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Abstract
Generalizing a construction presented in Arsie and Lorenzoni (Lett Math Phys
107:1919–1961, 2017), we show that the orbit space of B2 less the image of the
coordinate lines under the quotient map is equipped with two Dubrovin-Frobenius
manifold structures which are related respectively to the defocusing and the focusing
nonlinear Schrödinger (NLS) equations. Motivated by this example, we study the case
of Bn and we show that the defocusing case can be generalized to arbitrary n lead-
ing to a Dubrovin-Frobenius manifold structure on the orbit space of the group. The
construction is based on the existence of a non-degenerate and non-constant invariant
bilinear form that plays the role of the Euclidean metric in the Dubrovin–Saito stan-
dard setting. Up to n = 4 the prepotentials we get coincide with those associated with
the constrained KP equations discussed in Liu et al. (J Geom Phys 97:177–189, 2015).
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1 Introduction

According to a classical theorem due to Chevalley, given a finite group generated by
(pseudo-)reflections the invariant functions ring of the orbit space of the group is a
polynomial ring generated by a set of invariant polynomials, called basic invariant
polynomials.

In general, the basic invariants are not uniquely defined, while their degrees depend
only on the choice of the group.

In the case of Coxeter groups, a procedure to select uniquely a set of basic invariant
polynomials was proposed by Saito in [31] and it is based on the notion of flat structure
on the orbit space.

An explicit construction of polynomial basic invariants was implemented by Saito,
Yano and Sekiguchi in [30] through a case by case analysis (with the exception of the
group E7 and E8).
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In 1993 Dubrovin interpreted Saito’s construction in terms of bihamiltonian geom-
etry and Dubrovin-Frobenius manifolds [12]. He showed that starting from the
Euclidean metric (defined on the Euclidean space where the group acts) and from
the flat structure on the orbit space, it is possible to define a flat pencil of metrics.
This notion had been previously introduced by Dubrovin himself in the study of
a special class of bihamiltonian structures related to Dubrovin-Frobenius manifolds
[9]. Under suitable additional assumptions (exactness, homogeneity and Egorov prop-
erty) flat pencil of metrics are in one-to-one correspondence with Dubrovin-Frobenius
manifolds. Using this correspondence, he defined a polynomial Dubrovin-Frobenius
manifold structure on the orbit space of Coxeter groups. The polynomiality of the pre-
potential for any Coxeter group was conjectured by Dubrovin and proved by Hertling
in [19]. It was observed in [37] that in the case of groups Bn and Dn there are differ-
ent possible choices of the unit vector field leading to different Dubrovin-Frobenius
manifold structures.

In 2004, in the paper [10], Dubrovin introduced the notion of almost duality and
showed that in the case of a Coxeter group the almost dual structure coincides with a
universal structure introduced by Veselov in [36] (Veselov’s ∨-system). In the same
paper he found a generalization of Saito’s construction for Shephard groups (symmetry
groups of regular complex polytopes [32]). The role of the Euclideanmetric in this case
is played by a flat metric defined by the Hessian of the lowest degree basic invariant.
Flatness of this metric relies on a previous result of Orlik and Solomon [27].

It turned out that the Dubrovin-Frobenius structure obtained in this way on the orbit
space of a Shephard group is isomorphic to the Dubrovin-Frobenius structure defined
on the orbit space of the associated Coxeter group.

In 2015 Kato, Mano and Sekiguchi proposed a further generalization of Dubrovin–
Saito construction in the case of well-generated complex reflection groups [20]. The
outcome of their construction is not a Dubrovin-Frobenius manifold but a flat F-
manifold [26] or, using the language of meromorphic connections, a Saito structure
without metric [29].

In 2017 two of the authors of the present paper proposed an alternative construc-
tion of (bi)-flat F-manifolds on the orbit space of complex reflection groups [3]. The
starting point of [3] is a “dual flat structure" defined by a family of flat connections
of Dunkl-Kohno type associated with a complex reflection group [14, 21, 24]. This
family of connections depends on the choice of an invariant function on the set of
reflecting hyperplanes: for each hyperplane one has to choose a “weight” and the
weights assigned to different hyperplanes must coincide if the hyperplanes belong to
the same orbit under the action of the relevant group.

