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Abstract: There is no clinical tool available to primary care physicians or dermatologists
that could provide objective identication of suspicious skin cancer lesions. Multispectral
autouorescence lifetime imaging (maFLIM) dermoscopy enables label-free biochemical and
metabolic imaging of skin lesions. This study investigated the use of pixel-level maFLIM
dermoscopy features for objective discrimination of malignant from visually similar benign
pigmented skin lesions. Clinical maFLIM dermoscopy images were acquired from 60 pigmented
skin lesions before undergoing a biopsy examination. Random forest and deep neural networks
classication models were explored, as they do not require explicit feature selection. Feature
pools with either spectral intensity or bi-exponential maFLIM features, and a combined feature
pool, were independently evaluated with each classication model. A rigorous cross-validation
strategy tailored for small-size datasets was adopted to estimate classication performance.
Time-resolved bi-exponential autouorescence features were found to be critical for accurate
detection of malignant pigmented skin lesions. The deep neural network model produced
the best lesion-level classication, with sensitivity and specicity of 76.84%±12.49% and
78.29%±5.50%, respectively, while the random forest classier produced sensitivity and specicity
of 74.73%±14.66% and 76.83%±9.58%, respectively. Results from this study indicate that
machine-learning driven maFLIM dermoscopy has the potential to assist doctors with identifying
patients in real need of biopsy examination, thus facilitating early detection while reducing the
rate of unnecessary biopsies.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Skin cancer is the most diagnosed type of cancer among fair-skinned populations [1]. The two
most common types of skin cancer are malignant melanoma and non-melanoma skin cancer
(NMSC). Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the two major
NMSC categories. As of 2019, the incidence rates per 100,000 persons for melanoma, SCC
and BCC were 17, 262, and 525 respectively [2]. Although NMSC represents the majority of
skin cancer cases, most deaths due to skin cancer are accountable to malignant melanoma. In
2023, the number of new cases of melanoma was estimated to be 97,610 in the US [3]. Almost
78% of melanoma cases are diagnosed at the early stages with no metastases, however, 9% and
5% of the cases are diagnosed with regional and distant metastases respectively. The ve-year
survival rate of patients diagnosed with melanoma at early stages is about 100%; unfortunately,
when diagnosed at advanced stages with regional and distant metastases, the ve-year survival
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rate dramatically decreases to 71% and 32% respectively [3]. The gold standard for skin lesion
diagnosis is visual inspection (often assisted with a dermoscope) followed by biopsy resection and
histopathological evaluation as recommended by the dermatologist. The main challenge with this
method, however, is the inability to discriminate visually similar benign and malignant lesions,
e.g., malignant melanoma lesions are very similar to benign pigmented seborrheic keratosis
(pSK) lesions.

Clinical diagnosis of skin melanoma with the unaided eye is ∼60% accurate [4]. Although
dermoscopy is a widely used prescreening technique, the diagnosis result is highly subjective.
Only those lesions which appear suspicious to the dermatologist are referred for biopsy resection
and histopathological analysis. Several metrics based on visual and morphological characteristics
of the lesion, such as the Menzies method, CASH metric, ABCD rule, and seven-point checklist,
are used to determine if a lesion is suspicious or not [5,6]. It has been reported that melanoma
diagnosis accuracy by non-experts using a dermoscope is similar to the clinical diagnosis accuracy
by experts without a dermoscope [4]. Ahadi et. al [7], assessed 4,123 skin cancers samples
collected over 3 consecutive years and obtained a false negative rate of 9.53% and a false positive
rate of 17.14%. This means that 9.53% of malignant skin lesions were missed and did not
undergo biopsy, while 17.14% of benign skin lesions were unnecessarily biopsied. Therefore,
objective image-guided techniques that accurately discriminate clinically similar malignant from
benign skin lesions can potentially aid in the highly subjective skin cancer prescreening stage.
The current treatment strategy followed by dermatologists is to completely remove the

cancerous lesion from the skin surrounded by a rim or margin of healthy tissue. Histopathological
evaluation of the resected tissue is one of the rst margin assessment methods adopted during
tumor excision surgery [8,9]. However, this approach evaluates only a few sections along the
surgical margin, leading to missing out tumor extensions and subclinical tumor spread. According
to the American Academy of Dermatology guidelines, a standard 5 mm excision margin is
recommended for melanoma in situ or lentigo melanoma [10,11], while an excision margin of
1-2 cm is recommended for invasive melanoma [12]. The accessibility of the lesion and the
functional importance of the aected tissue vary depending on the lesion’s anatomical location.
For example, a head and neck melanoma lesion may be functionally and cosmetically more
critical than a melanoma lesion located at the thigh. Therefore, it is crucial to facilitate complete
tumor removal while preserving healthy or unaected surrounding tissue [9]; unfortunately, it
is challenging to determine a standard for skin lesion excision margin. One study has reported
that almost 60% of melanoma cases needed an excision margin greater than 5 mm to facilitate
the complete removal and minimize recurrence rates [13]. The recommended surgical excision
margins range between 5 to 20 mm depending on the depth of invasion of the lesion [14,15].
However, in some anatomical locations, it is very dicult to take the recommended margin and
can be very cosmetically/functionally destructive [16]. Mohs microscopic surgery (MMS) has
become a popular technique to ensure complete tumor removal [10,16,17]. Although MMS is
a single visit surgical procedure, it is a tedious and time-consuming procedure. During MMS,
the patient must wait until the analysis of the excised lesion is completed using frozen section
evaluation [18]. Depending on the histopathology result, the doctor determines the need to
remove another layer of tissue. The entire procedure, which can include multiple rounds of
excision, can take several hours to be completed. In summary, all the above-mentioned margin
assessment approaches have several limitations, including 1) incomplete tumor removal, 2)
unwanted removal of functionally important healthy tissue, 3) tedious and time-consuming, 4)
painful procedures that may require longer healing time for the patients.

In addition to dermoscopy, other optical imaging and sensing approaches have been explored
for skin cancer screening, diagnosis, and surgical margin assessment [19,20]. Some of these
optical techniques explored as potential skin cancer prescreening tools are reectance confocal
microscopy (RCM) [21], optical coherence tomography (OCT) [22], Raman spectroscopy [23],
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Brillouin spectroscopy [24], photoacoustic imaging (PAI), hyperspectral imaging (HIS), and
autouorescence imaging [25,26]. RCM produces images of the horizontal sections of the lesions
to view the cellular structures of the skin at varying depths [21]. OCT is a high-resolution
imaging technique that generates 2D or 3D cross-sectional views of the tissue [27]. Although
RCM and OCT monitor the structural or morphological changes in the skin non-invasively, the
interpretation requires expert knowledge to understand the histological structures. In addition,
both techniques do not provide information on the biochemical changes in the skin. Raman
spectroscopy [28] is a vibrational spectroscopy technique that monitors the molecular signatures
of the tissue and has been shown to be capable of identifying neoplastic progressions in the cells.
It is currently being extensively investigated for discriminating malignant skin lesions; however,
due to the slow image acquisition, it might not be practical for routine clinical evaluations
[20,23,28]. PAI combines ultrasonic and optical imaging by irradiating the tissue with short
laser pulses of dierent wavelengths [29]. The dierence in light absorption by several tissue
chromophores are then detected by an ultrasonic transducer. Currently this technique has been
primarily used for investigating melanocytic lesions with melanin as the target chromophore [30].
HSI is a non-invasive imaging technique where each spatial point contains spectral information
from several narrow bands across the electromagnetic spectrum. The use of HSI technique for
melanoma detection is primarily based on the dierences in the absorption spectrum of melanin
and hemoglobin in the spectral bands 530-570 nm and 600-700 nm respectively [31]. However,
capturing the spectral information over hundreds of narrow bands increases the complexity and
cost of the instrument [32]. Although not many works have reported the diagnosis accuracy of
skin cancer using PAI, some works [33,34] have used HSI for evaluating the diagnosis accuracy
of skin cancer. Liu et. al. [33], utilized random forests models for identifying the staging of
SCC and the inuence of the selected region of interest on the performance using hyperspectral
microscopic imaging. Huang et.al. [34], classied hyperspectral images of skin cancer into BCC,
SCC and seborrheic keratosis using the ‘you only look once’ (YOLO) version 5 machine learning
model and compared its performance with models trained on RGB images of the lesions. Leon et.
al. [31], classied HSI images of benign and malignant pigmented skin lesions using machine
learning methods such as support vector machine (SVM), random forests and neural networks.
Fluorescence based techniques for skin cancer diagnosis can be performed with the help

