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Abstract

In this work we present a new version of Pélya’s urn scheme via the introduction
of a probability distribution for the initial composition, that is, for the numbers of
black and white balls. We also determine when an exchangeable process taking val-
ues in {0, 1}* may be well aproximated by a suitable Pélya’s process with unknown
initial configuration.
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1 Introdugao

O estudo de modelos de urnas, cujos primérdios remontam ao século XVII (segundo
Johnson & Kotz, 1977, p. 22, “a primeira referéncia a modelos de urnas em problemas de
probabilidade aparece nos trabalhos de Huygen (1629-1695)”), tem sido, desde entéo, alvo
de trabalhos de muitos autores devido a sua importancia, que, resumidamente, reside em
pelo menos dois aspectos: primeiro, a possibilidade de derivagdo de muitos resultados da
Teoria de Probabilidade (a0 menos no que diz respeito & probabilidade discreta) via mod-
elos de urnas, o que os tornam um vigoroso instrumento didatico (Johnson & Kotz, 1977,
por exemplo, obtém as distribuigdes de probabilidade discretas comumente utilizadas em
métodos estatisticos a partir de um esquema de urnas mais geral); segundo, a possibilidade
de modelagem de diversos fenémenos da natureza bem como de problemas reais em varias
4reas do conhecimento através de esquemas de urnas (Heitele, 1975, afirma que é possivel
associar modelos de urnas a grande parte dos experimentos que envolvem incerteza). Fi-
nalmente, Pélya (1954) ratifica a importancia de modelos de urnas: “Qualquer problema
de probabilidade parece comparivel a um adequado problema de urnas contendo bolas
e qualquer fendmeno aleatério parece similar, em certos aspectos essenciais, a sucessivas
retiradas de bolas de um sistema de urnas combinadas convenientemente”.

Johnson & Kotz (1977) distinguem os principais modelos de urnas em duas categorias:
(i) os modelos de urnas com reposigao de bolas, dentre os quais podemos destacar os
modelos estocdsticos de Pélya-Eggenberger para fenémenos envolvendo algumas formas
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de “contagio” e de Ehrenfest para transferéncia de calor entre dois corpos isolados e (ii)
os modelos de urnas para problemas de ocupacio (sem reposi¢do de bolas) tais como os
modelos de Bose-Einstein e de Maxwell-Boltzmann. Neste trabalho, no entanto, vamos
nos ater apenas a um particular modelo da categoria (i) citada acima: o modelo de
Pélya-Enggenberger e suas variagdes. Uma descrigdo bastante detalhada sobre o estudo
de modelos de urnas em geral é encontrado em Johnson & Kotz (1977).

No que segue, recordamos o modelo de urna de Pélya-Eggenberger bem como apre-
sentamos uma variagao deste modelo que acreditamos nio ter sido ainda contemplada na
literatura.

2 O modelo de Pélya-Eggenberger e suas variacoes

Dentre os diversos modelos de urnas desenvolvidos para representar formas de contégio,
o modelo de Pélya-Eggenberger ocupa, indubitavelmente, uma posigao central, ndo sé
pelo seu cunho pioneiro nesta irea de estudo, mas também pela generalidade e riqueza
de propriedades que encerra. Na seqiiéncia, faremos uma breve descricdo deste modelo e
de algumas de suas propriedades.

Podemos descrever o modelo de urna de Pélya-Eggenberger de modo bastante simples.
Imaginemos uma urna contendo, inicialmente, a bolas brancas e b bolas pretas. Pélya e
Eggenberger (1923) consideram o seguinte procedimento de retiradas sucessivas de bolas
da urna: retira-se uma bola da urna de maneira equiprovével €, em seguida, retorna-se
esta bola 4 urpa juntamente com ¢ bolas desta mesma cor (o caso particular ¢ = 1 foi
estudado anteriormente por Markov (1906)). Notemos que, segundo esta construcao, a
retirada de uma bola de uma determinada cor, digamos branca, em uma certa etapa do
processo aumenta a probabilidade de nova ocorréncia deste evento (retirada de uma bola
branca) na etapa seguinte (Feller, 1957, d4 o nome de “aftereffect” a este fenémeno em que
a ocorréncia de um evento aumenta (ou diminui) a probabilidade de nova ocorréncia deste
evento). Esta caracteristica do processo, em concordancia com seu conceito de “influence
globale”, teria levado Pélya a considerd-lo um protétipo bastante razoivel para descrever
especificas formas de “contégio”. A seguir, apresentamos uma formalizacio do modelo de
Polya-Eggenberger.

