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SUMMA RY. The object of this paper is to show that for &ny statistic satisfying fairly general conditions, we can 

construct an adjusted statistic having the same distribution to order 0( n-1 ) of an a.rbitrary first-order approximating 

distribution. We prove tha.t the multiplication of the statistic by a suitable stochastic correction improves the first 

order approximation to its distributioa . This paper extends the results of the closely related paper by Cordeiro and 

Ferra.ri (1991) to cope with several other statistical tests. The resulting expression for the adjustment factor requires 

knowledge of the Edgeworth-type expansion to order 0( n-1 ) for the distribution of the unmodified statistic. In 

practice its functional form involves some derivatives of the first-order approximating distribution, certain differences 

between \he cumulants of appropriate order in n of the unmodified statistic and those of its first order approximation, 

a.nd the unmodified statistic itself. Some applications are discussed. 
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1. INTRODUCTION 

In the past 15 years or so there has been a renewed interest on Bartlett corrections leading to better 

approximations of the null distribution of the likelihood ratio statistic by a chi-squared distribution. Com­

putation of Bartlett corrections has been discussed by Lawley (1956), Barndorff-Nielsen and Cox (1984) 

and Cordeiro (1993a). General formulae for Bartlett corrections have been obtained explicitly in several 

regression models by Cordeiro (1983, 1985, 1987), Cordeiro and Paula (1989), Cordeiro, Paula and Botter 

(1994) and authors cited therein. The numerical benefits of Bartlett corrections have been demonstrated 

by M0ller (1986) and Cordeiro (1993b, 1995) among others. The main goal of this paper is to show that 

Bartlett's technique can be carried out for general continuous statistics. 

Severi\! statistical tests rely in some way on first-order approximations derived from distributions other 

than chi-squared. We are often interested in computing significance levels or confidence intervals based 

on these first-order approximations. However, it also well known that these approximations may not work 

well for small or moderate-sized samples. The problem of developing a correction similar to the Bartlett 

correction to other test statistics was posed by Cox ( 1988) and solved three years later for statistics which 



converge to chi-squared by Cordeiro and Ferrari (1991). We now generalize this result to general continuous 

1tatistics. 

Modified statistics have been widely used to obtain good approximations for cla.sses of statistics associ­

ated with the normal and chi-squared distributions. The principal advantage of our main result is that it 

applies in full generality in a number of senses. First, for rather general parametric models, we can easily 

improve any continuous statistic by multipling it by an adequate adjustment factor. Second, our technique 

includes as apecial cases, some commonly used adjusted statistics, which enables us to study them within the 

same framewok, rather than as an unrelated collection of adjusted statistics. Third, it allows for nuisance 

parameters. Our arguments will be informal without explicit attention to regularity conditions, these being 

essentially those required for the expansions needed for maximum likelihood theory in regular estimation 

problems. 

Let S be a continuous statistic whose distribution function has a known first-order approximating distri­

bution. A natural question is then: Can we find a better approximation to the distribution of the statistic 

in use? The purpose of our paper is to answer this question to some extent. We propose a new statistics• 

whose distribution function agrees with the first-order approximating distribution to order O(n-1
), where 

n is the aample size. Thus, s• is better approximated by this first-order distribution than S . The key idea 

for deriving the new statistic is to know the Edgeworth-type expansion for the distribution function of S in 

terms of the first-order approximating distribution to the required order. We assume the same conditions 

for the validity of the Edgeworth-type expansions (Feller, 1971; Skovgaard, 1981a, b, 1986). The infinite 

series expansion for the distribution of S can sometimes be divergent and we need to impose some further 

restrictions on the cumulants of S for using a truncated expansion to O(n- 1 ) . 

For most applications the ith cumulanta tti's of S satisfy tt; = it;o + O(n-1/l) if i ~ 2 and tt; = 

tt;o + O(nl-i/2) if i ~ 3, as n - oo, where the cumulanta ic;0 's refer to the first-order approximation and do 

not depend on n. Under these assumptions, we can obtain the Edgeworth-type expansion of the distribution 

of S corrected to order O(n- 1 ) using a truncated series with a few terms. The truncated series gives in 

general significant improvement over the first-order approximation. 

In Section 2 we define a few important concepta which will be used in the following sections and discll88 

some theoretical aspects of using Edgeworth-type ·expansion for the density function of any continuous 

statistic S . In Section 3 we define a new statistic s• whose distribution function is identical to the first 

order approximating distribution ignoring terms of order less than n-1 . We show that whenever a truncated 

Edgeworth-type expansion for the distribution function Fs(z) of S to O(n- 1 ) is available, a new statistics• 

can be worked out in such a way that it will generally improve the original inference. The modified statistic 

is determined by a simple multiplicative adjustment to the statistic S which makes the terms of order 
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n-1/ 2 and n- 1 in the asymptotic expansion of the distribution function of the modified statistics• vanish. 