of exogenous uorophores as well as with skin endogenous uorophores [26]. Exogenous
uorophore-based techniques pose several drawbacks, including invasiveness, the required
waiting time between administration and imaging, and limited specicity. Autouorescence
techniques that monitor the uorescence emission from the endogenous uorophores in the
tissue have also been explored for cancer diagnosis [35–37]. Such methods have the advantage
of monitoring the biochemical changes in the cells as they undergo malignant transformations
[36,38,39]. Nicotinamide adenine dinucleotide (NADH) and avin adenine dinucleotide (FAD)
are metabolic cofactors involved during the three main steps of cellular respiration: glycolysis,
Krebs cycle, and oxidative phosphorylation [40,41]. As the cells transform from normal/healthy
to full-blown malignancy, their metabolic rate increases. According to the Warburg hypothesis,
the rate of anaerobic respiration through glycolysis dominates oxidative phosphorylation to
enable energy production in the deeply situated tumor cells [42]. This can cause changes in the
relative concentrations of NADH and FAD, which are reected in their steady-state uorescence
intensities. In addition, the deviations in the metabolic pathways can induce variations in the
relative concentrations of free and protein bound NADH and FAD and their protein binding sites
[43]. These alterations can modulate the uorescence decay lifetimes of these molecules. The
relative amounts of collagen present in the extracellular matrix of malignant lesions compared
to that in benign lesions is another important biomarker for malignant transformations [44].
Therefore, monitoring the autouorescence emission of NADH, FAD, and collagen, can serve
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as important indications of malignancy that can help discriminate benign and malignant skin
lesions.

Several studies have reported the potential of steady-state intensity autouorescence measure-
ments to discriminate malignant from normal or benign skin lesions [45–47]. The excitation
wavelengths used in the studies that explore skin autouorescence ranged from 260 nm to 1000 nm
[45]. Lohmann et. al, conducted in-vivo steady-state autouorescence measurements on human
skin lesions under 365 nm excitation and 470 nm emission. Considerable dierences in the
uorescence intensities collected from melanoma and nevi lesions was observed [46]. Fast et. al.,
developed a multiphoton imaging system for in-vivo and ex-vivo autouorescence measurement
of human skin at 780 nm two-photon excitation and two emission channels at 535 nm and 720 nm.
The imaging system was able to visualize melanocytic dendrites in actinically damaged skin,
which is useful in distinguishing melanoma and other pigmented skin conditions [47].

Time-resolved techniques, such as multispectral autouorescence lifetime imaging (maFLIM),
have the inherent advantage of monitoring the uorescence decay dynamics in addition to
the steady-state intensities, reducing the false positive rate associated with highly pigmented
and inammatory conditions [48,49]. Several studies have explored using the time-resolved
autouorescence from the skin to discriminate skin cancer lesions [26,50–52]. Miller et. al,
characterized the time-resolved autouorescence response from SCC lesions and healthy skin in
a mice model, using 480 nm excitation and 535 nm uorescence emission, reporting a smaller
short lifetime component in SCC lesions relative to the healthy skin [26]. Pires et. al, conducted
in-vivo time-resolved uorescence measurements in a murine model of cutaneous melanoma,
using 378 nm and 445 nm excitations, and 440 nm and 514 nm emission detection, specically
targeting NADH and FAD uorescence. Melanoma lesions were discriminated from healthy
tissue using the long and short lifetime components of the bi-exponential uorescence response
[50]. Pastore et. al., employed multiphoton FLIM to detect metabolic changes on syngeneic
melanoma mouse models, using two-photon excitation at 740 nm and 900 nm, and emission
detection at 447 nm and 540 nm, to specically measure the uorescence lifetimes of free and
bound NADH and FAD. A signicant dierence in the ratio of bound and free NADH between
melanoma and healthy tissues was observed, while the short and long lifetime components of
NADH did not vary signicantly [51]. De Beule et. al, reported that average uorescence
lifetime from 390 and 600 nm emission bands under 355 and 440 nm excitation are useful in
discriminating ex-vivo human biopsy samples from BCC and healthy skin tissue [52].
Several machine learning and deep learning techniques [53–61] had been implemented in

previous publications to distinguish skin cancer lesions from either healthy tissue or other benign
skin lesions. Some of the machine learning techniques that have been explored are k-nearest
nerighbors (kNN) [56], support vector machine (SVM) [57], logistic regression [58], and
AdaBoost [57]. Many pre-trained convolutional neural networks (CNN) models such as VGG16
[59], VGGNet [60], AlexNet [59] and ResNet-152 [61], have also been used in combination with
transfer learning to classify the dermoscope images collected from skin lesions. It is interesting to
note that most of the previous works used publicly available dermoscopic datasets, such as ISBI,
PH2, ISIC archive or Atlas [54,55]. Therefore, such works mainly make use of the morphological
or textural features of the lesions, rather than its biochemical mechanisms.

In this work, we aim to classify pigmented skin lesions using the autouorescence characteristics
of intrinsic uorophores in the tissue, which in turn reects the underlying biochemical changes
during malignant transformations [53]. This work develops an objective image-guided maFLIM
based strategy to discriminate benign from malignant pigmented skin lesions using pixel-level
features. The maFLIM images collected from 30 patients exhibiting benign or malignant skin
lesions are employed in developing random forests and deep neural-network based classication
models. The models generate prediction probability maps that could potentially be used to
classify the lesion as either benign or malignant for screening and diagnosis purposes. In
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addition, these maps could be used to determine the tumor margins in the acquired eld of
view; therefore, this technique could also potentially help delineating tumor margins during
skin cancer excision surgery. Our previous work [62] introduced a feature extraction strategy
based on frequency-domain analysis of uorescence decay signals and utilized image-level global
features for classifying benign and malignant lesions. The focus of the previous work was to
classify lesions at the image level with the intention of assisting doctors in early diagnosis of
skin cancer, and employed extensive feature selection techniques to select a feature subset for
training Quadratic Discriminant Analysis (QDA) based machine learning models. In contrast,
this work explores features extracted using time-domain deconvolution to discriminate benign
and malignant lesions at the pixel-level. Pixel level classication potentially aids in identifying
regions of malignancy and thereby assisting doctors in margin assessment. Moreover, this work
investigates two more complex machine learning models – random forests and deep neural
networks without explicit feature selection for pixel-level classication.

2. Methods

2.1. maFLIM dermoscopy imaging of skin lesions

The data used in this work is the same data used in a previous publication from our group
[62]. A total of 30 patients (npatients = 30) from the Dermatology Department of the Amaral
Carvalho Cancer Hospital (Jahu, Sao Paulo, Brazil) were recruited for this study, following
a human study protocol approved by the Internal Review Board of that institution (CAAE:
71208817.5.00005434). Only patients presenting at least one pigmented skin lesion undergoing
biopsy examination for skin cancer diagnosis were recruited. The pigmented skin lesions
considered in this work were solar lentigo, pSK, pigmented supercial BCC, pigmented nodular
BCC, and melanoma.

