


LAGRANGIAN AND HAMILTONIAN FORMALISM FOR
CONSTRAINED VARIATIONAL PROBLEMS

PAOLO PICCIONE AND DANIEL V. TAUSK

ABSTRACT. We consider solutions of Lagrangian variational problems with lin-
ear constraints on the derivative. These solutions are given by curves -y in a dif-
ferentiable manifold M that are everywhere tangent to a smooth distribution D
on M; such curves are called horizontal. We study the manifold structure of the
set 2p (M, D) of horizontal curves that join two submanifolds P and Q of
M. We consider an action functional £ defined on Qp, (M, D) associated to
a time-dependent Lagrangian defined on D. If the Lagrangian satisfies a suitable
hyper-regularity assumption, it is shown how to construct an associated degenerate
Hamiltonian H on TM* using a general notion of Legendre transform for maps
on vector bundles. We prove that the solutions of the Hamilton equations of H are
precisely the critical points of L.

1. INTRODUCTION

The aim of this paper is to generalize to constrained variational problem the clas-
sical results about the correspondence between Lagrangian and Hamiltonian formu-
lations (see for instance [1]). Particular cases of this theory are the sub-Riemannian
geodesic problem, and the so called Vakonomic approach to the non holonomic me-
chanics.

The constrained variational problem is modeled by the following setup: we con-
sider an n-dimensional differentiable manifold M endowed with a smooth distribu-
tion D C TM of rank k; moreover, L is a (possibly time dependent) Lagrangian
function on D. In the non holonomic mechanics, M represents the configuration
space, D the constraint, and L is typically the difference between the kinetic and a
potential energy. In the sub-Riemannian geodesic problem, L is simply the quadratic
form corresponding to a positive definite metric on D.
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The solutions to the constrained variational problem are given by horizontal curves
7 in M which are stationary points of the action functional

b
£y) = / L(t,A(8), 4(6) dt,

and that satisfy suitable boundary conditions.

We consider the set Qp,o([a, b}, M, D) of horizontal curves in M of class C*
joining two submanifolds P and @ of M. If either P or Q is transversal to D,
then we show that Qp,q([a, b}, M, D) has a natural structure of a Banach manifold.
More in general, we give conditions that guarantee the existence of a differentiable
structure on p,g([a, b}, M, D) in terms of the symplectic structure of the cotangent
bundle TM*. In this situation, £ is a smooth map on Qp q([a,b], M, D) and we
describe its critical points.

In order to be able to treat the case of a general Lagrangian function, in the paper
we have considered as domain of the action functional the set of horizontal curves
of class C1. If one considers a Lagrangian of some specific form, like for instance
L(t,q,4) quadratic in ¢, then one can extend the domain of the action functional to
include curves that satisfy weaker regularity conditions, for instance of Sobolev type.
Considering such extension may be more appropriate for developing an existence
theory for the solutions of the variational problem by techniques of Global Analysis.
We remark here that virtually all the results presented in this paper may be extended
in this direction by minor modifications of the arguments.

When the Lagrangian function L satisfies a hyper-regularity condition, we in-
troduce an associated Hamiltonian Hy on D* using a suitable version of the Le-
gendre transform for general vector bundles. The Hamiltonian H;, has a canonical
extension to a Hamiltonian H in TM*, which is degenerate, given by H(t,q,p) =
H, (t, q, p|p). The solutions of the Hamilton equations of H whose momenta anni-
hilate TP and T'Q at the endpoints are shown to be precisely the critical points of
the action functional £ in 2p g([a, 8], M, D). In this way, we obtain a Hamiltonian
formulation of our variational principle.

In the particular case where D is endowed with smoothly varying positive definite
inner product g and L is given by L(t,q,4) = % 9(¢, q), then the solutions of the
corresponding Hamiltonian are known in the context of sub-Riemannian geometry
as the normal extremals of (M, D, g). The critical points of the constraint defining
Q([a, b], M, D) are called abnormal extremals. In particular, we obtain a variational
proof of [8, Theorem 1].

In [2, Theorem 1.17] it is proven that the normal sub-Riemannian extremals be-
tween two fixed points of a sub-Riemannian manifold are critical points of the sub-
Riemannian action functional. The proof is presented in the context of the Malliavin
calculus, employed to study some problems connected with the asymptotics of the
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semi-group associated with a hypoelliptic diffusion. For this purposes, the author’s
proof is restricted to the case that the image of the normal extremal be contained in
an open subset of M on which the distribution D is globally generated by k smooth
vector fields. In this paper we reprove the result of [2, Theorem 1.17] under the more
general assumptions that:

o the Lagrangian function may be time-dependent, and it is not necessarily
quadratic in the derivatives;

o the vector bundle D is not necessarily trivial around the image of the normal
extremizer;

o the endpoints of the normal extremizers are free to move on two submani-
folds of M.

As to the first generalization of the extremizing property of the normal extremizers,
it is interesting to observe that in the proof it is employed the Lagrangian multipliers
technique that uses time-dependent referentials of D defined in a neighborhood of the
graph of any continuous curve in M. The existence of such referentials is obtained
by techniques of calculus with affine connections, and it is likely that the method of
time-dependent referentials may be applied to other situations where global geomet—
rical results are to be proven.
Another observation that is worth making about the Lagrangian multipliers is
that, in the functional setup of the method, the constraint is given by the kernel of a
suitable submersion (see formula (3.4.1)) from the set of C!-curves in an open subset
of M taking values in the Banach space of IR"~*-valued continuous functions. This
submersion is defined using time-dependent referentials of the annihilator D° of D
in the cotangent bundle T'M*, and the surprising result is that such map fails to be
a submersion precisely at the abnormal extremizers (Corollary 3.4.4). We therefore
obtain a new variational description of the abnormal extremizers.
In Reference [6] it is studied the case of Vakonomic mechanics, by considering
a Lagrangian L of the form L(t,q,§) = %g(q, G) —V(q), where V : M — R
represents the potential energy of the force acting on the system.

We conclude with a remark about a possible index theory for trajectories of Vako-
nomic mechanics. Every such solution comes with a well defined Morse index,
possibly infinite, which is the dimension of a maximal negative space for the second
variation of the Lagrangian action functional. In the case of non constrained hyper-
regular Lagrangians, this number is related to the Maslov index of the corresponding
solution of the Hamilton equations (see [13]). However, an index theorem for the ac-
tion functional of a general constrained Lagrangian is not known yet, and we suggest
that further investigation can be done in this direction. A sub-Riemannian version of
the Morse index theorem can be found in [5].

We give a brief description of the material presented in each section of the paper.
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In Subsection 2.1 we present an abstract version of the Legendre transform for
maps defined on general vector bundles. In Subsection 2.2 we recall the classical
theory concerning the relations between the critical points of the action functional
associated to a time-dependent Lagrangian function and the solutions of the corre-
sponding Hamiltonian obtained by the Legendre transform. We consider rather weak
regularity assumptions on the Lagrangian L and we also study the case of variable
endpoints. For the case of time independent non constrained smooth Lagrangians
and curves with fixed endpoints, we refer to [1].

In Subsection 3.1 we show the existence of local time-dependent referentials for a
general vector bundle defined in the neighborhood of the graph of a given continuous
curve. Using these referentials, in Subsection 3.2 we describe a convenient atlas
for the Banach manifold structure on the set of horizontal curves with free final
endpoint. In Subsection 3.3 we study the differential structure of Qp q([a, b}, M, D)
in terms of critical points of the endpoint map on Qp([a, b], M, D). Such critical
points are completely characterized in terms of characteristic curves of D, which
are the curves in TM™ everywhere tangent to the kernel of the restriction to D° of
the canonical symplectic form of TM*. Some questions concerning the genericity
of the property of existence of critical points of the endpoint map are answered in
[3]. In Subsection 3.4 we study the differentiable structure of Qp g ([a, b], M, D) in
terms of local referentials of the annihilator D of D.