This scaling factor extends Bartlett's idea of correcting likelihood ratio statistics to several other types of 

statistics. It is called "generalized Bartlett correction" and can be given as a function of some derivatives of 

the first-order approximating distribution, the differences (11:, -11:;0)'11 between the cumulants of order greater 

than O(n-312) and the unmodified 1tatistic itself. Finally, in Section 4, we show through several applications 

that our method has the potential to be a very useful contribution to 1tatistical literature since it comprises 

a very wide spectrum of improved statistics widely used to test hypotheses of interest including Bartlett­

type corrected statistics which converge to chi-squared, the Cornish-Fisher polynomial transformation to 

normality and improved maximum likelihood estimates. 

2. BACKGR.OUND 

Suppose we are interested in the distribution of a continuous scalar statistic S, whose distribution 

depends on parameters 9 and n. It is commom practice among applied statisticians to make inferences on 

8 by computing tail-area probabilities based on an approximating known distribution for S . In this section 

we discu811 the nature of such approximations for arbitrary initial approximating distributions. In the next 

section we show how to improve the inferences. 

We begin with the univariate Edgeworth-type expansion for the density of any continuous scalar statistic 
S, in which the error of the approximation approachCII zero as some parameter n, typically the sample size, 

tends to infinity. In order to improve the approximation, even for small n, further terms in the asymptotic 

expansion may be required. One of the principal aims in this article is to introduce a very simple new 

procedure for modifying S to match the distribution function of the modified statistic s• with some arbitrary 

known distribution function of reference, Fz(z) say, such that the error of the approximation is of order 

O(n-3/2) . 

We now examine the density of S in terms of an arbitrary first-order approximating known density of a 

scalar random variable Z . Supp011e that Fz(z) is absolutely continuous with known density function /z(z) . 

Further, we 1!188Ume that the derivatives of /z(z) of the requisite order are continuous in the support of S . 

Let the cumula.nts of Sand Z be {11:;} and {11:;0}, respectively. These cumulants are assumed to be known 

at least up to some order. In regular problems, the statistic S has a density function /s(z) which admits an 

expansion in terms of the initial known approximating density /z(z) of Z, of the form (McCullagh, 1987; 

equation (5.3)) 

~ ; IY/z(z) /s(z) = /z(z) + "'-'(-1) '), - -.1- , 
I . 

i:1 

um--+ oo, where Di /z(z) = d'/z(z)/dzi. 
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In equation (1) the '7;'s are "formal momenta" obtained by treating the differences (1t; -1t;o)'s as "formal 

cumulants" . These "formal moments" are generally used to obtain a formal Edgeworth expansion (1) for the 

density function of S. It would be valid provided suitable regularity conditions hold. The truncated series 

approximation (1) for /s(r) is continuous and it does not hold in general if S has a discrete distribution. 

When /z(r) is the standard normal density, equation (1) is kno~n in the literature as Gram-Charlier 

expansion. It is important to emphasize that these differences between the cumulants of S and Z are not, in 

general, the cumulants of any real random variable (McCullagh, 1987; Section 5.2) . The coefficients '1i 's are 

obtained from the formulae that give moments in terms of cumulants (see, for example, Kendall and Stuart, 

1977, equations (3.37)). 

Equation (J) shows that a valid asymptotic expansion for the density function of any continuous statistic 

S, assuming that some conditions hold, can be obtained in general, up to any order of accuracy, from the 

knowledge of both cumulants of Sand Z, and the derivatives of the reference density /z(r ). Such conditions 

imposed directly on the statistic are difficult to state in a broad sense, at least in the context of the present 

article. For details on regularity conditions, see McCullagh (1987, Chapter 16) and Skovgaard (1981a, b, 

1986). In several applications we have in mind, Z has a normal distribution with zero mean and unit 

variance or a chi-squared distribution with known degrees of freedom . However, the choice of the first-order 

approximating density is usually made in order to minimize the number of correction terms in ( I), and it may 

be more useful to consider a density /z(z) other than the normal or chi-squared. A variety of distributions 

for Z can be exploited to give better finite sample approximations to the true density of S. Although the 

important conceptual advantage of (1) is that we can use any first-order approximating density, the limiting 

distribution of S (when it is known) is often the most convenient distribution to consider for Z in terms of 

theoretical calculations (see McCullagh, 1987, Chapter 5, for further details) . 

We are not really interested in exploiting the convergence of the series in (1) but our main objective is 

to take a small number of terms to guarantee a good approximation to /s(r). No attempt will be made here 

to state precisely the conditions in which the expansion in (1) is supposed to approximate the density of S . 