Clinical maFLIM images were acquired in vivo from the patient’s clinically suspicious lesions
using an in-house developed time-domain maFLIM dermoscope previously described [35].
Figure S1 in the Supplement 1 shows the clinical photograph of a melanoma skin lesion, and
a photograph of the handheld maFLIM dermoscope imaging the forearm of a patient. In this
maFLIM dermoscope, the excitation wavelength is 355 nm, and the skin tissue autouorescence is
simultaneously imaged at the three emission bands of 390± 20 nm, 452± 22.5 nm, and >496 nm,
preferentially targeting collagen, NADH, and FAD autouorescence emission, respectively. The
maFLIM dermoscope was operated with a temporal resolution of 0.4 ns, eld-of-view (FOV) of
8.65× 8.65 mm2, and lateral resolution of 120 µm. For the rest of the paper, these three emission
spectral bands of will be more conveniently referred to as 390 nm, 452 nm, and 500 nm. All
images were acquired with an average laser excitation power of 10mW measured at the sample,
140× 140 pixels per image, and at a pixel rate of 10 kHz. These image acquisition parameters
corresponded to an acquisition time of 1.96 s per image and an excitation energy exposure of 1.96
mJ at the sample, which is signicantly lower than the maximum permissible exposure (MPE)
levels for skin based on guidelines from the American National Standards Institute – ANSI [63].

After signing the corresponding institutional IRB-approvedwritten informed consent form, each
patient underwent the following imaging protocol right before the scheduled biopsy examination
procedure. First, the lesion was gently cleaned with a gauze soaked in a saline solution. Then,
the tip of the maFLIM dermoscope, previously disinfected using a gauze soaked in 70% ethanol,
was placed in contact with the lesion, and an maFLIM image was acquired. Right after maFLIM
imaging, lesion tissue biopsy was performed following standard procedures. Each maFLIM
image was labeled based on the histopathological evaluation of the lesion biopsy, which was
considered the gold standard in this study. A total of 60 skin lesions (i.e., nlesions = 60) were
imaged from the 30 patients recruited for this study.
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2.2. maFLIM data pre-processing

The maFLIM data measured at each image pixel location (x, y) is composed of three concatenated
uorescence intensity temporal decay signals sm,λ(x, y, t) measured at the three targeted emission
spectral bands (λ). The preprocessing steps applied to each pixel maFLIM temporal signal are
as follows. First, oset and background subtraction was applied to the raw maFLIM signal,
sm,λ(x, y, t), followed by spatial averaging (order 5× 5) to increase the signal-to-noise ratio (SNR)
of the time-dependent signal. Second, pixels presenting either signal saturation or low SNR
(<15 dB) were detected and masked. Third, the duration of the temporal decay signals for
all emission bands was adjusted to149 temporal samples (59.6 ns) by applying zero padding.
The pre-processed maFLIM decay signals at each spectral emission channel are represented as:
sλ1 (x, y, t), sλ2 (x, y, t), and sλ3 (x, y, t), where λ1 = 390 nm, λ2 = 452 nm, and λ3 = 500 nm.

2.3. Time domain deconvolution and feature extraction

In the context of time-domain maFLIM data analysis [64], the uorescence decay sλ(x, y, t)
measured at each emission spectral band (λ) and spatial location (x, y) can be modeled as the
convolution of the uorescence impulse response (FIR) hλ(x, y, t) of the sample and the instrument
response function (IRF) uλ(t) measured at each λ:

sλ(x, y, t) = uλ(t) ∗ hλ(x, y, t) (1)

The standard method for time-domain maFLIM data analysis proceeds by rst deconvolving the
IRF of each uλ(t) from the corresponding measured time-resolved uorescence signal sλ(x, y, t)
to estimate the sample FIR for each image pixel, hλ(x, y, t), which is usually modeled as a
multi-exponential decay. The model order (number of exponential components) can be selected
by analyzing the model-tting mean squares error (MSE) as a function of the model order. For
the maFLIM data of this study, a model order of two was selected, since the addition of a third
component did not reduce the model-tting MSE. Thus, the skin tissue FIR was modeled as:

hλ(x, y, t),= αfast,λe
−t

τfast,λ (x,y) + αslow,λe
−t

τslow,λ (x,y) (2)

In (2), τfast,λ and τslow,λ represent the time-constant (lifetime) of the fast and slow decay
components, respectively; while αfast,λ and αslow,λ represent the contribution of the fast and slow
decay components, respectively. The parameters of the bi-exponential decaymodel were estimated
for each pixel by nonlinear least squares iterative reconvolution [64]. After deconvolution, the
bi-exponential parameters estimated at each pixel were used as features representing the temporal
dynamics of the uorescence decays at each emission spectral band: αfast,λ(x, y), αslow,λ(x, y),
τfast,λ(x, y), τslow,λ(x, y). The component contributions were normalized so that the sum of
αfast,λ(x, y) and αslow,λ(x, y) is equal to one, so that αfast,λ(x, y) and αslow,λ(x, y) are in the range
[65,1]. Since the normalized values of αfast,λ(x, y) and αslow,λ(x, y) are not independent, only
αfast,λ(x, y) was kept as a feature. One more bi-exponential feature considered was the average
uorescence lifetime for each spectral band (τavg,λ(x, y)) computed at each pixel location as
follows:

τavg,λ(x, y) = ∫ thλ(x, y, t) dt
∫ hλ(x, y, t) dt

(3)

In addition, the following spectral intensity features were also estimated from the deconvolved
FIR, hλ(x, y, t). Absolute uorescence intensities Iλ(x, y) for each emission spectral bands were
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simply computed by time integrating the FIR hλ(x, y, t):

Iλ(x, y) = ∫ hλ(x, y, t) dt (4)

The normalized uorescence intensities Iλ,n(x, y) were then computed from the multispectral
absolute uorescence intensities Iλ(x, y) as follows:

Iλ,n(x, y) = Iλ(x, y)
λ Iλ(x, y)

(5)

Lastly, the ratio of absolute intensities from the three spectral channels were computed at each
pixel location resulting in three additional spectral intensity features:

I390,n
I452,n

(x, y) = I390,n(x, y)
I452,n(x, y)

(6)

I452,n
I500,n

(x, y) = I452,n(x, y)
I500,n(x, y)

(7)

I500,n
I390,n

(x, y) = I500,n(x, y)
I390,n(x, y)

(8)

Altogether, the feature extraction approach based on time-domain deconvolution of themaFLIM
data generated a total of six spectral intensity and twelve bi-exponential maFLIM features for each
pixel location, as summarized in Table 1. In this paper, classication models were independently
built on three dierent feature pools: spectral intensity feature pool (nfeatures= 6), bi-exponential
feature pool (nfeatures= 12), and combined feature pool produced by combining both intensity and
bi-exponential features (nfeatures= 18). The rationale for evaluating the classication performance
using the three dierent feature pools independently is to gain understanding on how the dierent
feature families (intensity vs. bi-exponential) contribute and complement each other to the
specic classication problem (i.e., discriminating benign vs. malignant pigmented skin lesions).

Table 1. Feature set showing spectral intensity and
bi-exponential maFLIM features at each pixel

location.

Spectral Intensity features Bi-exponential features

I390,n
I390,n
I452,n

αfast,390 αfast,452 αfast,500

I452,n
I452,n
I500,n

τslow,390 τslow,452 τslow,500

I500,n
I500,n
I390,n

τfast,390 τfast,452 τfast,500

τavg,390 τavg,452 τavg,500

In the machine learning strategies applied to this study, the classication models were trained
at the pixel level (i.e., each image pixel was considered a training data with a corresponding
feature vector). The pixel-level ground truth label was not available, however, since the lesion
histopathological diagnosis was taken as the ground truth label for all the pixels of the lesion.
This will introduce pixel mislabeling, as not all pixels within the image eld of view correspond
to lesion pixels, and not all lesion pixels correspond to the same lesion histopathological class.
Nevertheless, the benets of increasing the sample size by switching to a pixel-level classication
model training can outweigh the disadvantage of pixel mislabeling.

