α} and Qα = Sα for every
α < ω1. It follows from CH that w(Qα) ≤ 2ω = ω1 for each α < ω1.

Take any point x ∈ S\{p}; since S converges to p, there exists α < ω1 such that x /∈ S\Sα

and therefore x ∈ Qα . This proves that we have the equality S = ⋃{Qα : α < ω1} ∪ {p}
and hence the compact space L = S is represented as the union of ω1-many subspaces of
weight not exceeding ω1. Therefore w(L) ≤ ω1 by Theorem 2.1.11 of [2].

If πL : C p(K ) → C p(L) is the restriction map, then πL is continuous and C p(L)

= πL(C p(K )). Since star countability is invariant under continuous images, the spaceC p(L)

is star countable. It follows from w(L) ≤ ω1 that L is ω1-monolithic so C p(L) is Lindelöf
by Theorem 1.35 of [1]. Therefore t (L) ≤ ω (see [22, Problem 189]); this contradiction with
the fact that S is an uncountable free sequence in L proves that t (K ) ≤ ω.

Finally, take any set D ⊂ K with |D| ≤ ω1; let {dα : α < ω1} be an enumeration of
D. The set Dα = {dβ : β < α} is countable and hence Fα = Dα is a separable space;
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applying CH again we convince ourselves thatw(Fα) ≤ ω1 for each α < ω1. It follows from
t (K ) ≤ ω that D = ⋃{Fα : α < ω1} and hence the compact space D is represented as the
union of ≤ ω1-many subspaces of weight ≤ ω1. This shows that w(D) ≤ ω1, i.e., the space
K is ω1-monolithic and hence we can apply [1, Theorem 1.35] once more to see that C p(K )

is Lindelöf. 
�
It was asked in [1, Question 2.7] whether star countability of C p(K ) for a compact space

K implies that t (K ) ≤ ω. Theorem 3.7 easily implies that we have a positive answer under
CH.

Corollary 3.8 Assume that CH holds and K is a compact Hausdorff space such that C p(K )

is star countable. Then K has countable tightness.

Proof ApplyTheorem3.7 to see thatC p(K ) is Lindelöf and hence t (K ) ≤ ω by [22, Problem
189]. 
�

We now turn to a systematic study of countable domination of discrete subspaces. Propo-
sition 3.3 shows that it is an important concept; we hope to convince the reader that this notion
has nice categorical properties and hence is interesting in itself. The following statement is
evident

Proposition 3.9 If either d(X) ≤ ω or s(X) ≤ ω, then all discrete subsets of X are countably
dominated.

Therefore the class of spaces whose discrete subsets are ω-dominated is a generalization
of separable spaces and spaces of countable spread.

Proposition 3.10 If X is an ω-monolithic space in which all discrete subsets are ω-
dominated, then s(X) ≤ ω.

Proof If D is a discrete subset of X , then D ⊂ A for some countable A ⊂ X . By ω-
monolithity of X , we have s(A) ≤ nw(A) ≤ ω and therefore |D| ≤ ω. 
�
Proposition 3.11 Suppose that X is a space in which discrete subsets are ω-dominated.
Then

(a) discrete subsets of U are ω-dominated for any U ∈ τ(X);
(b) discrete subsets are ω-dominated in any continuous image of X;
(c) the space X has the Souslin property;
(d) if Y ⊂ X = Y , and t (X) ≤ ω, then discrete subsets are ω-dominated in Y .

Proof If U is an open subset of X and D ⊂ U is discrete, then there exists a countable set
A ⊂ X such that D ⊂ A. Then the set B = A ∩ U ⊂ U is countable and D ⊂ clU (B); this
proves (a).

(b) Take a continuous onto map f : X → Y ; if E ⊂ Y is a discrete set, then take a point
xy ∈ f −1(y) for every y ∈ E . The set D = {xy : y ∈ E} is easily seen to be discrete
so there exists a countable set A ⊂ X such that D ⊂ A. Then B = f (A) is a countable
subset of Y and E ⊂ B, i.e., all discrete subsets of Y are ω-dominated.