However, in moat situations, excluding lattice problems, and under suitable smoothness conditions, we can 

approximate /s(z) by a trucated series as in (1) such that the error is of a specified order (see, for example, 

Skovgaard, 1981a, b, 1986). If S is a standardized 5Um of n independent random variables and Z has a 

standard normal density, we have 1t1 - 1t10 = 1t2 - 1t 20 = 0 and ,q - 1t;o = O(n-(i- 2)12 ), for i?: 3. Thus, the 

error of the expansion (1) with m?: 3 terms is typically of order O(n-(m-3)/2). For that reason, we content 

ourselves with 6 terms in the Gram-Charlier expansion, leaving an error that is of order O(n-312). 
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Series expansion (1) can be expressed as a multiplicative correction to /z(z) 

00 ( 1 )i 
/s(z) = /z(z){ I+ L --==.-- 'l,h,(z) }, 

i•l I. 
(2) 

where h;(z) = (-l)'D'/z(z)/fz(z). In many instances, the functions h;(z)'s are simple with nice mathe­

matical properties. In the case of the Gram-Chartier expansion, the leading term /z(z) is the unit normal 

density and the h;(z)'s reduce to the standard Hermite polynomials. Here, 'II = ic1, 'll = ic2 - 1 'Ii = ic;, 

for i ~ 3. T£ the basic approximating density is gamma, the h;(z)'s are the Laguerre polynomials. Another 

special case of (2) is obtained when Z has a chi-squared distribution with q degrees of freedom, denoted here 

by x:. If /,(z) is the density function of x!, its derivatives are obtained recursively by 

and 

where r(.) is the gamma function. 

f(q/2)z1 f,(z) 
/,+21(r) = 2'r(q/2 + /) ' 

From these equations we can prove that h;(z) = 2- 1 L~=0(-l}i v;/zi, where v; = n!=1(q - 2r) if j ~ 1 

and vo = 1. Thus, 

h;(z) = r1 { 1 _ q - 2 + (q - 2)~q - 4) + ___ + (-ll' (q - 2)(q - 4) ... (q - 2i) }. 
z z ~ 

(3) 

is an ith degree polynomial in z- 1. An expansion for the density of any statistic S to order O(n- 1 ), which 

has an asymptotic chi-squared distribution, can then be obtained by substituting the h;(z)'s given in (3) into 

equation (2), and observing that the 11;'s are the n - 1 terms of the cumulants ic;'s of S, i.e., '1i = ic;-2;(i-l)!q 

fori~l. 

3. AN ADJUSTED STATISTIC 

When testing a statistical hypothesis or estimating unknown parameters, it is ofl.en convenient to use an 

asymptotic approximation to the distribution of a statistic. Large sample assumptions are then commonly 

used in statistics since exact results are not always available. In such cases, inferences rely on what is called 

first-order asymptotics, i.e., they employ the quantiles of a known limiting distribution, but they may be 

inaccurate for small or moderate sample sizes. This section addresses the issue of obtaining a new statistic 

s• which is better approximated by the first-order limiting distribution. 

Let S be a given one-dimensional statistic which is assumed to be derived from a sample Y, of n in­

dependent obeervations having densities that depend on the vector parameter 6. We consider continuous 
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acalar statistica whose density functions can be validly represented by expansion (1) , as n, the dimension 

of Y increases. Let Fs(z) and Fz(z) be the cumulative distribution functions of S and Z corresponding 

to /s(z) and /z(z) respectively. Now suppose that Fz(z) is free from n and then Z = O,(l). Further, 

the distribution function Fz(z) will be assumed to be arbitrarily differentiable and it is also assumed that 

fz(z) > 0 for all z in the support of S. The formal Edgeworth-type expansion for the distribution function 

of S, obtained by integrating ( 1 ), is 

~ - DiFz(z) 
Fs(z) == Fz(z) + L..,(-l)'IJ; - -.1-, 

i:1 I. 

(4) 

as m - oo. Thus, equation (4) comes directly from (1) by changing /z(z) for Fz(z). This equation is given in 

different notation by Hill and Davis (1968) for arbitrary analytic Fz(z). The truncated series approximation 

(4) is continuous. If Sis a discrete random variable, Fs(z) is discontinuous with jumps of order n-•fl at the 

support points of S. For this reason, no continuous series could approximate Fs(z) with uniform accuracy 

in any non-trivial interval of ll.. 

In many statistical applications, we can group the terms of (4) according to their order in n. Then, 

sucessive terms in the re-grouped series can decrease (monotonically) in half-powers of n. Fortunately, many 

atatistica can be given by sums of independent identically distributed random variables, and this approach 

can be achieved after suitable standardization of the statistic S and by choosing Fz(z) adequately, for 

example, as the limiting distribution function of S. We can therefore write Fs(z) in the form 

(5) 

where A1(z) and A2(z) are terms of orders O(n- 112 ) and O(n-1), respectively, which depend on some 

differences (it; - 1t;o)'s of the cumulants of S and Z . The terms A1 (z) and A2(z) may be polynomials in z 

but this is not always the case. 