2.4. Data splitting strategy

The dataset was randomly split patient-wise into ve folds, each fold composed of data from six
patients. Since there were 17 patients with benign lesion and 13 patients with malignant lesions,
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four of the ve folds contained maFLIM images from three patients with benign lesions and from
three patients with malignant lesions, while the last fold contained maFLIM images from ve
patients with benign lesions and from one patient with malignant lesions. Since some patients
had multiple lesions, the number of lesions in each fold was variable. When the dataset is split
into ve folds in this manner, it forms a partition. This random splitting of the dataset allows us
to produce many partitions with dierent benign and malignant lesions combinations in each
fold. To obtain a reasonable estimate of the model performance and to minimize any dependency
on the data splitting, the entire process was repeated on 10 dierent random partitions of the data.
The same 10 dierent random partitions were used to develop and estimate the performance of
all classication models explored. Figure 1(a) shows the data splitting strategy. Each fold within
a partition becomes the test set during a given iteration; thus, the number of iterations equals the
number of folds within a partition, which is ve. In this way, every lesion data gets a chance to be
part of the test set. Out of the remaining four folds, one is randomly chosen as the validation set,
and the remaining three folds forms the training set. Although the number of patients (30) and
the number of imaged lesions (60) are small, the size of the training set is around 650,000 pixels
and that of the testing and validation sets are each around 250,000 pixels. This is because the
sample size increases multifold when the models are trained at the pixel level. It should be noted,
however, that the nal classication performance was estimated at the lesion level, as described
in section 2.5. Since the dataset is unbalanced (41 benign lesions vs. 19 malignant lesions), all
the classication models implemented in this paper used a class weight, whereby the ratio of
weights assigned to the malignant and benign classes during classication was 2:1 [66].

2.5. Classication model with random forests

The workow used to train and estimate the classication performance of the random forests
model is depicted in Fig. 1(b). The random forest model was trained using 50 trees, and the
Gini impurity was used as the criterion for measuring the quality of the split [67]. The tree was
expanded until all leaves contain less than 2 samples. The number of features considered when
looking for the best split is the square root of the number of features. The performance of the
model was evaluated independently on the three feature pools mentioned in section 2.3, with
consistent data splits across all the partitions (i.e., the splits of the data were kept the same when
evaluating the intensity, bi-exponential, or combined feature pools). A random forests classier
trained at the pixel-level generated a prediction probability for every pixel location in the input
lesion image. Thus, the prediction probabilities of all pixels from a given lesion image were
combined to produce a prediction probability map of the lesion.
Since the ground truth annotation is only available at the lesion level and not at the pixel

level, a lesion-level classication needed to be obtained from the prediction probability maps by
applying two thresholds. The rst threshold (Thpix) was applied on the pixel-level prediction
probabilities to generate a binary classication map. Every pixel in the classication map was set
to ‘0’ or ‘1’ depending on the pixel prediction probability (i.e., 0: prediction probability < Thpix;
1: prediction probability> Thpix). The second threshold (Thper) was applied on the proportion
of pixels classied as malignant (or ‘1’) in each lesion image. After applying Thper to the
proportion of pixels classied as malignant, the entire lesion image was classied as either benign
or malignant.

The two thresholds Thpix and Thper were optimized using the training and validation sets before
being applied to the test set as follows. For each fold in a partition, the model was optimized on
the training set, and prediction probability maps were generated for every lesion image in the
validation set. A receiver operator characteristics curve (ROC) was then constructed using these
validation prediction probability maps, and a threshold Thpix was chosen from the operating
point in the ROC curve closest to the ideal operating point (0,1). The chosen Thpix was then
applied on the prediction probability maps to generate classication maps of the lesion images in
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Fig. 1. (a) Data-splitting strategy in a sample partition showing the distribution of patients
with either benign (B) and malignant (M) lesions in the ve fold for each iteration. The test set
(shaded box) is sequentially varied in each iteration. A total of 10 of such random partitions
are generated. (b)Workow used to train and estimate the classication performance of the
random forest models. For each of the 10 random partitions generated, this workow was
repeated until all ve folds were used as test set.

the validation set. Proportion of pixels classied as malignant pixels were computed for every
classication map, and another ROC was constructed on the computed percentage. Subsequently,
the threshold Thper was chosen as the operating point on the ROC curve closest to the ideal
operating point (0,1).
After optimizing Thpix and Thper using the validation set, a new random forests model was

retrained on the combined training and validation sets. The retrained model was then applied to
the test set to generate prediction probability maps to each lesion included in the test set. Finally,
the thresholds Thpix and Thper, previously optimized using the training and validation sets from
the corresponding fold in the partition, were applied to produce a lesion-level classication of
each lesion included in the test set. The test set classication performance was nally quantied
either directly from the generated prediction probability maps, or after applying the thresholds
Thpix and Thper, as described as follows.

Test set performance estimation from prediction probability maps: Upon completion of all
the ve folds in a partition, every lesion had become a part of a test set. An ROC curve was
constructed on the median pixel value of the prediction probability maps from the test lesions in
the partition, and a partition-level AUC was computed. This process was repeated for the 10
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dierent random partitions generated as described in section 2.4. Thus, for each model explored,
the mean and standard deviation the AUC of the ten partitions were computed.

Test set performance estimation after thresholding: Classication maps were generated after
applying the previously optimized Thpix on the test set prediction probability maps. An ROC
curve was constructed on the proportion of pixels classied as malignant of the classication
maps from the test lesions in the partition, and a partition-level AUC is computed. In addition,
lesion-level classication was obtained after applying the previously optimized Thper on the
classication maps. Confusion matrices are constructed at the partition-level by pooling together
all the test lesions within each partition. Sensitivity, specicity, accuracy, misclassication rate,
F-score and precision were nally computed from the confusion matrices. This process was
repeated for the 10 dierent random partitions generated as described in section 2.4. Thus, for
each model explored, the mean and standard deviation of each performance metric of the ten
partitions were computed.

The random forests algorithm allows monitoring the importance of features during the training
process. Feature importance is measured using the Gini index which is the sum over the number
of splits that uses the feature, over all the trees, calculated proportionally to the number of samples
it splits [67]. Therefore, the importance of each feature in all the feature pools were estimated
during the training processes, which can provide insight on the most relevant features of each
pool.

2.6. Classication model with deep neural networks

A neural network classication model was also explored independently using the three dierent
feature pools described in section 2.3. To facilitate reliable comparison, the splits of the data
into train, validation, and test sets across all the ten partitions were kept the same as in section
2.5. Figure 2(a) outlines the diagram of the deep learning model showing the input layer, hidden
layers, and output layer. The activation function at each hidden layer was rectied linear unit
(ReLU), while that at the output layer was sigmoid. This caused the model output value to have a
range between 0 and 1. To prevent overtting, dropout regularization was applied between each
hidden layer with a dropout rate of 0.3. In Keras deep learning framework [68], the dropout rate
is dened as the fraction of units to drop. Adam optimizer [69] was selected for optimizing the
model using a loss function computed from the ground truth label and the prediction probability
with a learning rate of 0.001. A binary cross-entropy loss function was used, as it performs best
for binary classication problems [70]. The loss function is dened as:

loss =
1
N

N∑
i=1

−(qi log(pri) + (1 − qi) log(1 − pri)) (9)

In (9), N is the number of data points, pri is the predicted probability, and qi is the truth label.
If the truth label is 1, the second part of the equation becomes zero and activates the rst part. If
the truth label is 1 and the predicted probability is close to 1, the loss function becomes closer
to zero. Similarly, if the predicted probability is close to 0, when the truth label is 0, the loss
function is again close to zero.
The number of hidden layers and the number of units in each layer are the model hyper-

parameters, which were tuned with the training and validation sets using the ‘Keras tuner’
functionality provided by the Keras library. Keras tuner is an easy-to-use hyperparameter
optimization framework that denes a search space and utilizes built-in algorithms to nd the best
hyperparameter values. The hyperband algorithm is chosen as an eective way to simultaneously
tune multiple hyperparameter congurations in the model [71]. More information about the
hyperband algorithm is provided in the Supplement 1. The following hyperparameters were
tuned by varying them over a range using a specic step size.
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Fig. 2. (a) Schematic of the neural network model, (b) Workow used to train and estimate
the classication performance of the neural network models.

