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A B S T R A C T

Network Slicing (NS) has transformed the landscape of resource sharing in networks, offering flexibility to
support services and applications with highly variable requirements in areas such as the next-generation 5G/6G
mobile networks (NGMN), vehicular networks, industrial Internet of Things (IoT), and verticals. Although
significant research and experimentation have driven the development of network slicing, existing architectures
often fall short in intrinsic architectural intelligent security capabilities. This paper proposes an architecture-
intelligent security mechanism to improve the NS solutions. We idealized a security-native architecture that
deploys intelligent microservices as federated agents based on machine learning, providing intra-slice and
architectural operation security for the Slicing Future Internet Infrastructures (SFI2) reference architecture.
It is noteworthy that federated-learning approaches match the highly distributed modern microservice-based
architectures, thus providing a unifying and scalable design choice for NS platforms addressing both service
and security. Using ML-Agents and Security Agents, our approach identified Distributed Denial-of-Service
(DDoS) and intrusion attacks within the slice using generic and non-intrusive telemetry records, achieving an
average accuracy of approximately 95.60% in the network slicing architecture and 99.99% for the deployed
slice – intra-slice. This result demonstrates the potential for leveraging architectural operational security and
introduces a promising new research direction for network slicing architectures.
1. Introduction

Over the last 40 years, mobile networks have evolved and benefited
our society, changing the way we perform daily tasks with applications
that are now indispensable, smarter, and more useful than before. This
impact is measured when we look at the forecast of having 3.5 billion
users consuming connectivity and supporting use cases with more
than 70 different industrial segments [1,2]. The evolution of mobile
networks has been marked by a paradigm shift from conventional
networks to software-defined intelligent networks facilitated by soft-
warization, cloudification, and Network Slicing (NS) paradigms [3,4].
These advancements have been made to meet the needs of users and
modern applications.
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Applications such as Virtual Reality (VR), Internet of Everything
(IoE), and Autonomous Vehicles are evolving, requiring, rather than
network connectivity, a portion of network resources to cope with
specific requirements [5,6]. NS involves tailoring a physical network to
specific applications and services using three primary baselines: isola-
tion, end-to-end connectivity, and application-driven requirements [7,
8]. In this context, challenges arise from intelligent and secure net-
work slicing, such as high automation, programmability, interoperabil-
ity, data orchestration, and zero-touch management [9,10]. Disruptive
paradigms, such as Artificial Intelligence as a Service (AIaaS) [11]
or Machine Learning as a Service (MLaaS) [12], can evolve network
slicing architectures that provide security skills, not as a feature to be
developed apart from slicing architecture, but rather as native-aware
https://doi.org/10.1016/j.future.2024.107537
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 data mining, AI training, and similar technologies. 
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security defenses for network slicing, particularly in architectural core
operations and transactions [3,13,14]. These technologies and findings
are essential for realizing network slicing. The evolution of mobile
networks is envisioned to integrate land, sky, and sea connectivity [15]
because of the heterogeneity of technologies and domains conducive to
security issues [16].

In the literature, we found the use of large-scale testbeds to build
and validate network slicing architectures, algorithms, and methods.
Additionally, advanced testbeds serve as testing grounds for developing
and experimenting with innovative network slicing architectures [17–
21]. Legacy testbeds [18,22] were integrated through a reference ar-
chitecture, and functionalities were presented in the Slicing Future
Internet Infrastructures (SFI2) reference Architecture [4,23,24]. How-
ever, incorporating these legacies and cutting-edge testbeds to sup-
port network-slicing security experimentation poses challenges. Given
the heterogeneous integration scenario for network slicing architec-
ture components, we believe a native security-aware architecture can
effectively advance such methods.

Several security issues related to network slicing include imperson-
ation, traffic injection, Denial-of-Service (DoS) tampering, eavesdrop-
ping, reply attacks, and interface monitoring [23,25,26]. This article
introduces network slicing architecture enhancement with a native, dis-
tributed, and highly scalable security operation method through a com-
bination of Security Agents and ML-Agents. Existing approaches
do not fully explore the distributed Security Agent aligned with the
ML-Agent as a countermeasure to improve the operational security of
network slice architectures and intra-slice with the ability to enhance
the attack-handling capabilities for each control-plane core entity [26,
27].

In this context, FL is a type of distributed learning where multiple
devices or systems train models locally on their own data [28], sharing
model updates only (such as weights or gradients) with a central server
at the ML-Agent in the SFI2 architecture. This server aggregates
these contributions without accessing the raw data, allowing for the
creation of a global model that preserves data privacy and security
across distributed sources. Federated Learning offers several advantages
over traditional centralized machine learning, particularly in attack
detection within network slicing. In a scenario where each tenant
within a network slice has access to their flow data and network attack
metrics, federated learning becomes a powerful tool for collaborative
model development without compromising tenants’ privacy.

We validate the effectiveness of our method by embedding feder-
ated learning in ML-Agents to supply Security Agents handling
Distributed Denial-of-Service (DDoS) and intrusion attacks on network
slicing control-plane entities. Our experimentation and validation Proof
of Concept (PoC) was based on microservices that provide cognitive
services to architectural entities in a highly granular, independent,
and customizable manner. ML-Agents and Security Agents are
organized in Kubernetes sidecar containers that run within a separate
service within a pod. The Security Agent works in the same data
plane as the pod services of the SFI2 Architecture core entities that
handle threat identification tasks. By contrast, other entities in the
control plane of the architecture usually continue their management
functions.

The contributions of this study are as follows: (1) A framework for
embedding native security into network slicing architectures through
ML-Agent and Security Agents; (2) a functional evaluation of a
security-native network slicing architecture capable of handling lifecy-
cle operations and intra-slice security threats; (3) an empirical evalua-
tion of a self-adaptive learning architecture based on federated learning
for network slicing architectures; and (4) an evaluation of the Security
Agent’s capacity to handle on-the-fly attack prediction in network
slicing architectures on a nationwide testbeds.

The structure of the remainder of this paper is as follows. The topics
that relate to this work are discussed in Session 2. In Section 3, we

contextualize our work within a broader scope, highlighting the unique

2 
Fig. 1. Framework architecture of basic SFI2 building blocks.

contributions of this research. The proposed method is presented in
detail in Section 4, followed by a description of the experimental setup
and results in Section 5. Section 6 discusses concluding remarks and
future directions.

2. Background

Network slicing. Resource sharing enabled by computing virtual-
ization has influenced mobile networks, particularly in 5th Generation
Mobile Network (5G) development mainstream. This has resulted in nu-
merous initiatives from industry, Standards Development Organizations
(SDOs), and academia to share network resources, known as Network
Slicing (NS) [7,29]. Network slicing is defined by different standard
bodies, such as Next Generation Mobile Networks (NGMN), as a divi-
sion of a physical network into multiple networks with capabilities and
characteristics oriented to a use case [30]. 3rd Generation Partnership
Project (3GPP) defines network slicing as a technology that allows
the operator to create and customize the network to meet different
market demands [31]. Based on these pillars, the state of the art has
been building and evolving solutions, architectures, and management
approaches to offer tailored network resources to users despite the
challenges of seamless isolation, performance, and security [32].

