A note on Banach spaces failing Schroeder-Bernstein property

Elói Medina Galego

We use a Banach space introduced by Gowers and Maurey and the Figiel' space to present a Banach space W failing the Schroeder-Bernstein property and also isomorphic to each of its hyperplanes such that W^m is isomorphic to some complemented subspace of W^n , with $m,n\in\mathbb{N}$ if and only if m=n, moreover $(W^*)^n$ is isomorphic to W^* , $\forall n\in\mathbb{N},\ n\geq 1$.

1. Introduction

Let X be a Banach space over real numbers $\mathbb R$ or complex numbers $\mathcal C$, X is said to satisfy the Schroeder-Bernstein property (SBP) if for any Banach space Y, if X and Y are isomorphic to complemented subspace of one another $(X \stackrel{c}{\hookrightarrow} Y \text{ and } Y \stackrel{c}{\hookrightarrow} X)$, then X and Y are isomorphic $(X \sim Y)$ [3].

Gowers [7] gave the first solution to Schroeder-Bernstein problem for real Banach spaces. that is to say, there exists a Banach space Z which fails SBP, moreover this happens because

(*) $Z^3 \sim Z$ and $Z^2 \not\sim Z$.

Aftewards Gowers and Maurey [8] introduced a complex Banach space V not isomorphic to each of its hyperplanes and failing SBP because $V \oplus \mathcal{C} \xrightarrow{c} V$. Moreover, in the same paper (page 563), (*) was generalized in the following way: $\forall k \in \mathbb{N}, k \geq 2$, there exists a complex Banach space Z_k such that $Z_k^m \sim Z_k^n$, with $m, n \in \mathbb{N}$ if and only if m and n are equal modulo k. So for every i, $1 \leq i < k$, $Z_k^i \sim (Z_k^i)^k \oplus Z_k^i$ and $Z_k^i \not\sim (Z_k^i)^k$, therefore Z_k^i also fails SBP.

In short, if X is any of these Banach spaces, then it fails SBP because (**) either $X \oplus C \stackrel{c}{\hookrightarrow} X$

and $X \oplus \mathcal{C} \not\sim X$ or there exists $m \in \mathbb{N}$ such that $X^m \stackrel{c}{\hookrightarrow} X$ and $X^m \not\sim X$. In theorem 2.2 we present a Banach space X failing SBP which does satisfy (**), because X is isomorphic to each of its hyperplanes and $X^m \stackrel{c}{\hookrightarrow} X^n$, with $m, n \in \mathbb{N}$ if and only if m < n.

2. The Banach space W

In order to constructed the Banach space W we will need to recall some definitions of [5].

Let X be a Banach space and ξ an ordinal number, X^{ξ} will indicate the Banach space of continuous X-valued functions defined on interval of ordinals $[1,\xi]$ and equipped with the supremum norm.

Let γ be an ordinal. A γ -sequence in a set A is the image of a function $f:[1,\gamma] \to A$ and will be denoted by $(x_{\theta})_{\theta < \gamma}$. If A is a topological space and β is an ordinal, we will say that the γ -sequence is β -continuous if for every β -sequence of ordinals $(\theta_{\xi})_{\xi < \beta}$ of $[1, \gamma]$ that converges to θ_{β} when ξ converges to β , we have that $x_{\theta_{\xi}}$ converges to $x_{\theta_{\beta}}$.

Let α be a nondenumerable regular ordinal, φ any ordinal and X a Banach space. By X_{α}^{φ} we will denote the set of $x^{\bullet\bullet} \in X^{\bullet\bullet}$ having the following property: for every limit ordinal $\beta < \alpha$ and for every φ -sequence $X^{\eta} = (x_{\xi}^{\bullet}(\eta))_{\xi < \beta}$ of β -sequence of X^{\bullet} such that there exists $K \in \mathbb{R}$

with $||x_{\xi}^{*}(\eta)|| \leq K$, $\forall \eta < \varphi$, $\forall \xi < \beta$ and such that $x_{\xi}^{*}(\eta)(x) \xrightarrow{\xi \to \beta} 0$, $\forall x \in X$, uniformly in η , we have $x^{**}(x_{\xi}(\eta)) \stackrel{\xi \to \beta}{\longrightarrow} 0$ unformly in η .

The density character dens X of a Banach space X is the smallest cardinal number δ such that there exists a set of cardinality δ dense in X and the cardinality of an ordinal number ξ

will be denoted by $\overline{\xi}$.

cX will denote the canonical image of the Banach space X into X** and if Γ is any set by $c_0(\Gamma,X)$ we denote the Banach space of X-valued function defined on Γ such that for any positive ϵ the set $\{\gamma \in \Gamma : \|f(\gamma)\| \ge \epsilon\}$ is finite, with the supremum norm. $\ell_1(\Gamma, X^*)$ will be its dual and $\ell_{\infty}(\Gamma, X^{**})$ its bidual.

