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Abstract

The theory and usage of outer linearizations is usual in conjunction with assuniptiona
of convexity, as in Bender's type of methods [1] or in cuttigg plane algorithms, in the sense
introduced by Eaves and Zangwill [2]. In the later case, the focal point is the dropping of
cuts (outer linearizations), and, in certain specific conditions (algorithm 4), the maximal
number of cuts, in each interation, can be shown to be bounded by the dimension of the
space. ] -

The usage of outer linearization in the presence of concavity is not usual, although we

show that this leads to Kuhn—Tucker stationary points, using just one outer linearization
in each iteration. Moreover, this result is exploited for a class of problems for which the

resulting stationary point is a global minimum of the original problem.

1. Introduction )
The classical nonlinear programming problem (MP) is stated as:
“Given a non empty set X°(X° C R"),
f:X° >R,
g:X° - R™,
find an T € X, if it exists, such that
f(Z) = min{f(z) | s € X}, where X = {z € X°| ¢(z) < 0}.”
In the main body of the literature, the results are centered on the case where f(-)

and g(-) are convex functions over the convex set X*°, or some technical generalization
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of such assumption (quasi convexity, pseudoconvexity). Even when these assumptions are
not explicit, they appear implicitly (like subdifferentiability at every puint of X°).

This work is centered upon the cases:

(f) f() is concave and g() is convex;
(g) f(-) is convex and .g(-) is concave.

It will be clear that the presented ideas can be easily extrapolated to the case when
both f(-) and g(-) are concave.

In order to simplify the presentation we shall constrain this work to the case “X°
open set, f(-) and g(-) differentiable”, although similar results can be derived using sub
and/or superdifferentiability.

We shall use as subproblems, the ones obtained by the outer linearizatic‘m of the

concave functions, i.e., given z* € X, we define:

min f(z*) + < Vf(z*),z —z* > (= fi(z)).

(MPL){ st 9(z) <0
ze€ X°;
min f(z) °

(MPL); st gi(z®)+ < Vgi(z*),z - 2* >0, i=1,...,m,

zeX°.

It is quite clear that if (MPL); ! has an optimal solution z**!, this solution is a
feasible pont for (M P), i.e., z¥*! € X. For (MPL){, we can assert that every local
minimum is global and that the reverse constraint qualification holds {9]. For (M PLY{,
the global minimality property also holds and we shall assume the validity of a constraint
qualification (for instance, Slater’s).

In order to guarantee the existence of solutions to the linearized problems, we shall

assume throughout this work, the following assumption:

1 The notation (M PL); is used in the sense “both for (M. PL)] and (MPL){".
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Definition 1.1) The compactness assumption (CA) holds for (M P) if and only if
VaeR, {z€X]f(z)<a} iscompact. |

The assumption (CA) besides guaranteeing that there is a solution z*+!, for
(MPL);, alsois determinant to the fact that if a sequence {z*}xen is generated by
recursively solving (MPL);, then this sequence is compact.

With these remarks in mind, it is easy to verify

Lemma 1.2) Under the assumptions.
(2.1) The compactness assumption is valid;
(2.2) X° non-empty open subset of R", f(-) and g(-) are continuously differentiable
on X®
(23)z* € X = {z € X° | g(z) < O);
(2.4) either f(-) is convex and g(-) is concave [((MPL)]] or
S(-) is concave and g(-) is convex [(MPL){];

(2.5) for (MPL)! a constraint qualification holds,
it can be asserted that

(i) Vz* € X, (MPL); has solution z*+!;

(i) V2* € X, f(a*) 2 VO((MPL),) 3 f(z**1) 2 VO(MP),

where VO(P) = optimal value of problem P;

(iii)) f(z*) =VO((MPL);) 4 z* is a Kuhn-Tucker stationary point for (MP). B

This result, whose straightforward demonstration is omitted, motivates the idea of

the usage of outer linearization techniques, for the problem in consideration.