A standard choice consists in assigning to each hyperplane the order of the cor-
responding reflection. In all the examples considered in [3] this choice corresponds
to Kato–Mano–Sekiguchi flat F-manifold structure. Other admissible choices lead
to different structures and conjecturally the orbit space of a well-generated complex
reflection is equipped with a (N − 1)-parameter family of flat F-manifold structures,
where N is the number of orbits for the action of the group on the set of reflecting
hyperplanes, see [4]. This conjecture has been verified forWeyl groups of rank 2, 3 and
4, for the dihedral groups I2(m), for any of the exceptional well-generated complex
reflection groups of rank 2 and 3 and for any of the groups G(m, 1, 2) and G(m, 1, 3).
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In [3] it was also pointed out that in the case of Shephard groups, in general, the
Kato–Mano–Sekiguchi construction does not reduce to Dubrovin’s construction on
the orbit space of these groups.

An alternative proof of the existence of the “standard" Kato–Mano–Sekiguchi
structure was obtained starting from a dual structure (equivalent to the flat structure
considered in [3]) by Konishi, Minabe and Shiraishi in [22].

In the present paper, combining the Dubrovin–Saito approach with the approach
pursued in [3], we present a further generalization of the Dubrovin–Saito procedure
for the series Bn . In the first part of the paper, exploiting the flexibility of the second
approach we study flat F-manifold structures obtained from a dual flat structure of the
form outlined above in the case of B2, B3 and B4. In all these cases besides the one-
parameter family obtained in [3, 4] there are additional Dubrovin-Frobenius structures
associated with a suitable choice of the weights in the definition of the dual connection
and of the dual product. The corresponding solutions ofWDVVequations are no longer
polynomial due to appearance of a logarithmic term. For n = 2 it coincides with the
Frobenius manifold structure associated with focusing and defocusing NLS equation
depending on the choice of the weights: assigning weight zero to the coordinate axes
and a non vanishing weight to the remaining mirrors one gets the defocusing case,
while the opposite choice leads to the focusing case. The first choice survives also
in the case n = 3 and in the case n = 4 leading to similar solutions of WDVV
equations. These solutions appear in literature (for arbitrary n) in connection with
constrained KP equation, see [23]. As a byproduct of these computations, we get a
bilinear form invariantwith respect to the action of Bn . In order to prove the existence of
a Dubrovin-Frobenius structure for any n, in the second part of the paper, we apply the
Dubrovin–Saito procedure to the invariant bilinear form obtained in the first part. The
main difficulty encountered in the present case, if compared with the standard one, is
due to the fact that the flat pencil obtained applying the first part of the procedure is not
regular and, as a consequence, it is not possible to define all the structure constants of
the product in terms of the Christoffel symbols of the intersection form. This is also the
reason of the presence of a logarithmic term in the Dubrovin-Frobenius prepotential.

2 Bi-flat F-manifolds and Dubrovin-Frobenius manifolds

Definition 2.1 [26] A flat F-manifold is a quadruple (M, ◦,∇, e) where M is a com-
plex manifold, ◦ : XM × XM → XM is a product on the sheaf of holomorphic
vector fields XM , ∇ is a connection on the holomorphic tangent bundle T M and e is
a distinguished holomorphic vector field, satisfying the following axioms:

(1) for every λ ∈ C, ∇(λ) := ∇ + λ◦ is a flat and torsionless connection.
(2) e is the unit of the product ◦.
(3) e is flat: ∇e = 0.

Manifolds equipped with a product ◦, a connection ∇ and a vector field e satisfying
conditions (1) and (2) above will be called almost flat F-manifolds.
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Remark 2.2 The notion of flat F-manifoldmakes sense in the smooth category as well.
In this case M is a smooth manifold, T M its tangent bundle and XM is the sheaf of
smooth vector fields on M .