(c) If U ⊂ τ ∗(X) is an uncountable disjoint family, then pick a point xU ∈ U for every
U ∈ U . The set D = {xU : U ∈ U} is clearly discrete. If A ⊂ X is countable, then
A ∩ U = ∅ for some U ∈ U and hence xU ∈ D\A. This shows that D is not contained
in the closure of any countable subset of X which is a contradiction.
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(d) If D ⊂ Y is a discrete subspace of Y , then there is a countable set E ⊂ X such that
D ⊂ E . It follows from t (X) ≤ ω, that there exists a countable set H ⊂ Y such that
E ⊂ H and hence D ⊂ clY (H).


�
Proposition 3.12 If X is a regular space in which all discrete subsets are ω-dominated, then
hl(X) ≤ c and hence |X | ≤ 2c.

Proof If D is a discrete subspace of X , then D ⊂ A for some countable set A. Therefore
D ⊂ A and hence w(D) ≤ w(A) ≤ c. In particular, |D| ≤ w(A) ≤ c; this proves that
s(X) ≤ c and w(D) ≤ c for any discrete D ⊂ X .

If hl(X) > c, then there exists a scattered subspace Y in the space X such that |Y | = c+;
if D is the set of isolated points of Y , then D is discrete and Y ⊂ D. Take a countable set
B ⊂ X such that D ⊂ B. Then Y ⊂ B and hl(B) ≤ w(B) ≤ c; this contradiction with the
fact that Y is a scattered subset of B of cardinality c+ proves that hl(X) ≤ c. 
�
Corollary 3.13 If X is a space in which all discrete subsets are ω-dominated and χ(X) ≤ ω,
then |X | ≤ c.

Proof This follows from Proposition 3.11(c) and the Hajnal–Juhasz inequality |X |
≤ 2χ(X)·c(X). 
�
Corollary 3.14 If X is a compact Hausdorff space in which all discrete subsets are ω-
dominated, then w(X) ≤ c.

Proof By Proposition 3.12, we have χ(X) = ψ(X) ≤ hl(X) ≤ c. Since also c(X) ≤ ω

by Proposition 3.11, Shapirovsky’s inequality w(X) ≤ πχ(X)c(X) (see Theorem 6.2 of [9])
shows that w(X) ≤ cω = c. 
�

It would be very interesting to find out whether |X | ≤ c for any regular space X of
countable pseudocharacter in which discrete subsets are ω-dominated. The positive result in
this direction would strengthen another Hajnal–Juhasz inequality |X | ≤ 2s(X)·ψ(X). So far,
we could prove it only for topological groups.

Proposition 3.15 Suppose that G is a topological group with ψ(G) ≤ ω in which all discrete
sets are countably dominated. Then G has a weaker second countable topology and hence
|G| ≤ c.

Proof Apply Theorem 3.3.16 of the book [3] to see that there exists a weaker metrizable
topology μ on X . Since the identity map i : X → (X, μ) is continuous, it follows from
Proposition 3.11(c) that (X, μ) has the Souslin property. The space (X, μ) being metrizable,
it must be second countable and therefore |X | ≤ c. 
�
Theorem 3.16 The inequality |X | ≤ L(X)�(X) holds for any T1-space X.

Proof Let�(X) = κ and L(X) = λ. There exists a sequence {Uα : α < κ} of open covers of
X (called a Gκ -diagonal sequence) such that {x} = ⋂

α<κ St(x,Uα) for any x ∈ X . Observe
that if we substitute every Uα by an open refinement, then the respective family of covers
will still be a Gκ -diagonal sequence. Therefore we can consider, without loss of generality,
that |Uα| ≤ λ for any α < κ .

