
RT-MAE 2001-29 

UMA NOVA VERsAO 00 MODELO 
DE URNA DE PÓL YA-EGGE.NBERGER 

by 

LG.-,S. Mc,..,_. 
anti 

P. /g#NIN 

Palavru-Claawe: P61ya'1 ara ~ 111'11 modela, adlaageablc proc- De Findti'• 
Rcpreamtatio■ 11aeorem, mirtura. 
CwaiftcaçAG AMS: 60G09, fiOAff, 62FJS, 62Al5. 
(AMS Oauification) . 

- Deumbro de 2001 -
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Pólya-Eggenberger 
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Abstract 

ln this work we present a new version of Pólya's urn scheme via the introduction 

of a probability distribution for the initial composition, that is, for the numbers of 

black and white balis. We also determine when an exchangeable process taking val­

ues in {O, 1}00 may be well aproximated by a suitable Pólya's process with unknown 
initia.J configuration. 

Keywords; Pólya's urn scheme, urn models, exchangeable processes, 

De Finetti's Representation Theorem, mixtures. 

1 Introdução 

O estudo de modelos de urnas, cujos primórdios remontam ao século XVII (segundo 

Johnson & Kotz, 1977, p. 22, "a primeira referência a modelos de urnas em problemas de 

probabilidade aparece nos trabalhos de Huygen (1629-1695)"), tem sido, desde então, alvo 

de trabalhos de muitos autores devido a sua importância, que, resumidamente, reside em 

pelo menos dois aspectos: primeiro, a possibilidade de derivação de muitos resultados da 

Teoria de Probabilidade (ao menos no que diz respeito à probabilidade discreta) via mod­

elos de urnas, o que os tornam um vigoroso instrumento didático (Johnson & Kotz, 1977, 

por exemplo, obtêm as distribuições de probabilidade discretas comumente utilizadas em 

métodos estatísticos a partir de um esquema de urnas mais geral); segundo, a possibilidade 

de modelagem de diversos fenômenos da natureza bem como de problemas reais em várias 

áreas do conhecimento através de esquemas de urnas (Heitele, 1975, afirma que é possível 

associar modelos de urnas a grande parte dos experimentos que envolvem incerteza). Fi­

nalmente, Pólya (1954) ratifica a importância de modelos de urnas: "Qualquer problema 

de probabilidade parece comparável a um adequado problema de urnas contendo bolas 

e qualquer fenômeno aleatório parece similar, em certos aspectos essenciais, a sucessivas 

retiradas de bolas de um sistema de urnas combinadas convenientemente". 

Johnson & Kotz (1977) distinguem os principais modelos de urnas em duas categorias: 

(i) os modelos de urnas com reposição de bolas, dentre os quais podemos destacar os 

modelos estocásticos de Pólya-Eggenberger para fenômenos envolvendo algumas formas 



de "contágio" e de Ehrenfest para transferência de calor entre dois corpos isolados e (ii) 
os modelos de urnas para problema,;; de ocupação (sem reposição de bolas) tais como os 
modelos de Bose-Einstein e de Maxwell-Boltzmann. Neste trabalho, no entanto, vamos 
nos ater apenas a um particular modelo da categoria (i) citada acima: o modelo de 
Pólya-Enggenberger e suas variações. Uma descrição bastante detalhada sobre o estudo 
de modelos de urnas em geral é encontrado em Johnson & Kotz (1977). 

No que segue, recordamos o modelo de urna de Pólya-Eggenberger bem como apre­
sentamos uma variação deste modelo que acreditamos não ter sido ainda contemplada na 
literatura. 

2 O modelo de Pólya-~ggenberger e suas variações 

Dentre os diversos modelos de urnas desenvolvidos para representar formas de contágio, 
o modelo de Pólya-Eggenberger ocupa, indubitavelmente, uma posição central, não só 
pelo seu cunho pioneiro nesta área de estudo, mas também pela generalidade e riqueza 
de propriedades que encerra. Na seqüência, faremos uma breve descrição deste modelo e 
de algumas de suas propriedades. 