In Section 4 we state the main result of the paper (Theorem 4.0.5), that estab-
lishes the correspondence between the critical points of the action functional of a
hyper-regular constrained Lagrangian and the solutions of the corresponding degen-
erate Hamiltonian. In Subsection 4.1 it is presented a suitable version of Schwarz’s
distributional calculus, needed for technical reasons in the proof of Theorem 4.0.5.
In Subsection 4.2 we give the proof of Theorem 4.0.5.

2. THE LEGENDRE TRANSFORM.
LAGRANGIANS AND HAMILTONIANS ON MANIFOLDS

2.1. The Legendre transform

Let £q be a real finite dimensional vector space, let £ denote its dual, and let Z :
U — IR be a function of class C? defined on the open subset U C &.

Definition 2.1.1. Assume that the differential dZ is a diffeomorphism onto an open
subset V' C &;. The Legendre transform of Z is the C* map Z* : V — R defined
by:

@.1.1) Z* = Ez 0 (d2)7},

where Ez : U — IR is given by

2.1.2) Ez(v) =dZ(v)v—-Z(v), veU.
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Lemma 2.1.2. Using the canonical identification of &, and its bi-dual £§*, the map
dZ* is the inverse of dZ. Therefore, Z* is a map of class C*.

Proof. Differentiating the equality Z* o dZ = Ez and (2.1.2), we obtain:
dZ*(dZ(v)) 0 d2Z(v) = dEz(v), dEz(v) = 0d%Z(v),

where § € £§* is the evaluation at v. Since d2Z(v) : £ — & is an isomorphism,
the conclusion follows. O

Corollary 2.1.3. Z** =2

Proof. By Lemma 2.1.2, we have:
Z* = Ez.0(d2*)™! = Ez. 0dZ.
Hence, by definition of Ez-, we get
Ez-(dZ(v)) =dZ*(dZ(v))dZ(v) - Z27(dZ(v)) =
=dZ(w)v— Ez(v) = Z(v).
' O

Let now M be a smooth manifold and 7 : £ +— M be a smooth vector bundle
over M; for m € M, we denote by &, the fiber 7~1(m). The dual bundle of ¢ will
be denoted by £*; the bi-dual £** is canonically identified with £.

Let Z : U C € +— IR be amap such that, for every m € M, UN&,, isopenin &y,
and such that the restriction of Z to U N &, is of class C2.

Definition 2.1.4, The fiber derivative FZ : U +— £* is the map defined by:
213) FZ(v) = d(Zlune.)(v), veD,

where m = w(v). Let V C £* be the image of FZ; we say that Z is regular if for
each m € M, the restriction of FZ to U N &,, is a local diffeomorphism; Z is said to
be hyper-regular if for each m such restriction is a diffeomorphism onto V N &;,. If
Z is hyper-regular, we define the Legendre transformof Z asthemap Z* : V — R
whose restriction to V' N &, is the Legendre transform of the restriction of Z to
Uném.

Applying Lemma 2.1.2 and Corollary 2.1.2 fiberwise, we obtain immediately the
following:
Proposition 2.1.5. Let Z : U C £ — IR be hyper-regular. Then, for eachm € M,
the restriction of Z* to V N\ £3, is of class C%. Moreover, FZ and ¥Z* are mutually
inverse bijections, and Z** = Z. (]
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2.2. Time dependent Lagrangians and Hamiltonians on manifolds

Let M be a smooth n-dimensional manifold, let 7 : TM — M and 7 : TM* —» M
be respectively the tangent and the cotangent bundle of M; we consider the following
vector bundles:

E=RxTM ", RxM, ¢ =RxTM* 2°, RxM.

Observe that the fiber {(;,m) is {t} X TmM, and £, ., = {t} x T M*.

Definition 2.2.1. A (time-dependent) Lagrangian on M is a function L : U C £ —
IR defined on the open set U and satisfying the following continuity and differentia-
bility conditions:
(1) L is continuous;
(2) foreacht € IR, the map L(t,) is of class C! in U N ({t} x TM), and its
differential is continuous in U;
(3) foreacht € IR, the map FL(t,-) : U N ({t} x TM) — {t} x TM* is of
class C1.
A (time-dependent) Hamiltonian on M is a function H : V C £* — IR defined on
the open set V and satisfying the following properties:

(1) forallt € R, H(t,-) is of class C?;
(2) for each (t,m) € R x M, the restriction of H to V N7, is of class C.

We use the notions of regularity and hyper-regularity given in Definition 2.1.4 for
Lagrangians and Hamiltonians on manifolds.

Using the Legendre transform defined in Subsection 2.1 (Definition 2.1.4), given a
hyper-regular Lagrangian L on M, the map H = L* is a hyper-regular Hamiltonian
on M. To see that H(t,-) is of class C?, one applies the Inverse Function Theorem
to the map FL(¢,-).!

If H is the hyper-regular Hamiltonian obtained by Legendre transform from the
Lagrangian L, then by Proposition 2.1.5, we have that H* = L, and that FH and FL
are mutually inverse bijections.

LetL : U C R x TM ~ IR be a Lagrangian on M and v : [a,b] — M be a
curve of class C, with (¢, ¥(t)) € U. The action L(7) of L on the curve v is given
by the integral:

b
@2.1) £ = [ Lt ) at

1As a matter of fact, the Hamiltonian H = L* is continuous. This can be seen by applying the
Theorem of Invariance of Domain (see [11]) to conclude that FL is a homeomorphism onto an open
snbset of R x TM*.
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L defines a functional on the set:
2.2.2)
Qpq(la,b),M;U) =

= {7:[6,61:% Mi9(@) € P, 2(4) € Q, (1:3(1) € U, Ve,

where P and Q are two smooth embedded submanifolds of M. It is well known that
p,q([a, b, M; U) has the structure of an infinite dimensional smooth Banach man-
ifold (see for instance [12]), and L is a functional of class C! on Qp g([a, b], M; U).
We will call £ the action functional of the Lagrangian L.
We have the following characterization of the critical points of L:
Proposition 2.2.2. A curve v € Qpq(la,b], M;U) is a critical point of L if and
only if the following three conditions are satisfied:
(1) FL(“: ':/(a'))lT-,(a)p =0 a"dFL(br'.Y(b))'T-y(b)Q = O;
(2) t > FL(t,4(t)) is of class C;
(3) for all [to,t1] C [a,b] and for any chart ¢ = (q1,...,qn) on M whose
domain contains the image ~y([to,t1]), the following equation is satisfied in
[tO’ tl]:
d oL

) . aL .
(2.2.3) a 5& (tr Q(t)’ Q(t)) = _a_q- (ti Q(t)1 q(t))1
where L(t,q, §) is the coordinate representation of L.

Proof. Lety € Qp,q([a,b], M;U) be a critical point of £. Let [to,21] C [a,b] be
an interval and consider a chart ¢ = (g1, ...,qn) in M whose domain contains the
image 7([to,t1)). Let us consider an arbitrary C? variational vector field v along v
with support contained in |¢g, t1[; by standard computations it follows:

22.4) [o ' %(t,q(t),q(t» v(t) + ?,—g(t, a(t), 4(8)) 9(t) dt = 0.

Remark 2.2.3. The term %% (t,q(t), 4(t)) is of class C?; this will follow immediately
from Corollary 4.1.3 and the generalized functions calculus developed in Subsec-
tion 4.1.

Integration by parts in (2.2.4) and the Fundamental Lemma of Calculus of Varia-
tions imply then that equation (2.2.3) is satisfied.

Observe that the coordinate representation of the map FL(t,¥(t)) is given by the
partial derivative §2(t, ¢(t), 4(t))-

The equalities FL(a, ¥(a))|1,,.,, = 0 and FL(b,¥(b))|r, o = O follow easily
from integrating by parts (2.2.4) in intervals of the form [a, ¢;} and [to, b].