If U = ⋃
α<κ Uα , then for each x ∈ X , we can choose a family Vx ∈ [U]≤κ such

that
⋂Vx = {x}. Therefore the map x �→ Vx is an injection of X into [U]≤κ and hence

|X | ≤ |[U]≤κ | ≤ (κ · λ)κ = λκ . 
�
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Corollary 3.17 Let X be a regular space in which discrete subsets are countably dominated.
If X has a Gδ-diagonal, then |X | ≤ c.

Proof Apply Proposition 3.12 to see that L(X) ≤ hl(X) ≤ c and therefore |X | ≤ c�(X) = cω

= c by Theorem 3.16. 
�
Example 3.18 Let K be the Katetov extension of ω. Then K = ω ∪ D where D is a closed
discrete subset of K with |D| = 2c andω is dense in K . Therefore K is a separable Hausdorff
space and hence all discrete subsets of K are countably dominated. Observe that K is the
union of countably many closed discrete subspaces of K so its diagonal is a Gδ-set. Since
|K | = hl(K ) = 2c > c, this example shows that regularity cannot be omitted in Proposition
3.12 as well as in Corollary 3.17.

Recall that X ∈ T3 is a Lindelöf p-space if there exists a perfect map of X onto a regular
second countable space.

Theorem 3.19 A Lindelöf p-space X is separable if and only if all discrete subsets of X × X
are ω-dominated.

Proof If X is separable, then so is X × X so necessity is trivial. Now, if all discrete subsets
of X × X are ω-dominated, then apply Theorem 2.5 of [5] to find a discrete set D ⊂ X × X
such that p1(D) is dense in X ; here p1 : X × X → X is the projection of X × X onto its first
factor. There exists a countable set E ⊂ X × X such that D ⊂ E . Then p1(E) is a countable
dense subset of X , i.e., X is separable as promised. 
�
Example 3.20 Under CH, there exists a hereditarily Lindelöf non-separable compact space
K (see [15, Theorem 1.4]). Since s(K ) ≤ hl(K ) = ω, it follows from Proposition 3.9 that
all discrete subsets of K are countably dominated and hence, under CH, the conclusion of
Theorem 3.19 is false for compact spaces if we replace X × X with X .

Example 3.21 Under the Continuum Hypothesis there exists a non-separable space X such
that Xω is hereditarily Lindelöf (see Problem 99 of [23]) and hence all discrete subsets of
Xω are ω-dominated. Therefore, under CH, the p-property of the space X cannot be omitted
in Theorem 3.19.

Example 3.22 If X is a space in which discrete subsets are countably dominated, then X × X
does not necessarily have this property. Indeed, Moore constructed in [18] a ZFC example
of a non-separable hereditarily Lindelöf space X such that X × X is d-separable, i.e., has a
σ -discrete dense subspace. It follows from s(X) ≤ hl(X) = ω, that all discrete subsets of
X are ω-dominated.

Fix a family {Dn : n ∈ ω} of discrete subsets of X × X such that the set D = ⋃
n∈ω Dn

is dense in X × X . If every Dn is contained in the closure of a countable set En , then
E = ⋃

n∈ω En is a countable dense subset of X × X . This implies that X is separable which
is a contradiction. Therefore not all discrete subsets of X × X are countably dominated.

A function f : X → R is called ω-continuous if f |A is continuous for every countable
A ⊂ X . Recall that a space X has countable functional tightness (which is denoted by
t0(X) ≤ ω) if every ω-continuous function f : X → R is continuous. It is known that
t0(X) ≤ ω if X is separable or has countable tightness (see Problems 418 and 419 of the
book [22]). If X is a compact space, then t (X) ≤ s(X) and hence countable spread of X
implies that X has countable functional tightness. The space X isweakly discretely generated
if for every non-closed set A ⊂ X , there is a discrete set D ⊂ A such that D\A �= ∅.
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Proposition 3.23 If X is a weakly discretely generated space in which all discrete subsets
are countably dominated, then t0(X) ≤ ω.

