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The solutions to the constrained variational problem are given by horizontal curves 
'Y in M which are stationary points of the action functional 

.C{-y) = 1b L(t, 7(t), i'(t)) dt, 

and that satisfy suitable boundary conditions. 
We consider the set nP,Q([a, b}, M, V) of horizontal curves in M of class C1 

joining two submanifolds P and Q of M. If either P or Q is transversal to V, 
then we show that nP,Q([a, b], M, V) has a natural structure of a Banach manifold. 
More in general, we give conditions that guarantee the existence of a differentiable 
structure on nP,Q([a, b], M, V) in terms of the symplectic structure of the cotangent 
bundle TM*. In this situation, £ is a smooth map on Op,o([a, b}, M, V) and we 
describe its critical points. 

In order to be able to treat the case of a general Lagrangian function, in the paper 
we have considered as domain of the action functional the set of horizontal curves 
of class C1• If one considers a Lagrangian of some specific form, like for instance 
L(t,q,q) quadratic in q, then one can extend the domain of the action functional to 
include curves that satisfy weaker regularity conditions, for instance of Sobolev type. 
Considering such extension may be more appropriate for developing 'an existence 
theory for the solutions of the variational problem by techniques of Global Analysis. 
We remark here that virtually all the results presented in this paper may be extended 
in this direction by minor modifications of the arguments. 

When the Lagrangian function L satisfies a hyper-regularity condition, we in­
troduce an associated Hamiltonian Ho on V* using a suitable version of the Le­
gendre transform for general vector bundles. The Hamiltonian H 0 has a canonical 
extension to a Hamiltonian Hin TM*, which is degenerate, given by H(t, q, p) = 
Ho ( t, q, Plv). The solutions of the Hamilton equations of H whose momenta anni­
hilate T P and TQ at the endpoints are shown to be precisely the critical points of 
the action functional£ in nP,Q([a, bJ, M, V). In this way, we obtain a Hamiltonian 
formulation of our variational principle. 

In the particular case where 1) is endowed with smoothly varying positive definite 
inner product g and Lis given by L(t, q, 4) = ½g(q, 4), then the solutions of the 
corresponding Hamiltonian are known in the context of sub-Riemannian geometry 
as the normal extremals of ( M, 'D, g ). The critical points of the constraint defining 
O([a, bJ, M, V) are called abnormal extremals. In particular, we obtain a variational 
proof of [8, Theorem I]. 

In (2, Theorem 1.17] it is proven that the normal sub-Riemannian extremals be­
tween two fixed points of a sub-Riemannian manifold are critical points of the sub­
Riemannian action functional. The proof is presented in the context of the Malliavin 
calculus, employed to study some problems connected with the asymptotics of the 



CONS'l1lAINED VAIUA'JlONAL PROBLEMS 3 

semi-group associated with a hypoelliptic diffusion. For this purposes, the author's 
proof is restricted to the case that the image of the normal extremal be contained in 
an open subset of M on which the distribution V is globally generated by k s~ooth 
vector fields. In this paper we reprove the result of (2, Theorem 1.17} under the more 
general assumptions that: 

• the Lagrangian function may be time-dependent, and it is not necessarily 
quadratic in the derivatives; 

• the vector bundle V is not necessarily trivial around the image of the normal 
extremizer; 

• the endpoints of the normal extremizers are free to move on two submani-
folds of M. 

As to the first generalization of the extremizing property of the normal extremizers, 
it is interesting to observe that in the proof it is employed the Lagrangian multipliers 
technique that uses time-dependent ref erentials of V defined in a neighborhood of the 
graph of any continuous curve in M. The existence of such referentials is obtained 
by techniques of calculus with affine connections, and it is likely that the method of 
time-dependent referentials may be applied to other situations where global geomet­
rical results are to be proven. 

Another observation that is worth making about the Lagrangian multipliers is 
that, in the functional setup of the method, the constraint is given by the kernel of a 
suitable submersion (see formula (3.4.1 )) from the set of C 1 -curves in an open subset 
of M taking values in the Banach space of F-A:_valued continuous functions. This 
submersion is defined using time-dependent referentials of the annihilator V 0 of V 
in the cotangent bundle TM•, and the swprising result is that such map fails to be 
a submersion precisely at the abnormal extremizers (Corollary 3.4.4). We therefore 
obtain a new variational description of the abnormal extremizers. 

In Reference [6] it is studied the case of Vakonomic mechanics, by considering 
a Lagrangian L of the form L(t,q,q) = ½g(q,q) - V(q), where V : M 1-+ E 
represents the potential energy of the force acting on the system. 

We conclude with a remark about a possible index theory for trajectories of Vako­
nomic mechanics. Every such solution comes with a well defined Morse index, 
possibly infinite, which is the dimension of a maximal negative space for the second 
variation of the Lagrangian action functional. In the case of non constrained hyper­
regular Lagrangians, this number is related to the Maslov index of the corresponding 
solution of the Hamilton equations (see [131). However, an index theorem for the ac­
tion functional of a general constrained Lagrangian is not known yet, and we suggest 
that further investigation can be done in this direction. A sub-Riemannian version of 
the Morse index theorem can be found in [5]. 

We give a brief description of the material presented in each section of the paper. 
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In Subsection 2.1 we present an abstract version of the Legendre transform for 
maps defined on general vector bundles. In Subsection 2.2 we recall the classical 
theory concerning the relations between the critical points of the action functional 
associated to a time-dependent Lagrangian function and the solutions of the corre­
sponding Hamiltonian obtained by the Legendre transform. We consider rather weak 
regularity assumptions on the Lagrangian L and we also study the case of variable 
endpoints. For the case of time independent non constrained smooth Lagrangians 
and curves with fixed endpoints, we refer to [1]. 

In Subsection 3.1 we show the existence oflocal time-dependentreferentials for a 
general vector bundle defined in the neighborhood of the graph of a given continuous 
curve. Using these referentials, in Subsection 3.2 we describe a convenient atlas 
for the Banach manifold structure on the set of horizontal curves with free final 
endpoinL In Subsection 3.3 we study the differential structure of Op,Q{[a, bj, M, V) 
in terms of critical points of the endpoint map on !lp([a, b], M, V). Such critical 
points are completely characterized in terms of characteristic curves of V, which 
are the curves in TM* everywhere tangent to the kernel of the restriction to 1Y' of 
the canonical symplectic form of TM*. Some questions concerning the genericity 
of the property of existence of critical points of the endpoint map are answered in 
[3]. In Subsection 3.4 we study the differentiable structure of nP,Q([a, b), M, V) in 
terms of local referentials of the annihilator 1Y' of V. 

In Section 4 we state the main result of the paper (Theorem 4.0.5), that estab­
lishes the correspondence between the critical points of the action functional of a 
hyper-regular constrained Lagrangian and the solutions of the corresponding degen­
erate Hamiltonian. In Subsection 4.1 it is presented a suitable version of Schwarz's 
distributional calculus, needed for technical reasons in the proof of Theorem 4.0.5. 
In Subsection 4.2 we give the proof of Theorem 4.0.5. 

2. THE LEGENDRE TRANSFORM. 

LAGRANGIANS AND HAMILTONIANS ON MANIFOLDS 

2.1. The Legendre transform 

Let eo be a real finite dimensional vector space, let eo denote its dual, and let Z : 
U i-+ JR be a function of class C2 defined on the open subset U C {0 • 

Definition 2.1.1. Assume that the differential dZ is a diffeomorphism onto an open 
subset V c e0. The Legendre transform of Z is the C1 map Z* : Vi-+ B defined 
by: 

(2.1.1) Z* = Ez O (dz)-1 , 

where Ez : U i-+ JR is given by 

(2.1.2) Ez(v) = dZ(v) v - Z(v), v e U. 
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Lemma 2.1.2. Using the canonical identification of{o and its bi-dual {0*, the map 
dZ* is the inverse of dZ. Therefore, Z* is a map of class C2• 

Proof Differentiating the equality Z* o dZ = Ez and (2.1.2), we obtain: 

dZ*(dZ(v)) o d2Z{v) = dEz(v), dEz(v) = -0 o d 2Z(v), 

where-0 E ~• is the evaluation at v. Since d2Z(v) : eo i-+ ea is an isomorphism, 
the conclusion follows. D 

Corollary 2.1.3. Z** = Z 

Proof By Lemma 2.1.2, we have: 

Z** = Ez. o (dZ*)-1 = Ez- o dZ. 