Conversely, if conditions 1, 2 and 3 are satisfied, equation (2.2.4) follows easily,
which implies that -y is a critical point. ]
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We now pass to the study of the Hamiltonian formalism, and we consider the
canonical symplectic form w on TM™*, given by w = —d4J, where the canonical 1-
form 9 on TM* is defined by 9,(¢) = p(d7p(()). If ¢ = (q1,...,¢n) is achartin
M and (g,p) = (@1,.--+Gn,P1,-- -, Dn) is the corresponding chart on TM*, ¥ and
w are given by:

n n
=) pidg, w=) dgAdp.

i=1 =1

Given a Hamiltonian H on M, we define the Hamiltonian vector field H to be the
time-dependent vector field on TM™ defined by:

w(H, ) = dH,,

where H, = H(t,-).
We say that a curve 7 : [a,b] — M is a solution of the Hamiltonian H if there
exists a Cl-curve I : [a, 8] — T'M* with 7 o ' = v and such that

d 2
2.2.5) X I'(t) = H(t,I'(¢))

for all ¢. In this case we say that I' is a Hamiltonian lift of ~y. In coordinates (g, p),
equation (2.2.5) is written as:
dq

o (t a(t), 2(1)),
(2.2.6) dp

dt "a; (t, q(t),p(t)) -

These are called the Hamilton equations of H; observe that the first equation in
(2.2.6) can be written intrinsically as:

22.7) 4(t) = FH(t, T(t)).

Theorem 2.2.4. Let L be a hyper-regular Lagrangian on M and let H be the cor-
responding hyper-regular Hamiltonian by the Legendre transform. Let P and Q be
smooth submanifolds of M; a curve y € Qp q([a,b], M;U) is a critical point of £
ifand only if v is a solution of the Hamiltonian H which admits a Hamiltonian lift T
such that

(2.2.8) P(a)l'_r,y(.)p = 0 I‘(b)]T Qe = 0.

Proof. Lety € Qpq([a,b], M;U) be a critical point of £; set I'(t) = FL(t, ¥(t)).
Since FH and FL are mutually inverse, equation (2.2.7) follows. Moreover, by
Proposition 2.2.2, T is of class C? and (2.2.8) holds. We now prove that the second



CONSTRAINED VARIATIONAL PROBLEMS 9

Hamilton equation holds, in a chart (g, p) of TM*. To this aim, we differentiate with
respect to g the equality:

oL . oL o . .
H(t’ q, 'a_q-‘(t: q, ‘1)) = a_q(tv q, q) q- L(t’ q, Q),
obtaining:

oH ) 3’L L oL
229) —(t,q, - 64p) (60,9 = 5:(,9.9) ¢ — »4),
229) 5 6o+ 50(6a,p) 5 5a(80,:4) = 5 52 (40:4) 4 = 5 (6.0,d)

where p = g—é’(t, 4, §)- Using that FH and FL are mutually inverse, we get

oH §
%(tv ‘LP) =4q;

it follows from (2.2.9):

o0H

aL
2.2.10 = = 7).
( ) 3 (t,q,p) B (t,q,9)

The second Hamilton equation follows from formula (2.2.10) and from Proposi-
tion 2.2.2.

Conversely, suppose that «y is a solution of the Hamiltonian H which admits a
Hamiltonian lift I' satisfying (2.2.8). Since FH and FL are mutually inverse, from
(2.2.7) it follows that I'(t) = FL(t,4(t)). Equality (2.2.10) and the second Hamilton
equation imply (2.2.3), and the conclusion follows from Proposition 2.2.2. O

3. THE SPACE OF HORIZONTAL CURVES AND ITS DIFFERENTIABLE
STRUCTURE

Let M be an n dimensional manifold; a smooth distribution D of rank k on M is
a smooth subbundle D C TM whose fibers are k-dimensional spaces. This means
that, for each m € M, D,, = DNT,, M is a k-dimensional subspace of T,,, M which
is smoothly varying with m, i.e., there exist k smooth vector fields around each point
of M which form a pointwise basis for D.

We will consider throughout a manifold M with a fixed distribution D; a C?-
curve v : [a,b] — M will be called horizontal if ¥(t) € D for all ¢.
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Let Q([a, b], M) denote the space of curves v : [a, b] — M of class C! and let P,
Q be two submanifolds of M. We define the following subsets of Q([a, b], M):

Qp(lo, b, M) = {7 € O((a,8, M) : (@) € P},

p,q([0, 8, M) = {7 € Op((a,b], M) : 7(b) € @},
(30.11) ((a,8), M, D) = {y € 2([a, 8}, M) : 7 horizontal },

Qp((a,8], M, D) = {7 € 2o, ], M, D) : 7(a) € P},

Qpq(la, b, M,D) = {7 € 2p(lo, b], M, D) : 7(b) € @}.

Given a subset U C R x TM, we will denote by ([, b], M; U) the set of curves
v € Q([a, b], M) such that (t,5(t)) € U for all ¢; similar notations will be used for
all the spaces appearing in formula (3.0.11).

In this section we will prove that $2p([a, b], M, D) is a Banach submanifold of
the manifold Q7 ([a, b}, M), while Qp,g([a, b}, M, D) may have singularities.

In the Subsection 3.1 we give a couple of preliminary results needed to the study
of the geometry of the set of horizontal paths in (M, D).

The main reference for the geometry of infinite dimensional manifolds is [7]; for
the basics of Riemannian geometry we refer to [4].

3.1. Existence of time-dependent referentials.

Definition 3.1.1. Let (M,3) be a Riemannian manifold and z € M. A positive
number r € R is said to be a normal radius for z if exp, : B,(0) = B.(z)is a
diffeomorphism, where exp is the exponential map of (M, g), B,(0) is the open ball
of radius r around 0 € T; M and B, (z) is the open ball of radius r around z € M.
We say that r is totally normal for z if r is a normal radius for all y € B, (z).

By a simple argument in Riemannian geometry, it is easy to see that if K C M is
a compact subset, then there exists r > 0 which is totally normal for all 7 € K.

Given an vector bundle 7 : £ — M of rank k over a manifold M, a time-
dependent local referential of £ is a family of smooth maps X; : A — &, i =
1,...,k, defined on an open subset A C IR x M such that {X;(t,z)}%., is a basis
of the fiber ¢; for all (t,z) € A.

Lemma 3.1.2. Let M be a finite dimensional manifold, let 7 : € — M be a vector
bundle over M and let y : [a,b] — M be a continuous curve. Then, there exists an
open subset A C R x M containing the graph of y and a smooth time-dependent
local referential of ¢ defined in A.

Proof. We first consider the case that + is a smooth curve.
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Let us choose an arbitrary connection in &, an arbitrary Riemannian metric 7 on
M and a smooth extension v : [a — £,b -+ €] = M of v, with € > 0. Since the
image of 7 is compact in M, there exists r > 0 which is a normal radius for all y(t),
t € [a —&,b + €]. We define A to be the open set:

A= {(t,z) eRxM:tcla—eb+e, xeBr('y(t))}.

Let now X, ..., X be a referential of ¢ along ~; for instance, this referential can
be chosen by parallel transport along + relative to the connection on £. Finally, we
obtain a time-dependent local referential for £ in A by setting, for (¢, z) € A and for
i=1,...,k, X;(t,x) equal to the parallel transport (relative to the connection of §)
of X;(t) along the radial geodesic joining y(t) and .

