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Abstract 
• 

The theory and usage of outer linearizations is usual in conjunction with assumptions 

of convexity, as in Bender's type of methods [1] or in eutti1;1g plane algorithms, in the sense 

introduced by Eaves and Zangwill [2]. In the later case, the focal point is the dropping of 

cuts (outer linearizations), and, in certain specific conditions (algorithm 4), the maximal 

number of cuts, in each interation, can be shown to be bounded by the dimension of the 

space. 

The usage of outer linearization in the presence of concavity is not usual, although we 

show that this leads to Kuhn-Tucker stationary points, using just one outer linearization 

in each iteration. Moreover, this result is exploited for a clMS of problems for which the 

resulting stationary point is a global minimum of the original problem. 

1. Introduction 

The cl888ical nonlinear programming problem (MP) ia stated as: 

"Given a non empty set X 0 (X° C R"), 

/: xo-+ R, 

find an x E X, if it exists, such that 

f(z) = miP{/(.2:) I~ EX}, where X = {x E X0 I g(x) ~ O}." 

ln the maip body of the Jiter~ture, the results are centered on the case where /( ·) 

and g( •) are convex functions over the convex set X 0
, or 10me technical generalization . I 
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of such assumption ( quasi convexity, pseudoconvexity ). Even when these assumptions are 

not explicit, they appear implicitly (like subdifferentiability at every puint of X 0
). 

This work is centered upon the cases: 

(f) f( ·) is concave and g( •) is convex; 

(g) f ( ·) is convex and g( •) is concave . . 
It will be clear that the presented ideas can be easily extrapolated to the case when 

both /(·) and g(·) are concave. 

In order to simplify the presentation we shall constrain this work to the case "X 0 

open set, /(·) and g(•) differentiable", although similar results can be derived using sub 

and/ or superdifferentiability. 

We shall use as subproblems, the ones obtained by the outer linearization of the 

concave functions, i.e., given xk E X, we define: 

(MPL)/ { 

(MPL)! { 

min/(x•) + < V/(x•),x - x• > (= fl(x)). 

s.t. g(x) ~ 0 

X EX 0 j 

min /(x) 

X EX0
• 

It is quite clear that if (MP L )i, 1 has an optimal solution x"+1, this solution is a 

feasible pont for (MP), i.e., x•+t EX. For (MPL)%, we can assert that every local 

minimum is global and that the reverse constraint qualification holds 19}. For (MPL)!, 

the global minimality property also holds and we shall assume the validity of a constraint 

qualification (for instance, Slater's). 

In order to guarantee the existence of solutions to the linearized problems, we shall 

assume throughout this work, the following assumption: 

1 The notation (MPL)i, is used in the sense "both for (MPL){ and (MPL)t"-
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Definition 1.1) The compactness assumption (CA) holds for (MP) if and only if 

Va ER, {x EX I f(x) ~ a} is compact. • 
The assumption (CA) beside'! guaranteeing that there is a solution zk+l, for 

(MPL)"tt, also is determinant to the fact that if a sequence {z11 heN is generated by 

recursively solving (MPL)"tt, then this sequence is compact. 

With these remarks in mind, it is easy to verify 

Lemma 1.2} Under the assumptions 

(2.1) The compactness assumption is valid; 

(2.2) X 0 non-empty open subset of Rn,/(·) and g(·) are continuously differentiable 

onX 0
; 

(2.3) zk EX= {z_ E X 0 I g(z) ~ O}; 

(2.4) either/(·) is convex and g(•) is concave [(MPL):J or 

/(-) is concave and g(·) is convex [(MPL)!]; 

(2.5) for (MPL){ a constraint qualification holds, 

it can be asserted that 

(i) Vx• EX, (MPLh has solution zk+1 ; 

(ii) Vx" EX, /(xk) ~ VO((MPL),) ~/(z"+1
) ~ VO(MP), 

where VO(P) = optimal value of problem P; 

(iii) f(xk) = VO((MPL);;) ~ xk is a Kuhn-Tucker stationary point for (MP). ■ 

This result, whose straightforward demonstration ia omitted, motivates the idea of 

the usage of outer linearization techniques, for the problem in consideration. 