Essentially, the idea behind our procedure of modifying S is based on the fact that the distribution 

function Fs(z) may be formally expanded as in equation (5). We shall restrict ourselves to series expansions 

up to order n-1 leaving in (5) an error that is of order O(n-312 ) . We now prove that quite generally the 

statistic S can be modified by suitable functions 61 (S) and b2(S) of the statistic S itself of orders n- 112 and 

n-1 to produce an adjusted statistic S' which has the same distribution of Z to O(n-1). The form (5) of 

the distribution function of S suggests the use of a modified statistic defined by 

(6) 

where l>;(S) = O,(n-•12) for i = I, 2 are additive stochastic correction terms as functions of the statistic S. 

The functions 1>1 (S) and l>2(S) are now determined to make the distribution of s• to order n- 1
, Fs-(z) 

say, identical to Fz(z). The formula (1) of Cox and Reid (1987) is used in conjunction with (6) to derive 

6 



an expansion for the distribution function oC interest Fs•(Z'). Applying Cox a.nd Reid's (1987) formula to 

equation (6) (see also equation (3.67) in Barndorfl'-Nielsen a.nd Cox, 1989), under appropriate conditions, 

we find to O(n-1) 

Some conditions are necessary to bound the remainder term in equation (7) (see Cox and Reid, 1987). It 

is now straightforward to conclude from equations (5) and (7) that the equality Fs-(z) = Fz(:z;) holds to 

order n- 1 if and only if 

I d 
A1(z) + A,{z) + 1>,(z)/s(z) + 1>2(:z;)/s(z) + --d {1>,(z)2 /s(r)} = 0. 

2 Z' 

Using (1) and collecting terms of orders n-1/ 2 and n-1 in the last equation yields 

and 

where primes denote derivatives with respect to z . It is easy to verify that these equations have at least one 

solution given by l>j (:z;) = -A,{:z;)//z(z) and 1>,(z) = -A7 (z)/ /z{z) + A1(:z;)2 /z{:z;)/{2/z(z)3}, provided 

that /z(:r) ia non-zero in the support of S . 

Consequentely, the modified statistic s• whose distribution function is Fz(z) to order n- 1 is given by 

(assuming S -1- 0 a.11.) 

s· =S[l A,(S) .!_{A2(S) _ A1(S)
2
/i(S)}] 

+ /z(S)S + S /z(S) 2/z(S)3 . 
(8) 

The method that leads to (8) is formally correct provided only that the distribution of S has a valid Edgeworth 

expansion (4) up to and including the O(n- 1 ) term. The bracketed multiplying factor in equation (8) is a 

kind of stochastic adjustment involving the n- 112 and n-1 functions A1(:z;) and A2(:z;) of expansion (5), the 

density /z(z) with its first derivative /z{z) and the statistic S itself. Clearly, the terms A,(z) and A2(:z;) 

are functions themselves of certain differences between the cumulants of S and Z and of some derivatives 

of the distribution function, a fact that may be seen from equations (4) and (8). In general, the stochastic 

multiplying factor in (8) may he written as I +b(S, ,/i, D' Fz ), where the notation <-mphasizcs the dependence 

of the derivatives of the distribution function Fz( r) and ~formal moments" 'Ii 's and the unmodified statistic 

S. Given its similarity with the Bartlett-type correction for a class of chi-squared statistics (Cordeiro and 

Ferrari, 1991), the adjustment factor I+ b(S, 171 , Di Fz) will be called "generalized Bartlett correction". This 

i11 a very general result which can be used to improve many important tests in statistics and econometrics. 
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Instead of modifying S, an alternative approach is to modify the quantiles of the reference distribution 

in order to make better inferences based on S. From formula (2) of Cox and Reid (1987) (see also expression 

(3.68) in Barndorff-Nielsen and Cox, 1989) and using the fact that s• in (6) has distribution function 

Fz(z) to order n- 1, it follows that, to this order, Fs(z•) = Fz(z), where z• = z + 1>1(z) + B2(z) with 

B2(z) = 62(z) + l>1(z)1>; (z). Then, 

z• = z[t - A1(z) _ !{A1(z)Aj(z) + A2 (z) + A1(z)
2
/i(z)}]. 

z/z(z) z /z(z)2 /z(z) 2/z(z)3 
(9) 

Therefore, improved inferences can be achieved from two distinct viewpoints, which are equivalent to 

O(n- 1). First, we ca~ construct a new statistic in (8) which is better approximated by the first-order 

approximating distribution Fz(z). Second, we can obtain a new distribution based on the modified upper 

percentile point (9) of our statistic S which is closer to the true distribution of S than this first-order 

approximating distribution. It is clear that the functional forms of the multiplicative corrections to improve 

the upper tail of Sand to improve the statistic S itself are not in general the same, unless the n- 1/ 2 term 

A1(z) is a constant not depending on z. 