NS Arquitectures. A plethora of network slicing architectures for
specific domains, industry verticals, and connectivity requirements
have emerged [4,33–36]. While each architecture has its features,
they share common aspects, such as the management and lifecycle
control loop for network slicing. These architectures provide enti-
ties for network slices’ preparation, commissioning, operation, and
decommissioning phases. The control mechanisms for these phases
may vary among architectures; however, coordination, privacy, energy
efficiency, and security are still critical, especially for business verticals
that utilize network slices [37]. Thus, we proposed a conceptual archi-
tecture of network slicing SFI2 focused on security, sustainability, and
experimental network integration [23].

SFI2 Framework. The SFI2 architecture is illustrated in Fig. 1, in
which the main functional blocks are highlighted [23]. The architec-
ture includes a block slice requester, resource trader, slice builder,
slice instantiator, slice supervisor, and slice actuator, as well as the
interaction with different domains over which network slices can be
instantiated. Thus, SFI2 becomes seamless to deploy network slices in
heterogeneous testbeds with different technologies, such as Kubernetes,
Docker, or Virtual Machines. The SFI2 architecture was built to be
natively secure and intelligent [38]. In this paper, we introduce the
Security Agent, ML-Agent, with native distributed learning, and
Monitoring Agent components [23].
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Federated Learning. Federated learning is a machine learning
aradigm that trains a robust model by leveraging data spread across
eterogeneous devices or servers. Federated learning offers several
dvantages over centralized approaches for attack detection. Primarily
y preserving data privacy and security, tenants can train models
ocally and share only model updates without exposing sensitive data.
t enables collaborative knowledge sharing, allowing tenants to benefit
rom a robust global model that captures a wider range of attack
atterns without directly sharing their data. The approach enhances
ttack detection by continuously updating the global model with new
nformation from tenants, improving adaptability to emerging threats.
dditionally, it reduces bandwidth and computational overhead by
inimizing data transfer requirements. It increases resilience to single
oints of failure by distributing data processing across multiple tenants,
here data sensitivity and privacy are critical [39,40]. The general

ormula for the federated learning process can be expressed as 𝐹 (𝑤) =
1
𝐾 ×

∑𝐾
𝑘=1 𝐹𝑘(𝑤), where 𝐹 (𝑤) is the global objective function to be

inimized, 𝑤 represents the model parameters, 𝐾 is the total number
of clients, and 𝐹𝑘(𝑤) is the local objective function of the 𝑘th client.
Each client computes an update to the model based on its local data,
and these updates are then aggregated to form a new global model.
The process iterates until convergence or until a satisfactory model is
obtained.

3. Related work

Previous studies have explored various network-slicing approaches,
each tailored to specific requirements and applications [3], includ-
ing aspects such as security or profit-based resource allocation [41,
42]. Moreover, federated learning has been applied to different net-
work challenges, especially those focused on privacy [43–45]. Many of
these architectures incorporate Artificial Intelligence (AI) capabilities,
whereas others employ AI for orchestration and other purposes in net-
work slices [46]. This section presents research on applying computa-
tional intelligence techniques in network experimental testbeds and us-
ing machine learning algorithms to enhance security in network-slicing
architectures.

3.1. Federated learning for testbeds

Wijethilaka et al. [37] developed a federated learning strategy to
enhance network slicing security, a technology that allocates dedicated
logical networks to diverse applications. This manuscript introduces
a framework called FLeSO, which utilizes federated learning to train
machine learning models to detect anomalies and cyber-attacks in the
control plane of sliced networks. The FLeSO framework was tested
using an experimental testbed of sliced networks built with open-
source tools and an NSL-KDD intrusion dataset. The study indicates that
FLeSO is good at identifying attacks, keeping data private, and enabling
proactive security measures.

Boualouache et al. [47] presented a solution for detecting inter-
slice attacks in Vehicle-to-Everything (V2X) 5G networks, which pose
a significant threat to the isolation and privacy of network slices.
The proposed approach utilizes federated and deep learning to deploy
virtual security functions within network slices, which cooperate to
train and refine attack detection models. The effectiveness of this
method was validated through extensive experimentation conducted
on a testbed consisting of sliced networks and the CSE-CIC-IDS2018
intrusion dataset [48]. Our process results in high accuracy in detecting
attacks in network slicing management transactions while ensuring
data privacy.

Saad et al. [49] presents a timely contribution to the field of
federated learning in Beyond Fifth Generation (B5G) networks with
zero-touch management, focusing on the pressing issue of poisoning
attacks that can prevent the optimal functioning and security of deep
3 
learning models utilized in the automated management and orchestra-
tion of network slices. To address this challenge, the authors introduce
a novel framework called Trust Deep Q-learning Federated Learning
(TQFL), which employs deep reinforcement learning to select a trusted
participant in the federated learning process responsible for detect-
ing and mitigating poisoning attacks using unsupervised learning and
dimensionality reduction. The performance of TQFL was evaluated
through an exhaustive experimentation campaign using the OpenAirIn-
terface platform and a realistic dataset on the latency of the Access and
Mobility Management Function (AMF) function. The results show the
effectiveness of TQFL in mitigating poisoning attacks while preserving
the accuracy and privacy of federated learning models.

3.2. Sliced testbeds and security

Wichary et al. [50] presented a solution to safeguarding and iso-
lating 5G network slices across multiple layers and domains. The
proposed approach uses a security attribute model, which associates
security controls with the specific requirements of each slice. The study
assessed the effectiveness and practicality of various security measures,
categorizing them into eight domains and six isolation classes.

Jiang et al. [56] proposed a DeepAR-based probabilistic forecasting
model for admission control in network slicing within Software-defined
Networks (SDNs). The model is designed for network segmentation and
is compatible with 5G and Software-defined Wide Area Network (SD-
WAN) standards. They incorporate AI and blockchain technologies to
enhance network security. The training paradigm leverages DeepAR, a
recurrent neural network model, using real-world historical traffic from
the China Education and Research Network (CERNET) to proactively
manage slice admissions and prevent congestion. In addition, a closed-
loop parameter-update mechanism was employed to optimize resource
allocation and improve defense strategies.

Khan et al. [51] presents a solution to the challenge of detecting
DoS and DDoS attacks on 5G network slices, which can significantly
impact the functionality and performance of the associated services.
Their proposed method is based on a Recurrent Neural Network (RNN),
which utilizes a recently collected dataset from a simulated 5G network
slicing testbed. The model’s efficacy was validated through accuracy
tests, resulting in a remarkable value of 99.99%.

Niboucha et al. [52] addresses the problem of detection and mit-
igation of DDoS attacks on Massive Machine Type Communications
(mMTC) network slices in 5G networks, which can connect many
Internet-of-Things (IoT) devices. The proposed method is a zero-touch
security management solution that uses machine learning to predict,
identify, and block malicious devices that generate abnormal traffic.
The measure used was the detection rate of the model, which was tested
on a EURECOM 5G testbed.

Concerning testbeds for security, Wen et al. [53] presented VET5G,
an end-to-end virtual testbed for experimenting with security in 5G
networks. The proposed method is a container-based platform that
emulates mobile devices, RAN, and 5G core networks, supporting pro-
grammability and isolation. The measures used were the performance
and usability of the testbed, which was evaluated in two attack scenar-
ios and a course project.

Wijethilaka et al. [37] focus on ensuring security in sliced networks,
a critical component of future telecommunication systems. To address
this issue, the authors propose an architecture for a security orchestra-
tor that can provide tailored security services to different network slices
and evaluate its feasibility and performance through experimentation
using an OpenStack-based testbed, together with Open Source MANO
(OSM), PyTorch, and an NSL-KDD intrusion detection dataset.