Hence, by definition of E z·, we get 

Ez-(dZ(v)) = dZ*(dZ(v))dZ(v)- Z*(dZ(v)) = 
= dZ(v) v - Ez(v) = Z(v). 

D 

Let now M be a smooth manifold and 1r : { ,_. M be a smooth vector bundle 

over M; form EM, we denote by {m the fiber 1r-1(m). The dual bundle of { will 
be denoted by{*; the bi-dual{** is canonically identified with{. 

Let Z : U C { i-+ JR be a map such that, for every m E M, Un em is open in em 
and such that the restriction of Z to U n em is of class C2 • 

Definition 2.1.4. The fiber derivative F Z : U i-+ {* is the map defined by: 

(2.1.3) FZ(v) = d(Zlun(,..)(v), v EU, 

where m = ,r(v). Let V Ce• be the image ofFZ; we say that Z is regular if for 
each m E M, the restriction of F Z to Un {m is a local diffeomorphism; Z is said to 
be hyper-regular if for each m such restriction is a diffeomorphism onto V n {~. H 
Z is hyper-regular, we define the Legendre transform of Z as the map Z* : V 1-+ JR 
whose restriction to V n em is the Legendre transform of the restriction of Z to 
Un{m-

Applying Lemma 2.1.2 and Corollary 2.1.2 fiberwise, we obtain immediately the 
following: 

Proposition 2.1.5. Let Z : U C e i-+ JR be hyper-regular. Then, for each m E M, 
the restriction of Z* to V n e:a is of class e2. Moreover, F Z and F Z* are mutually 
inverse bijections, and z•• = Z. □ 
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2.2. Tune dependent Lagrangians and Hamiltonians on manifolds 

Let M be a smooth n-dimensional manifold, let 1r : TM 1-+ M and 1r : TM• 1-+ M 
be respectively the tangent and the cotangent bundle of M; we consider the following 
vector bundles: 

{=lRxTM 
ldx,r Idx,r 

/Rx M, e• =lRxTM* ----- Bx M. 

Observe that the fiber {(t,m) is {t} X TmM, and e(,,m) = {t} X TmM*. 

Definition 2.2.1. A (time-dependent) Lagrangian on M is a function L : U c ! 1-+ 

JR defined on the open set U and satisfying the following continuity and differentia­
bility conditions: 

(1) L is continuous; 
(2) for each t E JR, the map L(t, •) is of class C 1 in Un ( {t} x TM), and its 

differential is continuous in U; 
(3) for each t E JR, the map FL(t, ·) : Un ({t} x TM) 1-+ {t} x TM* is of 

class C 1. 

A (~-dependent) Hamiltonian on M is a function H : V C e• ...... JR defined on 
the open set V and satisfying the following properties: 

(1) for all t E R, H(t, ·) is of class C1; 

(2) for each (t, m) E Rx M, the restriction of H to V n {(t,m) is of class 02. 
We use the notions of regularity and hyper-regularity given in Definition 2.1.4 for 

Lagrangians and Hamiltonians on manifolds. 
Using the Legendre transform defined in Subsection 2.1 (Definition 2.1.4 ), given a 

hyper-regular Lagrangian L on M, the map H = L • is a hyper-regular Hamiltonian 
on M. To see that H (t, •) is of class C1, one applies the Inverse Function Theorem 
to the map FL(t,-).1 

If H is the hyper-regular Hamiltonian obtained by Legendre transform from the 
Lagrangian L, then by Proposition 2.1.5, we have that H* = L, and that F H and FL 
are mutually inverse bijections. 

Let L: UC JR x TM 1-+ JR be a Lagrangian on Mand 'Y: [a,b] 1-+ M be a 
curve of class C 1, with (t, i'(t)) EU. The action£("!) of Lon the curve "Y is given 
by the integral: 

(2.2.1) 
b 

£(-r) = 1 L(t,y(t)) dt. 

1 As a matter of fact, the Hamiltonian H = L • is continuous. This can be seen by applying lhe 
1beorem of Invariance of Domaia (see [11]) to conclude lhat FL is a homeomorphism onto an open 
subset of B. X TM*. 
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£ defines a functional on the set: 
(2.2.2) 

Op,Q([a,b},M;U) = 

7 

= { 'Y: [a, b] ~ M; -y(a) E P, -y(b} E Q, (t, i'(t)) E U, Vt}, 

where P and Q are two smooth embedded submanifolds of M. It is well known that 
nP,Q([a, b], M; U} has the structure of an infinite dimensional smooth Banach man­
ifold (see for instance [12)), and£ is a functional of class C 1 on Op,q([a, b), M; U). 
We will call £ the action functional of the Lagrangian L. 

We have the following characterization of the critical points of £: 

Proposition 2.2.2. A curve"( E Op,q([a, b], M; U) is a critical point of£ if and 
only if the following three conditions are satisfied: 

(1) FL{a,-y(a))IT-,(a)P = OandlFL{b,i'{b))IT-,(b)Q = O; 
(2) t 1-+ FL( t, t( t)) is of class C 1; 

(3) for all [to, t1] C [a, b] and for any chart q = (qi, ... , qn) on M whose 
domain contains the image -y([to, t1]), the following equation is satisfied in 
[to, t1]: 

(2.2.3) ! :~ (t, q(t), q(t)) = !! (t, q(t),q(t)), 

where L(t, q, q) is the coordinate representation of L. 

Proot Let -y E Op,q([a, b], M; U) be a critical point of£. Let [to, t1] c [a, b) be 
an interval and consider a chart q = (q1, ... , qn) in M whose domain contains the 
image -y([t0 , t 1]). Let us consider an arbitrary C 1 variational vector field v along -y 
with support contained in ]to, t1[; by standard computations it follows: 

(2.2.4) £1 !! (t, q(t), q(t)) v(t) + !~ (t, q(t), q(t)} v(t) dt = o. 

Remark2.2.3. The term 'ti(t, q(t), q(t)) isof class C 1 ; this will follow immediately 
from Corollary 4.1.3 and the generalized functions calculus developed in Subsec­
tion 4.1. 

Integration by parts in (2.2.4) and the Fundamental Lemma of Calculus of Varia­
tions imply then that equation (2.2.3) is satisfied. 

Observe that the coordinate representation of the map FL( t, i'( t)) is given by the 

partial derivative ~(t, q(t), q(t)). 
The equalities FL(a,i'(a))IT..,<•>P = 0 and FL(b,i'(b))IT..,<•>Q = 0 follow easily 

from integrating by parts (2.2.4) in intervals of the form [a, t1) and [to, bJ. 
Conversely, if conditions 1. 2 and 3 are satisfied, equation (2.2.4) follows easily, 

which implies that 7 is a critical point D 
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We now pass to the study of the Hamiltonian formalism, and we consider the 
canonical symplectic fonn w on TM•, given by w = -d{), where the canonical 1-
form {) on TM• is defined by 11,,(() = p(d7r,,(()). If q = (q1, ... , qn) is a chart in 
Mand {q,p) = (q1, ... ,qn,Pt, ... ,Pn) is the corresponding chart on TM•,{) and 
w are given by: 

n n 

{) = I>i dqi, w = L dqi I\ dp,. 
i=l i=l 

Given a Hamiltonian H on M, we define the Hamiltonian vector field ii to be the 
time-dependent vector field on TM• defined by: 

w(H,·) = dHt, 

where Ht = H(t, ·). 
We say that a curve 'Y : [a, b] i-+ M is a solution of the Hamiltonian H if there 

exists a 0 1-curve r: (a, b] .-+ TM• with 1r or= 'Y and such that 

(2.2.S) ! r(t) = H(t, r(t)) 

for all t. In this case, we say that r is a Hamiltonian lift of 'Y· In coordinates {q,p), 
equation (2.2.5) is written as: 

{ :: =: (t,q(t),p(t)), 

dp oH 
dt = - aq(t,q(t),p(t)}. 

(2.2.6) 

These are called the Hamilton equations of H; observe that the first equation in 
(2.2.6) can be written intrinsically as: 

(2.2.7) -y(t) = FH(t, r(t)). 