Proof Fix any ω-continuous function f : X → R. If f is discontinuous, then there is a
closed subset F of R such that G = f −1(F) is not closed in X . Take a discrete set D ⊂ G
such that D\G �= ∅ and pick a point x ∈ D\G. We can find a countable set E ⊂ X such
that D ⊂ E and hence D ⊂ E . The function f is continuous on the set E by Problem 418
of [22] so f |D is continuous as well. This implies f (x) ∈ f (D) ⊂ f (G) ⊂ F = F and
therefore f (x) ∈ F which is a contradiction with x /∈ G = f −1(F). 
�

All compact spaces are weakly discretely generated by [6, Proposition 4.1]), so the fol-
lowing statement is an immediate consequence of Proposition 3.23.

Corollary 3.24 If X is a compact Hausdorff space in which discrete sets are ω-dominated,
then X has countable functional tightness.

Observation 3.25 If a space X is the union of a separable subspace and a subspace of count-
able spread, then it is immediate that all discrete subsets of X areω-dominated.Unfortunately,
we could not find an example of a space X whose discrete sets are ω-dominated but X cannot
be represented as the union of a separable subspace and a subspace of countable spread. We
will see later that if only closed discrete subsets of X are ω-dominated, then X need not be
the union of a separable subspace and a subspace of countable extent.

It seems to be much more difficult to prove analogous theorems for the spaces in which
only closed discrete sets are countably dominated. We will first formulate some evident
properties of this class.

Proposition 3.26 If either d(X) ≤ ω or ext (X) ≤ ω, then all closed discrete subsets of X
are countably dominated.

Proposition 3.27 If X is an ω-monolithic space in which all closed discrete subsets are
ω-dominated, then ext (X) ≤ ω.

Proof If D is a closed discrete subset of X , then D ⊂ A for some countable A ⊂ X . By
ω-monolithity of X , we have ext (A) ≤ nw(A) ≤ ω and therefore |D| ≤ ω. 
�
Example 3.28 Let Y be a separable Tychonoff space of uncountable extent, e.g., the square of
the Sorgenfrey line. Consider a discrete space D of cardinality ω1 and let X = (Y × D)∪{p}
where p /∈ Y × D. We consider that Y × D is open in X and has the product topology while
the local base at p is the family {{p} ∪ (Y × (D\F)) : the set F ⊂ D is finite}. We omit an
easy proof that X is not representable as the union of a separable subspace and a subspace
of countable extent. However, all closed discrete subsets of X are ω-dominated.

The following two statements can be established by straightforward modifications in the
proof of Propositions 3.11 and 3.12.

Proposition 3.29 Suppose that X is a space in which closed discrete subsets are ω-
dominated. Then

(a) closed discrete subsets of U are ω-dominated for any clopen set U ∈ τ(X);
(b) closed discrete subsets are ω-dominated in any continuous image of X;
(c) any discrete family U ⊂ τ ∗(X) is countable.



Star countable spaces and ω-domination of discrete subspaces

Proposition 3.30 If X is a regular space in which all closed discrete subsets are ω-
dominated, then ext (X) ≤ c.

Corollary 3.31 Suppose that X is a regular space with a Gδ-diagonal in which all closed
discrete subsets are ω-dominated. Then |X | ≤ 2c.

Proof It suffices to apply Proposition 3.30 and the Ginsburg–Woods inequality |X | ≤
2�(X)·ext (X) to see that |X | ≤ 2c. 
�
Example 3.32 If κ is any uncountable regular cardinal, then it is easy to see that the set
Fκ = {α < κ : cof(α) ≤ ω} endowed with the order topology is countably compact and
first countable. In particular, ext (Fκ ) = ω and hence closed discrete subsets of Fκ are ω-
dominated. Since |Fκ | = κ , this example shows that the conclusion of Corollary 3.13 does
not hold for spaces in which closed discrete sets are countably dominated.

