

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Relatório Técnico

RT-MAC-9001

SOME RESULTS ON OUTER LINEARIZATION
IN THE PRESENCE OF CONCAVITY

Carlos Humes Jr.

SOME RESULTS ON OUTER LINEARIZATION IN THE PRESENCE OF CONCAVITY

Carlos Humes Jr.
Computer Science Dept.

IME-USP

Abstract

The theory and usage of outer linearizations is usual in conjunction with assumptions of convexity, as in Bender's type of methods [1] or in cutting plane algorithms, in the sense introduced by Eaves and Zangwill [2]. In the later case, the focal point is the dropping of cuts (outer linearizations), and, in certain specific conditions (algorithm 4), the maximal number of cuts, in each iteration, can be shown to be bounded by the dimension of the space.

The usage of outer linearization in the presence of concavity is not usual, although we show that this leads to Kuhn-Tucker stationary points, using just one outer linearization in each iteration. Moreover, this result is exploited for a class of problems for which the resulting stationary point is a global minimum of the original problem.

1. Introduction

The classical nonlinear programming problem (MP) is stated as:

"Given a non empty set $X^o (X^o \subset R^n)$,

$$f : X^o \rightarrow R,$$

$$g : X^o \rightarrow R^m,$$

find an $\bar{x} \in X$, if it exists, such that

$$f(\bar{x}) = \min\{f(x) \mid x \in X\}, \text{ where } X = \{x \in X^o \mid g(x) \leq 0\}.$$

In the main body of the literature, the results are centered on the case where $f(\cdot)$ and $g(\cdot)$ are convex functions over the convex set X^o , or some technical generalization

of such assumption (quasi convexity, pseudoconvexity). Even when these assumptions are not explicit, they appear implicitly (like subdifferentiability at every point of X^o).

This work is centered upon the cases:

(f) $f(\cdot)$ is concave and $g(\cdot)$ is convex;

(g) $f(\cdot)$ is convex and $g(\cdot)$ is concave.

It will be clear that the presented ideas can be easily extrapolated to the case when both $f(\cdot)$ and $g(\cdot)$ are concave.

In order to simplify the presentation we shall constrain this work to the case " X^o open set, $f(\cdot)$ and $g(\cdot)$ differentiable", although similar results can be derived using sub and/or superdifferentiability.

We shall use as subproblems, the ones obtained by the outer linearization of the concave functions, i.e., given $x^k \in X$, we define:

$$(MPL)_k^f \left\{ \begin{array}{l} \min f(x^k) + \langle \nabla f(x^k), x - x^k \rangle \quad (= f_L^k(x)) \\ \text{s.t.} \quad g(x) \leqq 0 \\ \quad \quad \quad x \in X^o ; \end{array} \right.$$

$$(MPL)_k^g \left\{ \begin{array}{l} \min f(x) \\ \text{s.t.} \quad g_i(x^k) + \langle \nabla g_i(x^k), x - x^k \rangle \leqq 0, \quad i = 1, \dots, m, \\ \quad \quad \quad x \in X^o . \end{array} \right.$$

It is quite clear that if $(MPL)_k^f$ ¹ has an optimal solution x^{k+1} , this solution is a feasible point for (MP) , i.e., $x^{k+1} \in X$. For $(MPL)_k^g$, we can assert that every local minimum is global and that the reverse constraint qualification holds [9]. For $(MPL)_k^f$, the global minimality property also holds and we shall assume the validity of a constraint qualification (for instance, Slater's).

In order to guarantee the existence of solutions to the linearized problems, we shall assume throughout this work, the following assumption:

¹ The notation $(MPL)_k^f$ is used in the sense "both for $(MPL)_k^f$ and $(MPL)_k^g$ ".