2. Outer linearization method. 

The suggested method is: 
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Method 2.1). Given z1 EX, construct the following sequence, starting with k = 1: 

(i) solve (MPL)i,, If VO(MPL)i, = f(x"), stop; otherwise 

(ii) Using zk+1 , construct (MPL)i,+l; k .- k + 1; return to (i). • 
Clearly, in the case where the method (2.1) generates a finite nwnber of points, the 

last generated one is a Kuhn-Tucker stationary point (lemma 1.2). So, from now on, this 

work will be concerned with the case where a sequence of points is generated. For this 

case, we can assert, under the assumptions. of (1.2): 

Fact 2.2) The sequence {/(z1 )heN is a convergent sequence, and (MP) is bounded. 

Proof: Trivial, as by (1.2), it is a monotonic decreasing sequence with lower bound. This 

lower bound is the optimal value of (MP), whose existence is guaranteed by (CA) and 

the continuity assumptions on / ( ·) and g( • ). • 
Fact 2.2.a) Under (CA), {x"heN is a compact sequence. 

Proof: Trivial. ■ 

Theorem 2.3) Every convergent subsequence generated by method (2.1), converges to a 

Kuhn-Tucker stationary point of (MP), if the Kuhn-Tucker multipliers {M"heN form 

a compact sequence, i.e., if they are bounded by above. 

Proof: Let {z"heK be a convergent subsequence of {z"heN, with limit z e X . 

Consider {z"'+1 heK, that is a compact sequence, so 3K' C K, such that 

{x"+1 heK' converges to .i . . 
As the Kuhn-Tucker conditions are necessary for the linearized problems we can assert: 
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V/(z") + EM;"Vgi(z"+1 ) = 0, for (MPL){, 

Vf(xl:+1
) + ~MlVg;(x") = 0, for (MPL)f; 

(ii) M" ~ O; 

ill) 

fQr (Mf L)i 1 

(iv) I g(xk+1) f O; 

g;(xk+1
) ~ g;(x")+ < Vg;(x"),xk+1 - x" >~ 0, for (MPL){ . 

If {M"heK, is bounded by above, i.e., 3M: V k EK', M" ~ M, this sequence is 

compact. So taking a convergent subsequence {M"heK", with limit M, from continuity, 

it follows that 

(v) (x,M) is a Kuhn-Tucker stationary point for (MP) linearized a.round x. 

Moreover, by fact 2.2, we ca.n a.ssert 

(vi) J(x) = J(x). 

From (v) and (vi), applying lemma (1.2), with z" = x, the result follows. 12 

The theorem (2.3), although quite natural from a linea.rization viewpoint is not a 

trivial one with respect to the usual results in the literature. This comment sounds strange, 

but it is ea.sily clarified. 

Ifwe assume that the sequence (z",M") is convergent the result is a trivial one by 

continuity, and in this sense it is natural. But this assumption holds false in a number of 

cases. For instance, in the purely convex case {2.3) does not hold, as ca.n be seen using 

f(x) = x2
, X = {x E R I -1 ~ x ~ 1}. In this case (convexity), the best results a.re 



A critique to this result is that it states the convergence to a stationary point and not · 

to an optimal solution. In order to dimish the impact of this relevant critique, we assert: 

'Corollary 2.4) In the conditions of lemma 1, · u ior (MP) holds the properly of J{.) 
uniqueness, i.e., 

((x,ii),(i,u))are Kuhn-Tucker stationary points of(MP) =} f(x)=f(z), 

then method (3.2) converges to an optimal solution of (MP), in the sense of (2.3)2 

Proof: It follows from the facts: 

(a) (CA) and continuity => existence of optimal solution z•; 

{b) constraint qualificati~n => necessity of Kuhn-Tucker conditions at z•; 

(c)· /(·) unicity => [(i,M) is a Kuhn-Tucker stationary point => g(i) ~ 0 and 

J(i) = J(x•)]. 