Theorem 2.2.4. Let L be a hyper-regular Lagrangian on M and let H be the cor­
responding hyper-regular Hamiltonian by the Legendre transform. Let P and Q be 
smooth submanifolds of M: a curve 'Y E OP,Q([a, b), M; U) is a critical point of£ 
if and only if "f is a solution of the Hamiltonian H which admits a Hamiltonian lift r 
such that 

(2.2.8) 

Proof Let-y E S'lp,q((a, b],M; U) be a critical point of£; set r(t) = FL(t,-y(t)). 
Since F H and FL are mutually inverse, equation (2.2.7) follows. Moreover, by 
Proposition 2.2.2, r is of class C1 and (2.2.8) holds. We now prove that the second 
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Hamilton equation holds, in a chart ( q, p) of TM*. To this aim, we differentiate with 
respect to q the equality: 

( 
8L . ) 8L . . . 

H t, q, oq (t, q, q) = oq (t, q, q) q - L(t, q, q), 

obtaining: 

8H . 8H 82L 82L 8L 
(2.2.9) aq<t,q,p)+ 8p (t,q,p) aqa/t,q,<i) = oqa/t,q,<i)ti- aq(t,q,<i), 

where p = ~(t, q, q). Using that FH and FL are mutually inverse, we get 

8H( ) . 8p t,q,p = q; 

it follows from (2.2.9): 

(2.2.10) 
8H 8L . 
aq (t,q,p) = - oq (t,q,q). 

The second Hamilton equation follows from formula (2.2.10) and from Proposi­
tion 2.2.2. 

Conversely, suppose that 'Y is a solution of the Hamiltonian H which admits a 
Hamiltonian lift r satisfying (2.2.8). Since F H and FL are mutually inverse, from 
(2.2.7) it follows that r(t) = F L(t, i'(t)). F.quality (2.2.10) and the second Hamilton 
equation imply (2.2.3), and the conclusion follows from Proposition 2.2.2. □ 

3. THE SPACE OF HORIZONTAL CURVES AND ITS DIFFERENTIABLE 

STRUCTURE 

Let M be an n dimensional manifold; a smooth distribution 'D of rank k on Mis 
a smooth subbundle 'D C TM whose fibers are k-dimensional spaces. This means 
that, for each m EM, 'Dm = 'DnTmM is a k-dimensional subspace ofTmM which 
is smoothly varying with m, i.e., there exist k smooth vector fields around each point 
of M which form a pointwise basis for 'D. 

We will consider throughout a manifold M with a fixed distribution 'D; a C1-

curve -y: [a, b] - M will be called horizontal if i'(t) E 'D for ant. 
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Let S'l([a, b], M) denote the space of curves 'Y : [a, b] 1-+ M of class C1 and let P, 
Q be two submanifolds of M. We define the following subsets of S'l([a, b), M): 

S'lp([a,b],M) = {1 E S'l([a,b],M) :7(a) E P}, 
S'lp,Q([a,b],M) ={'YE S'lp([a,b],M): 7(b) E Q }, 

(3.0.11) S'l((a,b],M, V) = { 1 E S'l((a,b],M): 1 horizontal}, 

S'lp([a, b], M, V) = { -y E S'l([a, b], M, V} : 7(a) E P }, 

S'lp,Q([a,b],M, 'D) = { 1 E S'lp((a,b],M, 'D): 7(b) E Q }. 

Given a subset U CB x TM. we will denote by O([a,b],M; U) the set of curves 
'Y E S'l((a, b], M) such that (t, -y(t)) E U for all t; similar notations will be used for 
al) the spaces appearing in formula (3.0.11 ). 

In this section we will prove that Op([a, b], M, V) is a Banach submanifold of 
the manifold S'lp((a, b], M), while Op,q((a, b], M, V) may have singularities. 

In the Subsection 3.1 we give a couple of preliminary results needed to the study 
of the geometry of the set of horizontal paths in (M, 'D). 

The main reference for the geometry of infinite dimensional manifolds is [7]; for 
the basics ofRiemannian geometry we refer to [4]. 

3.1. Existence ofturu-dependent refeuntials. 

Definition 3.1.1. Let (M,g) be a Rjen,annian 1Il8Difold and x E M. A positive 
number r E n+ is said to be a normal radius for x if exps: : B,.(O) 1-+ B,.(x) is a 
diffeomorpbism, where exp is the exponential map of (M, g), B,.(O} is the open ball 
of radius r around OE TzM and B,.(x) is the open ball of radius r around x EM. 
We say that r is totally normal for x if r is a normal radius for ally E B,.(x). 

By a simple argument in Riemannian geometry, it is easy to see that if K C M is 
a compact subset, then there exists r > 0 which is totally normal for all x E K. 

Given an vector bundle 1r : e ..... M of rank k over a manifold M, a turu­
dependent local refeuntial of e is a family of smooth maps X; : A ..... e. i = 
1, ... , k, defined on an open subset A s; Bx M such that {X;(t, x)}t.1 is a basis 
of the fiber{z for all (t,x) EA. 

Lemma 3.1.2. Let M be a finite dimensional manifold, let 1r : { ,...... M be a vector 
bundle over M and let 1 : (a, b] i--+ M be a continuow curve. Then, there exists an 
open subset A s; .ll x M containing the graph of -y and a smooth time-dependent 
local referential of~ defined in A 

Proof. We first consider the case that 'Y is a smooth curve. 
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Let us choose an arbitrary connection in{, an arbitrary Riemannian metric g on 
M and a smooth extension 'Y : [a - £, b + e] ,_. M of 'Y, with £ > 0. Since the 
image of 'Y is compact in M, there exists r > 0 which is a normal radius for all -y(t), 
t E [a - £, b + E]. We define A to be the open set: 

A= { (t,x) E JR x M: t E]a-£,b+e[, x E Br('Y(t)) }· 

Let now X 1 , ... , X k be a referential of { along "(; for instance, this referential can 
be chosen by parallel transport along 'Y relative to the connection on f Finally, we 
obtain a time-dependent local referential for { in A by setting, for ( t, x) E A and for 
i = 1, ... , k, Xi(t, x) equal to the parallel transport (relative to the connection of{) 
of Xi ( t) along the radial geodesic joining -y( t) and x. 

The general case of a continuous curve is easily obtained by a density argument. 
For, let 'Y : [a, b) ,_. M be continuous and let r > 0 be a totally normal radius 
for 'Y(t), for all t E [a, b]. Let , 1 : [a, b] 1-+ M be any smooth curve such that 
dist('Y(t), , 1 (t)) < r for all t, where dist is the distance induced by the Riemannian 
metric g on M. Then, if we repeat the above proof for the curve 'Yi. the open set A 

, thus obtained will contain the graph of 'Y, and we are done. □ 

The abstract result of Lemma 3.1.2 will now be used in the situation that we 
are interested in. Namely, let us consider a manifold M endowed with a smooth 

distribution 'D of rank k. 
Let A c JR x M be an open set and let X 1, ... , Xn be a time-dependent referen­

tial of TM defined in A. We say that such referential is adapted to the distribution 
'D if X 1 , ... , Xk form a referential for 'D. 

Corollary 3.1.3. Given any continuous curve -y : [a, b] ,_. M, there exists a time­
dependent referential of TM adapted to 'D defined in an open set A C JR x M 
containing the graph of -y. 

Proof. Let V' be any fixed complementary bundle to 'Din TM, for instance, 'D' can 
be chosen to be the orthogonal complement of 'D with respect to an arbitrarily fixed 
Riemannian metric on M. Then apply Lemma 3.1.2 to the vector bundles 'D and 
~ □ 

3.2. Charts in !l([a, b), M} adapted to a time dependent referential. 

Given a time-dependent referential of TM defined in an open set A C JR x M, we 
are going to associate to it a map 

Bo : !l([a, b], M; A) t-+ C°([a, b], JRn), 
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where A denotes the open subset of JR x TM given by: 

(3.2.1) A= { (t,v) E JR x TM: (t,1r(v)) EA}, 

and Co{[a, b), .JR.fl) is the Banach space of continuous .R"-valued functions on [a, b]. 
We define 80 by: 

(3.2.2) 

where h = (h1, ... , hn) is given by 
n 

(3.2.3) -y(t) = L h,(t)Xi(t, ,(t)), 

for all t E [a, b]. The map 80 is smooth; its differential is computed in the following: 

Lemma 3.2.1. Let 'Y E O([a, b), M; A) and v be C1 vector field along 1. Set h = 
Bo{,), z = (d.Bo)7 {v). We define a time-dependent vector field in A by 

n 

(3.2.4) X(t,x) = Lhi(t)Xi(t,x), (t,x) EA 

and a vector field w along 'Y by 
n 

(3.2.5) w(t) = L z.(t)Xt(t,,(t)). 
i=l 

Given a chart (q1 , .•. ,qn) defined in an open set V CM, denote by v(t), X(t,q) 
and w(t) the representation in coordinates of v, X and w respectively. Then, the 
following relation holds: 

(3.2.6) ! ii(t) = ~; (t, 1 (t))ii(t) + w(t), 

forallt E [a,b] such that 1 (t) EV. 