Definition 1.1) The compactness assumption (CA) holds for (MP) if and only if

$$\forall \alpha \in \mathbb{R}, \quad \{x \in X \mid f(x) \leq \alpha\} \text{ is compact.} \quad \blacksquare$$

The assumption (CA) besides guaranteeing that there is a solution x^{k+1} , for $(MPL)_k$, also is determinant to the fact that if a sequence $\{x^k\}_{k \in \mathbb{N}}$ is generated by recursively solving $(MPL)_k$, then this sequence is compact.

With these remarks in mind, it is easy to verify

Lemma 1.2) Under the assumptions

- (2.1) The compactness assumption is valid;
- (2.2) X° non-empty open subset of \mathbb{R}^n , $f(\cdot)$ and $g(\cdot)$ are continuously differentiable on X° ;
- (2.3) $x^k \in X = \{x \in X^\circ \mid g(x) \leq 0\}$;
- (2.4) either $f(\cdot)$ is convex and $g(\cdot)$ is concave $[(MPL)_k^g]$ or $f(\cdot)$ is concave and $g(\cdot)$ is convex $[(MPL)_k^f]$;
- (2.5) for $(MPL)_k^f$ a constraint qualification holds,
it can be asserted that
 - (i) $\forall x^k \in X$, $(MPL)_k$ has solution x^{k+1} ;
 - (ii) $\forall x^k \in X$, $f(x^k) \geq VO((MPL)_k) \geq f(x^{k+1}) \geq VO(MP)$,
where $VO(P)$ = optimal value of problem P ;
 - (iii) $f(x^k) = VO((MPL)_k^f) \Leftrightarrow x^k$ is a Kuhn-Tucker stationary point for (MP) . \blacksquare

This result, whose straightforward demonstration is omitted, motivates the idea of the usage of outer linearization techniques, for the problem in consideration.

2. Outer linearization method.

The suggested method is:

Method 2.1). Given $x^1 \in X$, construct the following sequence, starting with $k = 1$:

- (i) solve $(MPL)_k$. If $VO(MPL)_k = f(x^k)$, stop; otherwise
- (ii) Using x^{k+1} , construct $(MPL)_{k+1}$; $k \leftarrow k + 1$; return to (i). ■

Clearly, in the case where the method (2.1) generates a finite number of points, the last generated one is a Kuhn-Tucker stationary point (lemma 1.2). So, from now on, this work will be concerned with the case where a sequence of points is generated. For this case, we can assert, under the assumptions of (1.2):

Fact 2.2) The sequence $\{f(x^k)\}_{k \in \mathbb{N}}$ is a convergent sequence, and (MP) is bounded.

Proof: Trivial, as by (1.2), it is a monotonic decreasing sequence with lower bound. This lower bound is the optimal value of (MP) , whose existence is guaranteed by (CA) and the continuity assumptions on $f(\cdot)$ and $g(\cdot)$. ■

Fact 2.2.a) Under (CA), $\{x^k\}_{k \in \mathbb{N}}$ is a compact sequence.

Proof: Trivial. ■

Theorem 2.3) Every convergent subsequence generated by method (2.1), converges to a Kuhn-Tucker stationary point of (MP) , if the Kuhn-Tucker multipliers $\{M^k\}_{k \in \mathbb{N}}$ form a compact sequence, i.e., if they are bounded by above.

Proof: Let $\{x^k\}_{k \in K}$ be a convergent subsequence of $\{x^k\}_{k \in \mathbb{N}}$, with limit $\bar{x} \in X$.

Consider $\{x^{k+1}\}_{k \in K}$, that is a compact sequence, so $\exists K' \subset K$, such that $\{x^{k+1}\}_{k \in K'}$ converges to \hat{x} .