Seja {X,}n>1 um processo estocdstico assumindo valores em {0,1}* com medida IP
tal que, Vn € IN, ¥(z4,...,2,) € {0,1}",

a+) - (a+ (¢ = 1)blb+ ) b+ (n —t — 1)
{(a+b)(a+bdb+c) - (a+b+(n—1))

IP(XI 21‘1,---,Xn=$n)= a(
ou

P(E+tn) P (C+n—t) (=R
P(Xi=z,....,Xn=z,) = r(%;r‘gg)l“(“cﬂ'f)‘")( )’

(2.1)



onde t, = 3 o i, a,b,c € N. O processo {Xp}a>; descreve a evolugdo do modelo
de urna de Pélya-Eggenberger com configuragao inicial (a,b), isto €, com a bolas brancas
e b bolas pretas inicialmente na urna, e ¢ bolas acrescidas em cada etapa. X, corre-
sponde entdo a variavel indicadora de retirada de uma bola branca na n-ésima etapa do
processo, n € IN. De (2.1), é fcil ver que o processo de Pélya-Eggenberger é permutavel.
Deste modo, o processo de Pélya-Eggenberger satisfaz as condigdes do Teorema da Rep-
resentagdo de De Finetti e, portanto, qualquer marginal n-dimensional deste processo
pode ser escrita como uma mistura de n varidveis aleatorias de Bernoulli independentes
e identicamente distribuidas (neste caso, a medida de De Finetti, ou misturadora, possui
funcao densidade de probabilidade Beta com parametros £ e %) A partir do processo
de Pélya-Eggenberger, sio derivadas as distribuicdes de Pélya-Eggenberger e Pélya in-
versa, bem como suas verses multivariadas para as situagdes em que existem mais de
duas cores para as bolas da urna. Um estudo bastante detalhado dessas distribuigbes e
outras caracterizagdes do modelo de Pélya-Eggenberger sio encontrados em Johnson &
Kotz (1977).

A partir do trabalho de Pélya e Eggenberger (1923), modificagdes (ou generalizagdes)
em varias direcdes para o modelo de Pélya-Eggenberger tém sido desenvolvidas, desde a
consideracgio de mais de duas cores para as bolas na urna até a adogdo de diferentes mecan-
ismos de reposi¢io de bolas 3 urna. Dentre estas alterages destacamos: (1) reposicéo nao
apenas de ¢ bolas da mesma cor da bola retirada, mas também de d bolas da outra cor;
(2) reposigao de bolas das duas cores, como em (1), dependendo da etapa do processo,
isto &, ¢ = ¢, e d = d,,, ou da cor da bola retirada, ¢ = ca(zn) € d = dn(z,) e (3) reposicao
de nimeros C € D aleatérios de bolas & urna. Em qualquer uma das trés situagdes acima,
o processo obtido ndo é, em geral, permutavel. No que segue, apresentamos agora uma
nova versao para o modelo de urna de Pélya-Eggenberger.

Consideremos uma urna contendo bolas brancas e pretas. Suponhamos, no entanto,
que sejam desconhecidos os nimeros iniciais A e B de bolas brancas e pretas, respecti-
vamente. Como o par (A, B) é desconhecido, é natural, do ponto de vista subjetivista,
que atribuamos uma medida de probabilidade sobre IN? que expresse nossa incerteza a
respeito da composicio inicial da urna. Assim, a configuracdo inicial da urna para o
modelo que propomos é um vetor aleatério em (IN?, P(IN?)). Quanto & evolugdo do pro-
cesso, admitimos que, em cada etapa, seja escolhida uma bola da urna uniformemente
e que, em seguida, esta seja reposta a urna juntamente com outra bola da mesma cor
(notemos que este é o procedimento de retiradas sucessivas do modelo de urna de Pélya-
Eggenberger com ¢ = 1). Ao processo descrito acima, damos 0 nome de Modelo de Urna
de Pélya-Eggenberger com composicao (ou configuragio) inicial aleatéria. Neste caso,
se {((ar,b), Pr) }reN, (ax,bk) € IN?, px > 0, k € IN, com 3, Pk = 1, exprime nossa
incerteza a respeito da composigdo inicial da urna, temos, utilizando a notagao do comego