The general case of a continuous curve is easily obtained by a density argument.
For, let v : [a,b] — M be continuous and let r > 0 be a totally normal radius
for y(t), for all t € [a,b]. Let v, : [a,b] — M be any smooth curve such that
dist(y(t),71(t)) < r for all £, where dist is the distance induced by the Riemannian
metric g on M. Then, if we repeat the above proof for the curve «,, the open set A
. thus obtained will contain the graph of -y, and we are done. ) O

The abstract result of Lemma 3.1.2 will now be used in the situation that we
are interested in. Namely, let us consider a manifold M endowed with a smooth
distribution D of rank k.

Let A C IR x M be an open set and let X3, ..., X,, be a time-dependent referen-
tial of TM defined in A. We say that such referential is adapted to the distribution
Dif X;,...,X; form a referential for D.

Corollary 3.1.3. Given any continuous curve 7 : [a,b] — M, there exists a time-
dependent referential of TM adapted to D defined in an open set A C R x M
containing the graph of v.

Proof. Let D’ be any fixed complementary bundle to D in T'M, for instance, D’ can
be chosen to be the orthogonal complement of D with respect to an arbitrarily fixed
Riemannian metric on M. Then apply Lemma 3.1.2 to the vector bundles D and
7. O

3.2. Charts in ({a, b], M) adapted to a time dependent referential.

Given a time-dependent referential of TM defined in an open set A C IR x M, we
are going to associate to it a map

By : Q([a, b], M; A) — C°([a, }], R™),
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where A denotes the open subset of IR x TM given by:
G2.1) A= {(t,v) e RxTM: (t,m(v)) € A},

and C%|a, b], IR™) is the Banach space of continuous R™-valued functions on [a, b].
We define By by:

(32.2) By(7) = h,

where h = (hy, ..., hy) is given by

(323) () =D hi(&)Xi(t,7(2),
i=1

forall ¢ € [a,b]. The map B, is smooth; its differential is computed in the following:

Lemma 3.2.1. Let v € §([a, ], M; A) and v be C! vector field along ~. Set h =
By(7), z = (dBp).(v). We define a time-dependent vector field in A by

(3.2.4) X(t,z)= z": hi(t)Xi(t,z), (t,z)€ A
and a vector field w along ~ by
(3.25) w(t) =Y z(t)X(t, 7(t)).

i=1

Given a chart (q1,. .. ,qn) defined in an open set V. .C M, denote by i(t), X(t,q)
and 1(t) the representation in coordinates of v, X and w respectively. Then, the
Jollowing relation holds:

(3.2.6) Sat) = Z—’:(t,v(t))f:(t) +i(t),

forallt € [a,b] such that y(t) € V.

Proof. Simply consider a variation of y with variational vector field v and differenti-
ate relation (3.2.3) with respect to the variation parameter, using the local chart. [

Corollary 3.2.2. Let$ : V v+ V C R™ be a local chartin M, and let X, ..., Xn
be a time-dependent referential of TM defined on the open set A C R x M. Let B
be the map:

B(7) = (¢(2(a)), Bo(7)),
defined whenever v € Q([a, b}, M; A) and y(a) € V.
Then, B is a local chart in Q([a, b, M) taking values in an open subset of R™ x
C°([a, b], B™).
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Proof. The differential of B is given by:

dB—y(’U) = (d¢1(a)(v(a))! (dBO)’Y(v))

where (dBp).(v) is given in Lemma 3.2.1. By standard results on the existence and
uniqueness of the solution of a linear differential equation with given initial condi-
tions, it follows that dB, is an isomorphism, hence B is a local diffeomorphism. The
injectivity of B follows easily from the uniqueness of solutions of ordinary differen-
tial equations with given initial conditions. This concludes the proof. O

Now, using the chart B, we can prove that Qp([a, b], M, D) has the structure of a
smooth Banach manifold:

Proposition 3.2.3. Qp({a,b], M, D) is a submanifold of Qp([a, b], M).

Proof. If the referential X, .. - X,, defining B is adapted to the distribution D,
then a curve 7 in §2([a, b], M; A) is horizontal if and only if Bo(y) = h satisfies

hry1 = ... = hn, = 0. This means that, if ¢ is a submanifold chart for P then
B is a submanifold chart for Qp([a, b}, M, D). The conclusion follows from Corol-
lary 3.1.3. . O

We can now give a good description of the space T.,Qp([a, b], M, D) using the
map B. .

Lety € Q([a, b], M; A) and set h = By(7). Define a time-dependent vector field
X in A as in (3.2.4). By Lemma 3.2.1, the kernel Ker (dBp). is the vector subspace
of T,Q([a, b], M) consisting of those v whose representation in coordinates  satisfy
the homogeneous part of the linear differential equation (3.2.6), namely:

d_ ax _
(3.2.7) 70 = 6_q(t’ v(t))o(t).
By the uniqueness of the solution of a Cauchy problem, it follows that, for all ¢ €
[a, b], the evaluation map
Ker(dBp), > v v(t) € T, () M

is an isomorphism. Therefore, for every t € [a, b] we can define a linear isomorphism
o, : T.Y(G)M [nd T.,(g)M by:

(3.2.8) &, (v(a)) = v(t), v € Ker(dBy),.

Using the maps ®; we can give a coordinate free description of the differential of
By, based on the “method of variation of constants” for solving non homogeneous
linear differential equations.
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Lemma 3.24. Let v € Q([a, b], M; A) and v € T,Q([a,b], M). Set h = B(7) and
z = (dBy)4(v). Define the objects X, w and ®, as in (3.2.4), (3.2.5) and (3.2.8)
respectively. Then, the following equality holds:

¢
(3.2.9) v(t) = &, (vo + / o, w(s) ds) ,
where vy = v(a).

Proof. Both sides of (3.2.9) coincide at t = a, therefore, to conclude the proof, one
only has to show that its representation in local coordinates satisfies the differential
equation (3.2.6). This follows by direct computation, observing that the represen-
tation in local coordinates of the maps ®, is a solution of the homogeneous linear
differential equation (3.2.7). O

Corollary 3.2.5. Suppose that the referential Xy, .. -+ Xn that defines By is adapted
to D. Let «y be an horizontal curve in Qp([a, b}, M; A).

Then, the tangent space T,Qp([a, b}, M, D) consists of all vector fields v of the
form (3.2.9), where w runs over all continuous horizontal vector fields along ~y and
vo € Ty(o) P.

Proof. Follows directly from Lemma 3.2.4, observing that B is a submanifold chart
for Qp([a, b], M, D), as it was remarked in the proof of Proposition 3.2.3, provided
that the chart ¢ used to define B is chosen to be a submanifold chart for P, |

3.3. Characteristic curves and the critical points of the endpoint map

We have proven that Qp([a, b}, M, D) is a submanifold of Q([a, b], M). In order to
study the differentiable structure of the set 2p,g([a, ], M, D), we define the end-
point map end : Q([a, b], M) — M by:

end(7) = 7(b).

Definition 3.3.1. A curve v € Qp,q([a, b}, M, D) is called regular if the differential
at -y of the restriction of end to 2p([a, b], M, D) is transversal to Q, i.e., if

Im(d(endlnp([u,bl,u.v))(7)) + T Q =TywM.

The curve -y will be called singular if it is not regular.

We recall the definition of transversality for maps between Banach manifolds.
Definition 3.3.2. Let M and N be Banach manifolds and Q C A a submanifold.
A smooth map f : M — N is said to be transversal to Q at z € f~}(Q) if
Im(df(z)) + Ty(z)Q = Ty N and if df(z) "} (T(z) Q) is a complemented sub-
space of T; M. We say that f is a submersion at z € M if f is transversal to { f(z)}
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at z; f is transversal to Q (resp., a submersion) if f is transverse to Q (resp., a
submersion) at every z € f~1(Q) (resp., at every £ € M).

It is well known (see for instance [7]) that if f is transverse to Q at z, then f~1(Q)
is a smooth submanifold of M around z. We can now motivate the introduction of
the endpoint map:

Proposition 3.3.3. Suppose thaty € Qpq([a,b], M, D) is a regular curve; then the
set Qp.q([a, b], M, D) is a submanifold of Qp([a, b}, M, D) around .