In local coordinates (u1, . . . , un), denoting with cijk the structure constants of the

product ◦ and with �i
jk the Christoffel symbols of the connection ∇, Condition 1 in

Definition 2.1 reads

T (λ)k
i j = T k

i j + λ(cki j − ckji ) = 0, (2.1)

and

R(λ)k
i jl = Rk

i jl + λ(∇i c
k
jl − ∇ j c

k
il) + λ2(ckimc

m
jl − ckjmc

m
il ) = 0, (2.2)

where T (λ)k
i j and R(λ)k

i jl are the torsion and the curvature tensor of the connection

∇(λ), while T k
i j and Rk

i jl are the torsion and the curvature tensor of the connection ∇.
The identity principle of polynomials applied to (2.1) and (2.2) yields the following
consequences:

(1) the connection ∇ is torsionless,
(2) the product ◦ is commutative,
(3) the connection ∇ is flat,
(4) the tensor field ∇l cki j is symmetric in the lower indices,
(5) the product ◦ is associative.

From the above conditions it follows that in flat coordinates the structure constants of
the product can be written as second order partial derivatives of a vector field

cijk = ∂ j∂k F
i , (2.3)

satisfying a non-trivial systemofPDEs calledgeneralizedWDVVequations ororiented
associativity equations:

∂ j∂l F
i∂k∂mF

l = ∂k∂l F
i∂k∂mF

l . (2.4)

Dubrovin-Frobenius manifolds are flat F-manifolds equipped with a homogeneous
invariant metric η compatible with the connection ∇. More precisely

Definition 2.3 A Dubrovin-Frobenius manifold is a flat F-manifold (M, ◦,∇, e)
equipped with a metric (i.e. a complex, bilinear, symmetric non-degenerate form)
η and a distinguished vector field E , called the Euler vector field, satisfying the fol-
lowing conditions

∇η = 0, (2.5)

η(X ◦ Y , Z) = η(X ,Y ◦ Z), ∀X ,Y , Z ∈ X (M), (2.6)

[e, E] = e, LieE◦ = ◦,
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and

LieEη = (2 − d)η,

where d is a constant called the charge of the Frobenius manifold. The latter require-
ment means that E acts as a conformal Killing vector field of the metric η.

In flat coordinates, the existence of an invariant metric implies Fi = ηil∂l F for a
scalar function F called the prepotential of the Dubrovin-Frobenius manifold. Using
this fact, it is immediate to see that the associativity equations (2.4) become the usual
WDVV associativity equations:

∂ j∂h∂i Fηil∂l∂k∂mF = ∂ j∂k∂i Fηil∂l∂h∂mF . (2.7)

It is worth noticing that every Dubrovin-Frobenius manifold comes together with
an almost dual, i.e. a second almost flat F-manifold structure. More precisely

Theorem 2.4 [10]Given a Dubrovin-Frobenius manifold (M, ◦, e, E, η,∇), consider
the open setU where the endomorphism of the tangent bundle E◦ is invertible and con-
sider the corresponding intersection form, i.e. the contravariantmetric g := (E◦) η−1.
Then on U, the data given by

(1) the Levi-Civita connection ∇̃ of g,
(2) the Euler vector field E and
(3) a dual product defined as X ∗ Y = (E◦)−1 X ◦ Y , ∀X ,Y ∈ XM (U ),

define an almost flat F-manifold with unit E and invariant metric g−1.

Replacing ∇̃ with ∇∗ := ∇̃ + λ̄∗ (for a suitable value of λ̄) one obtains a flat
connection ∇∗ satisfying ∇∗E = 0. In this way, for any given Dubrovin-Frobenius
manifold (M, η, ◦, e, E,∇), there are two flat structures:

• the “natural" flat structure (∇, ◦, e) (in particular∇ is called the natural connection
[25]),

• the “dual" flat structure (∇∗, ∗, E) (in particular∇∗ is called the dual connection).

It turns out that these two structures are related by the following condition:

(d∇ − d∇∗)(X◦) = 0, ∀X ∈ XM (U ), (2.8)

where d∇ is the exterior covariant derivative (two connections satisfying this condition
are said to be almost hydrodynamically equivalent [6]).