desta secdo, que Yn € IN, ¥(zy,...,z,) € {0,1}",

IP(XI =T1,--- 7Xn = zn) = E Pk - Pélya((zla sy zﬂ)l(ak’bk))v
k=1
ou

P(Xy=z,...,Xn=2,) = / Pélya((z1,-..,za}l(a,b))dpu(a,b), (2.2)
onde p : P(IN?) — [0,1] é tal que p(A) = 340 1yeaPis A € P(IN?), e

) e+ z)l(b+n- a:.)l"(a+b)
Pélya((z1,...,2.)|(a, b)) = l"(a)l"(b)f(a+b+n)

A expressio (2.2) acima é facilmente obtida condicionando-se a evolugéo do processo
& composicdo inicial da urna, isto é,

P(Xy=121,...,Xn = 2) = ) P((A, B) = (ar, b)) H P(X;=z;|z1,...,25-1, (ak, b))-
keN

Notemos que em {2.2) poderiamos ter formalmente considerado medidas misturado-
ras p mais gerais sobre (IR2, B(IR2)). No entanto, como tal medida deve refletir nossa
incerteza sobre a composicio inicial da urna, (A, B), sabidamente assumindo valores em
IN?, ndo contemplamos estas situagdes neste trabalho. No que segue, apresentamos al-
gumas propriedades (sem demostragio) do Modelo de Urna de Pélya-Eggenberger com
configuragio inicial aleatéria.

Proposigao 2.1 Qualguer que seja ¢ medida misturadora u, o modelo de Urna de Polya-
Eggenberger com composicio inicial aleatdria € permutdvel, isto é, Yn € N, V(zy,...,z,) €
{0.1}* eVr: {1,...,n} = {1,...,n} bijetora (permutacdo dos indices 1,...,n)

P(:t,r(l), PN ,:1:,,(.,,)) = P(:tl, . ,I,,).

A Proposicdo 2.1 revela que o Modelo de Urna de Pélya-Eggenberger com composigio
inical aleatéria é permutivel, ao contririo das outras variagdes do Modelo de Pélya-
Eggenberger mencionadas anteriormente, que nao gozam de tal propriedade. Também
por isso, vemos que o modelo que propomos nio corresponde a generalizagdo alguma do
modelo de urna de Pélya-Eggenberger, dentre as mencionadas. Ademais, o modelo de
urna de Pélya-Eggenberger com configuragio inicial aleatéria, sendo um processo per-
mutével em {0,1}%, satisfaz as condigdes do Teorema da Representacao de De Finetti
(1937), de modo que qualquer marginal n-dimensional deste processo equivale a uma mis-
tura de n varidveis de Bernoulli independentes e identicamente distribuidas. A seguir,
caracterizamos entao a medida de De Finetti deste processo.

4



Proposicéo 2.2 Seja {X,}ny1 um modelo de urna de Pélya-Eggenberger com configu-
ragdo inicial aleatdria dada por {((ak,bs); pr)ken, (ar,b) € IN%, pr > 0, k € IN, com
Y ken Pe = 1. Entdo a medida de De Finetti deste processo possui fungio densidade de
probabilidade dada por

9(0) = ) peBeta (6; (ax, b)), (23)
keN
onde Beta (6; (a,b)) = {5621 (1 — 8)"Hjp 1)(6).

A Proposicao 2.2 mostra que o modelo de urna de Pélya-Eggenberger com configuragio
inicial dada por {((ax, bx); px) }xew tem medida de De Finetti possuindo funcio densidade
de probabilidade igual a uma mistura enumeravel de funcdes densidade Betas, a saber,
Betas com parametros ay € by, k € IN, ponderadas pelos respectivos pesos p.