As the Kuhn-Tucker conditions are necessary for the linearized problems we can assert:

$$(i) \left\{ \begin{array}{l} \nabla f(x^k) + \sum M_i^k \nabla g_i(x^{k+1}) = 0, \text{ for } (MPL)_k^f, \\ \nabla f(x^{k+1}) + \sum M_i^k \nabla g_i(x^k) = 0, \text{ for } (MPL)_k^g; \end{array} \right.$$

(ii) $M^k \geq 0$;

$$(iii) \left\{ \begin{array}{l} \langle M^k, g(x^{k+1}) \rangle \geq 0, \text{ for } (MPL)_k^f, \\ M_i^k \cdot (g_i(x^k) + \langle \nabla g_i(x^k), x^{k+1} - x^k \rangle) = 0, \text{ for } (MPL)_k^g; \end{array} \right.$$

$$(iv) \left\{ \begin{array}{l} g(x^k) \leq 0; \\ g(x^{k+1}) \leq 0; \\ g_i(x^{k+1}) \leq g_i(x^k) + \langle \nabla g_i(x^k), x^{k+1} - x^k \rangle \leq 0, \text{ for } (MPL)_k^g. \end{array} \right.$$

If $\{M^k\}_{k \in K}$ is bounded by above, i.e., $\exists \widehat{M} : \forall k \in K', M^k \leq \widehat{M}$, this sequence is compact. So taking a convergent subsequence $\{M^k\}_{k \in K''}$, with limit \overline{M} , from continuity, it follows that

(v) (\hat{x}, \overline{M}) is a Kuhn-Tucker stationary point for (MP) linearized around \bar{x} .

Moreover, by fact 2.2, we can assert

(vi) $f(\bar{x}) = f(\hat{x})$.

From (v) and (vi), applying lemma (1.2), with $x^k = \bar{x}$, the result follows. ■

The theorem (2.3), although quite natural from a linearization viewpoint is not a trivial one with respect to the usual results in the literature. This comment sounds strange, but it is easily clarified.

If we assume that the sequence (x^k, M^k) is convergent the result is a trivial one by continuity, and in this sense it is natural. But this assumption holds false in a number of cases. For instance, in the purely convex case (2.3) does not hold, as can be seen using $f(x) = x^2$, $X = \{x \in \mathbb{R} \mid -1 \leq x \leq 1\}$. In this case (convexity), the best results are

A critique to this result is that it states the convergence to a stationary point and not to an optimal solution. In order to diminish the impact of this relevant critique, we assert:

Corollary 2.4) In the conditions of lemma 1, if for (MP) holds the property of $f(\cdot)$ uniqueness, i.e.,

$((\bar{x}, \bar{u}), (\hat{x}, \hat{u}))$ are Kuhn-Tucker stationary points of $(MP) \Rightarrow f(\bar{x}) = f(\hat{x})$,

then method (3.2) converges to an optimal solution of (MP) , in the sense of (2.3)²

Proof: It follows from the facts:

- (a) (CA) and continuity \Rightarrow existence of optimal solution x^* ;
- (b) constraint qualification \Rightarrow necessity of Kuhn-Tucker conditions at x^* ;
- (c) $f(\cdot)$ unicity \Rightarrow $((\hat{x}, \bar{M})$ is a Kuhn-Tucker stationary point $\Rightarrow g(\hat{x}) \leq 0$ and $f(\hat{x}) = f(x^*)$].

For details, see [7]. ■

3. An illustrative example.

This work was motivated by the continuous capacity assignment problem in store-and-forward computer networks ([8], [5]). This problem can be stated as:

“Given a set of flows $\{\bar{f}_i\}_{i=1}^m$, find capacities (transmission speeds) $\{c_i\}_{i=1}^m$, that minimize the cost (delay) under the constraints of a maximum admissible delay (cost) and that $c_i > \bar{f}_i$, $i = 1, 2, \dots, m$.”