The paper by Silva et al. [54] focuses on the significant issue of
DDoS attacks on the 5G control plane, which can compromise service
availability and security. The authors propose a new approach, REPEL,

an intelligent resource-scheduling strategy that utilizes game theory to
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Table 1
Prior state-of-the-art works towards Security and AI for Network Slicing Architectures.

Approach Network
segment

Standards
compatibility

Security
level

Training
paradigm

Dataset Pro-active
security/action

Defense/action
strategy

Wijethilaka et al. [50] Slicing Ar-
chitecture

None Architecture Local None Manage the resources and services
of each slice to guarantee data
confidentiality, integrity, and
availability.

Khan et al. [51] RAN 3GPP intra-Slicing Local CIC IDS
2017

A centralized controller that
coordinates the agents in
the slices collects and analyzes the
network data, and sends alerts in the
event of anomalies.

Niboucha et al. [52] Core 3GPP intra-Slicing Local Proprietary A deep neural network is
used to autonomously detect
and mitigate DDoS attacks on
the mMTC network slices.

Wen et al. [53] Core None Arquitecture None None Integrating different security solutions
into the testbed, such as firewalls,
IDS/IPS, and VPNs, on demand for
the
network slices that require it.

Silva et al. [54] Core 3GPP Arquitecture None None Prevents DDoS attacks on the 5G
control plane through intelligent
resource scaling.

Chilukuri et al. [55] Core 3GPP Architecture Local Proprietary Using Self-Organizing Network (SON)
and Hierarchical Temporal Memory
(HTM)-based
learning, the approach detects and
isolates malicious users trying to
attack
the 5G core using the XDP technique.

Wijethilaka et al. [37] Slicing Architecture None Architecture Distributed NSL-KDD Federated learning is used to
train machine-learning models to
detect anomalies and attacks in the
control
plane of sliced networks.

Boualouache et al. [47] Slicing Architecture None intra-Slicing Distributed CSE-CIC-IDS2018 Using federated learning and deep
learning to train attack detection
models,
virtual security functions are deployed
in network slices that collaborate to
update these models.

Saad et al. [49] RAN 3GPP Architecture Distributed Eurecom
AMF
Resource
Consumption
Dataset

Deep reinforcement learning was
used to select a trusted participant in
federated learning, which is
responsible for proactively
detecting and mitigating
poisoning attacks in B5G
networks.

Jiang et al. [56] SDN None Architecture Local CERNET It employs a closed-loop
parameter update mechanism
and uses DeepAR, a
recurrent neural network
model, for probabilistic
forecasting in slicing admission.

Our Proposal Slicing Architecture Any Architecture Local & Distributed CIC IDS
2017 &
5GAD

ML-Agents and Security-Agents
deployed as daemonsets in slicing
microservice architectures,
providing security for
each slicing control-plane
entity and intra-slice.
S
t

combat these attacks. The study examines the efficiency and effective-
ness of REPEL through a queuing model and an experimental testbed
utilizing a virtualized evolved packet-core prototype.

Chilukuri et al. [55] present SENTINEL. This framework utilizes
the Self-Organizing Network (SON) paradigm and learning based on
Hierarchical Temporal Memory (HTM) to protect the 5G core control
plane from DDoS attacks. The framework detects and isolates mali-
cious users attempting to attack the 5G core using a slice aggregator
and Multi-factor Authentication (MFA). The efficacy of SENTINEL is
evaluated through experimentation on a 5G testbed and utilization of a
semisynthetic dataset of anomalies. The results indicate that SENTINEL
maintains high levels of service availability for legitimate users while

avoiding the expenditure of additional resources.

4 
We summarize the related works in Table 1, where the Network
egment column refers to the type of network slicing performed by
he slicing architecture. The Standards Compatibility column refers to

the compatibility of the slicing architecture with standardizing entities,
such as 3GPP and European Telecommunications Standards Institute
(ETSI). The Security Level column refers to the type of security feature
the network-slicing architecture provides, whether for the network
slice service (intra-slice) or the architecture as a whole. The Training
Paradigm column refers to the method of training AI mechanisms sup-
ported by the slicing architecture. The ’Dataset column summarizes the
datasets of the architectures used in the experimental evaluations. The
Pro-active Security/Action column refers to how the security mechanisms

act in the slicing architecture, being reactive and proactive.
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Fig. 2. Architecture Building Blocks.
4. Federated learning empowering sliced testbeds security

Network slicing architectures are designed to meet a specific set
of connectivity requirements, based mainly on reference models such
as 3GPP and ETSI, among others. In previous work, we presented
and validated a reference model for network slicing architectures that
addressed aspects not fully covered in the state-of-the-art, such as
intrinsic security in the functional blocks of architecture and slicing
energy efficiency [23,24,57].

In the literature, there are security approaches for network slices
from a connectivity or service perspective, with a predominantly DoS
family of attacks [13,25,27]. Furthermore, existing security approaches
for network slicing focus on a single type of attack owing to the coupled
nature of the slicing architecture design. In this paper, we addressed
the operational security of slicing architecture. Our approach allows a
slice service provider to handle multiple attacks if the trained ML model
is embedded in the Security Agents. We applied intrinsic security
to slicing architecture through self-adaptive learning techniques in
microservices to provide security for architecture operations regarding
slicing life-cycle management.

Fig. 2 shows the functional blocks of the SFI2 reference archi-
tecture. This architecture envisioned the implementation of network
slices considering energy-efficient slicing and integrating experimental
networks and testbeds while providing slicing-tailored security func-
tionalities. The functional blocks on the left (Identity And Access Man-
agement (IAM), Database, AI Management, Monitoring, Slice Prepara-
tion, Slice Instantiator, Slice Operation & Management) cooperate at
different stages of the life cycle of a network slice to operationalize
the connectivity service. The blocks on the right (Control/Actuation
and Instantiation Manager) refer to the different target domains where
the SFI2 architecture can deploy network slices in the B5G domains,
Future Internet Brazilian Environment for Experimentation (FIBRE)
new generation domains [58], well-known experimental testbeds, and
others.

The Marketplace maintains and aggregates different target domains
and their resources to enable the deployment of network slices during
the slice commissioning phase. In all functional layers of the SFI2 archi-
tecture, there is provision for the coexistence of two daemon agents, the
Security-Agent and the ML-Agent. These agents act independently and
5 
with other functional blocks of the architecture using a microservices
approach.

As mentioned, each functional block of the SIF2 architecture has
two complementary services: the ML-Agent and the
Security Agent, which work asynchronously with the slicing ar-
chitecture. The ML-Agent performs passive and active functions in
the functional block. The passive role involves the prompt and local
response to requests for information from AI or analytics associated
with the network traffic of the functional block. On the other hand, the
active role involves the distributed processing and training of AI models
on data common to the functional block it serves, with the ML-Agent
periodically reporting the performance of the local model to the SFI2
AI Management for aggregation. In line with [59] findings, to avoid
malicious manipulation of system behavior, our approach assumes that
all entities in the SFI2 Architecture that support the operation of the
network slice life-cycle management have zero trust.

The Security Agent is a critical component of the SFI2 ar-
chitecture, working as a composite service that operates in parallel
with slicing architecture entities. Its main responsibility is actively
or passively monitoring the functional block for any security threats,
including intrusion and DDoS attacks. The Security Agent works
in close collaboration with the ML-Agent microservice (which embeds
trained AI models into the Security Agent) to detect and prevent
malicious traffic patterns in architecture entities, ensuring the overall
security and integrity of the SFI2 Architecture. For our implemen-
tation, we used the NetData monitoring platform (in Monitoring
Agent), which can monitor the statistics of both computational nodes
and the microservices that run on them; in our case, the Kubernetes
DaemonSets.