Na proxima se¢do, apresentamos o principal resultado deste trabalho, que afirma que,
sob certas condigbes, um processo permutavel em {0,1}* pode ser “bem aproximado”
por um modelo de urna de Pélya-Eggenberger com configuragio inicial aleatéria.

3 Resultado principal

Estabelecemos, a partir de agora, condigdes para que a medida de probabilidade de um
processo permutavel a valores em {0,1}° possa ser bem aproximada, em distancia de
variagdo total, pela medida de um conveniente modelo de urna de Pélya-Eggenberger com
composicao inicial aleatdria. Antes, porém, relembremos o Teorema de Stone-Weierstrass,
em sua versao para o caso particular da reta real devida a Bernstein, que terd papel
fundamental nos resultados subseqiientes.

Teorema 3.1 (S. Bernstein) Seja f : [0,1] —+ IR continua. Fnido, a seqiéncia de
polinémios de Bernstein

Py(z) = 2": (:)f (g) -z n=1,2,...

k=0

converge uniformemente a f quando n — oo,

Marsden (1974) argumenta que o conhecimento de Teoria da Probabilidade possibili-
tou a Bernstein melhor compreender e demonstrar este teorema. De fato, varias passagens
da prova acima correspondem a resultados bem conhecidos em probabilidade. Além disso,
a consideragdo de um cenério envolvendo um jogo com premiagao fornece uma explicagao
intuitiva, ainda que sob uma perspectiva frequentista, da validade do teorema 3.1. Com



efeito, considerando-se n langamentos independentes de uma moeda, nos quais a proba-
bilidade de resultar cara é z, € admitindo-se que f(f) unidades monetarias sdo pagas a
um jogador quando k caras sio obtidas nestes n langamentos da moeda, P,(z) é o ganho
esperado deste jogador. Para valores grandes de n, a fragio de lancamentos que resultam
em cara aproxima-se de z e, consequentemente, o ganho médio de tal jogador aproxima-se
de f(z), isto é, P,(z) deve aproximar f(z).

Na seqiiéncia, exibimos as condigdes para que a solugéo do problema dos momentos
de Hausdorff (Shohat e Tamarkin (1943)) seja absolutamente continua possuindo fungdo
densidade limitada.

Teorema 3.2 Sejem {an}ny1, an € [0,1], uma sequéncia de nimeros e Y(t) uma fungdo
de distribuigdo com P(0) =0 e (1) =1 tais que

1
0 = / t"dy(t), VneN, (3.1)
0

Entéo, ¥(t) = fot e(p)dp, com ¢ > 0 limitada, se, e somente se, existe M > 0 tal que,

Vn € IN, tem-se
n ! v n—v
ver{%ffn) { (v) /(; L) dw(i)} s n+1

As demonstragdes dos teoremas 3.1 e 3.2 sao encontradas, respectivamente, em Mars-
den (1974) e Shohat e Tamarkin (1943).Enunciamos a seguir o principal resultado deste
capitulo.

Teorema 3.3 Seja {X,}n>1 um processo permutdvel com valores em {0,1}°. Suponka
que ezista M > 0 tal que, Yn € IN, maxye(o,..n} P (3 1o, Xi = v) < "—M—l Entéo, Ve > 0,
Ime = mo(e) € IN € {po,...,Pmo} cOMm pr 20,k =0,...,mo, € 3 2 pr =1, tais que
Vne N eV(z,...,z,) € {0,1}",

mo
P(z1,...,2a) = Y pe- Polya((z1,...,zn)|(k +1,mo — k +1))| <, (3.2)
k=0

onde P denota a medida do processo {Xn}n>1.

Prova Como {X,}.>1 é permutdvel assumindo valores em {0,1}*, segue, pelo Teorema
da Representagio de De Finetti, que, Yn € N, Y(z4,...,2,) € {0,1}",

1
P(z1,...,2,) = / 9T #i(] — 0)"_2?" %idy(8),
0

onde ¢ : B([0,1]) — [0,1] é a medida de De Finetti. Em particular, para o vetor
1, =(1,..., )ixa, temos



PQ1,) = / l 6ndp(8), Vne N.
e [\}

an

Como por hipdtese existe M > 0 tal que

i n ! M
P = — V(] — gy < —, ,
chax (.E:] X v) L (v) /; 6°(1 —8)""dy < ) YnelN

segue, pelo Teorema 3.2, que 9 é absolutamente continua e que 3 ¢ : {0,1] - Ry,
limitada, tal que