1. Number of hidden layers ‘L’ – min value= 3, max value= 7, step size= 1

2. Number of units in each hidden layer l, ‘Ul’ – min value= 20, max value= 100, step
size= 10

The workow used to train and estimate the classication performance of the neural network
model is depicted in Fig. 2(b). The hyperparameters are tuned using the hyperband algorithm.
The thresholds Thpix and Thper are optimized in a similar fashion as explained in section
2.5. Subsequently, the model is trained on the train set for fty epochs using the optimum
hyperparameters, and the validation accuracy is monitored simultaneously at each epoch to
check for overtting. The epoch at which the validation accuracy is the highest is chosen as the
best epoch. After optimizing the epoch, the model is trained on a set obtained by combining
the training and validation sets using the optimized hyperparameters and the optimum epoch.
The test set is then tested on the trained model to generate prediction probability maps and
classication maps corresponding to each lesion included in the test set. Thresholds Thpix and
Thper used on the test set are the ones optimized using the train and validation sets from the same
fold in the partition. The test set classication performance can be computed from either the
generated prediction probability maps or the classication maps. The performance estimation
from the prediction probability maps and the classication maps are the same as explained in
section 2.5.

Since each partition has ve iterations, the total number of test sets is 50, corresponding to the
ten partitions. This means that 50 sets of optimum hyperparameter congurations are generated.
A histogram of the tuned hyperparameters was generated to determine the most frequent values
found as optimal for each of the hyperparameters. Figure. S4. in the Supplement 1 shows the
histogram distributions of all the hyperparameters.

3. Results

3.1. maFLIM dermoscopy clinical imaging of skin lesions

The distribution of patients (npatients= 30) and lesions (nlesions= 60) imaged in this study showing
benign and malignant conditions is provided in Table 2. Benign lesions included solar lentigo
and pigmented seborrheic keratosis (pSK). Malignant lesions included pigmented supercial
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BCC, pigmented nodular BCC, and melanoma. The maFLIM feature maps of a representative
melanoma lesion are shown in Fig. 3. For comparison purposes, the scales of the feature maps
across the three spectral wavelengths are kept consistent.

Fig. 3. Representative maFLIM feature maps of a melanoma lesion. The columns show
the feature maps corresponding to the three emission spectral channels. Rows correspond
to i) maps of the weight of the fast decay, ii) fast lifetime maps, iii) slow lifetime maps, iv)
average lifetime maps, v) normalized integrated intensity maps, vi) maps of the ratios of the
intensities, vii) while light image of the lesion. Scale bar: 3 mm.

Table 2. Distribution of imaged benign and malignant lesions.

Type No.
patients

No.
lesions

Benign
Solar lentigo 2 10

Pigmented seborrheic keratosis 15 31

Malignant
Pigmented supercial BCC 2 6

Pigmented nodular BCC 5 5

Melanoma 6 8
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3.2. Random forests classication model

3.2.1. Threshold optimization

Thresholds Thpix and Thper are optimized using the training and validation sets and then applied
to the testing set during each of the ve iterations or folds for a given partition (Fig. 1(b)). This
means that after executing the experiments on all the 10 partitions, 50 dierent values of Thpix and
Thper are optimized. Figure S2 in the Supplement 1 shows the distribution of the 50 optimized
Thpix and Thper threshold values for the three feature pools independently evaluated. For the
three feature pools, the optimized Thpix values were mostly less than 0.2, while the optimized
Thper values were mostly around 0.5.

3.2.2. Test set performance estimation from prediction probability maps

The predictions probability maps generated from the test sets in a representative data partition
using the random forest model trained on the combined feature pool are shown in Fig. 4(a). The
maps are generated from the test set images in the ve folds of the representative partition, and
therefore contains every lesion image in the dataset. The labels ‘Benign’ and ‘Malignant’ are
from the image-level ground truth of the lesions. Mean value of the prediction probabilities
can be computed from the prediction probability map of each lesion image in the test set from
all the 5 folds in the partition. The violin plots showing the distribution of mean prediction
probabilities from the test sets in the sample partition for the three feature pools are shown in
Figs. 4(b), 4c, and 4d. The labels ‘Benign’ and ‘Malignant’ are from the image level ground
truth. Non-parametric Mann-Whitney U test was conducted on the mean prediction probabilities
between benign and malignant test set lesions for each feature pool, and the p-values were found
to be statistically signicant (p-value< 0.01). The p-values obtained for this sample partition are:
7.59e-05 for intensity feature pool, 1.59e-06 for bi-exponential feature pool, and 6.04e-07 for the
combined feature pool. Table S1 in the Supplement 1 shows the results of the Mann-Whitney U
test obtained for all the 10 data partitions for random forest models trained on the three feature
pools, with all p-values obtained being <0.01.
Table 3 shows the AUCs of the ROCs constructed on the mean prediction probabilities from

the prediction probability maps in the test sets, using random forests classier trained on the
three explored feature pools. The ROC curves are constructed by combining the lesions from all
the ve folds of a given partition, e.g., one ROC curve is constructed for each partition. The last
row shows the mean and standard deviation values of the ten ROC-AUC values obtained from
the ten dierent partitions. As it can be seen, the ROC-AUC values with the combined feature
pool were higher than for the other two feature pools, with a mean ROC-AUC of 0.88± 0.01.

3.2.3. Test set performance estimation after thresholding

The classication maps obtained after applying Thpix on the prediction probability maps of a
representative data partition using the random forest model trained on the combined feature
pool are shown in Fig. 5(a). Figures 4(a) and 5(a) are from the same data partition. The labels
‘Benign’ and ‘Malignant’ at the top of the gure separating the two groups are from the image
level ground truth of the lesions. The color-coded labels indicate pixels marked as malignant
(purple - label ‘1’) or benign (black – label ‘0’) after applying Thpix on the prediction probability
maps. Proportion of pixels marked as malignant can be computed from each classication map
in a partition. Figures 5(b), 5(c) and 5(d) shows the violin plots indicating the distribution of
the proportion of malignant pixels from all the test sets in the sample partition for the three
feature pools. The plots are separated into benign and malignant groups based on the image
level ground truth values. Non-parametric Mann-Whitney U test conducted on the proportion of
malignant pixels between benign and malignant test set lesions shows statistically signicant
p-values for the three feature pools (p< 0.01). The obtained p-values for this sample partition are:
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Fig. 4. (a) Prediction probability maps generated with random forests classier for a
sample data partition trained on the combined feature pool. Labels ‘Benign’ and ‘Malignant’
are from the image-level ground truth of the lesions. Violin plots showing the mean
prediction probabilities from the test sets within the sample partition for: (b) intensity
(p-value= 7.59e-05), (c) biexponential (p-value= 1.59e-06), and (d) combined feature pools
(p-value= 6.04e-07). ** above the plots indicate that the two groups are statistically
signicant with a p-value < 0.01.

4.74e-05 for intensity feature pool, 4.37e-06 for bi-exponential feature pool, and 9.89e-07 for the
combined feature pool. Table S2 in the Supplement 1 shows the results of the Mann-Whitney U
test obtained for all the 10 data partitions for random forest models trained on the three feature
pools, with all p-values obtained being <0.01.