Podemos descrever o modelo de urna de Pólya-Eggenberger de modo bastante simples. 
Imaginemos uma urna contendo, inicialmente, a bolas brancas e b bolas pretas. Pólya e 
Eggenberger (1923) consideram o seguinte procedimento de retiradas sucessivas de bolas 
da urna: retira-se uma bola da urna de maneira equiprovável e, em seguida, retorna-se 
esta bola à urna juntamente com c bolas desta mesma cor ( o caso particular e = 1 foi 
estudado anteriormente por Markov (1906)). Notemos que, segundo esta construção, a 
retirada de uma bola de uma determinada cor, digamos branca, em uma certa etapa do 
processo aumenta a probabilidade de nova ocorrência deste evento (retirada de uma bola 
branca) na etapa seguinte (Feller, 1957, dá o nome de "aftereffect" a este fenômeno em que 
a ocorrência de um evento aumenta (ou diminui) a probabilidade de nova ocorrência deste 
evento). Esta característica do processo, em concordância com seu conceito de "influence 
globale", teria levado Pólya a considerá-lo um protótipo bastante razoável para descrever 
específicas formas de "contágio". A seguir, apresentamos uma formalização do modelo de 
Pólya-Eggen berger. 

Seja {Xn}n2:1 um processo estocástico assumindo valores em {O, 1}00 com medida 1P 
tal que, Vn E JN, V(xi, ... , Xn) E {O, l}n, 

IP(Xi =xi, ... ,Xn = x,.) = a(a +e)•·• (a+ (t - l)c)b(b +e)••• (b + (n - t - l)c) 
( a + b) ( a + b + e) • • • ( a + b + ( n - 1 )e) 

ou 

- - - r ( ~ + tn) r ( ~ + n - tn) r( ~) 
P(X1-X1,, .. ,Xn-Xn)- r(~)r(~)r(~+n) , (2.1) 
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onde tn = I:7=1 x;, a, b, c E IN. O processo { Xn}n>J descreve a evolução do modelo 

de urna de Pólya-Eggenberger com configuração iniciaf(a, b), isto é, com a bolas brancas 

e b bolas pretas inicialmente na urna, e c bolas acrescidas em cada etapa. Xn corre­

sponde então à variável indicadora. de retirada de urna. bola branca na n-ésima etapa do 

processo, n E IN. De (2.1), é fácil ver que o processo de Pólya-Eggenberger é permutável. 

Deste modo, o processo de Pólya-Eggenberger satisfaz as condições do Teorema da Rep­

resentação de De Finetti e, portanto, qualquer marginal n-dirnensional deste processo 

pode ser escrita como uma mistura. de n variáveis aleatórias de Bernoulli independentes 

e identicamente distribuídas (neste caso, a medida de De Finetti, ou misturadora, possui 

função densidade de probabilidade Beta com parâmetros ~ e ~)- A partir do processo 

de Pólya-Eggenberger, são derivadas as distribuições de Pólya-Eggenberger e Pólya in­

versa, bem como suas versões multivariadas para as situações em que existem mais de 

duas cores para as bolas da urna. Um estudo bastante detalhado dessas distribuições e 

outras caracterizações do modelo de Pólya-Eggenberger são encontrados em Johnson & 
Kotz (1977). 

A partir do trabalho de Pólya e Eggenberger (1923), modificações (ou generalizações) 

em várias direções para o modelo de Pólya-Eggenberger têm sido desenvolvidas, desde a 

consideração de mais de duas cores para as bolas na urna até a adoção de diferentes mecan­

ismos de reposição de bolas à urna. Dentre estas alterações destacamos: (1) reposição não 

apenas de e bolas da. mesma cor da bola retirada, mas também de d bolas da outra cor; 

(2) reposição de bolas das duas cores, como em (1), dependendo da etapa do processo, 

isto é, e= e.. e d= d,,, ou da cor da bola retirada, c = c..(xn) e d= dn(xn) e (3) reposição 
de números C e D aleatórios de bolas à. urna. Em qualquer uma das três situações a.cima., 

o processo obtido não é, em geral, permutável. No que segue, apresentamos agora uma 

nova versão para o modelo de urna de Pó)ya-Eggenberger. 
Consideremos uma urna contendo bolas brancas e pretas. Suponhamos, no entanto, 

que sejam desconhecidos os números iniciais A e B de bolas brancas e pretas, respecti­

vamente. Como o par (A, B) é desconhecido, é natural, do ponto de vista subjetivista, 

que atribuamos uma medida de probabilidade sobre IN2 que expresse nossa incerteza a 

respeito da composição inicial da urna. Assim, a configuração inicial da urna para o 

modelo que propomos é um vetor aleatório em (IN2
, P(IN2

)). Quanto à evolução do pro­

cesso, admitimos que, em cada etapa, seja escolhida uma bola da urna uniformemente 

e que, em seguida, esta seja reposta à urna juntamente com outra bola da mesma cor 