Proot Simply consider a variation of 'Y with variational vector field v and differenti­
ate relation (3.2.3) with respect to the variation parameter, using the local chart. D 

Corollary 3.2.2. Let</> : V 1---+ V C El"' be a local chart in M, and let X 1, .•. , Xn 
be a time-dependent referential of TM defined on the open set A C .11, x M. Let 8 
be the map: 

B('Y) = (</>(1(a)), Bo{,)), 

def,nedwhenever-y E fl([a, b],M;A) and-y(a) EV. 
Then, 8 is a local chart in fl([a, b], M) taking values in an open subset of El!' x 

C°([a, b], JRR). 
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Proof. The differential of 8 is given by: 

dB-,(v) = (d<P-r(a)(v(a)), (dBo).y(v)) 

where (dBo)..,(v) is given in Lemma 3.2.1. By standard results on the existence and 
uniqueness of the solution of a linear differential equation with given initial condi­
tions, it follows that dB.., is an isomorphism, hence B is a local diffeomorphism. The 
injectivity of B follows easily from the uniqueness of solutions of ordinary differen­
tial equations with given initial conditions. This concludes the proof. D 

Now, using the chart B, we can prove that Op([a, b], M, 'D) has the structure of a 
smooth Banach manifold: 

Proposition 3.2.3. Op([a, b], M, 'D) is a submanifold ofOp([a, b], M). 

Proof. If the referential Xi, ... , Xn defining 8 is adapted to the distribution V, 
then a curve I in O([a, b], M; A) is horizontal if and only if Bo(,) = h satisfies 
hi.+1 = . . . = hn = 0. This means that, if <J, is a submanifold chart for P then 
8 is a submanifold chart for Op([a, b], M, 'D). The conclusion follows from Corol­
lary 3.1.3. D 

We can now give a good description of the space T..,Op([a, b], M, 'D) using the 
mapB. 

Let 'YE O([a, b], M; A) and set h = 8 0 (-y). Define a time-dependent vector field 
X in A as in (3.2.4). By Lemma 3.2.1, the kernel Ker (dBo).., is the vector subspace 
of T..,Sl([a, b], M) consisting of those v whose representation in coordinates ii satisfy 
the homogeneous part of the linear differential equation (3.2.6), namely: 

(3.2.7) :t ii(t) = ~! (t, ,(t))ii(t). 
By the uniqueness of the solution of a Cauchy problem, it follows that, for all t E 
[a, b], the evaluation map 

Ker{dBo)-, 3 v 1-t v(t) E T-y(t)M 

is an isomorphism. Therefore, for every t E [a, b] we can define a linear isomorphism 
cf>t : T-,(a)M 1-t T-,(t)M by: 

(3.2.8) cf>t(v(a)) = v(t), v E Ker (dBo)..,. 

Using the maps c)1 we can give a coordinate free description of the differential of 
Bo, based on the "'method of variation of constants" for solving non homogeneous 
linear differential equations. 
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Lemma 3.2.4. Let 'Ye O{[a, b], M; A) and v e T-rO([a, b], M). Seth= B('Y) and 
z = (d80)-r(v). Define the objects X, wand ibt as in (3.2.4), (3.2.5) and (3.2.8) 
respectively. Then, the following equality holds: 

(3.2.9) v(t) = ibt (Vo+ 1t ib;1w(s) ds), 

where Vo = v( a). 

Proof. Both sides of (3.2.9) coincide at t = a, therefore, to conclude the proof, one 
only has to show that its representation in local coordinates satisfies the differential 
equation (3.2.6). This follows by direct computation, observing that the represen­
tation in local coordinates of the maps 4>, is a solution of the homogeneous linear 
differential equation (3.2.7). 0 

Corollary 3.2.5. Suppose that the referential X1, ... , Xn that defines Bo is adapted 
to 'D. Let 'Y be an horizontal curve in Op([a, b], M; .A). 

Then, the tangent space T-yOP([a, b], M, 'D) consists of all vector fields v of the 
form (3.2.9), where w runs over all continuous horizontal vector fields along 'Y and 
Vo E T-y(a)P. 

Proof. Follows directly from Lemma 3.2.4, observing that B is a submanifold chart 
for Ilp([a, b], M, 'D), as it was remarked in the proof of Proposition 3.2.3, provided 
that the chart tp used to define B is chosen to be a submanifold chart for P. □ 

3.3. Characteristic curves and the critical points of the endpoint map 

We have proven that Op([a,b],M, 'D) is a submanifold of O([a,b],M). In order to 
study the differentiable structure of the set IlP,Q([a, b], M, 'D), we define the end­
point map end : O([a, b], M) 1-+ M by: 

end('Y) = -y(b). 

Definition 3.3.1. A curve 'Ye nP,Q(fa, b], M, 'D) is called regular if the differential 
at 7 of the restriction of end to Ilp([a, b), M, 'D) is transversal to Q, i.e., if 

Im( d(endlop((a,b),M,1>))(-y)) + T-y(b)Q = T..,(b)M. 

The curve 'Y will be called singular if it is not regular. 

We recall the definition of transversality for maps between Banach manifolds. 

Definition 3.3.2. Let M and N be Banach manifolds and Q C .N a submanifold. 
A smooth map/ : M ...... N is said to be transversal to Q at x e /-1 (Q) if 
Im(d/(x)) + TJ(z)Q = Tt(:r)N and if d/(x)-1(T1(z)Q) is a complemented sub­
space ofT:eM, We say that/ is asubmersion at x E Miff is transversal to {/(x)} 
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at x; f is transversal to Q (resp., a submersion) if/ is transverse to Q (resp., a 
submersion) at every XE J-1(Q) (resp., at every XE M). 

It is well known (see for instance [7)) that if/ is transverse to Q at x, then 1-1( Q) 
is a smooth submanifold of M around x. We can now motivate the introduction of 
the endpoint map: 

Proposition 3.3.3. Suppose that-y E Op,q([a, b], M, V) is a regular curve; then the 
set Op,q([a, b), M, 'D) is a submanifold o/Op([a, b), M, V) around-y. 

Proof Clearly, Op,q([a, b], M, 'D) = (endlnP([a,b),M,1'))- 1(Q). H 'Y is regular, this 
restriction of the endpoint map is easily seen to be transverse to Q at -y, since it has 
finite dimensional range. □ 

We want to relate the differential of the endpoint map with the symplectic struc­
ture of TM*. We denote by 1>" C TM* the annihilator of 1). The restriction wl'Do 
of the canonical symplectic fonn of TM• to 1)0 is in general no longer nondegener­
ate and its kernel Ker(wl-z,o )(p) at a point p E 1>" may be non zero. We say that an 
absolutely continuous curve '7 : [a, b) 1--+ 'D" is a characteristic curve for 1) if 

i](t) E Ker{wlv0 )(fJ{t)), 

for almost all t E [a, b]. 
We take a closer look at the kernel of wl-z,o. Let Y be a horizontal vector field in 

an open subset of M. We associate to it a Hamiltonian function Hy defined by 

Hy(p) = p(Y(x)), 

where x = 1r(p). We can now compute thew-orthogonal complement of T,,'D" 
in T,,TM*. Recall that Hy denotes the corresponding Hamiltonian vector field in 
TM*. 
Lemma 3.3.4. Let p E TM* and set x = 1r(p). Thew-orthogonal complement of 
T,,'D" in T,,TM* is mapped isomorphically by d1r,, onto 'Dz. Moreover, ifY is a 
horizontal vector feld clefined in an open neighborhood of x in M, then Hy(p) is 
the only vector in thew-orthogonal complement ofT,,'D" which is mapped by d1r,, 
into Y(x). 