In the next section we show that some improved statistics widely used follow directly from equation (8). In 

general the 11,'s are functions of the unknown parameters and we can use the statistics• = {l+b(S, ,;,, D; Fz}) 

with the parameters 11, 's replaced by consistent estimates ,;, 's because the error committed would typically 

be O,.(n-312). This result followa from the equivalence of formulae (3c) and (4c) of Cox and Reid (1987). 

4. SPECIAL CASES 

In this section we shall consider some special cases of equation (8) in order to show its importance 

and usefulness to produce more accurate approximations to the distributions of statistics. Examples in­

clude Cornish-Fisher's formula for the polynomial transformation to normality, accurate formula for cor­

recting statistics which converge to a chi-squared distribution (Cordeiro and Ferrari, 1991), improvements 

in goodness-of-fit tests based on V-statistics (Cordeiro and Perez-Abreu, 1995), development of corrections 

to signed likelihood ratio statistics and corrected maximum likelihood estimates. Several other special cases 

could also be easily obtained because of the generality of this technique for correcting statistics to order 

O(n- 1). 

4.1 STATISTICS HAVING A LIMITING NORMAL DISTRIBUTION 

Let T be a statistic whose distribution depends on parameters n and 9. Assume that there existsµ= µ(9) 

and tr= a-(0) such that the standardized statistic S = n112(T- µ)/u has mean zero and unit variance and 
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higher-order cumulants of the form itr(S) = p,n•-•12 , for r ~ 3, where the coefficients p,'s depend on the 

cumulants of the population distribution. Further, we assume that S converges in distribution to a standard 

normal random variable. 

It is appropriate here to consider the basic limiting distribution of S in order to garantee an asymptotic 

expansion far the distribution of Sin decreasing powers of n-1/ 2 • The Edgeworth expansion for the distri­

bution function of S to O(n-1 ) is derived in a straightforward way from (4) (see McCullagh, 1987, equation 

(5.12)) 

(10) 

where ip(.r) and ot(.r) are the standard normal density and distribution functions, respectively. The poly­

nomials appearing in (10) were defined after (2), and become the Hermite polynomials. They are given by 

h2(z) = .r2 - 1, h3(z) = :r3 - 3z and hs(z) = .r5 - 10.r3 + 15z. The remaining terms of order O(n-•12), for 

r ~ 3, can be found in Niki and Konishi ( 1986). Combining equations (5) and ( 10), we can see immediately 

that A1(:r) = -P3ip(:r)h2(:r)/(6../n) and A2(.r) = -,(.r){p4 h3(.r)/24 + p~h5(:r)/72}/n. 

By substituting these results in equations (8) and (9), we find 

s• = S _ ~(S2 _ l) + _l_{P5(4S
3 

- 7S) _ p4(S
3 

- 3S) } -
6../n 12n 3 2 

.r· = .r + _E!_(.r2 - 1)- -'-{p5(2.r3 -5.r) - p4(:r3 - 3.r)} . 
6../n 12n 3 2 

(11) 

(12) 

Equation ( 11) is just the classical Cornish-Fisher polynomial transformation to normality when stochastic 

quantitie9 of order O,.(n-312 ) and smaller are neglected, i.e., s• ~ N(O, I)+ Or(n-312) (see McCullag, 1987, 

p. 166). Also, equation ( 12) gives the approximate percentage points of S expressed in terms of the standard 

normal percentage points ignoring quantities of order O(n-312 ) and smaller (see McCullagh, p. 171). This 

special case can be regarded as a partial check of the validity of equations (9) and (10). 

Many extensively used statistics can be expressed as sums of independent and identically distributed 

random variables Y1 , .•. , Y" having finite cumulants 6, to some order. Other statistics can be accurately 

approximated this way. In these cases, dassical results due to the central limit theory show that, under 

fairly general conditions, the standardized sum S = n112(E Y; - n6i)/(n.S2) converges in distribution to a 

standard normal random variable. This means that equations (ll) and (12) hold with the two constants P3 

and p4 being the standardized cumulanta corresponding to 63 and 64, namely P3 = 63/6~/J and p4 = 64/6r 

Stronger forms of the central limit theorem that are validy under substantially weaker conditions than those 

assumed here are available to apply equations ( 11) and ( 12). The assumption that the Y; 's are independent 

and identically distributed random variables is not e:.sential. 

Another simple example of (11) involves the standardized random variable S = (x! - n)/,/2,i which 
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• 

is asymptotically normally distributed with zero mean and unit variance. The third and fourth cumulanta 

of S yield P3 = 2./2 and p4 = 12. Thus the adjusted random variable s• follows from (11) as s• = 

S-,,/2(S2 - 1)/(3,/ii)+(7S3 -S)/(18n), which is asymptotically N(O, I) with error O(n-312). We emphasize 

that the Wilson-Hilferty transformation S1 = (9n/2) 112 {(x~) l/3 - I} is not asymptotically standard normal 

even to order O(n- 112), although Cox and Reid's (1987) modification S2 = S1n- 1/ 3 + (Ji/3)n-5l 6 is 

asymptotically N(O, I) with error O(n-1 ), Clearly, the forms• is superior to S1 and S2 in terms of normal 

approximations. 