(notemos que este é o procedimento de retiradas sucessivas do modelo de urna de Pólya­

Eggenberger com e= 1). Ao processo descrito acima., damos o nome de Modelo de Urna 

de Pólya-Eggenberger com composição (ou configuração) inicial aleatória. Neste caso, 

se {((a1;,b1;),p1t)heN, (a1t,b1c) E IN2
, Pk 2: O, k E IN, com LkeNP1c = 1, exprime nossa 

incerteza a respeito da composição inicial da urna, temos, utilizando a notação do começo 
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desta seção, que Vn E IN, V(xi, ... , Xn) E {O, l}n, 

ou 

00 

IP(X1 = X1, ... , Xn = Xn) = 2::>.~ · Pólya ((xi, ... , Xn)l(ak, bk)), 
k=l 

IP(X1 =Xi, ... , Xn = xn) = [ Pólya ((x1, ... , x,.)l(a, b))dµ(a, b), (2.2) 
ÍN2 

ondeµ: P(IN2
) ➔ [O, l] é tal que µ(A)= Lk,(ak,bk)EAPk, A E P(IN

2
), e 

, f (a+ E~-1 x;) f (b + n - E~=l x;) r(a + b) 
Polya((x1,•••,xn)l(a,b)) = f(a)f(b)r(a+b+n) • 

A expressão (2.2) acima é facilmente obtida condicionando-se a evolução do processo 
à composição inicial da urna, isto é, 

n 

P(X1 =xi, ... , X,.= x,.) = L P((A, B) = (ak,bk)) TI P(X; = x; 1 x1, ... , X;-1, (ak, bk)). 
kEN j=I 

Notemos que em (2.2) poderíamos ter formalmente considerado medidas misturado­
ras µ mais gerais sobre (IR!, B(IR!)). No entanto, como tal medida deve refletir nossa 
incerteza sobre a composição inicial da urna, (A, B), sabidamente assumindo valores em 
IN2

, não contemplamos estas situações neste trabalho. No que segue, apresentamos al­
gumas propriedades (sem demostração) do Modelo de Urna de Pólya-Eggenberger com 
configuração inicial aleatória. 

Proposição 2.1 Qualquer que seja a medida misturadoraµ, o modelo de Urna de Pólya­
Eggenberger com composição inicial aleatóría é permutável, isto é, Vn E IN, V(x1, ... , xn) E 
{O. l}" e V1r: {l, ... , n} ➔ {l, ... , n} bijetora (permutação dos índices 1, ... , n) 

P(X,r(l), .•• , X,r(n)) = P(xi, ... , Xn). 

A Proposição 2.1 revela que o Modelo de Urna de Pólya-Eggenberger com composição 
inical aleatória é permutável, ao contrário das outras variações do Modelo de Pólya­
Eggenberger mencionadas anteriormente, que não gozam de tal propriedade. Também 
por isso, vemos que o modelo que propomos não corresponde a generalização alguma do 
modelo de urna de Pólya-Eggenberger, dentre as mencionadas. Ademais, o modelo de 
urna de Pólya-Eggenberger com configuração inicial aleatória, sendo um processo per­
mutável em {O, 1}00

, satisfaz as condições do Teorema da Representação de De Finetti 
(1937), de modo que qualquer marginal n-dimensional deste processo equivale a uma mis­
tura de n variáveis de Bernoulli independentes e identicamente distribuídas. A seguir, 
caracterizamos então a medida de De Finetti deste processo. 
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Proposição 2.2 Seja {Xn}n~t um modelo de uma de Pólya-Eggenberger com configu­
ração inicial aleatória dada por {((ak,bk)iPk)heN, (a1r,b1,) E IN2

, p1, ~ O, k E IN, com 
I:keN P1c = 1. Então a medida de De Finetti deste processo possui função densidade de 
probabilidade dada por 

g(0) = L PkBeta.(0; (ak, b,.)), (2.3) 
kEN 

onde Beta ( B; ( a, b)) = ic~)gl1B"-1 (1 - B)b-l Il[o,iJ( 0). 