The cases of interest have the following structure:

- (i) the cost $D(c)$ is the sum of individual costs, i.e.,

$$D(c) = \sum_{i=1}^m d_i(c_i),$$

where $d_i(\cdot)$ is a concave monotonic increasing function;

(ii) the delay $T(\bar{f}, c)$ has a product form, i.e.,

$$T(\bar{f}, c) = \sum_{i=1}^m t_i(\bar{f}_i, c_i),$$

where $t_i(\bar{f}_i, \cdot)$ is strictly convex monotonic decreasing function;

$$\lim_{x \rightarrow \bar{f}_i^+} t_i(\bar{f}_i, x) = +\infty;$$

$$\lim_{x \rightarrow +\infty} t_i(\bar{f}_i, x) = 0.$$

In order to verify the validity of the assumptions of theorem (2.3) and lemma (1.2), besides differentiability assumption,³ it is necessary to present an argument for the compactness assumption and the compactness of the sequence of multipliers. This is easily derived using the fact bellow.

Fact 3.1) Under the assumptions above listed, the feasible set for the capacity assignment problem can be substituted, by its intersection with hypercube of the form $c_i^L \leq c_i \leq c_i^U$.

Sketch of Proof) (The detailed proof can be found in [6]).

The bound on delay (cost) can be used to determine a lower (upper) bound for the capacity values, assigning all the delay (cost) to an individual channel. The strict monotonicity added to the fact that the corresponding function range is $(0, +\infty)$, gives the necessary assumptions to the existence of such limits.

In a similar way, the existence of a feasible point is used to generate the remaining bounds. For instance, in cost minimization, the delay constraint generates the lower bounds, and applying all the cost of a feasible point in each channel, it generates the upper bound. ■

³ It will be assumed that $d_i(\cdot)$ and $t_i(\bar{f}_i, \cdot)$ are twice continuously differentiable on R_{++} and on $\{x \mid x > \bar{f}_i\}$, respectively, with $d_i(\cdot)$ continuous at 0. This suits the usual model $d_i(x) = \ell_i x^\alpha$, ($\alpha \in (0, 1)$), and $t_i(\bar{f}_i, c_i) = \bar{f}_i(c_i - \bar{f}_i)^{-1}$ (power law costs and $M/M/1$ delays, [8]).

One of the attractive properties of this class of problems, is that the assumption of $f(\cdot)$ unicity (central in (2.4)) is verified under a mild assumption:

Fact 3.2) If

$$\forall i = 1, \dots, m, \quad \forall c_i : c_i > \bar{f}_i, \quad d_i''(c_i)t_i'(\bar{f}_i, c_i) - d_i'(c_i)t_i''(\bar{f}_i, c_i) \neq 0,$$

then $f(\cdot)$ unicity holds for the capacity assignment problem.

Proof: see [6].

The above condition can be justified by economic arguments associating costs to congestion levels and it is convenient to note that it holds under the usual assumption of (as in ², see [8]), power law costs and $M/M/1$ delays.

But the most striking point of this example is that if the condition presented in (3.2) is made slightly more strict ($d''(\cdot)t'(\cdot) - t''(\cdot)d'(\cdot) < 0$), it corresponds to a change of variables (using delays as variables, instead of capacities, what can be done due to monotonicity) and imposing that the cost function is convex with respect to delays.

This case, when the usual assumptions holds, implies in the need of several cuts in each iteration and not just one. For instance, if we were naïve enough to apply just one outer linearization directly on the capacity assignment, it would be easy to see that we would try to get an infeasible point. For instance, under delay constraints, the resulting linear programming problem would have an optimal value associated with the unfeasible solution of all delays, but one, being equal to zero.

So this case is relevant to the statement that outer linearization methods under concavity assumptions are relevant and can not be derived from the classical results with convexity.

4. Conclusions.

Although it must be clear to the reader that the results hereby presented can be easily generalized ($f(\cdot)$ and $g(\cdot)$ concave or $f(\cdot)$ concave, $g_I(\cdot)$ concave, $g_I(\cdot)$ convex, and so on), the striking result of the need of just one cut at each linearized problem, under convenient concavity assumptions, stands.

The fact that in general convergence is shown to a stationary point and not necessarily to an optimal solution is quite natural and maybe this point can be partially solved using the ideas of Tuy et alii [10].