4.2 CORRECTED TEST STATISTICS WHOSE ASYMPTOTIC DISTRIBUTIONS ARE x2 

We now apply the results of Section 3 by considering a class of statistics for testing simple or composite 

null hypotheses whose null asymptotic distributions are central chi-squareds. This is an important class of 

statistics since ii includes some of the most used tests in econometrics, such as the likelihood ratio, Lagrange 

multiplier and Wald tests. 

For any statistic S whose null asymptotic distribution is central chi-squared with q degrees of freedom, 

under mild regularity conditions, we can write its distribution function to O(n- 1 ) as (Chandra, 1985) 

t 

Fs(z) = F9(z) + L a;F,+2;(z), (13) 
i=O 

where the a;'s of order n- 1 are functions of the unknown parameters and F,(z) is the distribution fttnction 

of x~- In addition to (13), the condition Ea; = 0 is necessary to produce a distribution function to O(n- 1). 

Combining formulae (5) and (13) gives A1(z) = 0 and A2(z) = L::i a;F,+2;(.r). From (8) and using 

the recurrence relation F,+2(.r) = F,(z) - (2z/r)dF,(z)/dz, one can verify that the multiplying factor 

1 + b(S, 'Ii, Di Fz) reduces to a polynomial in S of degree at most k - l. Hence, 

t t 

s· = S{l-2L(La,)µ;-tsi-l}, (14) 
i=l l=i 

where µ1 = E{(x:)i), This result was first given by Cordeiro and Ferrari (1991, equation (16)). Formula(14) 

can be used to improve many important tests in statistics and econometrics (Cordeiro, Ferrari and Paula, 

1993; Cribari-Neto and Ferrari, 1995a, b, c; Ferrari and Cordeiro, 1995). An alternative way of obtaining 

an improved test is to consider the unmodified statistic S together with the modified percentage points z• 

given in (9). It can he easily seen that 

t t 

z• = z{l + 2 L(L a,)µ:- 1zi-l}. 
i:I f:i 
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The usual Bartlett correction to improve the likelihood ratio statistic w comes from (14) with c = 1 by 

noting that oo = -01 = -6/2, where 6 is the n- 1 term in E(w). Improved score and Wald statistics are 

special cases of (14) for c = 3. 

4.3 SIGNED ROOTS OF LIKELIHOOD RATIO STATISTICS 
• 

Consider continuous random variables having density function that depends on an unknown scalar pa­

rameter 8. Let w be the usual likelihood ratio statistic w = 2{1(9)-1(9)}, where 1(9) is the total log-likelihood 

function. In recent years there has been considerable interest in the signed root of the likelihood ratio statis­

tic S = sgn( 9-B)w 112 . The standard normal approximation to the distribution of S can be used to construct 

approximate confidence limits for 8 having coverage error of order n- 112 • DiCiccio (1984), Jensen (1986) 

and Barndorff'-Nielsen (1986, 1990, 1991) among others have worked with adjustments to S that improve 

tile accuracy of the standard normal approximation. 

The most commonly adjusted statistic of S is the signed likelihood ratio standardized with respect to 

its mean and variance given by 

(15) 

where the quantities 01 and 02 are obtained from E(S) = aif ..fn + 0(7!- 1) and E(w) = I+ a2/n + O(n- 2). 

Thus, 01 is the coefficient of the n- 1 bias of S and a2 is the n- 1 term in the Bartlett correction for 

improving the distribution of w. The standardized statistic (Hi) has limiting normal distribution correct kl 

order n-3/ 1 . It is also possible to construct a kind of score statistic U (Barndorff-Nielsen, 1986, 1990) of 

the form U = S + O.,(n-112), such that the distribution of S2 = S + s- 1 1og(U/S) also follows a N(O,l) 

distribution with relative error 0( n-312). However, the calculation of U could be very difficult in practice. An 

alternative statistic Ss to overcome such difficulties was proposed by DiCiccio and Martin (1991), although 

it is not as accurate as S 1 and S2 • They constructed an auxiliary statistic T = l(8)J(0)- 1l 2 {K(B)/ K(8)}1l2 , 

where J(/J) and K(B) are the observed and expected informations for 8, and showed that the distribution of 

Ss = S + s- 1 1og(T/S) is asymptotically N(O,l) but with higher error of order n- 1• In general, T and U are 

parameterization invariants and T = U + O,.(n- 1 ). 