Our primary aim was to develop a Security Agent that operates
as a distributed and asynchronous microservice within our network-
slicing architecture. In 5G networks, Network Data Analytics Function
(NWDAF) provides subscription and notification services to core enti-
ties that consume analytics information from this function. In this work,
we extended this indirect approach to providing and consuming ser-
vices for SFI2 security enforcement. Additionally, we propose a novel
method for updating threat defense models using federated learning,
enabling entities in the SFI2 Architecture in different phases of the
network slice life cycle to handle security actions on the fly.
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Fig. 3. Secure Flow Interactions.
An example of this cooperation between the Security Agent
and the ML-Agent is constructing an IDS (Intrusion Detection System)
based on ML (IDS-ML). Fig. 3 illustrates the flow of the interaction
between the Security Agent, the ML-Agent, and the SFI2 Ar-
chitecture. As there will be a Security Agent in each slice
created by the SFI2 architecture, it will be responsible for checking
any transaction (communication between entities in the slicing archi-
tecture) and checking the traffic pattern according to the embedded AI
model.

The Monitoring Agent is capable of offering or directing
anonymized network flows (traces) such that SFI2 AI Management
can store them as a dataset to allow updates to AI models in the
future. The SFI2 AI Management entity relates to the ML-Agents by
nducing these agents to train AI models with global data from SFI2 AI
anagement or with local data, where each ML-Agent is embedded.
hese traces are transformed into an ML-based input and fed ML-
gent, which generates a local AI model related to detecting attacks

n the context of that specific slice. The Security Agent updates the
DS-ML rules from this model.

Our slicing architecture extends the literature by allowing AI models
f each slice (or core entity) to be used to generate a global ML model
or the entire SFI2 architecture. Our architectural design decision was
ased on the scalability requirement of the NS architecture, so we
nvisioned a microservice-based architecture with different actuator
gents. Each ML-Agent sends its ML model to SFI2 AI Manage-
ent, thereby enabling the slicing architecture to handle different
DoS threats. The SFI2 AI Management then creates a global AI
odel that considers what has been learned by all ML-Agents scat-

tered by the architecture. Using the global AI model, each slice (or
Security Agents) updates the rules in IDS-ML, effectively miti-
gating potential attacks on the core entity of the slicing architecture.
Finally, the AI models (local and global) are updated in different rounds
and continuously improved over time.

It should be noted that the SFI2 architecture does not have access to
the data used to create the AI model, only to the AI model generated by
the ML-Agent coupled with the specific entities of the microservice-
based network slicing architecture. Access to this data is limited to the
Security Agent and ML-Agent for each slice (or core entity). What
is shared with SFI2 AI Management in the SFI2 architecture is only
the AI model, without containing the data generated by the AI model.
However, the overall AI model comprises contributions from all slices
(or core entities) created with information about threats that the core
entity itself did not find. In addition, using native federated learning
allows the proposal to be placed in the context of Edge Computing
with fewer computational resources. This is because the slice (or core
entity) can have a more complex AI model at the edge without requiring

significant computational power to train and generate the model.

6 
5. Experimental evaluation

This paper examines the potential for collaboration between the
ML-Agent, Security Agent, and Monitoring Agent to im-
prove the functionality and operational security of network slicing
architectures and intra-slice. To achieve this goal, we assessed two
(2) experimental perspectives. The first involved evaluating the ML-
Agent’s ability to recognize reconnaissance and DoS attacks in a sliced
5G core network, using generic non-intrusive monitoring metrics pro-
vided by the Monitoring Agent feeding the ML-Agent to identify
those threats. The second perspective focuses on detecting anomalies
within network slicing architectures’ operational components (building
blocks), spanning slice preparation, slice implementation, and slice
operation and management entities using federated learning.

We have developed a progressive experimental framework, begin-
ning with centralized and classical algorithms to address intra-slice
security threats in instantiated and active services. Subsequently, we
elevate the analysis of defense mechanisms against security threats by
leveraging the unprecedented generalization capabilities of FL. This
approach enables the construction and validation of slice architectures
capable of addressing threats from two perspectives: (1) within the
deployed service (intra-slice); and (2) from the operational standpoint
of the control plane empowered by FL.

5.1. Intra-slice anomaly detection

In this first experiment, we validate the ability of our architec-
ture to deal with threats involving the running service or deployed
network slice. In state-of-the-art, network-slicing architectures, secu-
rity solutions deal predominantly with the operational security of the
architecture, striving to maintain the confidentiality, availability, and
integrity of operational components. On the other hand, our proposal
sheds light on the security improvement for the service in operation, or
intra-slice, by guaranteeing the security aspects for the running network
slices on the tenant.

This experiment is based on monitoring a network slice during its
operation. We built a Monitoring Agent to collect metrics from the
network slice and feed the ML-Agent and the Security Agent.
Among the advances in this study, when monitoring the running
network slice, we protect it from privacy when the Monitoring
Agent inspects the packets’ contents, only volumetric and statistical
aspects [60]. We collected metrics such as network consumption,
Central Processing Unit (CPU), and memory of running network slice.
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Table 2
Generic slice metrics and their descriptions.

Metric Description

cpu CPU usage by the entity.
cpu_limit Maximum allowed CPU usage for the entity.
throttled Number of times the CPU was throttled or restricted.
throttled_duration Total duration of CPU throttling.
mem Total memory usage by the entity.
writeback Amount of data being written back to the disk.
mem_activity Activity related to memory usage, such as accesses and modifications.
pgfaults Number of page faults that occurred.
mem_usage Current amount of memory in use.
mem_usage_limit Maximum allowed memory usage.
mem_utilization Percentage of memory utilization.
mem_failcnt Count of failed memory allocation attempts.
net_eth0 Network traffic on the eth0 interface.
net_carrier_eth0 Carrier (signal) status of the eth0 network interface.
net_packets_eth0 Number of network packets transmitted and received on the eth0 interface.
net_errors_eth0 Number of network errors on the eth0 interface.
net_drops_eth0 Network packets dropped on the eth0 interface.
net_fifo_eth0 Number of FIFO errors on the eth0 interface.
net_events_eth0 Network-related events on the eth0 interface.
throttle_io Rate of I/O (input/output) throttling.
throttle_serviced_ops I/O operations that were throttled.
pids_current Current number of active processes.
Fig. 4. Monitoring Agent, ML-Agent and Security Agent pipelining for intra-
slice anomaly detection.

5.1.1. Description of test
We validated the feasibility of using generic non-intrusive metrics

to assess anomaly detection using basic ML algorithms. We employed
K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest
(RF) to handle the resource consumption dataset to predict anomalies
in a running network slice containing a 5G core. Our test aimed to
validate the performance of these algorithms for anomaly detection in
a 5G core. In contrast, validate the collaboration of Security Agent,
ML-Agent, and Monitoring Agent.

Fig. 4 shows the experimental scenario. Initially, we instantiated
an ‘‘Attacker’’ container equipped with Packet Captures (PCAPs) with
traces of attacks on 5G core entities and with the premise of being
connected to the 5G core control plane network. Packets are injected
into the deployed core using the TCPReplay tool [61]. In phase one
(1), the Monitoring Agent is an instance of NetData running in a
container that collects different CPU, memory, and networking metrics
based on the Docker Control Group (cgroup), as detailed in Table 2. The
metric records were transformed into the features of the running slice
resource consumption dataset. Some monitored metrics in Table 2, such
as net_packets_eth0, have additional attributes, including received, sent,
and multicast, resulting in a final dataset with 42 features and labels.