Table 4 shows the AUCs of the ROCs constructed on the proportion of malignant pixels from
the classication maps in the test sets, using random forests classier trained on the three explored
feature pools. The last row shows the mean and standard deviation values of the ten ROC-AUC
values. The ROC-AUC values with the combined feature pool were higher than for the other two
feature pools, with a mean ROC-AUC of 0.87± 0.02.

To estimate the lesion-level classication performance, we need to generate confusion matrices
for the test sets within each data partition. Applying Thper on the classication maps classies
each test set lesion at the image-level. Confusion matrices are generated at the partition-level
by including all test images from the ve folds of that partition. Table 5 shows the mean and



Research Article Vol. 15, No. 8 / 1 Aug 2024 /Biomedical Optics Express 4571

Table 3. The AUCs of the ROCs constructed from the mean prediction probabilities
of the test sets in each partition using the random forest classier for the three

feature pools.

Partitions Spectral Intensity
feature pool

Bi-exponential feature
pool

Combined feature pool

1 0.80 0.84 0.87

2 0.80 0.83 0.86

3 0.81 0.86 0.89

4 0.84 0.87 0.89

5 0.84 0.87 0.89

6 0.79 0.86 0.88

7 0.81 0.85 0.87

8 0.82 0.89 0.90

9 0.81 0.86 0.88

10 0.84 0.87 0.89

Mean±
Standard
Deviation

0.82± 0.01 0.86± 0.01 0.88± 0.01

Table 4. The AUCs of the ROCs constructed from the proportion of malignant
pixels of the test sets from each partition using the random forest classier for

the three feature pools.

Partitions Spectral Intensity
feature pool

Bi-exponential feature
pool

Combined feature
pool

1 0.85 0.84 0.85

2 0.82 0.86 0.86

3 0.75 0.87 0.86

4 0.84 0.84 0.86

5 0.79 0.88 0.89

6 0.82 0.87 0.87

7 0.87 0.80 0.91

8 0.83 0.87 0.90

9 0.85 0.81 0.85

10 0.80 0.88 0.89

Mean±
Standard
deviation

0.82± 0.03 0.85± 0.03 0.87± 0.02

standard deviation of the sensitivity, specicity, accuracy, misclassication rate, F-score and
precision from all the 10 partitions.

3.2.4. Feature importance

The feature importance metric (Gini index) obtained for each feature during all the 50 dierent
test sets (5 iterations x10 partitions) are used to compute the mean and standard deviation shown
in the Fig. 6. This, in turn, reveals the most important features in each feature pool. The three
most signicant features from the spectral intensity feature pool are I390,n,

I390,n
I452,n , and

I500,n
I390,n . The
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Fig. 5. (a)Classication maps generated with random forests classier for a sample
data partition trained on the combined feature pool. Violin plots showing the proportion
of malignant pixels from the test sets within the sample partition for: (b) intensity (p-
value= 4.74e-05), (c) biexponential (p-value= 4.37e-06), and (d) combined feature pools
(p-value= 9.89e-07). ** above the plots indicate that the two groups are statistically
signicant with a p-value < 0.01.

Table 5. Performance metrics calculated from the test sets over all the data partitions when
trained on a random forest classier – these metrics are computed at the partition level.

Feature pool Sensitivity
(%)

Specicity
(%)

Accuracy (%) Misclassication
rate (%)

F-score (%) Precision (%)

Intensity 64.21± 11.95 77.07± 14.18 73.00± 7.37 27.00± 7.37 60.36± 5.31 61.78± 16.32

Bi-
exponential

72.63± 10.73 76.09± 5.95 75.00± 4.01 25.00± 4.01 64.58± 6.12 58.81± 5.47

Combined
feature pool

74.73± 14.66 76.83± 9.58 76.17± 5.00 23.83± 5.00 66.19± 7.11 61.46± 8.83

three most important features from the bi-exponential feature pool are τfast,452, τfast,390, and
αfast,390. In the combined feature pool, the three most important features are I390,n, αfast,390, and
I390,n
I452,n .
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Fig. 6. Mean and standard deviation of feature importance metrics (Gini index) obtained
for each feature during all the 50 test sets (5 iterations x10 partitions) computed for the: (a)
intensity, (b) biexponential, and (c) combined feature pools.

3.3. Neural networks classication model

3.3.1. Threshold optimization

Thresholds Thpix and Thper are optimized using the training and validation sets during each
iteration of the workow (Fig. 2(b)). The thresholds applied to the test sets are the ones optimized
during that iteration using the train and validation sets from the same partition. This means that
after executing the experiments on all the 10 partitions, 50 dierent values of Thpix and Thper are
obtained. Figure S3 in the Supplement 1 shows the distribution of Thpix and Thper for the three
feature pools respectively. For all the feature pools, the Thpix values are mostly centered around
0.2, while the Thper values are mostly centered around 0.5.

3.3.2. Test performance estimation from prediction probability maps

The predictions probability maps generated from the test sets in a sample data partition using
the neural network model trained on the combined feature pool are shown in Fig. 7(a). The
sample data partition is the same as that was used for the random forests model in Figs. 4 and
5. The maps shown in the gure are generated from the test set images in the ve folds of the
partition, and therefore contains every lesion image in the dataset. The labels ‘Benign’ and
‘Malignant’ are from the image-level ground truth of the lesions. Mean value of the prediction
probabilities can be computed from the prediction probability map of each lesion image in the
test sets from all the ve folds in the partition. Figures 7(b), 7(c) and 7(d) contains the violin
plots showing the distribution of mean prediction probabilities from the test sets in the sample
partition for the three feature pools. The labels ‘Benign’ and ‘Malignant’ are from the image level
ground truth. Mann-Whitney U test was conducted on the two groups for each feature pool. The
p-values obtained for this sample data partition are: 4.72e-04 for intensity feature pool, 5.80e-05
for bi-exponential feature pool, and 5.12e-07 for the combined feature pool. Table S3 in the
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Supplement 1 shows the results of the Mann-Whitney U test obtained for all the 10 data partitions
for neural network models trained on the three feature pools, with all calculated p-values <0.01.

Fig. 7. (a) Prediction probability maps generated with neural network classier for a
sample data partition trained on the combined feature pool. Labels ‘Benign’ and ‘Malignant’
are from the image-level ground truth of the lesions. Violin plots showing the mean
prediction probabilities from the test sets within the sample partition for: (b) intensity
(p-value= 4.72e-04), (c) biexponential (p-value= 5.80e-05), and (d) combined feature pools
(p-value= 5.12e-07). ** above the plots indicate that the two groups are statistically
signicant with a p-value < 0.01.

Table 6 shows the AUCs of the ROCs constructed on the mean prediction probabilities at the
partition level from the prediction probability maps in the test sets, using neural network classier
trained on the three explored feature pools. The ROC-AUC values with the combined feature
pool were higher than for the other two feature pools, with a mean ROC-AUC of 0.88± 0.02.

3.3.3. Test performance estimation after thresholding

The classication maps obtained after applying Thpix on the prediction probability maps of a
sample data partition using the neural network model trained on the combined feature pool
are shown in Fig. 8(a). Figures 7 and 8 are obtained from the same data partition. The labels
‘Benign’ and ‘Malignant’ at the top of Fig. 8(a) separating the two groups are from the image
level ground truth of the lesions. The color-coded labels indicate pixels marked as malignant
(purple - label ‘1’) or benign (black – label ‘0’) after applying Thpix on the prediction probability
maps. Proportion of pixels marked as malignant can be computed from each classication map
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Table 6. The AUCs of the ROCs constructed from the mean prediction probabilities of the
test sets in each partition using the neural network classier for the three feature pools.