The Banach space X is said to have the Mazur's property if every weak* sequentially continuous functional in $X^{\bullet\bullet}$ belongs to X.

Let L(X,Y) be the set of all continuous linear operators from the Banach space X into the Banach space Y. An operator $T \in L(X,Y)$ is Fredholm if its Kernel is finite dimensional and its range is finite codimensional. T is inessential $(T \in In(X,Y))$ if $I_X - ST$ is Fredholm for every $S \in L(Y, X)$. If L(X, Y) = In(X, Y), X and Y are said essentially incomparable [1]. Finally, we note that the results of [5] are also true to complex Banach spaces.

Lemma 2.1. Let X be a separable reflexive Banach space, Y a Banach space having the Mazur's property, φ the initial ordinal such that dim $Y^* = \overline{\varphi}$, α and β nondenumerable regular ordinals with $\overline{\varphi} < \overline{\alpha} < \overline{\beta}$ and $n \in \mathbb{N}, n > 1$, then

a)
$$\frac{(X^{\alpha} \oplus Y^{\beta})^{\varphi}_{\beta}}{c(X^{\alpha} \oplus Y^{\beta})} \sim Y$$

b)
$$\frac{(X^{\alpha n} \oplus Y^{\beta n})^{\varphi}_{\alpha}}{c(X^{\alpha n} \oplus Y^{\beta n})} \sim X^{n} \oplus C_{0}(\Gamma, Y)$$
 for some $\Gamma \neq \phi$.

Proof. At first, we note that if M and N are Banach spaces and θ is a nondenumerable regular ordinal, then it is not difficult to verify that

$$\frac{(M\oplus N)^{\varphi}_{\theta}}{c(M\oplus N)}\sim \frac{M^{\varphi}_{\theta}}{cM}\oplus \frac{N^{\varphi}_{\theta}}{cN}(***)$$

a) Let L be the usual isomorphism of $\ell_1([1,\alpha],X^*)$ onto $(X^{\alpha})^*$, by proposition 2.6 of [5], $(X^{\alpha})^{\varphi}_{\beta}=(L^*)^{-1}(m^{\varphi}_{\beta}([1,\alpha],X))$, where $m^{\varphi}_{\beta}([1,\alpha],X]$ is the closed subspace of $\ell_{\infty}([1,\alpha],X^{**})$ consisting $\alpha+1$ -sequences $(x^{**}_{\theta})_{\theta<\alpha+1}$ of X^{**} which are ξ -continuous $\forall \xi,\ \xi<\beta$ and such that $x_{\theta}^{\bullet \bullet} \in X_{\beta}^{\varphi}, \ \forall \theta, \ \theta \leq \alpha.$

Since $X^{**} = cX$ and $\overline{\alpha} < \overline{\beta}$, it follows that $(X^{\alpha})^{\varphi}_{\beta} = cX^{\alpha}$, thus it suffices to use (***) having in mind that $\frac{(Y^{\beta})_{\beta}^{\varphi}}{cY^{\beta}} \sim Y$ [5, corollary 2.8].

b) Again it suffices to use (***) having in mind that $\frac{(X^{\alpha n})^{\varphi}_{\alpha}}{cX^{\alpha n}} \sim X^n$ and $\frac{(Y^{\beta n})^{\varphi}_{\alpha}}{cY^{\beta n}} \sim C_0(\Gamma, Y)$ for some $\Gamma \neq \phi$ [5, corollary 2.8].

Let $p \in \mathbb{R}$ be, $1 \le p < +\infty$. F will denote the complex version of the Banach space considered in [4] and G indicate a complex separable Banach space failing SBP which does not contain a complemented subspace isomorphic to ℓ_p . The Banach space V constructed in 4.3 of

[8] has these properties, because it is not isomorphic to each of its hyperplanes, see theorem 19 of [8].

Theorem 2.2. Let α and β be nondenumerable regular ordinals with $\overline{\alpha} < \overline{\beta}$ and dim $G^* < \overline{\beta}$. Then $W = F^{\alpha} \oplus G^{\beta}$ fails SBP, W^m does not contain a complemented subspace isomorphic to W^n , with $m, n \in \mathbb{N}$ and m < n and $(W^*)^n \sim W^*$, $\forall n \in \mathbb{N}, n > 1$.