Following, as Fig. 4 we perform the union operation (∪) based on
the timestamp, taking the resulting Comma-Separated Values (CSV) to
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the ML-Agent in step two (2). The resulting CSV in step two (2) is
a new resource behavioral dataset employed to validate our method.
Different algorithms and ML are applied to the data in this phase.
The ML-Agent service instance responds to the remote procedure call
of SFI2 AI Management that starts the model training life cycle. We
employed classic algorithms such as KNN, RF, and DT to validate our
contribution. In phase three (3), when the training of the AI models is
complete, the Security-Agent receives the trained model. In phase four
(4), the trained model weights integrate the SFI2 AI Management model
pool, which can serve this model for further requests. In phase five (5),
the Security Agent can now perform anomaly detection based on
the current running network slicing.

5.1.2. Dataset
The 5G Attack Detection (5GAD-2022) dataset consists of inter-

cepted 5G network data, including both normal and malicious traffic
in Packet Capture (PCAP) files. The normal data was generated by
simulating typical user activities like streaming videos, making web
requests, and joining video conferences. The malicious data includes
ten types of attacks categorized into reconnaissance, DoS, and network
reconfiguration. These attacks exploit vulnerabilities in the 5G Core
network [62].

The dataset was collected in a simulated environment using open-
source software free5GC and User Equipment (UE) simulator [63].
Network traffic was captured using Wireshark, focusing on the applica-
tion layer to ensure that attack packets were fully included. Each packet
was truncated or padded to 1024 bytes to standardize the data for the
machine learning model training [62]. In our experiment, the PCAPs
were previously processed by changing the source and destination
Internet Protocol (IP) to enable correct forwarding to core entities.

The dataset consists of CPU, memory, and network metrics of
all free5GC core entities. Here, AMF, Authentication Server Func-
tion (AUSF), Charging Function (CHF), Non-3GPP Interworking Func-
tion (N3IWF), N3 Interface for Untrusted non-3GPP User Equipment
(N3IWUE), Network Repository Function (NRF), Network Slice Selec-
tion Function (NSSF), Policy Control Function (PCF), Session Manage-
ment Function (SMF), Unified Data Management (UDM), Unified Data
Repository (UDR), UE and User Plane Function (UPF).

This PCAP dataset was reinforced in our experimental testbed,
leading the Monitoring Agent to record new behavioral resource
consumption. We labeled our slice resource consumption dataset ac-
cording to the original PCAP dataset. Empirically, we have established
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Table 3
Security Agent performance in anomaly detection: Values highlighted within the rectangle represent the highest average F1-scores among entities directly impacted by intra-slice
attacks.

Sliced 5G Core Entity Accuracy (%) F1-score (%) Recall (%) Precision (%)

DT KNN RF DT KNN RF DT KNN RF DT KNN RF

AMF 99.04 99.00 99.04 97.14 97.00 97.13 95.27 94.87 95.08 99.22 99.40 99.42
AUSF 92.58 92.59 92.58 67.10 67.02 67.00 61.83 61.75 61.74 94.74 95.36 95.14
CHF 100 99.98 100 100 99.94 100 100 99.90 100 100 99.99 100
N3IWF 94.45 94.49 94.50 78.47 78.51 78.62 71.51 71.44 91.58 96.30 97.01 96.78
N3IWUE 92.75 92.76 92.78 68.14 68.01 68.20 62.58 62.45 62.60 95.49 96.29 96.10
NRF 100 99.92 100 100 99.77 100 100 99.58 100 100 99.96 100
NSSF 92.60 92.58 92.58 67.24 66.74 66.95 61.94 61.51 61.69 94.76 96.21 95.35
PCF 96.44 96.56 96.53 87.99 88.27 88.19 82.47 82.35 82.34 96.65 97.87 97.63
SMF 100 99.96 100 100 99.88 100 100 99.79 100 100 99.98 100
UDM 92.58 92.61 92.58 67.00 67.00 67.00 61.74 61.71 61.74 95.14 96.00 95.14
UDR 97.32 97.29 97.36 91.26 91.10 91.38 86.41 86.07 86.48 98.10 98.34 98.32
UE 100 99.99 100 100 99.97 100 100 99.95 100 100 99.99 100
UPF 99.95 99.89 99.99 99.86 99.68 99.97 99.79 99.61 99.95 99.93 99.75 99.99
a new dataset derived from 5GAD with a proportion of 90% benign
instances and 10% malignant instances with precision of one second.
This was done to simulate a real-world scenario where benign traffic is
more prevalent than malignant traffic.

5.1.3. Evaluation
For our evaluation, we used the Fabric testbed, a nationwide testbed

on which we deployed a virtual machine with 32 GB of memory and 16
cores with an Ubuntu 20.04 operating system, containing scikit-learn,
Docker 27.1 and Python 3.11. We started the architecture contain-
ers (available here https://github.com/romoreira/SFI2_B5G_Security),
instantiated the ‘‘Attacker’’ node and the sliced 5G core based on
free5GC.

We performed 10-fold cross-validation on the dataset to ensure that
ll training data were used as test instances to avoid overfitting. As
hown in Table 3, the classical ML models embedded in the Security
gent can identify anomalies in the running network slice (intra-slice).

n Table 3, we compare the performance of the algorithms according
o different metrics such as accuracy, F1-Score, recall, and precision.

Accuracy is the proportion of correctly classified instances: Accuracy
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 . Precision measures true positives among predicted
positives: Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 . Recall, or Sensitivity, measures true
ositives among actual positives: Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . The F1-score, the
armonic mean of precision and recall, is given by F1-Score = 2 ×

Precision×Recall
Precision+Recall . These metrics offer a comprehensive view of model
performance, with F1-score being especially useful for imbalanced
datasets. Our results is presented in Table 3.

In this experiment, we reinjected packets into a sliced 5G core
to trigger reconnaissance, network reconfiguration, and DoS attacks.
Specifically, we cause AMF to generate fraudulent requests to UDM
while impersonating AMF. We also injected the ‘‘Get All Network
Functions’’ attack without specifying the network function, causing
NRF to behave in a Byzantine manner. We also triggered a ‘‘Random
Data Dump’’ that refers to deliberately requesting nf-instances from
NRF. We triggered ‘‘Automatic Redirect with Timer’’ attacks, which
caused UE traffic to be temporarily redirected by changing policies in
UPF.

We inject packets leading to the network reconfiguration phe-
nomenon, thus causing ‘‘Fake AMF Delete’’ causing the sliced 5G core to
lose connectivity with the AMF. Similarly, we provoke ‘‘Random AMF
Insert’’ scenarios that generate new fraudulent instances of the AMF.
These events triggered a change in the consumption pattern of the CPU,
memory, and network resources of the running network slice. Thus,
the Security Agent was able to identify these intra-slice nuances,
leading to the performance presented in Table 3.
8 
Table 4
Intra-Slice security defense mechanism comparison.