2. Outer linearization method.

The suggested method is:



Method 2.1). Given z! € X, construct the following sequence, starting with k= 1:
(i) solve (MPL),. If VO(MPL); = f(z*), stop; otherwise
(i) Using z**?, construct (MPL);1y; k « k+1; return to (i). H

Clearly, in the case where the method (2.1) generates a finite number of points, the
last generated one is a Kuhn-Tucker stationary point (lemma 1.2). So, from now on, this
work will be concerned with the case where a sequence of points is generated. For this

case, we can assert, under the assumptions of (1.2):
Fact 2.2) The sequence {f(z*)}xen is a convergent sequence, and (MP) is bounded.

Proof: Trivial, as by (1.2), it is a monotonic decreasing sequence with lower bound. This
Jower bound is the optimal value of (MP), whose existence is guaranteed by (CA) and
the contilv'mity assumptions on f(-) and g¢(:). |

Fact 2.2.a) Under (CA), {z*}xen is a compact sequence.

Proof: Trivial. |

Theorem 2.3) Every convergent subsequence generated by method (2.1), converges to a
Kuhn-Tucker stationary point of (MP), if the Kuhn-Tucker multipliers {M*}ien form

a compact sequence, i.e., if they are bounded by above.

Proof: Let {z*}icx be a convergent subsequence of {z*}ien, with limit 7€ X.
Consider {z**'}ieck, that is a compact sequence, so 3K' C K, such that
{z** }rek+ converges to .

As the Kuhn-Tucker condi'tions are necessary for the linearized problems we can assert:



| { Vf(z*)+ EMFVgi(a*+1) = 0, for (MPL)],
1
V§(z**') + EM}!Vgi(z*) = 0, for (MPL) ;
(i) M* > 0;

(<) 5=, for (MI’L)i ,

i

| ME(0lah)+ < Vgi(a), 24 = 2k 5) =0, for (MPLY ;

9(z*) < ;
(iv) { g(=**!) <0
9i(z%1) < gi(e*)+ < Vgy(z*),2*+1 — 2* ><0, for (MPL)].

If {M*}ick, is bounded by above, i.e., M : ¥ k € K!, M* < M, this sequence is
compact. So taking a convergent subsequence {M*}iexw, with limit M, from continuity,
it follows that

(v) (2, M) is a Kuhn-Tucker stationary point for (M P) linearized around Z.

Moreover, by fact 2.2, we can assert

() f(z) = f(2).

From (v) and (vi), applying lemma (1.2), with z*¥ = %, the result follows. -]

The theorem (2.3), although quite natural from a linearization viewpoint is not a
trivial one with respect to the usual results in the literature. This comment sounds strange,
but it is easily clarified.

If we assume that the sequence (z*, M*) is convergent the result is a trivial one by
continuity, and in this sense it is natural. But this assumption holds false in a number of
cases. For instance, in the purely convex case (2.3) does not hold, as can be seen using

fz)=2* X={z€R|-1<z <1} In this case (convexity), the best results are



A critique to this result is that it states the convergence to a stationary point and not

to an optimal solution. In order to dimish the impact of this relevant critique, we assert:

“ Corollary 2.4) In the conditions of lemma 1, if for (MP) holds the property of f( )

uniqueness, i.e.,
((,7%),(&,1)) are Kuhn-Tucker stationary points of (MP) = f(2) = f(2),
then method (3.2) converges to an optimal solution of (MP), in the sense of (2.3)

Proof: It follows from the facts:
(a) (CA) and continuity => existence of optimal solution z%;
(b) constraint qua.liﬁca.ti(;n => necessity of Kuhn-Tucker conditions at z*;
() f(-) unicity = [(£,M) is a Kubn-Tucker stationary point = g() <0 and
f(2) = f(=*)).
For details, see [7]. |

3. An illustrative example.

This work was motivated by the continuous capacity assignment problem in store-
and-forward computer networks ([8], [5]). This problem can be stated as:

“Given a set of flows {f;}™,, find capacities (transmission speeds) {c;}®;, that
minimize the cost (delay) under the constraints of a maximum admissible delay (cost) and
that ¢; > f;, i=1,2,...,m."