We now give a fourth corrected signed likelihood ratio statistic as an alternative to S1 and S2 which ia 

easily calculated from the asymptotic expansion for the distribution of S (Jensen, 1986) 

This result and equation (8) yields• = s{ l + (oi - a2)/(2n)} - aif ,/n. The statistics S1, S2 and S- are 

equivalent to order n- 1• Our next project is to compare them through Monte Carlo simulations. 
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4.3 IMPROVING V-STATISTICS 

We shall address issues related to corrections for V-statistics, i.e., statistics which converge in di,tri­

bution, under appropriate conditions, to a linear combination of independent chi-squareds with degrees of 

freedom equal to one. Let Y1 , • •• , Yn be a random sample from a distribution F and h(z, y) be a symmetric 

kernel. Consider the V-statistic V = n- 2 r::=t Lj:I h(Y;, Y;) and assume that the limiting distribution of 

S = n V is that of the random variable Z = L:':i ~ix?;, where the ~i's are positive numbers related to the 

kernel h and the xt 's are mutually independent random variables, each with a chi-squared distribution with 

one degree of freedom. The linear combination of chi-squareds may be finite or infinite. Many well known 

goodness-of-fit test statistics are V-statistics having the distribution of Z as their limiting distributions. 

Examples of these are, amongst others, the Cramer-von Mises statistic w2 (Durbin, 1973), the test of a circle 

of Watson (1961), the Poissonness tests considered by Baringhauss and Henze (1992), the exponential test 

ofBaringhauss and Henze (1991) and the general chi-squared tests considered by Quiroz and Dudley (1991) 

and references therein . The case of statistics whose asymptotic distributions are x2 covered in Section 4.2 

corresponds to finite m with the first q ..\;'s equal to one and the remaining (l- - q) ,\;'s equal to :i:ero. 

The main difficulty here in obtaining a generalized Bartlett correc:tion 1 + b(S,,.,,,D1F~) £or S Wling 

equation (8) is the fact that there is no closed-form expression for the distribution function Fz(z) nor for the 

density /z(x), even when m is finite and the A; 's are different from one. However, instead of worki-ng with 

distribution functions and their corresponding expansions, we could work in the Fourier domain through 

the characteristic functions of S and Z. Let Cs(t) and Cz(t) be the characteristic functions of S and Z, 

respectively. The characteristic function of Z Cz(t) = n~1(1 - 2it..\i)- 1l 2 is valid form finite or infinite. 

Inverting (2) yields the following asymptotic expansion for Cs(t) 

00 (t"); 
Cs(t) = Cz(tl{ I+ L 'I;-;-}. 

j:l ) . 

Let P2(t) be the term of order n- 1 in the above expansion of the characteristic function of S = nV. i .e., 

Cs(t) = Cz(t){l + P2(t)} + O(n-312 ) . Form= oo, the function P2(t) has been obtained by Gotze (1979) . 

When m is finite, however, A(t) is a very complicated function given by a Fourier transform of signed 

measures which are finite linear combinations of convolutions of chi-squared distributions, unless At = ... = 

Am = 1. 

Under general condition~, Cordeiro and Perez-Abreu (1995) obtained the generalized Bartlett correction 

b(S) to adjust S in S- = S{I - b(S)} such that s• and Z have identical distributions to O(n- 1 ). In any 

situation (m finite or infinite), they showed after complicated algebra that 

b(x) = {2iry/z(r)}- 11r 1"° e-iryCz(t)P2(t)dt dy, (16) 
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where /z(:r) is the density function of Z ::::: L~i .>.;x};. One can not expect to obtain a closed-form formula for 

the generalized Bartlett correction in (16) even in cases where Cz(t) and P2(t) have closed-form expressions, 

because the n- 1 terms in the asymptotic expansions for the distribution and density functions of S = nV 

do not have in general closed-form. Equation (16) must be solved by numerical methods like the algorithm 

proposed by Imhof (1961 ). Cordeiro and Perez-Abreu ( 1995) give examples of corrections for well known 

statistic& arising from goodness-of-fit tests. For the special case .>. 1 = ... = A, = 1 and A,+ 1 = ... = A.., = 0, 

equation (16) produces the polynomial of order /r: -1 in (14). 

4.5. MODIFICATION OF STANDARDIZED MAXIMUM LIKELIHOOD ESTIMATES 

We seek a statistic that is a function of the maximum likelihood estimate and whose distribution is normal 

excluding terms of order O(n-312) and smaller. Let Y be the data vector of length n with total likelihood 

function L(8) = L(8; Y) depending on a scalar parameter 8. We assume that the region of the sample space 

for which L(B; Y) > 0 does not depend on 8 and that some conditions concerning smoothness of L(B; Y) 

and its derivatives with respect to 8 hold. The derivatives of the log-likelihood function 1(8) = log L(8) are 

denoted by U, = d/(8)/d8, U,, = d2l(8)/d02 , etc. The standard notation will be adopted for the cumulants 

oflog-likelihood derivatives (Lawley, 1956): Ku= E(Uu), itm = E(U,11), "'·' = E(Ul), K1,11 = E(U,U11), 

etc. We define the derivatives of the cumulants by .. ~~) = d;.11 / d(J, etc. All "'s refer to a total over the 

components of Y and are, in general, of order O(n). Let iJ be the maximum likelihood estimate of (J assumed 

unique for large n. 