Theorem 3.33 Assume that X is a normal space of uncountable extent whose closed discrete
subsets are ω-dominated. Then

(a) 2|D| ≤ c for any closed discrete set D ⊂ X;
(b) if there exists a closed discrete set D ⊂ X such that |D| = ext (X), then 2ext (X) = c;
(c) If |D| < ext (X) for any closed discrete set D ⊂ X, then 2<ext (X) = c.

Proof Let D ⊂ X be a closed discrete subset of X ; take a countable set E ⊂ X such that
D ⊂ E . Observe first that |C(E)| ≤ c and by normality of E the set C(D) = R

D is the
image of C(E) under the restriction map. Therefore 2|D| = |C(D)| ≤ |C(E)| = c and hence
2|D| ≤ c; this settles (a).

If there exists a closed discrete set D ⊂ X such that |D| = ext (X), then 2ext (X) = 2|D| ≤ c

by the property (1). Since D is infinite, we have the equality 2ext (X) = 2|D| = c; this proves
(b).

To see that (c) holds, observe that for any infinite κ < ext (X), there exists a closed
discrete set Dκ ⊂ X with |Dκ | = κ . Apply (a) again to see that 2κ = 2|Dκ | = c and hence
2<ext (X) = sup{2κ : ω ≤ κ < ext (X)} = c. 
�
Corollary 3.34 Suppose that X is a normal space whose closed discrete sets are ω-
dominated. If c < 2ω1 , then ext (X) ≤ ω.

Proof If the extent of X is uncountable, then there exists a closed discrete set D ⊂ X such
that |D| = ω1. Then 2|D| = 2ω1 > c which is a contradiction with Theorem 3.33(a). 
�
Corollary 3.35 Suppose that X is a hereditarily normal space in which discrete sets are
ω-dominated. If c < 2ω1 , then s(X) ≤ ω.

Proof If D is a discrete subset of X , then F = D\D is closed in X and hence in the space
U = X\F all discrete subsets are ω-dominated by Proposition 3.11(a). Since U is a normal
space by our hypothesis, we can apply Corollary 3.34 to conclude that ext (U ) ≤ ω. The set
D being closed and discrete in U , we have the inequality |D| ≤ ext (U ) ≤ ω. 
�
Corollary 3.36 Suppose that X is a normal space with a Gδ-diagonal whose closed discrete
sets are ω-dominated. If c < 2ω1 , then |X | ≤ c.

Proof Apply Corollary 3.34 to see that ext (X) ≤ ω; now it follows from the Ginsburg–
Woods inequality |X | ≤ 2�(X)·ext (X) that |X | ≤ c. 
�
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Corollary 3.37 Suppose that X is a hereditarily normal space with ψ(X) ≤ ω in which
discrete sets are ω-dominated. If c < 2ω1 , then |X | ≤ c.

Proof By Corollary 3.35, the space X must have countable spread. Therefore we can apply
the Hajnal–Juhasz inequality |X | ≤ 2s(X)·ψ(X) to conclude that |X | ≤ c. 
�
Proposition 3.38 Suppose that X is a normal space with a Gδ-diagonal whose closed dis-
crete sets are ω-dominated. If c is a non-limit cardinal with 2<c = c, then |X | ≤ c.

Proof Assume that D ⊂ X is a closed discrete set and observe that it follows from Theorem
3.33(a) that |D| < c. Since the cardinal c is a non-limit, we have the inequality ext (X) < c

and therefore

|X | ≤ 2�(X)·ext (X) ≤ 2ω·ext (X) ≤ 2<c = c.

as promised. 
�
Given an infinite cardinal κ , a space X is called κ-metalindelöf if every open cover of X

has a refinement of order ≤ κ . The following statement is straightforward.

Proposition 3.39 If κ is an infinite cardinal and X is a κ-metalindelöf star countable space,
then L(X) ≤ κ .

Corollary 3.40 Suppose that X is a T1-space with a Gδ-diagonal whose closed discrete
subsets are ω-dominated. Then |X | ≤ c if and only if X is c-metalindelöf.