Proof. Clearly, Qp,q([a, b], M, D) = (end|q, (a5}, m,0)) " 1(Q). If v is regular, this
restriction of the endpoint map is easily seen to be transverse to Q at v, since it has
finite dimensional range. O

We want to relate the differential of the endpoint map with the symplectic struc-
ture of TM*. We denote by D° C TM™ the annihilator of D. The restriction w|pe
of the canonical symplectic form of TM* to D° is in general no longer nondegener-
ate and its kernel Ker(w|p-)(p) at a point p € D° may be non zero. We say that an
absolutely continuous curve 7 : [a, b] — D? is a characteristic curve for D if

7(t) € Ker(wlp-)(n(t)),

for almost all ¢ € [a, b].
We take a closer look at the kernel of w|p.. Let Y be a horizontal vector field in
an open subset of M. We associate to it a Hamiltonian function Hy defined by

Hy (p) = p(Y (z)),

where £ = m(p). We can now compute the w-orthogonal complement of T,D°
in T,TM*. Recall that Hy denotes the corresponding Hamiltonian vector field in
T™M".

Lemma 3.3.4. Let p € TM* and set x = n(p). The w-orthogonal complement of
T,D° in T,TM™ is mapped isomorphically by dnp, onto D;. Moreover, ifY is a
horizontal vector field defined in an open neighborhood of x in M, then Hy (p) is
the only vector in the w-orthogonal complement of T, D° which is mapped by dr,
into Y (z).

Proof. The function Hy vanishes on D° and therefore w(Hy,-) = dHy vanishes
on T, D°. The conclusion follows by observing that, since w is nondegenerate, the
w-orthogonal complement of T,D° in T,TM* has dimension k = dim(D;). 0O

Corollary 3.3.5. The projection of a characteristic curve of D is automatically hori-
zontal. Moreover, let+y : [a,b] — M be a horizontal curve, let X, . .. , X,, be a time-
dependent referential of T M adapted to D, defined in an open subset A C R x M
containing the graph of ~y. Define a time-dependent vector field X in A as in (3.2.4).
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Letn : [a,b] — D° be a curve with w o ) = +. Then 1 is a characteristic curve of D
if and only if 1) is an integral curve of Hx.

Proof. For p € D, the kernel of the restriction of w to T, D° is equal to the in-
tersection of T,D° with the w-orthogonal complement of 1,D° in T,TM*. By
Lemma 3.3.4, it follows that the kernel of w|p. projects by d into D, and therefore
the projection of a characteristic is always horizontal.

For the second part of the statement, observe that for t € [a,b], X (2, ) is a hor-
izontal vector field in an open neighborhood of (t) whose value at y(t) is 4(t).
Therefore #(t) is w-orthogonal to T,y D° if and only if (t) = Hx(n(t)). a

Corollary 3.3.6. Let v : [a,b] — M be a horizontal curve and X;,...,X, be a
time-dependent referential of T M adapted to D, defined in an open subset A C R x
M containing the graph of y. Let X be defined as in (3.2.4). A curve ) : [a,b] — D°
with 7 o ) = # is a characteristic of D if and only if its representation ij(t) € R™"
'in any coordinate chart of M satisfies the following first order homogeneous linear
differential equation:

’ d_ oxX .
33.1) &0 = =5, L)),
where X is the representation in coordinates of X.

Proof. Simply use Corollary 3.3.5 and write the Hamilton equations of Hx in coor-
dinates. ]

Differential equation (3.3.1) is called the adjoint system of (3.2.7). 1t is easily seen

that 7j is a solution of (3.3.1) if and only if 7j(t)&(t) is constant for every solution &
of (3.2.7). From this observation we get:
Lemma 3.3.7. Let v : [a,b] — M be a horizontal curve and suppose that the refer-
ential Xy, ..., Xy defining ®, in (3.2.8) is adapted to D. Then a curve 1) : [a, b] —
D° with w o 1) = 7 is a characteristic for D if and only if n(t) = (2})~'(n{a)) for
everyt € [a,b)].

Progf. By Corollary 3.3.6 and the observation above we get that 7 is a characteristic
if and only if n(t)v(t) is constant for every v € Ker (dBy).,. The conclusion follows.
O

We can finally prove the main theorem of the subsection.
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Theorem 3.3.8. The annihilator of the image of the differential of the restriction of
the endpoint mapping 1o p([a, b], M, D) is given by:

Tm(d(endla i ,4,2))(7))

{r/(b) : 1) is @ characteristic for D, n(a) € Ty(q)P° andwon = 7}.

o

(33.2)

Proof. By Lemma 3.2.5, we have:
Iim (d(endla o 5,042)(7)) =

b
.(333) { D, (vo + / & tw(s) ds) : w is a continuous horizontal vector

field along -y and vp € T.,(,,)P}.

By Lemma 3.3.7, if  is a characteristic with 7 o ) = ~ and with n(a) € T4 P°,
then 7(b) annihilates the right hand side of (3.3.3). Namely:

(334)
b
ﬂ(b)(ibb(vo +/a @, w(s) ds)) =

b
- = (83) " (n(a)) ('I’b(vo +/a &7 w(s) ds))
b b
= n(a) (vo +/ @, lw(s) ds) =/ n(a)®; w(s)ds

b b
= [[@) niayu(s) ds = [ n(shu(s) ds =o.

We have to prove that if 1y € T',(;)M* annihilates the righthand side of (3.3.3) then
there exists a characteristic  with 7 o ) = v, 17(a) € Toy(q) P and n(b) = 0.
Define n by n(t) = (®7)~1(®}(me)) for all t € [a,b]. By Lemma 3.3.7, we only
have to prove that 7([a, b]) C D° and that n)(a) € T',(,)P°. Computing as in (3.3.4)
with vg = 0, we see that, since 7 annihilates the righthand side of (3.3.3), then:

b
[ n(syw(s)ds =0,

for any horizontal continuous vector field w along ~, which proves that ([a, b]) C
De.
Now, setting w = 0 in the righthand side of (3.3.3), we obtain that

70(2s(v0)) = n(a)(vo) =0
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for any vy € T'(4) P, and this concludes the proof. a

Corollary 3.3.9. The image of the differential of the restriction of the endpoint map-
ping to Qp([a, b], M, D) contains D).

Proof. By Theorem 3.3.8, the annihilator of the image of the differential of the re-
striction of the endpoint mapping to 2p([a, b], M, D) is contained in the annihilator
of D.,(3). The conclusion follows. O

Corollary 3.3.10. If Qis transverseto D, i.e., T,Q+D; = T, M forall z € Q, then
every v € Q2p,q([a, b], M, D) is regular, and Qp,q([a, b], M, D) is a submanifold of
QP([av b]v Ma D)'

Proof. 1t follows easily from Proposition 3.3.3 and Corollary 3.3.9. O

The next corollary, which is obtained easily from (3.3.2), gives a characterization
of singular curves in terms of characteristics:
Corollary 3.3.11. A curve v € Qpq([a,b], M, D) is singular if and only if it is
the projection of a non zero characteristic n of D with n(a) € T.y(q)P° and n(b) €
L@ : O
Observe that by Lemma 3.3.7 a characteristic either never vanishes or is identi-
cally zero.

3.4. Another description of the differentiable structure of Qp,q([a, b], M, D)

The set 2p,q([a, b}, M, D) can be thought as the subset of Qp([a, b], M, D) consist-
ing of curves with endpoint in Q, or as the subset of Qp,q([a, b], M) consisting of
curves that are horizontal. The first point of view was adopted in subsection 3.3; in
this subsection we consider the second approach.