The illustrative example hereby presented (section 3) is nothing but a very particular case of designing a system with concave costs ("scale economy") and congestion effects, that correspond to models of a large class of problems. Insomuch, it is expected that a good case for the interest in such results has been made.

Bibliography

- [1] Benders, J.F. *Partitioning Procedures for Solving Mixed-Variables Programming Problems*. Numerische Mathematik, vol.4 (1962), pp.238-252.
- [2] Eaves, B.C. and Zangwill, W.I. *Generalized Cutting Plane Algorithms*. SIAM J. Control, vol.9 (# 4), 1971, pp.529-542.
- [3] Geoffrion, A.M. *Generalized Benders Decomposition*. Proceedings of the Symposium on Nonlinear Programming, Mathematics Research Center, University of Wisconsin, Medison, May 4-6, 1970.
- [4] Geoffrion, A.M. *Elements of Large Scale Mathematical Programming*. Management Science, 16, 11 (July 1970), pp.652-691.
- [5] Gerla, M. *The design of store-and-forward networks for computer communications*. Los Angeles, 1973, 300 pp. (Ph.D. Thesis), University of California.

- [6] Humes Jr., C. *Tópico de Otimização em Redes de Computadores*. São Paulo (SP), 1988, 109 pp. (Tese de Livre-Docência), Universidade de São Paulo.
- [7] Humes Jr., C. *Some POMU comments on Lagrangian duality, optimality conditions and convexity*. São Paulo, SP, RT-MAC-8909, IME-USP, 15 pp.
- [8] Kleinrock, L. *Queuing Systems*. New York, John-Wiley, 1975-76, 2 vol.
- [9] Mangasarian, O. *Nonlinear programming*. New York, 1969, 220 p. (McGraw-Hill Series in Systems Science).
- [10] Tuy, H.; Thieu, T.V.; Thai, Ng Q. *A conical algorithm for globally minimizing a concave function over a closed convex set*. Mathematics of Operations Research, 10(3), 1985, pp. 498-514.

RELATÓRIOS TÉCNICOS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Instituto de Matemática e Estatística da USP

V.W. Setzer

A NOTE ON A RECURSIVE TOP-DOWN ANALIZER OF N.WIRTH

RT-MAP-7702, Dezembro 1977

V.W. Setzer, M.M. Sanches

A LINGUAGEM "LEAL" PARA ENSINO BÁSICO DE COMPUTAÇÃO

RT-MAP-7704, Dezembro 1977

Silvio Ursic, Cyro Patarra

EXACT SOLUTION OF SYSTEMS OF LINEAR EQUATIONS WITH ITERACTIVE METHODS

RT-MAP-7802, Fevereiro 1978

Martin Grötschel, Yoshiko Wakabayashi

HYPOTHAMILTONIAN DIGRAPHS

RT-MAC-7803, Março 1978

Martin Grötschel, Yoshiko Wakabayashi

HYPOTRACEABLE DIGRAPHS

RT-MAP-7804, Maio 1978

W. Hesse, V.W. Setzer

THE LINE-JUSTIFIER: AN EXAMPLE OF PROGRAM DEVELOPMENT BY TRANSFORMATIONS

RT-MAP-7805, Junho 1978

V.W. Setzer

PROGRAM DEVELOPMENT BY TRANSFORMATIONS APPLIED TO RELATIONAL DATA-BASE

QUERIES

RT-MAP-7809, Novembro 1978

D.T. Fernandes, C. Patarra

SISTEMAS LINEARES ESPARSSOS, UM MÉTODO EXATO DE SOLUÇÃO

RT-MAP-7811, Novembro 1978

V.W. Setzer, G. Bressan

**DESENVOLVIMENTO DE PROGRAMAS POR TRANSFORMAÇÕES: UMA COMPARAÇÃO ENTRE
DOIS MÉTODOS**

RT-MAP-7812, Novembro 1978

Martin Grötschel, Yoshiko Wakabayashi

ON THE COMPLEXITY OF THE MONOTONE ASYMETRIC TRAVELLING SALESMAN POLYTOPE.