Proof The necessity being trivial, assume that the space X is c-metalindelöf. Since X is star
countable by Proposition 3.2, it follows from Proposition 3.39 that L(X) ≤ c. Finally, apply
Theorem 3.16 to see that |X | ≤ cω = c. 
�
Proposition 3.41 Assume that X is a countably paracompact regular space whose closed
discrete subsets are ω-dominated. If CH holds, then ext (X) ≤ ω.

Proof Given a closed discrete set D ⊂ X take a countable set A ⊂ X such that D ⊂ A. The
space Y = A being separable, the cardinality of the family RO(Y ) of regular open subsets
of Y does not exceed c = ω1. By Theorem 3.9 of the paper [20], we have the inequality
ext (Y ) < ω1 and hence ext (Y ) = ω which shows that |D| ≤ ω. 
�
Corollary 3.42 Under CH, if X is a countably paracompact T3-space with a Gδ-diagonal
in which closed discrete sets are countably dominated, then |X | ≤ c.

Proof Observe first that ext (X) ≤ ω by Proposition 3.41; the Ginsburg–Woods inequality
|X | ≤ 2ext (X)·�(X) does the rest. 
�

4 Open questions

The results of this paper clearly demonstrate that the notion of ω-domination turned out to
be interesting in itself. The following list of open questions shows that the information we
have about the respective classes is far from being complete.

Question 4.1 Suppose that X is a regular space in which all discrete subsets are ω-
dominated. Is it true that there exist subspaces Y and Z of the space X such that X = Y ∪ Z
and s(Y ) = d(Z) = ω?
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Question 4.2 Suppose that a regular space X has a Gδ-diagonal and a Lindelöf dense
subspace. Then, trivially, |X | ≤ 2c but is it true that |X | ≤ c?

Question 4.3 Let X be a regular space in which discrete subsets are countably dominated.
Is it true that d(X) ≤ c?

Question 4.4 Let X be a regular space in which discrete subsets are countably dominated.
Is it true that nw(X) ≤ c?

Question 4.5 Let X be a regular space of countable pseudocharacter in which discrete
subsets are ω-dominated. Is it true that |X | ≤ c?

Question 4.6 Suppose that X is a regular space with t (X) = ψ(X) = ω in which discrete
subsets are ω-dominated. Is it true that |X | ≤ c?

Question 4.7 Suppose that X is a regular sequential space such that ψ(X) = ω and all
discrete subsets of X are ω-dominated. Is it true that |X | ≤ c?

Question 4.8 Suppose that X is a regular Fréchet–Urysohn space such that ψ(X) = ω and
all discrete subsets of X are ω-dominated. Is it true that |X | ≤ c?

Question 4.9 Suppose that X is a regular Lindelöf space such that ψ(X) = ω and all
discrete subsets of X are ω-dominated. Is it true that |X | ≤ c?

Question 4.10 Suppose that X is a regular Lindelöf space such that ψ(X) = ω and all
discrete subsets of X × X are ω-dominated. Is it true that |X | ≤ c?

Question 4.11 Suppose that X is a regular Lindelöf �-space and all discrete subsets of
X × X are ω-dominated. Must X be separable?

Question 4.12 Suppose that a regular space X has a Gδ-diagonal and all closed discrete
subsets of X are ω-dominated. Is it true that |X | ≤ c?

Question 4.13 Suppose that a regular space X of countable tightness has a Gδ-diagonal
and all closed discrete subsets of X are ω-dominated. Is it true that |X | ≤ c?

Question 4.14 Suppose that X is a compact Hausdorff space and C p(X) is star countable.
Is it true in ZFC that C p(X) is Lindelöf?

Question 4.15 Suppose that X is a regular monotonically monolithic star countable space
and t (X) ≤ ω. Must X be Lindelöf?

Question 4.16 Suppose that X is a regular monotonically monolithic star countable Fréchet–
Urysohn space. Must X be Lindelöf?
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