Proof. 1he function Hy vanishes on 'D" and therefore w(Hy, ·) = dHy vanishes 
on T,,'D". The conclusion follows by observing that, since w is nondegenerate, the 
w-orthogonal complement ofTpV° in TpTM* has dimension k = dim('Dz). D 

Corollary 3.3.5. The projection of a characteristic curve of 'D is automatically hori­
zontal Moreover, let 'Y : !a, b) 1--+ M be a horizontal curve, let X 1, ... , Xn be a time­
clependent referential of TM adapted to 1), clefined in an open subset A C B x M 
containing the graph of -y. Define a ~-clependent vector field X in A as in (3.2.4). 
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• 
Let TJ : (a, b} H 1Y" be a curve with 1r o TJ = 'Y· Then TJ is a characteristic curve of 'D 
if and only if TJ is an integral curve of Hx. 

Proof. For p E 1Y", the kernel of the restriction of w to T11'D
0 is equal to the in­

tersection of T11V° with the w-orthogonal complement of T,,V° in T11T M*. By 
Lemma 3.3.4, it follows that the kernel of wl-z,o projects by d1r into 'D, and therefore 
the projection of a characteristic is always horizontal. 

For the second part of the statement, observe that fort E [a, b], X(t, ·) is a hor­
izontal vector field in an open neighborhood of 'Y(t) whose value at 'Y(t) is ,y(t). 
Therefore ,;(t) is w-orthogonal to T,,(t)'D0 if and only if Jj(t) = Hx(TJ(t)). □ 

Corollary 3.3.6. Let 'Y : (a, b} H M be a horizontal curve and X 1, •.. , Xn be a 
time-dependent referential of TM adapted to 1), defined in an open subset A C JR x 
M containing the graph of"(. Let X be defined as in (3.2.4). A curve TJ: [a, b} H 1Y" 
with 1r o TJ = 'Y is a characteristic o/V if and only if its representation rj(t) E Jl!l* 
· in arry coordinate chart of M satisfies the following first order homogeneous linear 
differential equation: 

(3.3.1) 

where X is the representation in coordinates of X. 

Proof. Simply use Corollary 3.3.5 and write the Hamilton equations of Hx in coor­
dinates. D 

Differential equation (3.3.1) is called the adjoint system of (3.2.7). It is easily seen 
that ii is a solution of (3.3.1) if and only if rj(t)ii(t) is constant for every solution ii 
of (3.2.7). From this observation we get: 

Lemma 3.3.7. Let 'Y : [a, b) 1-+ M be a horizontal curve and suppose that the refer­
ential X 1, ... , Xn defining ~, in (3.2.8) is adapted to 1J. Then a curve TJ : [a, b) 1-+ 

V° with 11' o TJ = 'Y is a characteristic for 1) if and only if TJ(t) = (~;)- 1(TJ(a))for 
every t E [a, b]. 

Proof. By Corollary 3.3.6 and the observation above we get that TJ is a characteristic 
if and only if 11(t)v(t) is constant for every v E Ker ( dBo)-,. The conclusion follows. 

□ 

We can finally prove the main theorem of the subsection. 
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Theorem 3.3.8. The annihilator of the image of the differential of the restriction of 
._ the endpoint mapping to Op([a, b], M, V) is given by: 

Im( d(endlap([a,b),M,i>))(-y)) 
0 

= 
(3.3.2) 

{ r,(b) : f/ is a characteristic for V, r,( a) E T..,(a) P" and 11" o r, = 'Y}. 
Proof. By Lemma 3.2.5, we have: 

Im( d(endlap([a,b),M,i>))b')) = 

. (3.3.3) {~b(vo+ lb ~;- 1w(s)ds) :wisacontinuoushorizontalvector 

field along-y and vo E T7(a)P }· 

By Lemma 3.3.7, if '1 is a characteristic with 11" or, = 'Y and with 11(a) E T-,(a)Po, 
then r,(b) annihilates the right hand side of (3.3.3). Namely: 

(3.3.4) 

'1(bJ( ~b(Vo + 1b +;-1w(s) ds)) = 

= (~:)-1(11(a)) ( «>b(tlo + lb «>;1w(s)ds}) 

= 11(a) (Vo+ 1b ~;-1w(s) ds) = 1b '1(a)~;-1w(s) ds 

= 1\+:)-1'1(a)w(s) ds = lb r,(s)w(s) ds = 0. 

We have to prove that if 'lo E T..,(b)M* annihilates the righthand side of (3.3.3) then 
there exists a characteristic '1 with 11" o '1 = -y, f](a) E T-,(a)Po and f](b) = f]o. 

Define '1 by '1(t) = (+;)-1(+:(11o)) for all t E [a,bJ. By Lemma 3.3.7, we only 
have to prove that '1([a,b)) C 'D° and that 11(a) E T-,(a)Po. Computing as in (3.3.4) 
with v0 = 0, we see that, since '1o annihilates the righthand side of (3.3.3), then: 

1" f](s)w(s)ds = 0, 

for any horizontal continuous vector field w along -y. which proves that 11([a, bl) C 
'D°. 

Now, setting w = 0 in the righthand side of (3.3.3), we obtain that 

11o(+b(vo)) = 77(a)(t1o) = 0 
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for any v0 E T..,(a)P, and this concludes the proof. D 

Corollary 3.3.9. The image of tM differential of tM restriction of tM endpoint map­
ping to rlp([a, b], M, 'D) contains 'D-y(b)• 

Proof By Theorem 3.3.8, the annihilator of the image of the differential of the re­
striction of the endpoint mapping to Op([a, b),M, 'D) is contained in the annihilator 
of'D-y(b)• The conclusion follows. D 

Corollary 3.3.10. lfQ is transverse to 'D, i.e., TzQ+'Dz = TzM for all x E Q, then 
every 'Y E rlP,Q([a, b], M, 'D) is regular, and nP,Q([a, b], M, 'D) is a submanifold of 
Op([a, b], M, 'D). 

Proof. It follows easily from Proposition 3.3.3 and Corollary 3.3.9. D 

The next corollary, which is obtained easily from (3.3.2), gives a characterization 
of singular CW'Ves in terms of characteristics: 
Corollary 3.3.11. A curve 'Y e nP,Q((a, b), M, 'D) is singular if and only if it is 
the projection of a non zero characteristic 11 of'D with 11(a) E T-y(a)Po and 11(b) E 

~~ D 
Observe that by Lemma 3.3.7 a characteristic either never vanishes or is identi-

cally zero. • 

3.4. AnotMr description oftM differtntiahle structure ofOP,Q([a, b], M, 'D) 

The set nP,Q([a, b], M, 'D) can be thought as the subset of Op(fa, b], M, 'D) consist­
ing of curves with endpoint in Q, or as the subset of Op,Q([a, b), M) consisting of 
curves that are horizontal. The first point of view was adopted in subsection 3.3; in 
this subsection we consider the second approach. 
Lemma 3A.1. Let M, Mi and M 2 be Banach manifolds, with Mi jiniu dimen­
sional, and let f : M ....,. Mi, g : M ....,. M2 be submersions. Let Pl E Mi, 
P2 E M2 and choose x E 1-i(pi) ng-1(1,,J). Then, /19-1t'.P2) isa submersion at x 
if and only if 911-1 CPi.) is a submersion at x. 

Proof In first place, the closed subspace Ker( d/ ( x ))nKer( dg( x)) is complemented 
in Ker(dg(x)), because it has finite codimension. 

Since Ker(dg(x)) is complemented in TzM, it follows that the closed subspace 
Ker( d/ (x ))nKer( dg(x)) is complemented in TzM, thus Ker( df (x ))nKer( dg(x)) 
is complemented in Ker(d/(x)). 