B(t) = p(t)dt

Neste caso, existe {@n}n>1, ¢n > 0, simples, Yo € IN, tal que p, 2 . Assim,

Ve > 0, 3 ¢, > 0, simples, tal que
! €
[t —emlin < 5. (33)
0
Além disso, existem uma “step function” § : [0,1] = Ry tal que
t €
R (34)
0
uma fun¢io continua limitada C : [0,1] — IR tal que

1
f 1S = Cld) < % (3.5)
[}]

e uma sequéncia de polindmios de Bernstein { Bm}m>1 tal que By, =3 C. Avaliemos,
entdo,

m |
P(z1,...,z2) = Y pi” - Pélya((zl,...,z,.)l(ﬂ1,m—k+1))i,

k=0
c(&
com Pim) E;,._:'('})(L), =0,...,m. Temos
P(zi,...,z5) — Zp(m) Pélya((z1,-.-,&a)l(k+1,m —k+1))| =
k=0




| ! o .
= I / i1 %i(] = G) L= T (0)df —
0
m 1
= Zpg"%/ g1 i(1 — g)r~Tle1 % Beta (0; (k + 1,m — k +1))dd ] ,
0

onde a dltima igualdade segue do Teorema da Representacio de De Finetti e (?7).
Pelo Teorema de Tonelli, segue que

- }P(zl,...,zn) =3 "™ Pélya((z1,.-.,2a); (K + 1,m —k+1))

k=0

1
= | / gE=1 (1 — G T Tp(9)dO —
/o

1 m
- / T ®i(1 — ) Tler (Z p{™ - Beta(f; (k+ 1,m —k + 1))) o] =
¢ k=0

,-OG(L)F(kH)r(m D)

= | [[omrn -y [sp(e)—zm _(ﬂf:( Je (& )aku—e)'"'*} a6

B k=0

/; l(;Z--"=nx-'(1—45»)"-2-’-'-1”-' [(p(a) P (0)] d€‘

L)
d Pm. 0 m k _ m—k — J"‘O (
onde P,(8) = k-O( ) )0 (1-9) eb, = B Por fim,

T (1 - gy T [cp(e) Z ™ ) *(1-0)*"-*%91

}P(z,, eeyZn) — pr:") - Pélya((z1,...,za)|(k+1,m —k+1))

k=0
/01 g = (1 — )T s [<p(o)— P’;( )] de‘ <
P (6)

@(6) —

1
< / gL =1 %(1 — g)r~Lima =
0

’dﬁ
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Mas, como b, = 1, quando m — o0, temos que

Pm 0 u
# — C(#), quando m — oo

e, portanto, Ve > 0, Imy = mg(e) € IN tal que se m > my, entdo

r

Assim, temos, finalmente, que

Fn(6)
bm

—C(0)‘d)\, < % (3.6)

P(zi,...,z,) — Zpﬁmo) - Pélya((zy,...,z)l(k+,m~k+ 1))‘ <

k=0
1
< / O %i(1 — ) Tini T | (8) — P'I’)‘_(a)‘do <
0 'm
1
< ['fotor- "= <
0 bm |

(O dy, =

P,
b

1 1 1 1
< [lo=enldh + [ lon—Slan + [1s-cian +
[1] 0 (4] 0

'mo

=

mo
P(zl,...,z,.)—zpi’""). Pélya((x,,...,1:,,)[(k+1,m—k+1))‘] < €,

k=0

onde a dltima desigualdade segue de (3.3), (3.4), (3.5) e (3.6). Portanto, Ve > 0,
Imo = mo(e) € N e {Po,-.-,Pmo} com px > 0, k = 0,...,m0, € } 2 px = 1, tais que
YneNeV(zy,...,z,) € {0,1}",