Lemma 34.1. Let M, M; and M3 be Banach manifolds, with M finite dimen-
sional, and let f : M +— M,, g : M — Mgy be submersions. Let py € M,,
P2 € Mz and choose z € f~1(p1) N g~ (p2). Then, f|y-1(y,) is a submersion at x
ifand only if g| s-1(y,) is a submersion at z.

Proof. In first place, the closed subspace Ker(df(z))nKer(dg(z)) is complemented
in Ker(dg(z)), because it has finite codimension.

Since Ker(dg(z)) is complemented in T;.M, it follows that the closed subspace
Ker(df(z))nKer(dg(x)) is complemented in T; M, thus Ker(d f (z))nKer(dg(z))
is complemented in Ker(d f(z)).

It remains to show that d f(Z)|Ker(dg(z)) is Surjective onto Ty(,) M, if and only
if dg(z)|ker(as(=)) is surjective onto T,(,)M>. This follows from a general fact: if
T:Vr—Viand §: V = V; are surjective linear maps between vector spaces, then
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T'|ker(s) is surjective if and only if Ker(T') + Ker(S) = V. Clearly, this relation is
symmetric in § and T', and we obtain the thesis. O

‘We now consider an n-dimensional manifold M, endowed with a smooth distri-
bution of rank k.

Using Lemma 3.1.2, we describe D locally as the kernel of a time-dependent
R™*.valyed 1-form:

Proposition 3.4.2. Let v : [a,b] — M be a continuous curve. Then, there exists an
open subset A C IR x M containing the graph of y and a smooth time-dependent
R *.valued 1-form @ defined in A, with O(t,z) : TeM — R™¥ g surjective linear
map and D, = Ker(0ys 5)) for all (t,z) € A.

Proof. Let{ be the subbundle of the cotangent bundle TM* given by the annihilator
D° of D. Apply Lemma 3.1.2to £ and set 8 = (81,...,0n—%), where {6;}7—F isa
time-dependent local referential of £ defined in an open neighborhood of the graph
of 4. O

Let @ and A be as in Lemma 3.4.2, and define

8 : Qpq([a, ], M; A) — C°([a, b], R"¥)
to be the smooth map:
(3.4.1) (7)) = b)) (7(2)),

where A C IR x TM is defined in (3.2.1).
Clearly, Qp,q([a, b], M, D; A) = 9_1(0).
Proposition 3.4.3. O is a submersion.

Proof. Let v € Qpg([a,b], M; A) be a fixed curve; we choose a time-dependent
referential X,,...,X,, of TM defined in a neighborhood of the graph of -y such
that 6;(X;) = &ij-x. 4 = 1,...,kand j = k + 1,...,n. This is easily done
by considering an extension of @ to a basis of TM* (see Lemma 3.1.2), and then
taking the X;’s obtained by suitably reindexing the corresponding dual basis. We
now consider the chart B of Qp([a,d], M) associated to X3,...,X, constructed
in subsection 3.2 (see Corollary 3.2.2). In such a chart, the map © is simply a
projection, and therefore it is a submersion. O

It is easy to see that the endpoint map is a submersion on Qp([a, b], M), hence
we have the following:
Corollary 3.44. Let © be defined as in (3.4.1). Then, v € Qpg([a,b], M, D; A) is
regular if and only if the restriction of © 10 p,g([a, b], M; A) is a submersion at 7.
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Proof. 1t follows easily from Lemma 3.4.1 and Proposition 3.4.3.

To apply Lemma 3.4.1, we take M = Qp([a, b], M; A), M; = R—4m(Q@),
Mz = C°([a, B], R*%), f = Y oend, g = 6, where ¢ is a submersion ofan
open subset W C M around ~y(b) taking values in R™~9(Q) such that ¢~1(0) =
Qnw.

4. LAGRANGIANS WITH LINEAR CONSTRAINTS AND DEGENERATE
HAMILTONIANS

Let M be an n-dimensional manifold and D C TM be a smooth distribution of
rank k. We consider D as a vector bundle over M with projection 7 : D +— M. We
apply the theory of Section 2 to the vector bundle £ = IR x D over the manifold
R x M, with projection Id x 7. The fiber £ ) is given by {t} X Dp,.

Let L : U C £ — IR be a map of class C? defined in the open set U; we assume
that L is hyper-regular in the sense of Definition 2.1.4. Let Hy = L* be the Legendre
transform of L, defined in an open subset V' C IR x D*. Define an extension H of
Hj by setting:

(4.0.2) H(t,p) = Ho(t,plp),
whenever (¢, p|p) € V. Observe that the maps Hy and H are of class C1.

In this context, we say that L is a constrained Lagrangian on M, and H is the
corresponding degenerate Hamiltonian.

Given any two submanifolds P and @ of M, a constrained Lagrangian L on M
defines an action functional £ on Qp g([a,b], M, D;U) by formula (2.2.1) whose
stationary points are interpreted as the trajectories of the mechanical systems that we
are interested in.

The following is the main result of the section and its proof is given in subsec-

tion 4.2:
Theorem 4.0.5. Let M be an n-dimensional manifold, D C T M be a smooth distri-
bution of rank k, L : U C R x D — IR be a hyper-regular constrained Lagrangian
of class C?, let Hy = L* be its Legendre transform and let H be the corresponding
degenerate Hamiltonian as in (4.0.2).

Fix two submanifolds P and Q of M and let L be the action functional of L in the
space Q2p,q([a,b], M, D; U) defined by (2.2.1). Let vy € Qpq([a,b], M,D;U) be a
regular curve. Then, y is a critical point of L if and only if it is a solution of H that
admits a Hamiltonian lift T such that T'(a) € Ty () P° and T'(b) € T,y Q°-

Theorem 4.0.5 is a generalization to the case of constrained Lagrangians of Theo-
rem 2.2.4, where it was required a weaker regularity assumption on L. We emphasize
that the rather awkward regularity assumption made in Theorem 2.2.4 is due to the
fact that the result will be now applied to the case of a Lagrangian whose regularity
in the variable t is not clear a priori.
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The classical example of a constrained hyper-regular Lagrangian function L is
given by:

4.03) L(t,v) = % 9(v,9) - V(r(v)),

where g is a smoothly varying nondegenerate inner producton D and V : M — Ris
amap of class C2. A version of Theorem 4.0.5 for Lagrangians of the form (4.0.3),
with g positive definite, is proven in [6, Proposition 3.3].

To see that (4.0.3) defines a hyper-regular Lagrangian, simply observe that the
fiber derivative FL is given by:

FL(t,v) = (v, ).
For such Lagrangians, it is easily computed:

Ew(t,v) = % 9(v,0) + V(n(v)), veD,

Holt,p) = 9~ (0,0) + V(n(p)), peD".
2

Theorem 4.0.5 implies that the critical points of the action functional L are the solu-
tions of the Hamiltonian H given by:

H(t’p) = %g—l(PlvaPI‘D) + V(ﬂ'(p)), PE TM”.

'We emphasize that, in general, a minimum of the action functional £ may not be a
regular curve i Qp,g([a, b], M, D), and in this situation it may not satisfy the Hamil-
ton equations of H. Examples of this phenomenon are given in [8, 10] in the case
V = 0. Hence, one can only conclude that a minimum of £ is either a solution
of the Hamilton equations or the projection of a non null characteristic of D (see
Corollary 3.3.11).

(4.04)

4.1. Generalized functions calculus

For the proof of Theorem 4.0.5, and also to justify the computation of the Euler—
Lagrange equations (see Remark 2.2.3), we will occasionally have to consider deriva-
tives of functions that are only continuous. These derivatives must be understood in
the sense of Schwarz-distributional calculus. However, the usual definition of distri-
bution as the dual space of smooth compactly supported maps only allows products
of distributions by smooth maps. To overcome this difficulty, we introduce a calculus
for distributions of stronger regularity, that are the dual of a space of functions with
weaker regularity.