Partitions Spectral Intensity
feature pool

Bi-exponential feature
pool

Combined feature pool

1 0.77 0.88 0.86

2 0.76 0.83 0.90

3 0.78 0.87 0.89

4 0.83 0.83 0.90

5 0.81 0.89 0.89

6 0.77 0.88 0.85

7 0.78 0.81 0.88

8 0.78 0.83 0.91

9 0.80 0.80 0.87

10 0.81 0.81 0.89

Mean±
Standard
deviation

0.79± 0.02 0.84± 0.03 0.88± 0.02

Fig. 8. (a)Classication maps generated with neural network classier for a sample
data partition trained on the combined feature pool. Violin plots showing the proportion
of malignant pixels from the test sets within the sample partition for: (b) intensity (p-
value= 3.01e-04), (c) biexponential (p-value= 2.73e-04), and (d) combined feature pools
(p-value= 4.05e-06). ** above the plots indicate that the two groups are statistically
signicant with a p-value < 0.01.
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in a partition. Figures 8(b), 8(c) and 8(d) show the violin plots indicating the distribution of the
proportion of malignant pixels from the test sets in the sample partition for the three feature pools.
The plots are separated into benign and malignant groups based on the image level ground truth
values. Mann-Whitney U test was conducted on the proportion of malignant pixels, and p-values
for the three feature pools were statistically signicant (p < 0.01). The obtained p-values for this
sample data partition are: 3.10 e-04 for intensity feature pool, 2.73e-04 for bi-exponential feature
pool, and 4.05e-06 for combined feature pool. Table S4 in the Supplement 1 shows the results of
the Mann-Whitney U test obtained for all the 10 data partitions for neural network models trained
on the three feature pools, with all calculated p-values <0.01.
Table 7 shows the AUCs of the ROCs constructed on the proportion of malignant pixels

from the classication maps in the test sets, using neural network classier trained on the three
explored feature pools. The ROC-AUC values with the combined feature pool were higher than
for the other two feature pools, with a mean ROC-AUC of 0.86± 0.02.

Table 7. The AUCs of the ROCs constructed from the proportion of malignant pixels
of the test sets using the neural network classier for the three feature pools.

Partitions Spectral Intensity
feature pool

Bi-exponential feature
pool

Combined feature pool

1 0.85 0.87 0.82

2 0.80 0.88 0.88

3 0.72 0.83 0.83

4 0.82 0.80 0.88

5 0.83 0.86 0.86

6 0.80 0.82 0.81

7 0.84 0.80 0.89

8 0.79 0.79 0.87

9 0.75 0.74 0.86

10 0.83 0.81 0.89

Mean±
Standard
deviation

0.80± 0.03 0.82± 0.04 0.86± 0.02

To estimate the lesion-level classication performance, we need to generate confusion matrices
for the test sets within each data partition. Applying Thper on the classication maps classies
each test set lesion at the image-level. Confusion matrices are generated at the partition-level
by including all test images from the ve folds of that partition. Table 8 shows the mean and
standard deviation of the sensitivity, specicity, accuracy, misclassication rate, F-score and
precision from all the 10 partitions.

Table 8. Performance metrics calculated from the test sets over all the data partitions when
trained on a neural network classier

Feature pool Sensitivity (%) Specicity (%) Accuracy (%) Misclassication
rate (%)

F-score (%) Precision (%)

Intensity 63.15± 13.31 72.43± 14.39 69.50± 7.49 30.50± 7.49 56.74± 6.05 54.21± 9.42

Bi-
exponential

74.21± 15.86 75.60± 10.17 75.16± 52.94 24.83± 52.94 65.01± 7.46 59.95± 85.13

Combined
feature pool

76.84± 12.49 78.29± 5.50 77.83± 3.50 22.16± 3.50 68.31± 6.59 62.39± 4.48
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3.3.4. Neural network hyperparameter optimization

Since the classier trained on each feature pool is evaluated on 10 data partitions with ve
iterations per partition, 50 dierent congurations of hyperparameters are obtained. The
histogram of the hyperparameter values that are selected during the 10 data partitions are shown
in Figure S4 in the Supplement 1. The most frequent number of hidden layers selected were
three, six, and four for the intensity, bi-exponential, and combined feature pools, respectively.
The number of units for each of the hidden layers is also a hyperparameter that was tuned. Since
the number of layers is variable over all the iterations of the ten partitions, the average number of
units for the hidden layers were estimated for the three feature pools, showing similar distributions
peaking around 60 to 70 units for the three feature pools. Finally, a small value of epoch, between
1 and 5, was frequently selected for all the three feature pools.

4. Discussion

Previous studies from our group have demonstrated the feasibility of label-free biochemical and
metabolic imaging of skin lesions using maFLIM dermoscopy [35,72,73]. In this study, we
demonstrate the potential of using pixel-level maFLIM features to develop classication models
capable of generating prediction probability maps and classication maps that could potentially
be used to not only detect malignant skin lesion, but also delineate lesion margins. Random
forest and deep neural networks classication models were explored in this work, as they do
not require explicit feature selection [74]. Random forest models select features at every node
in a decision tree to determine the feature for splitting the node. Neural networks learn the
relevant input features and optimizes the weights accordingly during the training process. In
addition to these two classication models, three dierent feature pools were also explored. The
autouorescence emission of skin lesions can be quantied in terms of spectral intensity and
time-resolved bi-exponential uorescence features extracted at the pixel-level from the maFLIM
dermoscopy imaging data. Thus, feature pools with either spectral intensity or bi-exponential
features, and a combined feature pool were independently evaluated with each classication
model.
To identify which classication model and feature pool performs the best out of the six

model/feature-pool combinations, a rigorous cross-validation strategy was adopted. First, the
data was partitioned at the patient level, i.e., the lesion images that belong to one patient were all
assigned to either the training, validation, or test sets. Second, 10 dierent partitions were used
to minimize potential bias associated to a specic random data splitting. Finally, the same 10
partitions were used to validate each of the evaluated model/feature-pool combinations to provide
a fair comparison of their performance. Such rigorous validation strategy allows for unbiased
classication performance estimations using the limited available dataset (30 patients, 60 skin
lesions), which is a common limitation of medical imaging datasets.
The performance estimated from the prediction probability maps with each feature pool was

consistent in both models. The combined spectral intensity and bi-exponential feature pool
resulted in the highest performance in the ROCs constructed from mean prediction probabilities
(mean ROC-AUC: 0.88± 0.01 for both models). Also interestingly, the bi-exponential feature
pool (mean ROC-AUC: 0.86± 0.01 for random forest and 0.84± 0.03 for neural networks)
outperformed the spectral intensity feature pool (mean ROC-AUC: 0.82± 0.01 for random
forest and 0.79± 0.02 for neural networks). These observations highlight the importance of
time-resolved uorescence features for discriminating malignant from benign pigmented skin
lesions. The violin plots in Figs. 4 and 7 also show that the mean prediction probabilities from
each lesion prediction probability map are statistically signicant between benign and malignant
lesions for all the three feature pools, suggesting its potential as a novel imaging biomarker of
skin cancer.
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The performance estimated from the classicationmaps are also consistentwith the performance
trends observed from the prediction probability maps for both the models. The combined spectral
intensity and bi-exponential feature pool resulted in the highest performance in the ROCs
constructed from the proportion of malignant pixels (mean ROC-AUC: 0.87± 0.02 for random
forest and 0.86± 0.02 for neural networks). Also, the bi-exponential feature pool (mean ROC-
AUC: 0.85± 0.03 for random forest and 0.82± 0.04 for neural networks) outperformed the
spectral intensity feature pool (mean ROC-AUC: 0.82± 0.03 for random forest and 0.80± 0.03
for neural networks). Image level classication performances obtained after applying Thper also
indicate that the combined feature pool produce the best classication performances for both
the models. Sensitivity and specicity for the combined feature pool are 74.73%±14.66% and
76.83%±9.58% respectively for the random forests model, while the sensitivity and specicity for
the neural networkmodel with the combined feature pool are 76.84%±12.49% and 78.29%±5.50%
respectively. Neural network model provides ∼2% improvement in both sensitivity and specicity
in comparison to the random forest model. The random forest classier (Table 5) yielded similar
specicity for both intensity and bi-exponential features, while the bi-exponential features yielded
superior sensitivity than the intensity features. And when both feature families were used, both
sensitivity and specicity increased with respect to models using only one family of features.
Similarly, with the neural network classier (Table 8), bi-exponential feature pool is superior to
intensity feature pool in both sensitivity and specicity, while combined feature pool performed
best among the three feature pools.
This study also identied specic spectral intensity and bi-exponential uorescence features