I: HYPOHAMILTONIAN FACETS

RT-MAP-7814, Dezembro 1978

Martin Grötschel, Yoshiko Wakabayashi

ON THE COMPLEXITY OF THE MONOTONE ASYMETRIC TRAVELLING SALESMAN POLYTOPE.

II: HYPOTRACEABLE FACETS

RT-MAP-7901, Fevereiro 1979

M.M. Sanches, V.W. Setzer

A PORTABILIDADE DO COMPILADOR PARA A LINGUAGEM LEAL

RT-MAP-7902, Junho 1979

Martin Grötschel, Carsten Thomassen, Yoshiko Wakabayashi

HYPOTRACEABLE DIGRAPHS

RT-MAP-7903, Julho 1979

Routo Terada

**FAST ALGORITHMS FOR NP-HARD PROBLEMS WHICH ARE OPTIMAL OR NEAR-OPTIMAL WITH
PROBABILITY ONE**

RT-MAP-8003, Setembro 1980

V.W. Setzer, R. Lapyda

UMA METODOLOGIA DE PROJETO DE BANCOS DE DADOS PARA O SISTEMA ADABAS

RT-MAP-8004, Setembro 1980

Imre Simon

ON BRZOZOWSKI'S PROBLEM: $(1 \cup A)^m = A^*$

RT-MAP-8005, Outubro 1980

Luzia Kazuko Yoshida, Gabriel Richard Bitran

UM ALGORITMO PARA PROBLEMAS DE PROGRAMAÇÃO COM VARIÁVEIS ZERO-UM

RT-MAP-8101, Fevereiro 1981

V.W. Setzer, R. Lapyda

**DESIGN OF DATA MODELS FOR THE ADABAS SYSTEM USING THE ENTITY-RELATIONSHIP
APPROACH**

RT-MAP-8103, Abril 1981

U.S.R. Murty

PROJECTIVE GEOMETRIES AND THEIR TRUNCATIONS

RT-MAP-8105, Maio 1981

V.W. Setzer, R. Lapyda

PROJETO DE BANCOS DE DADOS, USANDO MODELOS CONCEITUAIS

RT-MAP-8106, Junho 1981

(Este Relatório Técnico complementa o RT-MAP-8103. Ambos substituem o RT-MAP-8004 ampliando os conceitos ali expostos.)