The cases of interest have the following structure:

- (i) the cost D(c) is the sum of individual costs, i.e.,

D(c) =D dieis



where d;(-) is a concave monotonic increasing function;

(ii) the delay T(f,c) has a product form, i.e.,

m
T(F.)= 3 ti(Forci)
i=1
where #;(f;,-) is strictly convex monotonic decreasing function;
lim__ -4 ti(fi,z) = +oo;
lim,_.+°° ti(?i) $) =0.
In order to verify the validity of the assumptions of theorem (2.3) and lemma (1.2),
besides differentiability assumption, 2 it is necessary to present an argument for the com-
pacity assumption and the compactness of the sequence of multipliers. This is easily

derived using the fact bellow.

Fact 3.1) Under the assumptions above listed, the feasible set for the capacity assignment

problem can be substituted, by its intersection with hypercube of the form k< < cf.

Sketch of Proof) (The detailed proof can be found in [6]).

The bound on delay (cost) can be used to determine a lower (upper) bound for the
capacity values, assigning all the delay (cost) to an individual channel. The strict mono-
tonicity added to the fact that the corresponding function range is (0, +00), gives the
necessary assumptions to the existence of such limits.

In a similar way, the existence of a feasible point is used to generate the remain-
ing bounds. For instance, in cost minimization, the delay constraint generates the lower
bounds, and applying all the cost of a feasible point in each channel, it generates the upper
bound. . ]

3 1t will be assumed that d;(*) and ¢;(f;,-) are twice continuously differentiable on
Ry; andon {z |z > f;}, respectively, with d;() continuous at 0. This suits the
usual model di(z) = 4z%, (a € (0,1)), and (F;, ) = fi(ei — F:)! (power law costs
and M/M/1 delays, [8]).



One of the attractive properties of this class of problems, is that the assumption of
£(-) unicity (central in (2.4)) is verified under a mild assumption:

Fact 3.2) If

Vizl,..m, Veiici>Fn di(c)tyFic)—dicdt!(Fici) #0,
then f(-) unicity holds for the capacity assignment problem.
Proof: see [6].

The above condition can be justified by economic arguments associating costs to
congestion levels and it is convenient to note that it holds under the usual assumption of
(23 in 2, see [8]), power law costs and M/M/1 delays.

But the most striking point of this example is that if the condition presented in (3.2) is
made slightly more stric; (d"(-)'(-)—t"(-)d'(-) < 0), it corresponds to a change of variables
(using delays as variables, instead of capacities, what can be done due to monotonicity)
and imposing that the cost function is convex with respect to delays.

This case, when the usual assumptions holds, implies in the need of several cuts in
each iteration and not just one. For instance, if we were naive enough to apply just one
outer linearization directly on the capacity assignment, it would be easy to see that we
would try to get an infeasible point. For instance, under delay constraints, the resulting
linear programming problem would have an optimal value associated with the unfeasible
solution of all delays, but one, being equal to zero.

So this case is relevant to the statement that outer linearization methods under con-
cavity assumptions are relevant and can not be derived from the classical results with

convexity.



4. Conclusions.

Although it must be clear to the reader that the results hereby presented can be easily
generalized (f(-) and g(-) concave or f(-) concave, gi(-) concave, g;(-) convex, and so on),
the striking result of the need of just one cut at each linearized problem, under convenient
concavity assumptions, stands.

The fact that in general convergence is shown to a stationary point and not necessarily
to an optimal solution is quite natural and maybe this point can be partially solved using
the ideas of Tuy et alii [10].

The illustrative example hereby presented (section 3) is nothing but a very particular
case of designing a system with concave costs (“scale economy”) and congestion effects,
that correspond to models of a large class of problems. Insomuch, it is expected that a
good case for the interest in such results has been made.
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