P(21,...za) = > pr - Pélya((zr, ..., za)l(k + 1,mo — k + 1))‘ <e,
k=0

concluindo a demonstragao. |

O Teorema 3.3 estabelece que qualquer processo permutével com valores em {0, 1}
satisfazendo a condigio, Vn € IN, max,e(o,..n} P (3 o1my Xi = v) £ M. para algum M > 0,
pode ser bem aproximado por um adequado modelo de urna de Pdlya-Eggenberger com
configuragao inicial aleatdria. Mais precisamente, a probabilidade de qualquer evento
relativo a uma marginal n-dimensional deste processo, n € IN, pode ser avaliada, com
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erro maximo € > 0 fixado, pela probabilidade do correspondente evento num modelo de
urna de Pélya-Eggenberger com composigio inicial aleatéria contendo, inicialmente, k (k
desconhecido) bolas brancas e mo+2—k bolas pretas com probabilidade pt‘;) especificada
no teorema, k =1,...,mg+ 1.

A condigdo citada acima indica que tal aproximagio é possivel sempre que a dis-
tribuicio de Y 7., X; ndo apresente, em seu suporte, pontos com probabilidade de ordem
superior a 1, isto é, sempre que a sequéncia {(n+1)P (3_7., Xi = k)}a>1 seja convergente
(finita), Vk € IN. Esta condigdo é suficiente para que a medida de De Finetti do processo
{Xn}n>1 sob consideracio seja absolutamente continua possuindo funcdo densidade de
probabilidade limitada (na verdade, é também condi¢do necesséria). Deste modo, o resul-
tado do Teorema 3.3 nao se aplica, por exemplo, a um processo estocdstico permutavel em
{0,1}* cuja medida de De Finetti possui fungio densidade de probabilidade Beta (1/2,1),
que nao é limitada (com efeito, temos, neste caso, lim,,o(n + 1)P (} ., X: = 0) = 00).

Ainda nas condigbes do Teorema 3.3, com a hipdtese adicional da medida de De Finetti
do processo possuir fungao densidade de probabilidade nao apenas limitada, mas também
continua em [0, 1], obtemos uma majoragao bem mais “fina” em (3.2). Neste caso, temos,
Vn e NeVY(zy,...,z,) € {0,1}7,

mo
P(21,...22) — > py"" - Pélya((21,.- ., 2a)|(k + 1,m — k + 1))

k=0
<5I‘( i+ D=5 z:4+1) < €

<

=1
- F(n+2) - n+l
além disso, a distribui¢io do niimero de “sucessos” ({X; = 1}) nas n primeiras etapas
do processo, Y ., Xi, n > 1, é bem aproximada por uma mistura de distribui¢des de
Pdlya-Eggenberger, isto é,

P(iX;:t) -—Zpk-P—E(tl(k+1,mo-k+l))

k=0

Vne NN, Vi=0,1,...,n, P— E( - [(k+1,mo— k + 1)) denotando a distribuigio
de Polya-Eggenberger para o niimero de retiradas de bola branca nas n primeiras etapas
do processo de urna de Pélya-Eggenberger com configuragdo inicial (k+1,mo—k + 1) :

<< E e,

<e,

P—-E(tl{k+1,my~k+1)) = (1:)Pélya ((z1, -z )ik +L,mo — Kk + 1)),

com (Z1,...,Za) € {0,1}" tal que ) .., 2; = 1.

Devemos salientar que o resultado do Teorema 3.3 é essencialmente qualitativo, no
sentido em que apenas aponta a existéncia de um modelo de urna de Pélya-Eggenberger
com configuragdo inicial aleatéria conveniente para “aproximar” o processo estocdstico
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permutdvel original. Assim, neste trabalho, ndo contemplamos, por exemplo, a questio
da possivel otimalidade do modelo de urna de Pélya-Eggenberger com configuracio inicial
aleatéria considerado no Teorema 3.3 (Diaconis e Ylvisaker (1985) sugeremn uma modi-
ficacao nos coeficientes do Polinémio de Bernstein de modo a obter uma majoragao mais
“fina” no Teorema 3.1).

Destacamos ainda que o Teorema 3.3, embora estabelega condigdes somente sobre
as quantidades observaveis {X,}n>1 para que (3.2) se verifique, ndo corresponde a uma
representa¢do preditivista exata para o modelo de urna de Pélya-Eggenberger com con-
figuracdo inicial aleatéria com ¢ = 1. Afinal, o resultado em (3.2) fornece apenas aprox-
imacoes para as distribuigdes marginais do processo { X, }»>1, ndo garantindo a existéncia
de uma medida p* : P(IN?) = [0, 1] tal que, Yn e N e V(zl—, .o Tn) € {0,1}7,

P(zy,...,z,) = /N? Pélya ((z1, - .., zs)|(a, b))dpu*(a, b} .