Approach Dataset Security
threat

Employed
method

On-time
detection

Low-
overhead
monitoring

Defense
efficiency

Boualouache
et al. [47]

CSE-CIC-IDS
2018 [64]

DoS Deep
Learning
(DL)

Accuracy:
99.00%

Hossain
et al. [65]

VeReMi [66] DDoS DL with
Knowledge
Destilation
(KD)

Accuracy:
99.00%

Majeed
et al. [67]

CTU-13 [68] BotNet DL Accuracy:
97.74%

Boualouache
et al. [69]

5G-NIDD
[70]

DoS FL F1-Score
88.00%

Our
Approach

5GAD [62] DoS Classic ML Accuracy:
100%

Finally, we cause a DoS attack, specifically the ‘‘Crash NRF Attack’’
behavior, where malformed requests are deliberately sent to the entity,
causing it to fail and triggering abnormal behaviors in the resources of
the other entities of the sliced 5G core. In addition to the ‘‘automated
drop with timer’’ and ‘‘automated redirect with times’’ behavior that
alternates between redirecting or dropping the traffic of the UE in
the UPF, this leads to anomalous resource consumption in the control
entity.

Specifically, the attacks we simulated to evaluate our method di-
rectly affected the entities AMF, NRF, NSSF, PCF, SMF, UDR, UDM, UE,
and UPF, as listed in Table 3. Therefore, we observed in more detail the
performance of the embedded AI model generated by the ML-Agent
combined with the Security Agent on these entities. As shown in
Fig. 5, the graphs contain the ROC curve, showing a trade-off between
sensitivity and specificity.

The Area Under the ROC Curve (AUC) quantifies the overall ability
of the model to discriminate between positive and negative classes. An
AUC value closer to 1 indicates good classification, while a value of
0.5 suggests random guessing. A higher AUC value represents a better
model performance in distinguishing between classes. The results in
Fig. 5 suggest that the Security Agent combined with the ML-
Agent can adequately identify intra-slice anomalies. A higher area
under the curve (AUC) indicates better performance in distinguishing
between legitimate traffic and DoS attacks for the Security Agent,
reflecting the system’s effectiveness in accurately identifying attacks
while minimizing false alarms.

Table 4 presents a thorough comparison of existing intra-slice se-
curity defense mechanisms, positioning our proposed approach within

the current research landscape. The comparison covers key aspects,
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Fig. 5. ROC curve for the main entities directly impacted by the intra-slice attacks.
ncluding the dataset used, type of security threat addressed, employed
ethod, on-time detection capabilities, low-overhead monitoring, and

verall defense efficiency. By comparing various approaches, such as
hose based on DL, FL, and traditional ML, our method achieved
00% accuracy in detecting DoS attacks on the 5GAD dataset through
on-intrusive monitoring. This comprehensive analysis underscores the
obustness of our approach, particularly in achieving superior detection
ccuracy without increasing monitoring overhead, thereby contributing
o the advancement of security solutions in network slicing.

.2. Anomaly detection in architecture building blocks

In this second experiment, we propose a formal evaluation of
ecurity-native new advances, showcasing it on the SFI2 Architecture
hrough experiments in which each federated client processes a local
ataset [48] consisting of network flows generated by FlowMeter [71].
his tool creates tuples of network flows based on the statistical
rouping of network packets. Once the packet capture file is generated
PCAP), it is converted into a CSV containing 78 features for each

network flow. In this experiment, we validated the ‘‘Security Level’’
feature ( Table 1) of our architecture based on its ability to handle
security threats from an architectural perspective. We have advanced
the SFI2 Architecture by empowering each functional entity to manage
security threats in the lifecycle control flow on the fly.

We assume that all SFI2 Architecture microservices are ready to
handle the network slice lifecycle. In our experimental evaluation, we
used SFI2 AIManagement to trigger a federated learning scenario
using non–Informally, Identically Distributed (IID) data. Each federated
client (see Fig. 2 as ML-Agent and associated with microservices as
a daemon set) had access to a dataset of a specific type of intrusion
and DDoS attack. The data in each ML-Agent may not follow the
same distribution nor may have the same characteristics as the data on
other devices or the overall population, referred to as non-IID data. This
9 
presents challenges for federated learning, such as slow convergence,
poor accuracy, and model divergence.

We analyzed the optimal hyperparameters for each participant,
considering their respective local training sets. In addition, we used
the Bayesian approach with the help of the Optuna hyperparameter
optimization framework [72]. As depicted in Fig. 6, the neural network
comprises distinct structures, layers, and input and output data. We
sought to minimize loss by considering the number of neural network
layers, optimizer, learning rate, and epochs. This neural network ar-
chitecture was chosen after a previous hyperparameter optimization
process, which sought to determine the optimal number of layers to
minimize the loss.

We embedded the Long Short-Term Memory (LSTM) model shown
in Fig. 6 designed for the efficient processing of sequential data in
our ML-Agent. The model starts with an input layer that maps 78
input features (detailed in Section 5.2.2) to 16 units, followed by a
hidden layer with the same dimensionality, employing Rectified Linear
Unit (ReLU) activation, and a dropout layer with a probability of 0.4
to prevent overfitting. The output layer reduces the feature space to
two units for binary classification (DDoS or non-DDoS). During training,
our model has nodes such as AccumulateGrad, TBackward0, Addmm-
Backward0, and SoftmaxBackward0, which represent operations and
gradient accumulations, respectively. For example, input_layer.weight
and output_layer.weight with shapes (16, 78) and (2, 16), respectively,
are crucial in forward passes, whereas backward operations such as
ReluBackward0 and SoftmaxBackward0 ensure accurate gradient com-
putation during the backward pass, culminating in the final output of
the shape (32, 2).

5.2.1. Description of test
We have formalized the evaluation of our SFI2 reference archi-

tecture security extension by conducting experiments on a testbed

that replicated the production network conditions. We deployed a
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Fig. 6. The Neural Network used by each ML-Agent.

virtual machine with 32 GB of memory, an 8-core CPU, and a GPU
RTX 4060 Ti with 8 GB of memory, Ubuntu 20.04 operating system.
Flower federated learning framework, cuDNN 12.0 toolkit combined
with Torch 2.3. Our dataset consisted of benign and malicious network
traffic [48]. The testing process was divided into two phases. The first
phase involves offline training of deep neural network algorithms in a
local and federated manner. In the second phase, we implemented the
learned models in the SFI2 architecture, specifically in the distributed
scenario of the testbed, where each ML-Agent runs as microservices
in different architectural blocks.

The second experiment involved running the functional blocks of
the SFI2 Architecture on different testbed nodes. The SFI2 prediction
API can receive a network flow in tuple format and judge its traffic
class, benign or malignant. Therefore, we measured the API response
time capacity to assess the API readiness regarding the response of our
architecture when running production slices.

Finally, validation was performed on a nationwide physical testbed
in the Future Internet Brazilian Environment for Experimentation New
Generation testbed, which is a microservice-based testbed with many
compute nodes spread across educational institutions in Brazil and is
designed to be an evolution of the previous FIBRE testbed supported
by the National Education and Research Network (RNP) [58]. This net-
work is geographically distributed and has an interconnection between
Kubernetes nodes via an Internet Protocol (IP) network that connects
different research institutions in Brazil.

In our current implementation, we considered only a centralized
coordinator within the testbed. This decision was made because the
centralized coordinator is located in the AI agent of the SFI2 architec-
ture, which is protected by a security agent. It is designed specifically
for and is accessible only to SFI2 tenants, ensuring a secure and
controlled environment for federated learning processes. However, we
recognize the potential benefits of using blockchains and distributed co-
ordinators for federated learning, particularly in enhancing participant
security, transparency, and trust. As such, exploring these approaches
represents a valuable direction for future work, where decentralized co-
ordination mechanisms could further strengthen the system’s resilience

and scalability further [73].
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Table 5
Dataset file description and distribution.