It remains to show that d/(x)!Ker(dg(z)) is surjcctive onto T/(:a:)Mt if and only 
if dg(x)lxer(d/(:a:)) is surjectivc onto Tg(:a:)M2, This follows from a general fact: if 
T : V .-. V1 and S : V 1-+ ¼ are surjective linear maps between vector spaces, then 
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TIKer(S) is surjective if and only if Ker(T) + Ker(S) = V. Clearly, this relation is 
symmetric in S and T, and we obtain the thesis. □ 

We now consider an n-dimensional manifold M, endowed with a smooth distri­
bution of rank k. 

Using Lemma 3.1.2, we describe 1) locally as the kernel of a time-dependent 
JRR-k-valued 1-form: 

Proposition 3.4.2. Let 1 : [a, b) 1-+ M be a continuow curve. Then, there exists an 
open subset A ~ JR x M containing the graph of -y and a smooth time-dependent 
F-k-valued lform (J defined in A. with (}(t,z) : TzM 1-+ JRR-k a surjective linear 
map and1)z = Ker(8(t,z))forall (t,x) EA 

Proof. Let e be the subbundle of the cotangent bundle TM* given by the annihilator 
1Y" of 'D. Apply Lemma 3.1.2 to { and set (J = (81, ... , Bn-k), where {8i}f::l is a 
time-dependent local referential of { defined in an open neighborhood of the graph 
of,. □ 

Let (} and A be as in Lemma 3.4.2, and define 

0: Op,q([a,b),M;.A) t-t G°([a,b),.ll"-k) 

to be the smooth map: 

(3.4.1) 

where AC JR x TM is defined in (3.2.1). 
Clearly, Op,q([a, b], M, TJ; .A) = e-1(0). 

Proposition 3A.3. 0 is a submersion. 

Proof. Let -y E Op,q((a, b), M; .A) be a fixed curve; we choose a time-dependent 
referential X 1 , ... , Xn of TM defined in a neighborhood of the graph of 'Y such 
that 8i(X;) = 6i,j-k• i = 1, ... , k and j = k + 1, ... , n. This is easily done 
by considering an extension of 8 to a basis of TM* (see Lemma 3.1.2), and then 
taking the X. 's obtained by suitably reindexing the corresponding dual basis. We 
now consider the chart 8 of Op((a, b], M) associated to X1, ... , Xn constructed 
in subsection 3.2 (see Corollary 3.2.2). In such a chart. the map 0 is simply a 
projection, and therefore it is a submersion. D 

It is easy to see that the endpoint map is a submersion on Op([a, b), M), hence 
we have the following: 

Corollary 3.4.4. Let 0 be defined as in (3.4.1). Then, 1 E Op,q([a, b), M, TJ; A) is 
regular if and only if the restriction o/0 to f2P,Q([a,b),M; .A) is a submersion at,. 
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Proof. It follows easily from Lemma 3.4.1 and Proposition 3.4.3. 
To apply Lemma 3.4.1, we take M = Op([a, b], M; .A), Mi = nn-dim(Q), 

M 2 = C°([a, b], JR"-k), f = 1/J o end, g = 0, where 1/J is a submersion of an 
open subset W c M around -y(b) talcing values in En-dim(Q) such that ,p-1(0) = 
QnW. □ 

4. LAGRANGIANS WITH LINEAR CONSTRAINTS AND DBGBNBRATB 

HAMILTONIANS 

Let M be an n-dimensional manifold and 'D c TM be a smooth distribution of 
rank k. We consider Vas a vector bundle over M with projection 1r : 'D 1-+ M. We 
apply the theory of Section 2 to the vector bundle ! = .ll x V over the manifold 
.ll x M, with projection Id x 1r. The fiber {(t,m) is given by {t} x Vm. 

Let L : U c e 1-+ .ll be a map of class C2 defined in the open set U; we assume 
that£ is hyper-regular in the sense of Definition 2.1.4. Let H0 = L* be the Legendre 
transform of L, defined in an open subset V c .ll x v•. Define an extension H of 
Ho by setting: 

(4.0.2) H(t,p) = Ho(t,pl'I)), 

whenever ( t, Pl1>) E V. Observe that the maps Ho ana H arc of class C1• 

In this context. we say that Lis a constrained Lagrangian on M, and His the 
corresponding ckgenerate Hamiltonian. 

Given any two submanifolds P and Q of M, a constrained Lagrangian L on M 
defines an action functional.Con nP,Q([a, b], M, V; U) by formula (2.2.1) whose 
stationary points are interpreted as the trajectories of the mechanical systems that we 
are interested in. 

The following is the main result of the section and its proof is given in subsec­
tion 4.2: 
Theorem 4.0.5. Let M be an n-dimensional manifold, V C TM be a smooth distri­
bution of rank k, L : U c Rx 'D 1-+ JR be a hyper-regular constrained lAgrangian 
of class C2, let Ho= L* be its Legendre transform and let H be the corresponding 
ckgenerate Hamiltonian as in (4.0.2). 

Fix two submanifolds P and Q of M and let .C be the action functional of L in the 
space OP,Q([a, b], M, V; U) defined by (2.2.1). Let 'YE Op,Q([a, b], M, 'D; U) be a 
regular curve. Then, 'Y is a critical point of C if and only if it is a solution of H that 
admits a Hamiltonian lift r such that r(a) E T-y(a)Po andr(b) E T..,(b)Q0

• 

Theorem 4.0.5 is a generali7.ation to the case of constrained Lagrangians of Theo­
rem 2.2.4, where it was required a weaker regularity assumption on L. We emphasize 
that the rather awkward regularity assumption made in Theorem 2.2.4 is due to the 
fact that the result will be now applied to the case of a Lagrangian whose regularity 
in the variable t is not clear a priori. 
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The classical example of a constrained hyper-regular Lagrangian function L is 
given by: 

(4.0.3) 
1 

L(t, v) = 2 g(v, v) - V(1r(v)), 

where g is a smoothly varying nondegenerate inner product on V and V : M .,.... JR is 
a map of class C2. A version of Theorem 4.0.5 for Lagrangians of the form ( 4.0.3), 
with g positive definite, is proven in [6, Proposition 3.3]. 

To see that (4.0.3) defines a hyper-regular Lagrangian, simply observe that the 
fiber derivative FL is given by: 

FL(t, v) = g(v, •). 

For such Lagrangians, it is easily computed: 

1 
EL(t,v) = 2 g(v,v) + V(1r(v)), v E 'D, 

1 
Ho(t,p) = 2 g-1{p,p) + V(1r(p)), p E 'D*. 

(4.0.4) 

Theorem 4.0.5 implies that the critical points of the action functional £ are the solu­
tions of the Hamiltonian H given by: 

H(t,p) = ~ g-1 (pl'.D,Pl'.D) + V(1r(p)), p E TM*. 

We emphasize that, in general, a minimum of the action functional £ may not be a 
regular curve i Op,q([a, b], M, 'D), and in this situation it may not satisfy the Hamil­
ton equations of H. Examples of this phenomenon are given in [8, 10] in the case 
V = 0. Hence, one can only conclude that a minimum of £ is either a solution 
of the Hamilton equations or the projection of a non null characteristic of V (see 
Corollary 3.3.11). 

4.1. Generaliz,edfunctions calculus 

For the proof of Theorem 4.0.5, and also to justify the computation of the Euler­
Lagrange equations (see Remark 2.2.3), we will occasionally have to consider deriva­
tives of functions that are only continuous. These derivatives must be understood in 
the sense of Schwarz-distributional calculus. However, the usual definition of distri­
bution as the dual space of smooth compactly supported maps only allows products 
of distributions by smooth maps. To overcome this difficulty, we introduce a calculus 
for distributions of stronger regularity, that are the dual of a space of functions with 
weaker regularity. 

Let Vbearealfinitedimensional vector space. Fork~ 0, wedefineC~([a,b], V) 
to be the Banach space of V-valued Ck maps on [a, b) whose first k derivatives van­
ish at a and at b, endowed with the standard Ck-norm. We denote by Dk([a, b), V} 
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the dual Banach space ofCC([a,b], V*). Denoting by .LP([a, b], V) the Banach space 
of V-valued measurable functions on [a, b] whose p-th power is Lebesgue integrable, 
we have an inclusion: 

defined by 

{/,a)= 1b a(t)f(t) dt, f E L1([a,b], V), a E Cg([a,b], V*). 