De fato, como a sequéncia de medidas em (IN?, P(IN?)} {{((k+1, m—k+1), pP) } 7o }m>1
nao é “tight” (pois, seus respectivos suportes sio {(a,b) € IN* : @ + b = m + 2}), nao
podemos assegurar a existéncia de tal medida p*. Ainda assim, a hipdtese do teorema
3.3 é totalmente preditivista, uma vez que leva em conta somente condigbes sobre as
quantidades observaveis X, Xs, .. ..

Devemos salientar ainda que o resultado do Teorema 3.3 possui forte apelo intuitivo,
uma vez que envolve a incerteza que possuimos a respeito da composigio inicial de uma
urna contendo bolas de duas cores; os modelos de urnas sao objetos de concepgao bermn mais
simples, se nao mais natural, que limites de frequiéncias relativas ou probabilidades de cara
em um lancamento de uma moeda (usuais interpretagdes para a quantidade aleatéria ¢
que figura no Teorema da Representacio de De Finetti), além de serem passiveis de experi-
mentagio e de possuirem grande flexibilidade para modelagem probabilistica (Freudenthal
(1960) afirma que “Lancamentos de moedas ou dados ou jogos de cartas nio sao suficien-
temente flexiveis. O instrumento de aleatoriedade mais geral é a urna preenchida com
bolas de diferentes cores”).

4 Conclusoes

Neste capitulo, apresentamos uma nova versao para o modelo de Pélya-Eggenberger, in-
troduzindo uma distribuicio de probabilidade para a composicio inicial da urna. Este
novo processo, diferentemente de outras variagdes do modelo de Pélya-Eggenberger, é
permutavel, com medida de De Finetti possuindo fun¢do densidade de probabilidade
igual a uma mistura de fungdes densidade Betas. Exibimos, também, em nosso princi-
pal resultado, uma condicdo suficiente e preditivista para que um processo permutavel
a valores em {0,1}* possa ser bem aproximado por um conveniente modelo de urna de
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Pélya-Eggenberger com configuragio inicial aleatéria. Além disso, mostramos que o fort-
alecimento desta condigio conduz a uma aproximagao bem melthor, de ordem % Devemos
destacar que o resultado do teorema 3.3 possui forte apelo intuitivo, uma vez que envolve
a incerteza que possuimos a respeito da composi¢ao inicial de uma urna contendo bolas de
duas cores, ao invés de objetos de concepgao mais sofisticada como limites de frequencias
relativas ou probabilidades de cara em um langamento de uma moeda.

Algumas questdes, no entanto, nao foram contempladas neste trabalho e, indubitavel-
mente, constituem objeto de futura investigagio. Dentre outras, destacamos a obtengao
de condigdes necessirias para a validade do teorema 3.3 (do qual foi caracterizada ape-
nas uma condi¢io suficiente), a possivel derivagio de uma representacao preditivista ex-
ata para o modelo de urna de Pélya-Eggenberger, o que corresponde & especificacio de
condigdes adicionais sobre um processo permutavel a valores em {0,1}* de modo a re-
stringir a sua medida de De Finetti 3 classe das medidas em ([0, 1}, B([0,1])) com funcéo
densidade igual a mistura de Betas (na verdade, desconhecemos a existéncia de uma repre-
sentagdo preditivista neste caso), a introdugéo de uma medida de probabilidade conjunta
para a configuracdo inicial da urna (A,B) e para o nimero de bolas repostas a urna em
cada etapa (C) e, também, a determinagao de condi¢bes para que as distribuigdes prediti-
vas de um processo estocastico em {0,1}° possam ser bem aproximadas por respectivas
distribuigoes preditivas de um processo de urna de Pélya-Eggenberger com configuragio
inicial aleatéria (Dalal e Hall (1983) demonstram resultados desta natureza para familias
de distribui¢bes conjugadas em Inferéncia Bayesiana).
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