Maria Angela Gurgel, Yoshiko Wakabayashi

EMBEDDING OF TREES

RT-MAP-8107, Agosto 1981

Siang Wun Song

ON A HIGH-PERFORMANCE VLSI SOLUTION TO DATABASE PROBLEMS

RT-MAP-8201, Janeiro 1982

Maria Angela Gurgel, Yoshiko Wakabayashi

A RESULT ON HAMILTON-CONNECTED GRAPHS

RT-MAP-8202, Junho 1982

Arnaldo Mandel

TOPOLOGY OF ORIENTED MATROIDS

RT-MAP-8205, Junho 1982

Erich J. Neuhold

DATABASE MANAGEMENT SYSTEMS: A GENERAL INTRODUCTION

RT-MAP-8206, Novembro 1982

Béla Bollobás

THE EVOLUTION OF RANDOM GRAPHS

RT-MAP-8207, Novembro 1982

V.W. Setzer

UM GRAFO SINTÁTICO PARA A LINGUAGEM PL/M-80

RT-MAP-8208, Novembro 1982

Jayme Luiz Szwarcfiter

A SUFFICIENT CONDITION FOR HAMILTON CYCLES

RT-MAP-8209, Novembro 1982

Béla Bollobás, Istvan Simon

REPEATED RANDOM INSERTION INTO A PRIORITY QUEUE

RT-MAP-8302, Fevereiro 1983

V.W. Setzer, P.C.D. Freitas, B.C.A. Cunha

UM BANCO DE DADOS DE MEDICAMENTOS

RT-MAP-8303, Julho 1983

Arnaldo Mandel

THE 1-SKELETON OF POLYTOPES, ORIENTED MATROIDS AND SOME OTHER LATTICES

RT-MAP-8305, Julho 1983

Arnaldo Mandel

ALGUNS PROBLEMAS DE ENUMERAÇÃO EM GEOMETRIA

RT-MAP-8306, Agosto 1983

Siang Wun Song

COMPLEXIDADE DE E/S E PROJETOS OPTIMAIS DE DISPOSITIVOS PARA ORDENAÇÃO

RT-MAP-8307, Agosto 1983

V.W. Setzer

MANIFESTO CONTRA O USO DE COMPUTADORES NO ENSINO DE 1º GRAU

RT-MAP-8402, Abril 1984

Imre Simon
A FACTORIZATION OF INFINITE WORDS
RT-MAP-8404, Setembro 1984, 7 pgs

Imre Simon
THE SUBWORD STRUCTURE OF A FREE MONOID
RT-MAP-8405, Setembro 1984, 6 pgs

Jairo Z. Gonçalves, Arnaldo Mandel
ARE THERE FREE GROUPS IN DIVISION RINGS?
RT-MAP-8406, Setembro 1984, 25 pgs

Paulo Feofiloff, D.H. Younger
VERTEX-CONSTRAINED TRANSVERSALS IN A BIPARTITE GRAPH
RT-MAP-8407, Novembro 1984, 18 pgs

Paulo Feofiloff
DISJOINT TRANSVERSALS OF DIRECTED COBOUNDARIES
RT-MAP-8408, Novembro 1984, 126 pgs

Paulo Feofiloff, D.H. Younger
DIRECTED CUT TRANSVERSAL PACKING FOR SOURCE-SINK CONNECTED GRAPHS
RT-MAP-8409, Novembro 1984, 16 pgs

Siang Wun Song
DISPOSIÇÕES COMPACTAS DE ÁRVORES NO PLANO
RT-MAP-8501, Maio 1985, 11 pgs

Paulo Feofiloff
TRANSVERSALS DE CORTES ORIENTADOS EM GRAFOS BIPARTIDOS
RT-MAP-8502, Julho 1985, 11 pgs

Christian Choffrut
FREE PARTIALLY COMMUTATIVE MONOIDS
RT-MAP-8504, Setembro 1985, 110 pgs

Valdemar W. Setzer
MANIFESTO AGAINST THE USE OF COMPUTERS IN ELEMENTARY EDUCATION
RT-MAP-8505, Outubro 1985, 40 pgs

Júlio Michael Stern
FATORAÇÃO L-U E APLICAÇÕES
RT-MAP-8606, Agosto 1986, 105 pgs

Afonso Galvão Ferreira
O PROBLEMA DO DOBRAMENTO OPTIMAL DE PLAS
RT-MAP-8607, Agosto 1986, 73 pgs

Imre Simon
THE NONDETERMINISTIC COMPLEXITY OF A FINITE AUTOMATON
RT-MAP-8703, Fevereiro 1987, 20 pgs