Moreover, we have inclusions Dk c....+ Dk+ 1 defined by restriction of the functionals. 
We summarize these observations by the following diagram: 

••• c....+ cl c....+ C° c....+ Ll c....+ Do c....+ Dl c....+ ••• 

An element / of any space Dk([a, b}, V) is called a generalized function. We 
sometimes omit the parameters in Ck or Dk, whenever there is no risk of confusion. 

In addition to the standard vector space operations in Dk, we define the following: 

• derivative operation: for f E Dk([a, bJ, V), we denote by f' the element in 
Dk+1(ia, b], V) defined by 

(/',a}= -(/,cl} 

for all a E cg+i([a, b], V*); 
• product operation: for/ E Dk([a,b], V), g E Ck([a,b], W) and a fixed 

bilinear map V x W i-+ U, we define fg E Dk([a, bl, U) as follows. The 
bilinear map V x W i-+ U induces a bilinear map W x U* i-+ V* by 
(w • u*)(v) = u*(v • w); we set: 

(/g,o:} = (/,g,o:}, 

for all a E CC([a, b], U*); 

• restriction operation: for f E Dk([a, bJ, V) and [c, d] C [a, bJ, we set: 

Uhc,d), a} = (/, a}, 

for all a E CC (le, d], V), where a E CC ([a, b], V) is the extension to zero 
of a outside [c, d]. 

It is easily seen that when we apply the above operations to elements of Dk which 
correspond to functions then we obtain the standard operations on functions. More­
over, the standard Leibniz rule for derivatives of products holds for distributions: 

(lg)'= f'g + fg', 

for all / E Dk and g E Ck+t. 
In order to prove some regularity results we present the following elementary 

Lemmas. 
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Lemma 4.1.1. Let f E Dk([a, b], V) be such that f' = 0. Then f is a constant 
function. 

Proof We first consider the case V = JR. If f' = 0, then (/, o:') = 0 for all 

o: E c;+i([a, b}, JR), hence (/, /3) = O for all /3 E CS([a, b], JR) with J: f3 = 0. Let 

/3o E CS([a, b], JR) with J: f3o = l; set c = {/, /3o). It is easily seen that/ = c. 
For the general case, observethatforallo: EV*, the product a/ E nk([a,b],R) 

has vanishing derivative, hence it is constant. Since o: is arbitrary, then / is constant. 

□ 

Lemma 4.1.2. Let f E D/c([a,b], V) with k ~ I; there exists an element FE 
n1c-~[a,b],V) with F' = f. If f E D0([a,b], V), there exists FE L2{[a,b], V) 
withF' = /. 

Proof Consider the map d : cg+ 1 
i--+ c3 given by derivative. It is easily seen that d 

is injective, with closed and complemented image. It follows that the transpose map 
d* : D" i--+ Dk+1 is surjective; clearly, the derivative of distributions is -d*, which 
proves the first part of the thesis. 

For the case k = 9, let HJ denote the Sobolev space of absolutely continuous 
functions a : [a, b] 1-+ v• having square integrable derivative, and such that a(a) = 
a(b) = 0. Again, the derivation map d : HJ 1-+ L2 is injective and has closed and 
complemented image. Therefore, given/ E D0 , we can find FE L2* ~ L2 with 
d* F = - f lH1. It follows that F' = f. □ 

0 

Corollary 4.1.3 (Bootstrap lemma). Let f be a geMralizedfunction. 

(1) If I' E D0 then f E £2; 
(2) If f' E L2 then f EC'°; 
(3) I/ I' E C'° then f E C 1. 

Proof. We prove, for example, the first item. By Lemma 4.1.2, we can find F E L2 

with F' = f'. By Lemma 4.1.1, it follows that F - f is constant, hence / E L2 • 

The other items are proven similarly. D 

We now give a result that shows that regularity of a generalized function is a local 
property: 

Lemma 4.lA. Let ,\ be a generalized function on [a, b]. Suppose that for all t E 

[a, b] there exists E > 0 such that the restriction Aht-£,t+E]n[a,b] is of class C", 
k ~ 0. Then ,\ is of class Ck. 

Proof. Consider a partition a = to < t1 < ... < tr = b such that/, = Al[t,,t.+2 ] 

is of class c1c for all i = 0, ... , r - 2. By applying ,\ to functions with support 
contained in ]t,+1, tH2[, it is easily seen that, for all i, f, = f;+1 in [t;+1, t;+2J. 
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Hence there exists a ck map/ on [a, b] such that /ht,,t.+l) = /i for aU i. It follows 
that/ agrees with >. on maps o with support contained in some interval [t,, t.+2], 
and such functions span the entire domain of >.. This concludes the proof. D 

Finally, we need the following result that relates the dual spaces of C° and C8. 
For t E (a, b] and q E V, we denote by 6r E C°([a, b], V*)* the Dirac's cklta, 
defined by: 

5f(o) = o(t}°u, o E a°([a,b], V*). 

Lemma 4.1.5. Let>. be an element in C°([a, b], V*)* be such that.\ vanishes iden­
tically on C8Ua, b], V*). Then, there exist q 4 and qb in V such that: 

I 

(4.1.1) 

Proof. Thecodimension of C8((a,b], V*) in C°([a,b], V*) is 2dim(V), and so the 
annihilator of C8([a, b), V*) in Co([a, b), V*)* has dimension equal to 2 dim(V). 
The conclusion follows immediately from the observation that the elements 5!• +~~ 
form a 2 dim(V)-dimensional subspace of such annihilator. D 

4.2. Proof of Theorem 4.0.5 

The proof of Theorem 4.0.5 is based on the method of Lagrange multipliers, and we 
start with the precise statement of the result needed for our purposes. 

Proposition 4.2.1. Let M be a Banach manifold, E a Banach space, let F : M 1-+ 

JR and g : M 1-+ Ebe maps of class C1. Let p e y-1(0) be such that g is a 
submersion at p. Then, pis a critical point/or /lg-i(o) if and only if there exists 
>. E E* such that p is a critical point for the functional b.. = f - >. o g in M. 

Proof. The point pis critical for /19 -i(o) if and only if d/(p) vanishes on the tan­
gent space T,,g- 1 ( 0) = Ker( dg(p)). The proof follows from elementary functional 
analysis arguments. □ 

The linear functional>. E E* of Proposition 4.2.1 is called the Lagrange multi­
plier of the constrained critical point p; it is easily seen that such >. is unique. We can 
now prove of the main result of the section. In the argument we will need a regularity 
result for a Lagrangian multiplier, whose proof is postponed to Lemma 4.2.2. 

Proof of Theorem 4.0.5. We start by choosing an arbitrary complementary disbibu­
tion V' to 'D, i.e., a smooth disbibution of rank n - kin M such that TmM = 
'Dm EB V'm for all m E M; moreover, we fix an arbitrary smoothly varying posi­
tive definite inner product g on 'D' (for the existence of V' and g, sec for instance 
the proof of Corollary 3.1.3). Let 1rv : TM 1-+ 'D and 1rv, : TM 1-+ 1)' be the 
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projections and let L : U C JR x M 1-+ JR be the extended Lagrangian defined by: 

- 1 (4.2.1) L(t,v) = L(t,1rv(v)) + 2 g(1rv1 (v),1rv 1 (v)), 

where 

U = { (t,v) E JR x TM: (t,,rv(v)) EU}. 
Then, Lis a Lagrangian on M as in Definition 2.2.1; we denote by l the correspond­
ing action functional in S"lp,Q([a, b], M; U), defined as in (2.2.1). 

Let e and A be as in Proposition 3.4.2, A be as in (3.2.1) and 0 as in (3.4.1). 
Then, 'Y is a critical point of£ in S"lp,Q([a, b], M, 'D; U) if and only if it is a c~tical 
point of£!e-1(o)• 

By Corollary 3.4.4 and Proposition 4.2.1, this is equivalent to the existence of 
>. E Co([a,b],.IR"-k)• such that -y is a critical point of Z,. = Z - >. o 0 in 
S"lp,q([a, b), M; An U). 