Let V be areal finite dimensional vector space. For k > 0, we define C§([a, ], V)
to be the Banach space of V-valued C* maps on [a, b] whose first k derivatives van-
ish at a and at b, endowed with the standard C*-norm. We denote by D*([a, }], V)
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the dual Banach space of C¥([a, b}, V*). Denoting by L?([a, b], V) the Banach space
of V-valued measurable functions on [a, b] whose p-th power is Lebesgue integrable,
we have an inclusion:

L([a,b], V) < D¥([a,}],V)

defined by

(fra) = /ba(t) ft)at, feL'(ab),V), @€ Cg(la,b], V).

Moreover, we have inclusions D¥ < D¥+1 defined by restriction of the functionals.
We summarize these observations by the following diagram:

o ' Do Dl

An element f of any space D*([a,b], V') is called a generalized function. We
sometimes omit the parameters in C* or D*, whenever there is no risk of confusion.
In addition to the standard vector space operations in D¥, we define the following:

e derivative operation: for f € D*([a, b}, V), we denote by f’ the element in

D*+Y{(a, b],V) defined by
(f',a) = —{f,d)
for all a € C¥*1([a, b}, V*);

e product operation: for f € D*([a,b],V), g € C*(la,}], W) and a fixed
bilinear map V x W > U, we define fg € D*([a,b],U) as follows. The
bilinear map V' x W — U induces a bilinear map W x U* — V* by
(w-u*)(v) = u*(v - w); we set:

(f9,a) ={f,g-a),
for all a« € C§([a, B],U*);
e restriction operation: for f € D*([a,}],V) and [c,d] C [a, b], we set:

(fl[c,d]: a) = (.fsa)’
for all a € C¥([c,d], V), where @ € C%([a, b], V) is the extension to zero
of a outside [c, d].
Itis easily seen that when we apply the above operations to elements of D* which

correspond to functions then we obtain the standard operations on functions. More-
over, the standard Leibniz rule for derivatives of products holds for distributions:

(fo) =f'9+fd,
forall f € D* and g € C*+!.

In order to prove some regularity results we present the following elementary
Lemmas.
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Lemma 4.1.1. Let f € D*([a,b],V) be such that f' = 0. Then f is a constant
function.
Proof. We first consider the case V = R. If f' = 0, then (f,o’) = 0 for all
a € C¥*([a,b], R), hence (f, ) = O for all 8 € C&([a, b, R) with [ 8 = 0. Let
Bo € C&([a, b], IR) with f:ﬂo = 1;setc = (f, Bo). Itis easily seen that f = ¢.

For the general case, observe that for all a« € V'*, the product a f € D*(|a, b], R)

has vanishing derivative, hence it is constant. Since a is arbitrary, then f is constant.
0

Lemma 4.12. Let f € D*([a,b],V) with k > 1; there exists an element F €
D*Y[a,b),V) with F' = f. If f € D%la,b],V), there exists F € L*([a,b],V)
with F! = f.

Proof. Consider the mapd : Cg“ ++ C¥ given by derivative. It is easily seen thatd
is injective, with closed and complemented image. It follows that the transpose map
d* : D* +— D*+1 js surjective; clearly, the derivative of distributions is —d*, which
proves the first part of the thesis.

For the case k = 0, let H} denote the Sobolev space of absolutely continuous
functions & : [a,b] — V* having square integrable derivative, and such that a(a) =
a(b) = 0. Again, the derivation map d : H} ~ L2 is injective and has closed and
complemented image. Therefore, given f € D°, we can find F € L?* ~ L2 with
d*F = —f|p;. It follows that F’ = f. O

Corollary 4.1.3 (Bootstrap lemma). Let f be a generalized function.
(1) Iff' € D° then f € L?;
@) Iff' € L then f € C%
(3) If f' € C® then f € C.

Proof. We prove, for example, the first item. By Lemma 4.1.2, we can find F € L?
with F' = f’. By Lemma 4.1.1, it follows that F — f is constant, hence f € L2.
The other items are proven similarly. [m]

We now give a result that shows that regularity of a generalized function is a local
property:
Lemma 4.1.4. Let ) be a generalized function on |a,bl. Suppose that for allt €
[a,b] there exists € > O such that the restriction Alj_c t+enja,b) S Of class C*,
k > 0. Then \ is of class C*.

Proof. Consider a partitione = tp < t; < ... < t, = bsuchthat f; = Al, 1.,
is of class C* for all § = 0,...,r — 2. By applying ) to functions with support
contained in Jt;41,%:42], it is easily seen that, for all i, f; = fiy1 in [tiy1, Lip2]-
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Hence there exists a C* map £ on [a, b] such that fl, +,,,) = fi for all . It follows
that f agrees with A on maps o with support contained in some interval [t;, £:12],
and such functions span the entire domain of A. This concludes the proof. O

Finally, we need the following result that relates the dual spaces of C° and CJ.
Fort € [a,b] and 0 € V, we denote by 57 € C%([a,b],V*)* the Dirac’s delta,
defined by:

8(a) = a(t)o, acC%[a,b],V*).

Lemma 4.1.5. Let ) be an element in C°([a, b],V*)" be such that ) vanishes iden-
tically on C3(a,b), V*). Then, there exist o, and ay, in V such that:

@.1.1) X =62 + 50,

Proof. The codimension of C3([a, 4], V*) in C°([a, b], V*) is 2dim(V), and so the
annihilator of C§([a,b],V*) in C°([a,b], V*)* has dimension equal to 2dim(V').
The conclusion follows immediately from the observation that the elements 43 +6, *
form a 2 dim(V)-dimensional subspace of such annihilator. O

4.2. Proof of Theorem 4.0.5

The proof of Theorem 4.0.5 is based on the method of Lagrange multipliers, and we
start with the precise statement of the result needed for our purposes.

Proposition 4.2.1. Let M be a Banach manifold, E a Banach space, let F : M +—
Rand g : M +— E be maps of class C'. Let p € g~1(0) be such that g is a
submersion at p. Then, p is a critical point for f|g-1(0) if and only if there exists
A € E” such that p is a critical point for the functional fy = f - Aogin M.

Proof. The point p is critical for f|g-1(o) if and only if df(p) vanishes on the tan-
gent space T,g~1(0) = Ker(dg(p)). The proof follows from elementary functional
analysis arguments. O

The linear functional A € E* of Proposition 4.2.1 is called the Lagrange multi-
plier of the constrained critical point p; it is easily seen that such ) is unique. We can
now prove of the main result of the section. In the argument we will need a regularity
result for a Lagrangian multiplier, whose proof is postponed to Lemma 4.2.2.

Proof of Theorem 4.0.5. We start by choosing an arbitrary complementary distribu-
tion D’ to D, i.e., a smooth distribution of rank n — k in M such that T,,M =
Dy ® Dy, for all m € M; moreover, we fix an arbitrary smoothly varying posi-
tive definite inner product g on D’ (for the existence of 7’ and g, see for instance
the proof of Corollary 3.1.3). Let #p : TM — D and np: : TM — D’ be the
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projections and let L : U C IR x M +— IR be the extended Lagrangian defined by:

@2 L(t,9) = Lt mo(v) + 5 97 (o), 7 (o),

where
U={(t.v) e RxTM: (t,rp(v)) € v}.

Then, L is a Lagrangian on M as in Definition 2.2.1; we denote by L the correspond-
ing action functional in Qp,g([a, b], M; U), defined as in (2.2.1).

Let @ and A be as in Proposition 3.4.2, A be as in (3.2.1) and © as in (3.4.1).
Then, 7 is a critical point of £ in Qp,g([a, b}, M, D; U) if and only if it is a critical
point of Z'e—l (0)-

By Corollary 3.4.4 and Proposition 4.2.1, this is equivalent to the existence of
X € C%[a,b],IR**)* such that «y is a critical point of Ly = L — Ao © in
QP,Q([G, b], M; An U).