Under regularity conditions on L(B; Y) (Cox and Hinkley 1974, Section 9.1 ), it follows quite generally 

that the score function U, is asymptotically N(O, it1.,), so iJ satisfies U; = 0 at least for large n. Also, 

the asymptotic distribution of O is N(B, 11:;,~), with error apparently O(n-112). These limiting results apply 

directly to situations in which the components of Y, while independent, need not be identically distributed. 

However, they still hold to dependent data under various conditions on the type of dependence. 

We shall work with the standardized statistic S = (8- 8),-!1; as a pivot function for (J which is frequently 

used to test the null hypothesis Ho : 8 = 80 , or to construct confidence limits for (I. The normal approximation 

for S is unsatisfactory in one important respect: the exact and approximate distributions of S differ by an 

O(n- 112) term. It is then desirable to improve on this result by adjusting S to have more nearly a standard 

normal distribution. On this basis, Z ~ N(O, I) with cumulants Krz = 0 for r ~ 3 and we can obtain the 

formal moments 'I'• after eome algebra: 

'It = ic!1,261 (8) + O(n-312), 

'12 = ic,.,{112(8) + 61(8)2
} + O(n-2

), 
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1/3 = P:ii + O(n-3/2), 

114 = P4; + 4p:i;1t!~ib1(II) + O(n-2). 

Here, b1(11) irnd v2(0) llre the n- 1 11nd the n-2 terms in the bi11S and variance of 6, respectively. Also, p3; 

and Pd llre the third and fourth cumul11nts of 6 of orders n- 1/2 and n-1, respectively. Formulae for b1(II), 

v,(11), p3; and P◄i are given by Shenton and Bowman (1977, Sections 2.7.6 e 2.7.). We can also show that 

11• is of order smaller than n-1 for r ~ 5. 

The distribution function of S to O(n-1) follows from equation ( 4) 11S 

from which we obtain A1(z) and A2(r) . Substituting these functions into (8) and simplifying, we find 

• 1/3 - 61)1 l 2 1/3 2 1 { } 3 '71 s 
S = S + --

6
- + 

72 
{(113 - 11tl + 9(114 - 4111)} - 6 s + 

72 
2113(111 - 113) - 3114 S + 

12
s , (17) 

where S = (8 - /1),c!~,2. The adjusted pivotal quantity (17) is therefore a polynomial of 5th degree in the 

maximum likelihood estimate itself. Let s• = S + r::::o o;Si be this polynomial, where 

°'O = (1/3 - 611i)/6, 

01 = {(113 -111)2 + 9(113 - 4112)}/72, 

°'2 = -113/6, 03 = {21/3(111 -113) - 31)4}/72, 

04 = 0, 
112 

o - 3 5 - 12 · 

Using generlll formulae for b1(11), v,(0), p3; and p4; given by Shenton and Bowman (1977, equations 

(2.30a, b), (2.31a, b)) and some Bartlett identities, which usually facilitate the computation of the ,e's, we 

can obtain after some algebra 

n-o = (4,c~:> - Km)/(12i.!~;), 

01 = (11:,,,, - ""·" - 2,c~:•>)/(8ic:_,) + (l09ic?,, - 368,c~:>ic.., + 448ic~:>
2
}/(288ici_,), 

o, = (11:m - 3-.~:>)/(6i.!~,
2
), (18) 

°'3 = -c .. ,,,, - -1 .. ~:~ + o .. ~:•1 + 3,.,,_,,J/(2-1-.:.,> + en .. ~:> .. ,,, - 1 .. ~ .. - 120,-~:>2>1c12 .. t,>. 
as = (11:m - 3-.~:1)2 /(72,ci_,). 

Notice that Oo and n-2 are O(n- 112) while 01, o 3 11nd o 5 are O(n- 1 ). Computing the o;'s from equations (18) 

for the model under consideration, the improved statistic S- for the pivot S = (8-/1)11:!1; follows imediately. 

Then, in wide generality. the new pivotal quantity s• is asymptotically standard normal distributed to a 
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high degree of approximation, the relative error being typically O(n-312). The statistical behavior of s• and 

S can be quite different in finite samples. 

Formula for s• provides the basis for obtaining the corrected version of the maximum likelihood estimate 

8. It is easy to check that e· = 8 + E~=Oo;(S- 9)jK~j.,1>12 follows a N(9,it .. ~) distribution and typically 

the error of approximation is O(n-2). The above polynomial transformation for 8° looks very much like a 

truncated power series in the pivot 9 - 9. The statement that s• = (9" - 9)11:!~,2 ~ N(0, l) + Op(n- 312 ) 

implies that 9 = fr ±zK;,!12 is an improved set of approximate confidence intervals for 9, where z is a normal 

upper point, i.e., values of 9 outside this set are incompatible with the data. 
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