A Proposição 2.2 mostra que o modelo de urna de Pólya-Eggenberger com configuração 
inicial dada por {((a,.,b,.);p1,)}keN tem medidade De Finetti possuindo função densidade 
de probabilidade igual a uma mistura enumerável de funções densidade Betas, a saber, 
Betas com parâmetros a,. e b,., k E IN, ponderadas pelos respectivos pesos Pk · 

Na próxima seção, apresentamos o principal resultado deste trabalho, que a.firma. que, 
sob certas condições, um processo permutável em {O, 1}00 pode ser "bem aproximado" 
por um modelo de urna de Pólya-Eggenberger com configuração inicial aleatória. 

3 Resultado principal 

Estabelecemos, a partir de agora, condições para que a medida de probabilidade de um 
processo permutável a valores em {O, 1 }00 possa ser bem aproximada, em distância de 
variação total, pela medida de um conveniente modelo de urna de Pólya-Eggenberger com 
composição inicial aleatória. Antes, porém, relembremos o Teorema de Stone-Weierstrass, 
em sua versão para o caso particular da. reta real devida a. Bernstein, que terá papel 
fundamental nos resultados subseqüentes. 

Teorema 3.1 (S. Bernstein) Seja f : [O, l] ➔ Ill contínua. Então, a seqüência de 
polinômios de Bernstein 

converge uniformemente a f quando n ➔ oo. 

Ma.rsden (1974) argumenta que o conhecimento de Teoria. da Probabilidade possibili­
tou a Bernstein melhor compreender e demonstrar este teorema. De fato, várias passagens 
da prova acima. correspondem a resultados bem conhecidos em probabilidade. Além disso, 
a consideração de um cenário envolvendo um jogo com premiação fornece uma explicação 
intuitiva, a.inda. que sob uma perspectiva. frequentista, da validade do teorema. 3.1. Com 
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efeito, considerando-se n lançamentos independentes de uma. moeda, nos quais a proba­
bilidade de resultar cara é :r, e admitindo-se que/(~) unidades monetárias são pagas a. 
um jogador quando k caras são obtidas nestes n lançamentos da moeda, Pn(x) é o ganho 
esperado deste jogador. Para valores grandes de n, a. fração de lançamentos que resultam 
em cara aproxima-se de x e, consequentemente, o ganho médio de tal jogador aproxima-se 
de f(x), isto é, Pn(:r) deve aproximar /(:r). 

Na. seqüência, exibimos as condições para que a solução do problema. dos momentos 

de Ha.usdorff (Shohat e Ta.ma.rkin (1943)) seja absoluta.mente contínua. possuindo função 

densidade limitada. 

Teorema 3.2 Sejam {o:n}n2:i, O:n E [O, l], uma sequência de números e ip(t) uma função 
de distribuição com 1/,(0) = O e t/,(1) = 1 tais que 

ª"' = 11 

t"'dtt,(t), V n E IN, (3.1) 

Então, v,(t) = J; r.p(µ)dµ, com r.p 2'. O limitada, se, e somente se, existe M > O tal que, 
Vn E 1N, tem-se 

max { (n) /1 t"(l - tr-"dtb(t)} ~ _!!__ 
t1E{O, ..• ,n} v }0 n + 1 

As demonstrações dos teoremas 3.1 e 3.2 são encontradas, respectivamente, em Mars­
den (1974) e Shohat e Ta.ma.rkin {1943).Enunciamos a seguir o principal resultado deste 
capítulo. 

Teorema 3.3 Seja {Xn}n2:1 um processo permutável com valores em {O, 1}00
• Suponha 

que e~ista M > O tal que, 'vn E 1N, max.,e{o, ... ,n} P (E7=t X; = v) ~ n:;.l. Então, V~ > O, 
3mo - mo(ê) E 1N e {Po, ... ,Pmo} com Pie 2'. O, k = O, ... , m0 , e Ek=oPk = 1, tais que 
Vn E 1N e 'v'(x1, ... ,xn) E {O,l}n, 

IP(x,, ... , x,) - ~P• · Pólya((x,, ... , x,)l(k + 1, mo - k + 1))1 «, (3.2) 

onde P denota a medida do processo {Xn}n>l. 