Day Size
(# lines)

%
of Malignant

Assigned to
which ML-Agent

Tuesday 445,909 3.1 #1

Wednesday 692,703 36.48 #2

Thursday 288,602 0.01 #3
170,366 1.28 #4

Friday
286,467 55.48 #5
191,033 1.03 #6
225,745 56.71 #7

5.2.2. Dataset
We chose four days to train and validate the deep neural networks,

encompassing tuples of network flows from different days and times.
We used 90% of the time for training and 10% for testing, and each
experiment was performed 10 (ten) times. Each capture or dataset
acquisition day was assigned to a single federated client during the
learning process, as listed in Table 5. The dataset was divided as
follows: Monday featured only regular activity (normal traffic with
different applications), whereas Tuesday through Friday included hy-
brid attacks and regular activity. The neural network structure and the
layers employed for each federated client are shown in Fig. 6.

Within just four (4) days of the existing dataset [48], time divisions
into morning, afternoon, and evening led to the separation of more than
four (4) datasets for each ML-Agent, as shown in Table 5 (column
‘‘Assigned to which ML-Agent’’). The dataset comprises a real network
encompassing various devices such as firewalls, switches, and routers.
We previously trained models for the SFI2 AI Management building
block, allowing future microservices of the SFI2 reference architec-
ture to import the model. Later, using the trained and operational
model, we validated the performance of the security API in classifying
network flows from both network slices and functional blocks of the
architecture.

The chosen dataset represents the diversity of devices and user
behaviors it brings. The dataset was constructed to include various
intrusions and benign traffic at different times of the day to capture
the unique characteristics of each time slot. The first day of the week,
Monday, was excluded from the local training process of our exper-
iment because it consisted of only regular traffic. The remaining days
were considered for training, as they contained a mixture of benign and
malignant traffic.

To understand the type of data ML-Agents have dealt with, we
conducted a Principal Component Analysis (PCA), which is a statistical
technique used for dimensionality reduction. PCA reduces dimension-
ality by transforming the original variables into a new set of variables,
the main components. The PCA-generated scatter plots reveal that
classes have considerable overlap within features, which may lead
to difficulties in achieving high accuracy or convergence in terms of
learning in certain AI models. Fig. 7 shows that the malignant and
benign classes are mixed, indicating an intrinsic classification challenge
for ML-Agents. To migrate some of this overlap, we conducted a
hyperparameter optimization.

5.2.3. Analysis method
We present the results of optimizing the hyperparameters of each

ML-Agent using its local dataset, where the hyperparameters were re-
fined using the Tree-Structured Parzen Estimator (TPE) algorithm [74]
to maximize the accuracy of each model coupled to the local ML-
Agent. Table 6 lists the search space and hyperparameters. It is worth
noting that the non-IID format of the dataset managed by each ML-
Agent resulted in the discovery of diverse hyperparameters, even
when using the same neural network for every ML-Agent. In our

experiments, it was necessary to optimize the hyperparameters, as we
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Fig. 7. PCA of each ML-Agent dataset.
Table 6
Dataset description and Hyperparameters for each ML-Agent.

ML-Agent Dataset Attacks Learning
rate (LR)

Optimizer Epochs

#1 Tuesday Brute Force, FTP-Patador, and SSH Patator 0.0003074258400864182 Adam 10
#2 Wednesday DoS/DDoS: Slowloris, Slowhttptest, Hulk, and GoldenEye 0.0005025961155459187 RMSprop 10
#3 Thursday Infiltration: Dropbox, Meta exploit Win Vista, Cool disk –

MAC, Dropbox download, and Win Vista
0.00010603472201401003 RMSpro 10

#4 Thursday Web Attack: Brute Force, XSS, and SQL Injection 0.00013936442920558617 Adam 10
#5 Friday Firewall Rules: On and Off 0.000587441102433820 RMSprop 10
#6 Friday Botnet Ares 0.0006052967400865347 SGD 10
#7 Friday DDoS LOIT 0.00012091571705782663 Adam 10
found that the hegemonic hyperparameters for each ML-Agent and
its dataset in the non-IID scenario prevented the global model from
converging its learning rate.

Through the process of optimizing the hyperparameters, we were
able to ensure that each ML-Agent could train effectively on its re-
spective local dataset. Subsequently, we evaluated the training capacity
and performance of each ML-Agent using their local dataset. The
ML-Agent column indicates the training agent employed during the
experiment. In contrast, the ‘‘Dataset’’ column provides details on the
data assigned to the ML-Agent, and the ‘‘Attacks’’ column specifies
the types of attacks the ML-Agent was trained to classify/identify.

5.2.4. Training behavior
We evaluated the training performance of a neural network using

binary classification of malignant or benign traffic. Our native AI and
security architecture are flexible enough to support different types
of approaches for handling threats defense and training AI models
to handle security. Initially, we validated two behaviors of SFI2 AI
Management, triggering centralized training or distributed training
across ML-Agents coupled as microservices in the architecture. For
centralized, we grouped the seven datasets in this experimental sce-
nario, leading to a centralized training approach. Thus, after ten (10)
different runs, we obtained an average test accuracy of 90.01%. We
ensured that learning was consistent by presenting the loss function
and training accuracy graphs in Fig. 8, and Fig. 9.

Although visually, the Accuracy and Loss graphs in Fig. 8 and Fig. 9
appear to fluctuate slightly; in our experiments, the model converged at
epoch 10 when there were no more significant gains in accuracy, and
we activated the early stopping of the learning process. It should also be
noted that the aggregation of the dataset culminated in a dataset with
higher CPU and memory consumption, and training took an average of
1072 s.
11 
Fig. 8. Accuracy behavior for a joint dataset using a centralized training approach.

Fig. 9. Loss behavior for a joint dataset using a centralized training approach.
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Fig. 10. Accuracies for each ML-Agent. The graphs (a) to (g) refer to the accuracy and loss behaviors of each ML-Agent with its local dataset according to Table 6.
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Subsequently, we analyzed in Fig. 10 the behavior of the accu-
acy and loss curves for the federated learning scenario involving two
raining rounds. This distributed scenario aligns with our contribution
ecause it enables each Security Agent to deal with potential
ecurity threats as a specific entity in the network slicing architecture.
iases in weight aggregation averages can compromise centralized AI
odels.
12 
As Fig. 10 shows, each model exhibited different behaviors during
he training process. However, it is worth noting that the ML-Agents
howed appropriate behavior in the curves, indicating that they could
onverge in learning. Consequently, the server model achieved an
verage accuracy of 90.8% using two training rounds. The variation in
ccuracy and loss levels between the different ML-Agents, as shown

in Fig. 10, is an intrinsic characteristic of federated learning in a non-IID
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Table 7
Comparison of training time considering two different approaches.

Approach Round Count Mean
Training Time

Standard Error
Mean

Standard
Deviation

Minimum Q1 Median Q3 Maximum

Federated

Two 280 362.37 6.43 107.57 236.66 257.7 344.06 452.29 619.3
Four 420 358.55 5.22 107 235.57 255.5 338.67 446.07 622.77
Eight 980 358.9 3.4 106.34 235.57 256.8 339.78 446.51 622.77
Sixteen 1832 378.64 2.65 113.24 235.57 277.29 344.95 453.35 628.73

Centralized Mean
Training Time

SE Mean StDev Minimum Q1 Median Q3 Maximum

10 1072.3 0.249 0.789 1070.5 1072.3 1072.5 1072.5 1073.5
Fig. 11. Accuracy for different Federated Rounds.

scenario, where each ML-Agent can have a unique learning behavior
over the time.