We will prove in Lemma 4.2.2 that the Lagrange multiplier .X is of class 0 1, i.e., 
that it is given by: 

b 
(4.2.2) >.(a)= 1 >.0(t)a(t) dt, Va.E C°([a,b],JR'l-k), 

for some 0 1 map ~ : [a, b) 1-+ (.IR"-k)*. Therefore, Z,. is the action functional 
corresponding to the Lagrangian L,. in M defined by: 

(4.2.3) L>,.(t,v) = L(t,v) - ~(t)6(t,m)(v), (t,v) EA n U, 

where m = 11'(v). 
We now prove that Y, and L,. are hyper-regular and we compute their Legendre 

transforms. The fiber derivatives FL and FL,. are easily computed as: 

FL(t, v) = FL(t, 11'V(v)) o ,rv + g(11'-z,,(v), 1r-z,,(·)}, 
(4.2.4) 

FL,.(t, v) = lFL(t, v) - >.o(t) Bct,m)· 

The hyper-regularity is proven by exhibiting explicit inverses: 

(4.2.5) 
FL\t,p) = FL-1 (t,p!v) + g-1(plv1 ), 

FL,. \t,p) = FL
1
(t,p + ~(t) O(t,m))· 

By g-1 in the above formula we mean the inverse of g seen as a linear map from 'Dm 
to'D~. 

We now compute the Legendre transforms H and H >,. of L and L >,. respectively. 
Using Definition 2.1.1 and (4.2.4), we compute easily: 

1 
(4.2.6) E-t;,.(t,v) = E-t;(t,v) = EL(t,11'v(v)) + 2g(11'-z,,(v),1r-z,,(v)); 
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and, using (42.5), we therefore obtain: 
(4.2.7) 

- 1 1 H(t,p) = H(t,p) + 2 g- (1rv,,1rv, ), 

H ;i,.(t,p) = H(t,p + ,\o(t) Oct,m)) = 

= H(t,p) + ~ g-1 ((p + ,\o(t) O(t,m))l:o•, (p + ,\o(t) O(t,m))l1" ). 

:z6 

We now compute the Hamilton equations of the Hamiltonian H >. with the help of 
local coordinates ( q1, ••. , qn, p1, ••. , p,.) in TM* and of a local g-orthonormal ref­
erential X1, ... , Xn-lc of'D'. 

We write: 

n-lc 
(4.2.8) H>,,(t,p) = H(t,p) + ½ L (p + ..\o(t) Oct,m)}(X,ri, 

i=l 

and, using (2.2.6), the Hamilton equations of H,. are given by: 
(4.2.9) 

dq 8H n-1c 

dt = 8p + ~(p+.\o8)(X;)X;, 

dp 8H n-lc [ 88 (8X·)] d = -a - L (p + .\o 0)(X;) .\o a(X;) + (p + .\o 0) T . 
t q ·1 q q 

I= 

By Theorem 2.2.4, "Y is a critical point of r.,. if and only if it admits a lift r : [a, b] 1-+ 

TM* satisfying (4.2.9) with r(a) E T-,(o)Po and r(b) E T-,(b)Q0
• 

Now, it follows easily from ( 4.0.2) that lJ/;- is in 'D; since "Y is horizontal, i.e., 

ri- E 'D, from the first equation of (4.2.9) it follows that (p + .\o O)(X;) = 0 for all 
i = 1, ... , n - k. Setting (p + .\o 0){X,) = 0 in (4.2.9) we obtain the Hamilton 
equations of H, which concludes the proof. □ 

We are left with the proof of the regularity of the Lagrange multiplier ,\. We will 
use the generalized functional calculus developed in Subsection 4.1. 

Lemma 4.2.2. Under the assumptions of Theorem 4.0.5, using the notations adopted 
in its proof, if "Y is horizontal and it is a critical point of£ - ,\ o 8 for some ,\ E 
C°([a, b], _nn-A:t. then there exists a C1 map Ao : [a, b] I-+ cnn-lc)• such that 
(4.2.2) holds. 

Proof. We set 
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we first prove the regularity of the generalized function AQ. To this aim. we localize 
the problem by considering variational vector fields along , having support in the 
domain of a local chart q = (q1 , ... , qn) in M. 

Let (c, d] C [a, b} be such that ,([c, d]) is contained in the domain of the local 
chart; we still denote by Ao the restriction of Ao to (c, d]. 

Since 'Y is a critical point of£ - Ao 0, by standard computations it follows that 
the following equality holds: 

(4.2.10) 
1dar . ar 

8 (t, q(t),q(t)) t1(t) + a-(t, q(t), q(t)) iJ(t) dt 
C q q 

-(Ao, :
0

1 (v(t), q(t)) + 9(t,q(t)) iJ(t)) = 0, 
q (t,q(t)) 

for every vector field v of class C 1 along 'Y having support in Jc, d[. In terms of 

~e local coordinates, the maps 8, ~(-,q), :~ and i evaluated along"/ will be 
mterpreted as follows: 

• 9 E C 1 ([c,d],Lin(F,F-k)); 

• ::(·,q) E C°([c,d],Lin(JRn,JRn-k)}; 

ar ar • 
• 8q' 8q eC°([c,d),lR" ), 

where Lin(•,•) denotes the space of linear maps between two vector spaces. 
Using the definition of derivative for generalized functions, from (4.2.10) we get: 

(4.2.11) (- ( !;)' + !; -Ao:: (·,4) + (Ao 8)', v) = 0, 

for every C 1 map v : (c, d] ...... JR" having support in Jc, d(, and, by density, for every 
v E CJ([c,d],JR"). It follows: 

(4.2.12) - (!~)'+:~-Ao ::(·,q) + ~8+ AoO' = 0. 

Let X 1, ... , Xn-k be a referential of 1Y along,; in terms of the local coordinates 
the Xi's will be thought as elements of C1 ([c, d], B"); moreover, we set 

X = (X1, ... 1 Xn-k) E C 1 ([c,d],Lin(Rn-k,.IR")}. 

Multiplying (4.2.12) by X, we obtain: 

ao . ar (ar)' (4.2.13) A~ 8(X) + Ao O'(X) - Ao oq (X, q) + oq X - oq X = 0. 
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Evaluating the first equation of (4.2.4) at X,, by the horizontality of 'Y we get: 

(4.2.14) :~Xi= 0, Vi= 1, ... ,n-k, 
hence: 

(4.2.15) 

Now, considering that 9(X) is invertible, by (4.2.15) we can write (4.2.12) in the 
form: 

(4.2.16) ..\ti= .\o h1 + h2, 

withh1 E C'°([c,d],Lin(R"-A:,Jl"-A:)) andh2 E C'°{[c,d],(R"-k)•). 
Applying three times Corollary 4.1.3, from (4.2.16) we conclude that .\o belongs 

to 0 1 ([c, d], (_Rn-A:)•). By Lemma 4.1.4, .\o e 0 1 (!a, b], (B"-A:)•). 
By Lemma 4.1.5, there exist O'a, O'b E (E"-A:)• such that: 

(4.2.17) ,\(a)= 1"~adt+O'aa(a)+O'ba(b), VaEG°([a,b],E"-"). 

To conclude the proof we show that <10 = <111 = 0. Let's show for instance that 
"" = 0; the equality""= 0 is totally analogous. 

Using local charts around ,y((a, d]), ford close to a, we consider variational vector 
fields v of class C 1 supported in (a,d[, with tJ(a) E T-,(a)P. Arguing as in the 
deduction of formula (4.2.10), we get the following equality: 

1" !;(t,q(t),q(t))v(t) + !~(t,q(t),q(t))v(t) dt 

(4.2.18) -ld >.o(t) [ !0 
j {1l(t), 4(t)) + Dct,11cm v(t)] dt 

a q (t,q(t)) 

- "" [ 8
89 I (v(a), g(a)) + Oca,q(a)) v(a)] = 0. 

q (o,q(o)) 

From Lemma 4.1.3 and formula (4.2.12) it follows that f is of class C 1, and we . q . . . 
can use integration by parts in (4.2.18) to obtain an equality of the form: 

(4.2.19) 1d u{t) v(t) dt + Ua Oca,q(o)) v(a) = 0, 

for some u E G°([a, d], JR"*), whenever vis chosen such that t1(a) = 0. By consid­
ering arbitrary t1 supported in ]a, d[, from (4.2.19) we obtain that u = 0 in [a, d], so 
that the integral in (4.2.19) vanishes for all ti, Now, we can choose tJ with t1(a) = 0 
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and v(a) arbitrary, and from (4.2.19) we obtain that ua = 
surjective. This concludes the proof. 
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