Proof. Since G fails SBP, there exists a Banach space H non-isomorphic to G such that G and H are isomorphic to complemented subspaces of one another, so the same happens with $F^{\alpha} \oplus G^{\beta}$ and $F^{\alpha} \oplus H^{\beta}$. If $F^{\alpha} \oplus G^{\beta} \sim F^{\alpha} \oplus H^{\beta}$, then using the remark 2.3 of [6] we have

$$\frac{(F^{\alpha} \oplus G^{\beta})_{\beta}^{\varphi}}{c(F^{\alpha} \oplus G^{\beta})} \sim \frac{(F^{\alpha} \oplus H^{\beta})_{\beta}^{\varphi}}{c(F^{\alpha} \oplus H^{\beta})}$$

Thus lemma 2.1.a implies that $G \sim H$, which is an absurd. So $F^{\alpha} \oplus G^{\beta}$ fails SBP.

If $W^n \stackrel{c}{\hookrightarrow} W^m$ with $m, n \in \mathbb{N}$, then by (***) and lemma 2.1.b we have $F^n \oplus C_0(\Gamma_1, G) \stackrel{c}{\hookrightarrow} F^m \oplus C_0(\Gamma_2, G)$ for some Γ_1, Γ_2 non-empty sets.

If F and $C_0(\Gamma_2, G)$ are not essentially incomparable, then having in mind that every closed infinite-dimensional subspace of F contains a complemented subspace isomorphic to ℓ_p , it follows from theorem 4.3 of [1] that $\ell_p \stackrel{c}{\hookrightarrow} C_0(\Gamma_2, G)$ and by corollary 2.5 of [2] we have $\ell_p \stackrel{c}{\hookrightarrow} G$, which is an absurd. So F and $C_0(\Gamma_2,G)$ are essentially incomparable and therefore the same happens with F^m

and $C_0(\Gamma_2, G)$ [6, page 622]

Now, from theorem 3 of [6], there are complemented subspaces M of F^m and N of $C_0(\Gamma_2, G)$ so that $F^n \sim M \oplus N$. Since that F^n and $C_0(\Gamma_2, G)$ are essentially incomparable, it follows that N is finite dimensional space, so $F^n \sim M$, because F^n is isomorphic to each of its hyperplanes. In particular F^n is isomorphic to a subspace of F^m , consequently $m \geq n$.

To finish the proof we remark that $(W^*)^n \sim \ell_1(\Gamma_1, F^*) \oplus \ell_1(\Gamma_2, G^*)$, $\forall n \in \mathbb{N}, n \geq 1$, where

the cardinality of Γ_1 and Γ_2 are respectively $\overline{\alpha}$ and $\overline{\beta}$, so $(W^*)^n \sim W^*$, $\forall n \in \mathbb{N}, n \geq 1$.

Remark 2.3. If X is any of the Banach spaces mentioned in this note and failing SBP, then there exists a Banach Y such that $X \stackrel{c}{\hookrightarrow} Y$ and $Y \stackrel{c}{\hookrightarrow} X$, $X \not\sim Y$ and $X^n \sim Y^n$ for some $n \in \mathbb{N}$, $n \geq 2$. Indeed, it suffices to have in mind that $Z^2 \sim (Z^2)^2$, $V^2 \sim (V \oplus \mathcal{C})^2$ and $(Z_k^i)^k \sim (Z_k^k)^k$, for every i, $1 \le i < k$. This suggests the following:

Question 2.4. Let X and Y be Banach spaces. If $X \stackrel{c}{\hookrightarrow} Y$ and $Y \stackrel{c}{\hookrightarrow} X$, then is it true that there exists $n \in \mathbb{N}$, $n \ge 1$ such that $X^n \sim Y^n$?

References

- [1] P. Aiena and M. González, On inessential and improjective operators. Studia Math. 131 (1998), 271-287.
- [2] F. Bombal and B. Porras, Strictly singular and strictly cosingular operators on C(K, E). Math. Nachr. 143 (1989), 355-364.
- [3] P. G. Casazza, The Schroeder-Bernstein property of Banach space. Contemporary Mathematics 85 (1989), 61-77.

- [4] T. Figiel, Example of infinite dimensional reflexive Banach space non-isomorphic to its cartesian squares. Studia Math. XLII (1972), 295-306.
- [5] E. M. Galego, How to generate new Banach spaces non-isomorphic to their cartesian squares. Bull. Acad. Pol. Sci. 47, 1 (1999), 21-25.
 - [6] M. González, On essentially incomparable Banach spaces. Math. Z. 215 (1994), 621-629.
- [7] W. T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces. Bull. London Math. Soc. 28 (1996), 297-304.
- [8] W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators. Math. Ann. 307 (1997), 543-568

Department of Mathematics - IME University of São Paulo São Paulo 05315-970 Brazil e-mail: eloi@ime.usp.br