Prova Como {Xn}n.2:1 é permutável assumindo valores em {O, 1}00
, segue, pelo Teorema 

da Representação de De Finetti, que, 'vn E IN, \t'(x1, ••• ,x,.) E {o,1r, 

P(x1 , ••• , x,.) = 11 

9E:'-1 "'•(l - ey,-E:'.1 "'•dl/>(8), 

onde 1P : B([O, 1]) ➔ [O, I] é a medida de De Finetti. Em particular, para o vetor 
ln= (1, ... , lhxn, temos 
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On 

Como por hipótese existe M > O tal que 

( 
n ) (n) 11 M max p ~ X; = V = max ov(l - ot-vdtf,, < --, \/n E IN, 

vE{O, ... ,n} i=I t>E{O, ... ,n} V o - n + 1 

segue, pelo Teorema 3.2, que tf,, é absolutamente contínua e que 3 cp : [O, l] ➔ IR+, 
limitada, tal que 

tf,,(t) = cp(t)dt . 

Neste caso, existe { cp,.}n>l, cp,. ~ O, simples, Vn E IN, tal que cp,. ~ cp. Assim, 
\:fé: > O, 3 cp,.

0 
;::: O, simples, tã) que 

Além disso, existem uma "step function" S: [O, 1] ➔ IR+ tal que 

11 

l'Pno - SjdÀ1 < i , 
uma função contínua limitada C: [O, l] ➔ IR+ tal que 

(3.3) 

(3.4) 

(3.5) 

e uma sequência de polinômios de Bernstein {Bm}m~I tal que Bm ~ C. Avaliemos, 
então, 

lP(x1 , ... , x,.) - f>i'") • Pólya((xi, ... ,x,.)l(k + 1, m - k + 1))1, 
k=O 

(ml C(~) 
com Pi. = m . , k = O, ... , m. Temos 

I:j=O C(~) 

I

P(x 1 , ••• , x,.) - t p~m) · Pólya((x1, ... , x,.)l(k + 1, m - k + 1))1 = 
k=O 
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onde a última igualdade segue do Teorema da Representação de De Finetti e (??). 
Pelo Teorema de Tonelli, segue que 

= IP(x1, ... ,x,.)-tp~""l. Pólya((x1, ... ,x,.);(k+l,m-k+l)) I = 

= 111 oE:'a, Xi ( 1 - or-E:'..1 "'• ip( O)dO -

= 111 

eEr~, r;(I - er-E7-, "'' [<p(O) - p;~O)] dO , , 

onde Pm(O) = E;;'=O (';)C (¾) (Jk(l - or-k e bm = E:0:~*). Por fim, 

IP(••• ... , ••l - ~ p("1 
• Pólya ((x,, ... , x,)l(k+ l, m - k +1))1-

= 111 

9E:'.. 1 "'•(1 - or-E:'..1 "• [cp(O) - p~~O)] do) :5 

$ 11 eE:'., "''(l - er-E7., "'' lcp(O) - pi~(}) 1 d(} . 
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Mas, como bm ➔ 1, quando m ➔ oo, temos que 

Pm(O) " 
- b- --t C(O), quando m ➔ oo 

m 

e, portanto, 'vt: > O, 3m0 = m 0(t:) E 1N tal que sem~ m 0 , então 

€ 
< -

4 

Assim, temos, finalmente, que 

I
P(x1, ... ,xn)-I>tmo). Pólya((x1, ... ,x,.)l(k+l,m-k+l)) I < 

Ã:=0 

s 11 

oE:'..1 "'•(1 - or-E?.., x; l'f'(0) - p~~O) 1 d0 < 

s 11 

l'f'(0) - p:~º) 1 dO s 

=> IP(x1,••·,xn)-f>tmo). Pólya((x1,•• · ,xn)l(k+l,m-k+l)) I <e;, 
Ã:=0 

(3.6) 

onde a última desigualdade segue de (3.3), (3.4), (3.5) e (3.6). Portanto, 've: > O, 

3mo = mo(e:) E 1N e {Po, ... ,Pmo} com Pk :::::: O, k = O, ... , mo, e Í:~oPk = 1, ta.is que 
Vn E 1N e V(x1, ... ,x,.) E {O, 1r, 

