A First-Order Characterization and Topological Properties of Gel'fand \mathcal{C}^{∞} -Rings

JEAN CERQUEIRA BERNI*
São Paulo State University - Unesp, Brazil
HUGO LUIZ MARIANO[†]
University of São Paulo - USP, Brazil

Keywords: \mathcal{C}^{∞} -ring, Gel'fand rings, Smooth Spectra

Definition 1. A C^{∞} -structure on a set A is a pair $\mathfrak{A} = (A, \Phi)$, where:

$$\Phi: \bigcup_{n \in \mathbb{N}} C^{\infty}(\mathbb{R}^n, \mathbb{R}) \to \bigcup_{n \in \mathbb{N}} \operatorname{Func}(A^n; A)$$

$$(f: \mathbb{R}^n \stackrel{C^{\infty}}{\to} \mathbb{R}) \mapsto \Phi(f) := (f^A : A^n \to A) ,$$

that is, Φ interprets the **symbols** –here considered simply as syntactic symbols rather than functions– of all smooth real functions of n variables as n-ary function symbols on A.

A C^{∞} -structure $\mathfrak{A}=(A,\Phi)$ is a $\underline{C^{\infty}$ -ring whenever it preserves projections and all equations between smooth functions.

In this work we introduce the concept of a "Gel'fand \mathcal{C}^{∞} -ring" in this first-order language as follows:

Definition 2. A C^{∞} -ring A is a **Gelfand** C^{∞} -ring whenever the following formula is true in it:

$$(\forall x \in A)(\exists y \in A)(\exists y' \in A)((1 - x \cdot y) \cdot (1 - (1 - x) \cdot y') = 0) \tag{1}$$

Gel'fand \mathcal{C}^{∞} -rings compose a full subcategory of \mathcal{C}^{∞} Ring, which we denote by \mathcal{C}^{∞} GfRing, and have the following remarkable properties:

- A C^{∞} -ring, A, is a Gel'fand C^{∞} if, and only if, every prime and C^{∞} -radical prime ideal (see [2]) is contained in a unique maximal ideal;
- C^{∞} GfRing is closed under products, quotients and directed colimits (for their definition, see [3]);
- Every \mathcal{C}^{∞} -domain (for the definition, see [3]) is a Gel'fand \mathcal{C}^{∞} ring (the converse is not true);
- Every von Neumann regular \mathcal{C}^{∞} -ring (see [1]) is a Gel'fand \mathcal{C}^{∞} -Ring;
- A \mathcal{C}^{∞} -domain is a Gel'fand \mathcal{C}^{∞} -ring if, and only if, it is a local \mathcal{C}^{∞} -ring;

Moreover, we show the following topological result concerning the topology of the smooth versions of the prime and maximal *spectra* (for the definitions, see [1]) of Gel'fand \mathcal{C}^{∞} -rings:

^{*}j.berni@unesp.br

[†]hugomar@ime.usp.br

• Whenever A is a Gel'fand C^{∞} -ring, the map:

$$\mu: \operatorname{Spec}^{\infty}(A) \to \operatorname{Specm}^{\infty}(A)$$
 $\mathfrak{m} \mapsto \mathfrak{m}_{\mathfrak{p}}$

which maps every prime ideal to the unique maximal ideal in which it is contained, is a continuous retraction; Conversely, if there is a continuous retraction from $\operatorname{Spec}^{\infty}(A)$ to $\operatorname{Specm}^{\infty}(A)$, then A is necessarily a Gel'fand \mathcal{C}^{∞} -ring;

• A \mathcal{C}^{∞} -ring is Gel'fand if, and only if, $\operatorname{Spec}^{\infty}(A)$ is a normal topological space.

The main contribution of this work is, thus, to show that the first order notion of a Gel'fand \mathcal{C}^{∞} -ring proposed in **Definition 2** is a "fair" one, showing some of its interesting unfoldings.

References

- [1] BERNI, Jean Cerqueira; MARIANO, Hugo Luiz. Classification of Boolean Algebras through von Neumann Regular C[∞]−Rings and Applications, Categories and General Algebraic Structures with Applications v.21 n.1, pp. 211 -239, 2024.
- [2] BERNI, Jean Cerqueira; MARIANO, Hugo Luiz. Separation Theorems in The Commutative Algebra of C^{∞} -Rings and Applications, Communications in Algebra v.29, pp. 1-31, 2022.
- [3] Berni, Jean Cerqueira; Mariano, Hugo Luiz. A Universal Algebraic Survey of C^{∞} -Rings. Latin American Journal Of Mathematics v.1, n.1, pp. 8 39, 2022.
- [4] BERNI, Jean Cerqueira; MARIANO, Hugo Luiz. A Geometria Diferencial Sintética e os Mundos onde Podemos Interpretá-la: um Convite ao Estudo dos Anéis C^{∞} , Revista Matemática Universitária v.1, pp. 5 30, 2022.
- [5] Berni, Jean Cerqueira; Mariano, Hugo Luiz. C^{∞} -Rings: an Interplay Between Geometry and Logics. Boletín de Matemáticas v. 27, n. 2, ed. 2, pp. 85-112, 2022.
- [6] BERNI, Jean Cerqueira; MARIANO, Hugo Luiz; FIGUEIREDO, Rodrigo. On the Order Theory of C[∞]−Reduced C[∞]−Rings and Applications. Journal of Applied Logics: IFCoLog Journal of Logics and Their Applications, v. 9, pp. 93-134, 2022.
- [7] BERNI, Jean Cerqueira; MARIANO, Hugo Luiz. Classifying toposes for some theories of C^{∞} -Rings. South American Journal of Logic, [s. l.], and 2, v. 4, n. 2, p. 313-350, 2018.
- [8] Comer, Stephen D. Representation by Algebras of Sections over Boolean Spaces. Pacific Journal of Mathematics, v. 38, n. 1, 1971.
- [9] Contessa, Maria. On pm-rings. Communications in Algebra 12.1, pp. 1447-1469, 1984.
- [10] DE MARCO, G.; ORSATTI, A. Commutative Rings in which every Prime Ideal is contained in a Unique Maximal Ideal. In: Proceedings of the American Mathematical Society 30.3, pp. 459 466, 1971.
- [11] MOERDIJK, Ieke; REYES, Gonzalo. Models for Smooth Infinitesimal Analysis. 1. ed. New York: Springer Verlag, 1991. 399 p. ISBN 0-387-97489-X.
- [12] MULVEY, Christopher. A Generalisation of Gelfand Duality, Journal of Algebra, v. 56, [s.l.], p. 499-505, 1979.