For details, see [7). ■ 

3. An illustrative example. 

This work was motivated by the continuous capacity assignment problem in store­

and-forward computer networks ([8], [51). This problem can be stated as: 

"Given a set of flows {f,}i=l• find capacities (transmission speeds) {c;}i=l• that 

minimize the cost {delay) under the constraints of a maximum a.dmulsible delay (cost) and 

that c; > f,, i = 1,2, ... ,m.". 

The cases of interest have the following structure: 

(i) the i:ost D(c) is the smn of indiviclual costs, i.e., 

m 

,P(c) = Ld,(h), 



where d;(·) is a concave monotonic increasing function; 

(ii) the delay T(f,c) bas a. product form, i.e., 

m 

T(l,c) = :Et;(f;,c;), 
i•l 

where t;(f;, ·) is strictly convex monotonic decreasing function; 

lim -
1
+ t;(f;,z) = +oo; .,_ I 

lim.,-+00 t.(l;, X) = 0. 

In order to verify the validity of the assumptions of theorem (2.3) and lemma (1.2), 

besides differentiability assumption, 3 it is necessary to present an argument for the com­

pacity assumption and the compactness of the sequence of multipliers. This is easily 

derived using the fact bellow. 

Fact 3.1) Under the assumptions above listed, the feasible set for the capacity assignment 

problem can be substituted, by its intersection with hypercube of the form cf ~ c; ~ c:. 

Sketch of Proof) (The detailed proof can be found in (61). 

The bound on delay (cost) can be used to determine a lower (upper) bound for the 

capacity values, assigning all the delay (cost) to an individual channel. The strict mono­

tonicity added to the fact that the corresponding function range is (0, +oo ), gives the 

necessary assumptions to the existence of such limits. 

In a similar way, the existence of a feasible point is used to generate the remain­

ing bounds. For instance, in cost minimization, the delay constraint generates the lower 

bounds, and applying all the cost of a feasible point in each channel, it generates the upper 

bound. 11 

3 It will be assumed that d;(·) and t;(f;,·) are twice continuously differentiable on 
R++ and on {z I z > /;}, respectively, with d;(·) continuous at 0. Thie suits the 
usual model d;(z) = l;:r:"', (a E (0, 1)), and t;(f;,c;) = ];(c; - J.>-1 (power Ja.w costs 
and M/M/1 delays, [8]). 
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One of the attractive properties of this class of problems, is that the assumption of 

/(·) unicity (central in (2.4)) is verified under a mild assumption: 

Fact 3,2) H 

then / (.) uni city holds for the capacity assignment problem. 

Proof: see [6]. 

The above condition can be justified by economic arguments associating costs to 

congestion levels and it is convenient to note that it holds under the usual assumption of 

(as in 2,_see (81), power law costs and M/M/1 delays. 

But the most striking point of this example is that if the condition presented in (3.2) is 

made slightly more strict (d''(•)t'(·)-t"(·)d'(·) < 0), it corresponds to a change of variables 

(using delays as variables, instead of capacities, what can be done due to monotonicity) 

and imposing that the cost function is convex with respect to delays. 

This case, when the usual assumptions holds, implies in the need of several cuts in 

each iteration and not just one. For instance, if we were naive enough to apply just one 

outer linearization directly on the capacity assignment, it would be easy to see that we 

would try to get an infeasible point. For instance, under delay constraints, the resulting 

linear programming problem would have an optimal value associated with the unfeasible 

solution of all delays, but one, being equal to zero. 

So this case is relevant to the statement that outer linearization methods under con­

cavity assumptions are relevnnt and can not be derived from the classical results with 

convexity. 
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4. Conclusions. 

Although it must be clear to the reader that the results hereby presented can be easily 

generalized(/(·) and g(•) concave or/(-) concave, gr(·) concave, gr(·) convex, and so on), 

the striking result of the need of just one cut at. each linearized problem, under convenient 

concavity assumptions, stands. 

The fact that in general convergence is shown to a stationary point and not necessarily 

to an optimal solution is quite natural and maybe this point can be partially solved using 

the ideas of Tuy et alii [10]. 

The illustrative example hereby presented (section 3) is nothing but a very particular 

case of designing a system with concave costs ("scale economy") and congestion effects, 

that correspond to models of a large class of problems. Insomuch, it lll expected that a 

good case £or the interest in such results has been made. 
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