I
P(x1, •.. , x,.) - f>,. · Pólya((x1, ... , Xn)l(k + 1, mo - k + l)) l < e: , 

Ã:=0 

concluindo a demonstração. ■ 

O Teorema 3.3 estabelece que qualquer processo permutável com valores em {O, l }00 

satisfazendo a condição, Vn E 1N, ma.x,,e{o, ... ,n} P (Í:~1 X; = v) S ::_1 , para algum M > O, 

pode ser bem aproximado por um adequado modelo de uma de Pólya-Eggenberger com 

configuração inicial aleatória. Mais precisamente, a probabilidade de qualquer evento 

relativo a uma marginal n-dimensional deste processo, n E IN, pode ser avaliada, com 
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erro máximo e > O fixado, pela. probabilidade do correspondente evento num modelo de 
urna de Pólya-Eggenberger com composição inicial aleatória contendo, inicialmente, k (k 
desconhecido) bolas brancas e m 0+2-k bola.s pretas com probabilidade Pk~) especificada 
no teorema, k = 1, ... , mo+ 1. 

A condição cita.da acima indica que tal aproximação é possível sempre que a dis­
tribuição de E:=l X; não apresente, em seu suporte, pontos com probabilidade de ordem 
superior a¾, isto é, sempre que a. sequência {(n+ l)P(E;=l X;= k)},.~ 1 seja convergente 
(finita), Vk E lN. Esta condição é suficiente para que a medida. de De Finetti do processo 
{X,.}n>J sob consideração seja absolutamente contínua possuindo função densidade de 
probabilidade limitada (na verdade, é também condição necessária.). Deste modo, o resul­
tado do Teorema 3.3 não se aplica, por exemplo, a um processo estocástico permutável em 
{O, 1}00 cuja medida de De Finetti possui função densidade de probabilidade Beta (1/2,1), 
que não é limitada (com efeito, temos, neste caso, lim,,➔oo(n + l)P CE~1 X;= O)= oo). 

Ainda nas condições do Teorema 3.3, com a hipótese adicional da medida de De Finetti 
do processo possuir função densidade de probabilidade não apenas limitada, mas também 
contínua em [O, 1 ], obtemos uma majoração bem mais "fina" em (3.2). Neste caso, temos, 
Vn E 1N e V(x1, ... ,x,.) E {O, l}", 

IP(x1, ... ,x,.)-f>t0
> · Pólya((x1,•-·,x,.)l(k+l,m-k+l)) I < 

k=O 

< E rcI::-1 x, + 1) f(n - E:-1 X;+ 1) E 

- f(n+2) ~ n+l << e e, 

além disso, a distribuição do número de "sucessos" ( { X; = 1}) nas n primeiras etapas 
do processo, I::=J X,, n 2". 1, é bem aproximada por uma mistura de distribuições de 
Pólya-Eggenberger, isto é, 

lp (t X,= t)- ~Pi.· P- E(tl(k + l,m0 - k + 1))1 < e, 

Vn E IN, Vt = O, 1, ... , n, P - E( · l(k + 1, m0 - k + 1)) denotando a distribuição 
de Pólya-Eggenberger para o número de retiradas de bola branca nas n primeiras etapas 
do processo de urna de Pólya-Eggenberger com configuração inicial (k + 1, m0 - k + l) : 

P - E(tl(k + 1, mo - k + 1)) = G)Pólya ({x1, ... , x,.)j(k + 1, m0 - k + 1)), 

com (x 1 , ••• ,x,.) E {0,1}" tal que I::'.,1 x, = t. 
Devemos salientar que o resultado do Teorema 3.3 é essencialmente qualitativo, no 

sentido em que apenas aponta a existência de um modelo de urna de Pólya-Eggenberger 
com configuração inicial aleatória conveniente para "aproximar" o processo estocástico 
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permutável original. Assim, neste trabalho, não contemplamos, por exemplo, a questão 
da possível otimalidade do modelo de urna de Pólya-Eggenberger com configuração inicial 
aleatória considera.do no Teorema 3.3 {Diaconis e Ylvisaker (1985} sugerem uma modi­
ficação nos coeficientes do Polinômio de Bernstein de modo a obter uma majoração mais 
"fina." no Teorema 3.1). 