In addition, as shown in Fig. 10 graphs represent how challenging
it was for ML-Agents to deal with non-IID data while creating a
global AI model to empower network slicing architectures, dealing with
different types of DDoS and intrusion attacks. Although challenging,
the models of each ML-Agent converged in learning because the
stabilization of the loss and accuracy after the end of the epochs was
noted. With this, we have that each ML-Agent dealt with different
types of DDoS attacks and, at the same time, contributed to adjusting a
generic and robust AI model for the architecture of networking slicing.

After conducting a thorough analysis of the capabilities of the ML-
Agents to train federatively with non-IID datasets and reporting the
weights to the central model in the SFI2 Architecture, we examined
the effect of federated learning rounds on accuracy. Fig. 11 shows the
variability of the aggregate accuracy of the model concerning different
interaction rounds. Our findings indicate that, with an error of less
than 5%, increasing the number of training rounds had no significant
influence on the accuracy of the central model. It can, therefore, be
deduced that the non-IID datasets may not benefit from long federated
training rounds.

We present a comparison of the training times for the centralized
and federated approaches in Table 7. Subsequently, we analyzed the
models resulting from federated clients with the aggregated server
model by utilizing cosine divergence to assess the significance of any
differences between the server and client models (vector of weights)
across various training rounds. A substantial difference suggests that
a particular customer may be overlooked because of its minimal im-
pact on the convergence of the model. The average cosine divergence
between client models and the server is presented in Table 8.

5.2.5. Analysis of models
Regarding the training paradigm analyses, we compared the models

resulting from federated clients with the aggregated server model by
13 
Table 8
Descriptive Statistics of cosine divergence for each training round.

N Analysis Mean Standard deviation SE of Mean

2 7 0.00446 0.02164 0.00818
4 7 −0.00045 0.02043 0.00772
8 7 0.01440 0.01721 0.00650
16 7 0.01746 0.02376 0.00898

Table 9
Analysis of variance test.

DF Sum of squares Mean square F value Prob>F

Model 3 0.00149 0.00050 1.13519 0.35479
Error 24 0.01048 0.00044
Total 27 0.01196

Table 10
Fit statistics.

R-Square Coeff Var Root MSE Data mean

0.12427 2.33603 0.02089 0.00894

utilizing cosine divergence to assess the significance of any differences
between the client and server models across various training rounds.
Upon obtaining the samples and the average cosine divergence between
the client models and server, we analyzed the variance (ANOVA) to
evaluate the statistical equivalence of these samples. We employed an
ANOVA with four levels, each representing a sample of the cosine
difference for the different training rounds. We formulate the following
hypotheses for our analysis:

• Null Hypothesis: The means of all levels are equal.
• Alternative Hypothesis: The means of one or more levels are differ-

ent.

The ANOVA test results presented in Table 9, especially the p-value,
indicate no statistically significant difference between the means of the
four variables; namely, increasing the number of training rounds in
federated learning does not affect the accuracy achieved. Specifically,
the value of p is 0.35479, indicating that we should accept the null
hypothesis that the means are equal at a significance level of 5%.

According to Table 10, the R-squared value is 0.12427, which
indicates that the model accounts for only 12.43% of the variation
in the data. Hence, it can be inferred that other factors, such as the
size of the dataset, the type of algorithm employed, and the quality
of communication between nodes, significantly influence the model’s
accuracy beyond the number of training rounds.

Fig. 12 shows the statistical equivalence between the cosine differ-
ences and Standard Error (SE) of the mean according to the results of
the ANOVA test. This implies that the model can learn and improve,
albeit without statistically significant improvements. Additionally, the
model seems to converge towards a solution as it progresses towards
distributed learning.
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Fig. 12. Cosine Variation through different training Rounds.

Table 11
Comparison of FL-based Security Defense Mechanisms for NS Architectures.

Approach Dataset Security
Threat

Employed
method

Multiple
NS
architecture
support

Pro-active
monitoring

Low-
overhead
monitoring

Defense
efficiency

Niboucha
et al. [52]

Own DDoS Gradient
Boosting

Accuracy:
96.76%

Wijethilaka
et al. [37]

NSL-KDD
[75]

DoS, and
User to Root
Attack (U2R)

DL Accuracy:
99.99%

Sedjelmaci
and
Boualouache
[76]

CSE-CIC-IDS-
2018 [64]

DDoS and
Botnet

Mean-field
Game

Accuracy:
97.00%

Wijethilaka
et al. [20]

NSL-KDD
[75]

DDoS,
Man-in-the-
Middle
(MITM),
and Botnet

DL Accuracy:
98.00%

Rumesh
et al. [77]

Own DDoS LSTM Accuracy:
99.87%

Mirzaee
et al. [78]

NSL-KDD
[75]

DoS and
U2R

DL Accuracy:
99.50%

Thantharate
[79]

Own DDoS Sequential
Model

Precision:
94.00%

Our
Approach

CIC-IDS2017
[48]

DDoS LSTM Accuracy:
96.60%

The Table 11 presents a comparative analysis of various state-
f-the-art approaches in addressing different security threats using
istinct datasets and employed methods. Each approach is evaluated
ased on its capability to support multiple network slicing (NS) ar-
hitectures, provide proactive monitoring, implement low-overhead
onitoring, and its overall defense efficiency. The results indicate

hat the accuracy or precision of these methods varies. Our proposed
pproach, utilizing the CIC-IDS2017 dataset with an LSTM model,
emonstrates competitive accuracy at 96.60%, while also meeting the
riteria for multiple NS architecture support, proactive monitoring, and
ow-overhead monitoring.

. Concluding remarks

In this paper, we presented a microservice-based approach to en-
ance the intelligence and security of network-slicing architectures.
ur research reveals that several network slicing architectures lack the
ecessary intelligence and security features to effectively operate and
rotect network slices. To address this shortcoming, we propose using
L-Agents and Security Agents, which collaborate to provide

ntelligent and secure management and orchestration for network slice
ore entities.
14 
Our research demonstrated that federated learning, when associated
ith microservice architectures, can enhance network-slicing architec-

ures, improve their resilience to various security attacks, and build
obust AI models for attack prediction for architecture blocks and intra-
lices. We conclude that federated learning can make an architecture
ore resilient to threats, mainly by providing on-demand adjustments

nd adapting to changing data. In addition, we evaluated the behav-
or of training rounds in federated learning. We determined that the
umber of training rounds was insignificant for constructing these AI
odels.

The results of this study offer new insights into the evolution
f architectures and frameworks for network slicing, allowing their
xtension to the design of architectures adapted to security that support
he requirements of new applications and business verticals.

For future work, we plan to focus on enhancing our solution by
ntegrating new machine learning models to bolster its capacity to
espond to security threats. Additionally, we aim to explore the appli-
ation of reinforcement learning to ensure the robustness of network
licing architectures, even in novel attack scenarios. We also intend
o investigate the impact of different security methods on service-level
greements and operator revenue.

This study reports recent advancements and highlights significant
esearch opportunities in intelligent and security-aware resource shar-
ng for future network architectures.
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