Imre Simon

INFINITE WORDS AND A THEOREM OF HINDMAN

RT-MAP-8704, Abril 1987, 8 pgs

Imre Simon

FACTORIZATION FORESTS OF FINITE HEIGHT

RT-MAP-8707, Agosto 1987, 36 pgs

Routo Terada

UM CÓDIGO CRIPTOGRÁFICO PARA SEGURANÇA EM TRANSMISSÃO E BASE DE DADOS

RT-MAP-8709, Março 1987, 31 pgs

Martin Grötschel, Yoshiko Wakabayashi

FACETS OF THE CLIQUE PARTITIONING POLYTOPE

RT-MAC-8801, Janeiro 1988, 21 pgs

Martin Grötschel, Yoshiko Wakabayashi

A CUTTING PLANE ALGORITHM FOR A CLUSTERING PROBLEM

RT-MAC-8802, Fevereiro 1988, 52 pgs

Martin Grötschel, Yoshiko Wakabayashi

COMPOSITION OF FACETS OF THE CLIQUE PARTITIONING POLYTOPE

RT-MAC-8803, Março 1988, 14 pgs

Imre Simon

SEQUENCE COMPARISON: SOME THEORY AND SOME PRACTICE

RT-MAC-8804, Abril 1988, 14 pgs

Imre Simon

RECOGNIZABLE SETS WITH MULTIPLICITIES IN THE TROPICAL SEMIRING

RT-MAC-8805, Maio 1988, 14 pgs

Valdemar W. Setzer, Ervino Marussi

LDT: UM GERADOR UNIVERSAL DE APLICAÇÕES PARA PROCESSAMENTO DE DADOS

RT-MAC-8806, Junho 1988, 40 pgs

Routo Terada

PROBABILISTIC ANALYSIS OF OPTIMAL ALGORITHMS FOR THREE NP-HARD PROBLEMS

RT-MAC-8807, Agosto 1988, 16 pgs

Valdemar W. Setzer

UM SISTEMA SIMPLES PARA DOCUMENTAÇÃO SEMI-AUTOMÁTICA DE PROGRAMAS

RT-MAC-8808, Setembro 1988, 18 pgs

Valdemar W. Setzer, R. Hirata Jr.

HIPÓ-PC: UM "SOFTWARE" EDUCACIONAL PARA INTRODUÇÃO AO COMPUTADOR

RT-MAC-8809, Novembro 1988, 20 pgs

Amaldo Mandel

O EDITOR DE TEXTO ÉPSILON

RT-MAC-8901, Abril 1989, 97 pgs

Valdemar W. Setzer, R. Hirata Jr.

DIA DA COMPUTAÇÃO

RT-MAC-8902, Abril 1989, 11 pgs

Valdemar W. Setzer, N. A. Zaguir

UM BANCO DE DADOS PARA CRIAÇÃO E SELEÇÃO ZEBUÍNA

RT-MAC-8903, Março 1989, 16 pgs

Imre Simon

PROPERTIES OF FACTORIZATION FORESTS

RT-MAC-8904, Junho 1989, 8 pgs

Valdemar W. Setzer, Roberto C. Mayer

GRAFOS SINTÁTICOS SIMPLES E UM GRAFO PARA A LINGUAGEM C ANSI

RT-MAC-8905, Agosto 1989, 24 pgs

Routo Terada

UMA IDENTIFICAÇÃO CRIPTOGRÁFICA COMPACTA DO TIPO "ZERO-KNOWLEDGE"

RT-MAC-8906, Setembro 1989, 6 pgs

Imre Simon

ON SEMIGROUPS OF MATRICES OVER THE TROPICAL SEMIRING

RT-MAC-8907, Setembro 1989, 19 pgs

Marco Dimas Gubitoso, Claudio Santos Pinhanez

MÁQUINA WORM - SIMULADOR DE MÁQUINAS PARALELAS

RT-MAC-8908, Novembro 1989, 28 pgs

Carlos Humes Jr.

SOME POMU COMMENTS ON LAGRANGIAN DUALITY, OPTIMALITY CONDITIONS AND
CONVEXITY

RT-MAC-8909, Novembro 1989, 15 pgs

Carlos Humes Jr.

MÉTODO DE DESIGNAÇÃO DE FLUXOS E CAPACIDADES: VERSÃO FINITA

RT-MAC-8910, Dezembro 1989, 31 pgs

Carlos Humes Jr.

A PROJECTION-FEASIBLE DIRECTION METHOD FOR THE CONTINUOUS CAPACITY AND FLOW
ASSIGNMENT

RT-MAC-8911, Dezembro 1989, 21 pgs

Carlos Humes Jr.

SOME RESULTS ON OUTER LINEARIZATION IN THE PRESENCE OF CONCAVITY

RT-MAC-8901, Janeiro 1990, 18 pgs