Destacamos ainda que o Teorema. 3.3, embora estabeleça. condições somente sobre 
as quantidades observáveis {X,.}n>l para que (3.2) se verifique, não corresponde a uma 
representação preditivista. exata para o modelo de urna de Pólya.-Eggenberger com con­
figuração inicial aleatória com e = 1. Afinal, o resultado em (3.2} fornece apenas aprox­
imações para as distribuições marginais do processo { X,.}n>J, não garantindo a existência 
de uma medidaµ* : P(1N2

) ➔ [O, l] tal que, \/n E 1N e V(x;, ... , x,.) E {O, l}", 

P(x1, ... ,x,.) = /N" Pólya((x1, ... ,x,.)l(a,b))dµ*(a,b). 

De fato, como a sequência de medidas em (IN2, P(1N2
)) {{((k+l, m-k+l), pj;')}í:::0}m>I 

não é "tight" (pois, seus respectivos suportes são {( a, b) E IN 2 
: a + b = m + 2} ), n~ 

podemos assegurar a existência de tal medidaµ*. Ainda assim, a hipótese do teorema. 
3.3 é totalmente preditivista, uma vez que leva em conta somente condições sobre as 
quantidades observáveis Xi, X2 , •••• 

Devemos salientar a.inda que o resulta.do do Teorema 3.3 possui forte apelo intuitivo, 
uma vez que envolve a incerteza que possuímos a respeito da composição inicial de uma 
urna contendo bolas de duas cores; os modelos de urnas são objetos de concepção bem mais 

simples, se não ma.is natural, que limites de freqüências relativas ou probabilidades de cara 
em um lançamento de uma moeda (usuais interpretações para a quantidade aleatória 0 
que figura no Teorema da Representação de De Finetti), além de serem passíveis de experi­
mentação e de possuírem grande flexibilidade para modelagem probabilística. (Freudenthal 
(1960) afirma que "Lançamentos de moedas ou da.dos ou jogos de cartas não são suficien­
temente flexíveis. O instrumento de a.lea.torieda.de mais geral é a urna preenchida com 
bolas de diferentes cores"). 

4 Conclusões 

Neste capítulo, a.presenta.mos uma nova versão para o modelo de Pólya-Eggenberger, in­
troduzindo uma distribuição de probabilidade para a composição inicial da urna. Este 
novo processo, diferentemente de outras variações do modelo de Pólya.-Eggenberger, é 
permutável, com medida de De Finetti possuindo função densidade de probabilidade 
igual a uma mistura de funções densidade Betas. Exibimos, também, em nosso princi­
pal resulta.do, uma condição suficiente e preditivista. para que um processo permutável 
a valores em {O, 1}00 possa ser bem aproxima.do por um conveniente modelo de urna de 
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Pólya-Eggenberger com configuração inicial aleatória. Além disso, mostramos que o fort­
alecimento desta condição conduz a uma aproximação bem melhor, de ordem¼- Devemos 
destacar que o resultado do teorema 3.3 possui forte apelo intuitivo, uma vez que envolve 
a incerteza. que possuímos a respeito da composição inicial de uma urna contendo bolas de 
duas cores, ao invés de objetos de concepção mais sofisticada como limites de frequencias 
relativas ou probabilidades de cara em um lançamento de uma moeda. 

Algumas questões, no entanto, não foram contempladas neste trabalho e, indubitavel­
mente, constituem objeto de futura investigação. Dentre outras, destacamos a obtenção 
de condições necessárias para a validade do teorema 3.3 ( do qual foi caracterizada ape­
nas uma condição suficiente), a possível derivação de uma representação preditivista ex­
ata para o modelo de urna de Pólya-Eggenberger, o que corresponde à especificação de 
condições adicionais sobre um processo permutável a valores em {O, l }oc, de modo a re­
stringir a sua medida de De Finetti à classe das medidas em ([O, I], B([O, 11)) com função 
densidade igual a mistura de Betas (na verdade, desconhecemos a existência de uma repre­
sentação preditivista neste caso), a introdução de uma medida de probabilidade conjunta 
para a configuração inicial da urna (A,B) e para o número de bolas repostas à urna em 
cada etapa (C) e, também, a determinação de condições para que as distribuições prediti­
vas de um processo estocástico em {O, 1}00 possam ser bem aproximadas por respectivas 
distribuições preditivas de um processo de urna de Pólya.-Eggenberger com configuração 

inicial aleatória (Dalal e Hall (1983) demonstram resultados desta natureza para famflias 
de distribuições conjugadas em Inferência Bayesia.na.). 
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