that are important for malignant skin lesion discrimination (Fig. 6). Some of these features
are associated to the contribution of collagen by itself (I390,n) or in relation to the contribution
of NADH ( I390,nI452,n ) to skin lesion autouorescence [44,75]. In malignant lesions, both collagen
degradation and epidermis thickening result in decreased excitation of and detected emission
from collagen in the dermis. Increased metabolic activity of neoplastic epithelial cells, on
the other hand, results in higher mitochondrial concentration of NADH [44]. Collagen has
longer uorescence lifetime (>3 ns) than NADH (<3 ns). Due to their overlapping emission
spectra, collagen and NADH uorescence emissions are expected in both the 390± 20 nm and
452± 22.5 nm spectral channels [75]. Thus, faster autouorescence decays are expected in
malignant skin lesions, resulting in specic changes in the values of τfast,390, τfast,452, and αfast,390.

The performance of the neural network model is better than the random forests model by ∼2%
in terms of sensitivity and specicity (Tables 5 and 8). The advantage of the random forest
models, however, is that they are signicantly less complex and provide direct interpretation of
important features (Fig. 6). It is worth noting that, in this study, the input of both models was the
maFLIM features extracted from the time-resolved uorescence data; thus, extraction of standard
uorescence features (normalized spectral intensities, bi-exponential decay model parameters)
was required to train both models. A potential advantage of neural network models not explored
in this study is that they can accept the time-resolved uorescence data directly as input; thus,
maFLIM feature extraction would no longer be required before training.

In this study, we also validated an ecient approach for tuning the hyperparameters of a neural
network model by integrating the rigorous cross-validation strategy discussed before with the use
of the hyperband algorithm. Through this approach, it was possible to generate histograms of
optimal hyperparameters estimated from multiple realizations of the test set (50 in this study).
Inspection of these histograms (Figure. S4) can guide the design of an optimal neural network
architecture for further validation of the model in a more extensive dataset.
In a previous study, we showed the potential of extracting global maFLIM features for

machine-learning based discrimination of malignant from benign pigmented skin lesions [62].
The previous study explored machine learning models that required explicit feature selection
prior to training, whereas in this study the models explored do not require feature selection.
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The sensitivity and specicity obtained while training ensemble classiers using a combined
set of intensity and bi-exponential global features are 84.21% and 65.85% respectively. In this
study, we explored pixel-level maFLIM features which enable developing classication models
capable of generating prediction probability maps and classication maps. Compared to the
previous work, this work shows an improvement in specicity (78.29%±5.50%) and a decrease in
sensitivity (76.84%±12.49%). However, unlike the previous publication, this work provides the
ability to generate probability maps and classication maps, which can in turn help in identifying
regions of malignancy. Overall classication performance in this work may be aected by the
lack of pixel-level ground truth labels. For diagnosis purposes (the focus of this study), the spatial
information contained in the prediction probability maps can be disregarded, as only a positive
or negative skin lesion classication is needed. In such cases, only lesion-level classication
results from the classication maps can be considered. On the other hand, for lesion margin
detection purposes, the prediction probability maps can potentially provide a direct visualization
of the lesion real boundaries. In this study, however, pixel-level ground truth information was
not available, which introduces pixel mislabeling in the available data. The eect of pixel
mislabeling can be mitigated by using the statistics of the prediction maps when the goal is to
provide a lesion-level diagnosis. For lesion margin detection, however, pixel-level ground-truth
information will be required to develop models that will generate prediction probability maps
reecting the accurate boundaries of the imaged lesions. Pixel-level ground-truth can be obtained
by annotating the resected tissue by a pathologist to identify regions of malignancy following
sectioning and histopathology staining [76]. This can be done by superimposing the stained slide
with an ex-vivo image to identify landmarks and orientations of the tissue. In this way, ground
truth information of several regions within the image can be assigned to the pixels corresponding
to those regions within the FOV. Future eorts will explore the applications of maFLIM for
lesion margin detection.

4.1. Study limitations and future work

Although this work demonstrates the potential to classify benign and malignant pigmented skin
lesions using pixel-level maFLIM features, several limitations are recognized. First, the database
of maFLIM images is limited in both the type of benign and malignant skin conditions, and the
number of samples per condition. A more comprehensive database is needed to fully develop
accurate enough classication methods for skin lesion discrimination, and to rigorously quantify
their performance in prospective studies. Second, the lack of histopathology-based assessment of
the maFLIM imaging data at the pixel-level prevented to specically quantify the capabilities of
maFLIM dermoscopy as a tool for not only detecting malignant skin lesions, but also determining
their true extension and margins. The current implementation processes maFLIM data to generate
classication maps of imaged lesions, as well as lesion-level classication. For the classication
maps to reect the accurate mapping of a malignant lesion, these models would need to be
retrained and optimized on maFLIM data with pixel-level labeling using the same framework.
Third, the current maFLIM dermoscopy system provides nonspecic excitation and spectral
detection of skin autouorescence component emission. Finally, the current implementation of
the machine-learning classication models does not allow for real-time processing of maFLIM
data. Ongoing research eorts aiming to overcome these limitations include collecting maFLIM
dermoscopy images from a plurality of nonpigmented and pigmented skin lesions from patients
of various skin tones, performing accurate pixel-level registration between the lesion maFLIM
imaging data and histopathology tissue sections, developing improved maFLIM dermoscope
systems with multiwavelength excitation capabilities, and implementing real-time maFLIM data
processing, pixel-level classication, and tissue mapping visualization. One approach to conduct
real-time pixel-level classication is to employ sequence models such as long short-term memory
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networks (LSTM) [72,76] to process the uorescence decay signals directly without explicit
feature extraction.

4.2. Clinical perspective

Providing adequate treatment strategies to patients is of utmost importance, especially to those
who do not have access to a dermatologist. To this date, there is no objective device that primary
care physicians or dermatologists could use to identify suspicious skin cancer lesions. Such a
device could help doctors identify patients that do not require biopsy resection and histopathology
evaluation, thereby minimizing the number of unwanted painful biopsy procedures. In addition
to diagnostics, the pixel-level prediction maps generated using this technique can potentially
help identify the tumor extensions and determine adequate margins for tumor excision surgeries.
Finally, extending this work with fast processing systems capabilities can enable (near) real-time
objective i) lesion diagnosis to assess the need of biopsy and resection, and ii) margin detection
to enable complete tumor removal, thus minimizing the chances of recurrence.

5. Conclusions

This study demonstrates the use of pixel-level features extracted from maFLIM dermoscopy
data for objective discrimination of malignant from benign pigmented skin lesions. Specic
spectral steady-state intensity and bi-exponential autouorescence were identied as relevant for
malignant skin lesion discrimination. Time-resolved bi-exponential autouorescence features
were found to be critical for accurate detection of malignant pigmented skin lesion. The deep
neural network model produced the best lesion-level classication, producing a partition-level
sensitivity and specicity of 76.84%±12.49% and 78.29%±5.50% respectively. Pixel-level
maFLIM enables developing classication models capable of generating prediction probability
maps and classication maps, which were successfully used to provide objective diagnosis of
pigmented skin lesions. Future eorts will explore the use of pixel-level maFLIM features for
malignant skin lesion margin detection.
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