We will prove in Lemma 4.2.2 that the Lagrange multiplier ) is of class C?, i.e.,
that it is given by:;

4.2.2) AMa) = / bAo(t)a(t) dt, VYa.€ C%[a,b], R*%),

for some C' map Ao : [a,b] — (IR"*)*. Therefore, L, is the action functional
corresponding to the Lagrangian L in M defined by:

4.2.3) Ig(t, v) = Z(t, v) — Ao(t) 0(,,,,,) ), (t,v)e A ﬂﬁ,

wherem =w(v).
We now prove that L and L are hyper-regular and we compute their Legendre
transforms. The fiber derivatives FL and FL are easily computed as:

FL(t,v) = FL(t,xp(v)) o mp + g(mp(v), mp- (")),
FL,(t,v) = FL(t,v) - Xo(2) 0(t,m)-

The hyper-regularity is proven by exhibiting explicit inverses:
PR =FL i) + 97l
FL, (t.p) = FL ' (t,p + Ao(t) O(t,m)-

By g~ in the above formula we mean the inverse of g seen as a linear map from D,
to Dy,. _

We now compute the Legendre transforms H and H of L and L) respectively.
Using Definition 2.1.1 and (4.2.4), we compute easily:

4.24)

(4.2.5)

426)  Eg (tv) = Eg(t,v) = Ex(t,no(v)) + % 9(xpe (), 70 (0));
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and, using (4.2.5), we therefore obtain:
4.2.7)
Ht,p) = H(t,p) + %g-l(ﬂ"pr,‘ll’pl),
Ha(t,p) =H(t,p + Xo(t) bt,m)) =
= H(t,0) + 5 07 (04 Y0(t) B> 0+ Xo(8) Bem)l)-

We now compute the Hamilton equations of the Hamiltonian H, with the help of
local coordinates (g1, . - - ygns P1, - - - » Pn) in TM™ and of a local g-orthonormal ref-
erential X3,..., X, of 7.

We write:
n—k
- 1
428  H\tp)=HEp)+5 Y 0+ do(t)em)(X:)?,
i=1
and, using (2.2.6), the Hamilton equations of H , are given by:
4.2.9) e
dg _ g b .
= + Z(p+A09)(X)X.,
dp 0X;
22 Z(p—}-z\oﬂ)(X.) [ —(X.)+(p+z\00) ( )] .

i=1

By Theorem 2.2.4, v is a critical point of £ if and only if it admits a lift I" : [a, b]
TM* satisfying (4.2.9) with I'(a) € T,(4)P° and I'(b) € T, Q°.

Now, it follows easily from (4.0.2) that % is in D; since v is horizontal, i.e.,
% € D, from the first equation of (4.2.9) it follows that (p + Ao 6)(X;) = 0 for all
i=1,...,n — k. Setting (p + Ao 8)(X;) = 0 in (4.2.9) we obtain the Hamilton
equations of H, which concludes the proof. a

We are left with the proof of the regularity of the Lagrange multiplier . We will
use the generalized functional calculus developed in Subsection 4.1.

Lemma 4.2.2. Under the assumptions of Theorem 4.0.5, using the notations adopted
in its proof, if y is horizontal and it is a critical point of L — )\ o © for some )\ €
C%([a, b], R™~*)*, then there exists a C* map ) : [a,b] — (BR™*)* such that
(4.2.2) holds.

Proof. We set
Xo = Acg((a,b,r-*) € D°([a, 8], (R**)*);
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we first prove the regularity of the generalized function Ag. To this aim, we localize
the problem by considering variational vector fields along -y having support in the
domain of a local chart ¢ = (q1,...,¢,) in M.

Let [c,d] C [a,b] be such that ¥([c,d]) is contained in the domain of the local
chart; we still denote by Ag the restriction of g to [c, d].

Since « is a critical point of £ — A o ©, by standard computations it follows that
the following equality holds:

g _
|| Fe e a0.40) 00 + 52 o), (6 00
(”(t) 4(t)) + B(z,a() v(t)>

(4.2.10)
AOr
< 9q 21 (t.a(t)

for every vector field v of class C! along v havmg support in Jc,d[. In terms of
the local coordinates, the maps 6, § q( q) and evaluated along ~y will be
interpreted as follows:

e 8 € C'([c,d),Lin(R", R"*));
° ?f(.,q) € Co([c,d],Lin(R",R""‘));

BL oL
6 ER

where Lin(-, -) denotes the space of linear maps between two vector spaces.
Using the definition of derivative for generalized functions, from (4.2.10) we get:

8L\ oL 09, . A
4.2.11) <— (33) +~55—z\056(-,q)+(z\09),v>—

Co([c,d],R" )

for every C! map v : [c, d] +» IR™ having support in ]c, d[, and, by density, for every
v € C}([¢, d], R™). It follows:

oL\’ oL 80 ,
2. -\ = — — 2o =—( ¢ 0+ X8 =0.
4.2.12) (Bq) +6q Aoaq( g+ X0+ 2o

Let X1, ..., Xn—x be areferential of D’ along «y; in terms of the local coordinates
the X;’s will be thought as elements of C([c, d], IR™); moreover, we set

X = (X1,...,Xn-k) € C*([c,d],Lin(R"~*, R™)).
Multiplying (4.2.12) by X, we obtain:

, 86, . oL TAN
(4.2.13) /\OO(X)+A00’(X)—-1\05q'(X,q)+a—qX— (3q) X =0
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Evaluating the first equation of (4.2.4) at X;, by the horizontality of v we get:

oL
(4.2.14) EIX =0, Vi=1,...,n—k,
hence:
(4.2.15) (Z—Iq‘ X) = -QE X' € C°([e,d], (B™%)").

Now, considering that 8(X) is mvemble, by (4.2.15) we can write (4.2.12) in the
form:

4.2.16) Ao = Ao h1 + ha,

with h; € C°([c, d], Lin(RR™~*, R*~¥)) and h; € C%([c, d], (IR*~*)*).

Applying three times Corollary 4.1.3, from (4.2.16) we conclude that Ag belongs
to C*([c,d], (R"~*)*). By Lemma 4.1.4, \o € C*([a, ], (R™~*)").

By Lemma 4.1.5, there exist 0,,05 € (JR*~%)* such that:

4.2.17) Aa) = / bxoa dt + g, a(a) + opa(b), Va € C°([a,b], R*7%).

To conclude the proof we show that o, = o = 0. Let’s show for instance that
o, = 0; the equality o; = 0 is totally analogous.

Using local charts around 7([a, d]), for d close to a, we consider variational vector
fields v of class C? supported in [a,d[, with v(a) € T(,)P. Arguing as in the
deduction of formula (4.2.10), we get the following equality:

s 4
[ G40 v+ 5 a0, 400 50) o

(4.2.18) / Ao(t) (U(t),q(t)) + B(2,4(t)) v(t)] dt

(tqt

52| (1(0). 4@)) + O(aq(an 1(@)] = 0.
(a.9(a))

From Lemma 4.1.3 and formula (4.2.12) it follows that 2 -5— is of class C!, and we
can use integration by parts in (4.2.18) to obtain an equalxty of the form:

-,,a[

d
@2.19) / u() v(t) dt + 0 Ba g(ay) 9(a) = O,

for some u € C%([a, d], JR™*), whenever v is chosen such that v(a) = 0. By consid-
ering arbitrary v supported in ]a, d[, from (4.2.19) we obtain that u = 0 in {a, d], so
that the integral in (4.2.19) vanishes for all v. Now, we can choose v with v(a) =
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and ¥(a) arbitrary, and from (4.2.19) we obtain that ¢, = 0, because 84 (q)) is
surjective. This concludes the proof. a
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