Definition 2.5 [1] A bi-flat F-manifold M is a manifold equipped with two different
flat F-structures (∇, ◦, e) and (∇∗, ∗, E) related by the following conditions

(1) E is an Euler vector field.
(2) ∗ is the dual product defined by E .
(3) ∇ and ∇∗ satisfy condition (2.8).
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The dual flat structure defined above can be thought as a generalization of Dubrovin’s
almost duality to general flat F-manifold. In the case of Dubrovin-Frobeniusmanifolds
the dual connection in general does not coincide with the Levi-Civita connection of the
intersection form. However these two connections are hydrodynamically equivalent
(i.e. they are almost hydrodynamically equivalent and compatible with the same prod-
uct [6]) and belong to a two-parameter family of torsionless flat connections. This fact
is at the basis of an alternative approach to almost duality and leads to the equivalent
notion of almost duality for Saito structures. The idea is that instead of treating the
two flat structures on an equal footing one can write one of the two flat connections in
terms of the remaining data. We refer to [22] for details and in particular to Lemmas
4.2 and 4.3 for a proof of the equivalence between the two notions of duality.

3 Bi-flat F-manifolds and complex reflection groups

A complex (pseudo)-reflection is a unitary transformation of Cn of finite period that
leaves invariant a hyperplane. A complex reflection group is a finite group generated
by (pseudo)-reflections. Irreducible finite complex reflection groups were classified
by Shephard and Todd in [33] and consist of an infinite family depending on 3 posi-
tive integers and 34 exceptional cases. Well-generated irreducible complex reflection
groups are irreducible complex reflection groups of rank n generated by n (pseudo)-
reflections.

3.1 Flat structures associated with Coxeter groups

A Coxeter group is automatically well-generated. For Coxeter groups we have the
following result.

Theorem 3.1 (Dubrovin, [12]) The orbit space of a finite Coxeter group is equipped
with a Dubrovin-Frobenius manifold structure (η, ◦, e, E) where

(1) The invariant metric η coincides with the bilinear form constructed in [30, 31].
The corresponding set of basic invariant are called Saito flat coordinates.

(2) In the Saito flat coordinates

e = ∂

∂un
, E =

n∑

i=1

(
di
dn

)
ui

∂

∂ui
.

where di are the degrees of the invariant polynomials ui and 2 = d1 < d2 ≤ d3 ≤
· · · ≤ dn−1 < dn (dn is the Coxeter number).

Dubrovin–Saito construction relies on the existence of a flat pencil of metrics asso-
ciated with any Coxeter group. Let us illustrate this construction in a simple example.
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3.2 Dubrovin–Saito construction for B2

In this case, the basic invariants have degree d1 = 2 and d2 = 4. Up to a constant
factor they have the form

u1 = 1

8

(
(p1)2 + (p2)2

)
, u2 = (p1)2(p2)2 + c(u1)2,

where c is an arbitrary constant. The Euclidean cometric has the standard constant
form in the coordinates (p1, p2). Rewriting the Euclidean cometric in the coordinates
(u1, u2) we get

g =
( 1

2u
1 u2

u2 −2c(c + 16)(u1)3 + 4(c + 8)u1u2

)
.

According to Saito’s general result there is a unique choice of c such that the cometric
η = L ∂

∂u2
g is non-degenerate and constant. Indeed the cometric

η =
(
0 1
1 4(c + 8)u1

)

is constant only if c = −8.
According to Dubrovin’s general result for such a choice of c the pencil g − λη is

a flat pencil of contravariant metrics satisfying the following additional properties

• Exactness: there exists a vector field e such that

Leg = η, Leη = 0.

• Homogeneity:

LEg = (d − 1)g,

where Ei := gilηl j e j .
• Egorov property: locally there exists a function τ such that

ei = ηis∂sτ, Ei = gis∂sτ.

Indeed it is immediate to check that ei = δi2, E
i = di

4 u
i and τ = u1. The corresponding

solution of WDVV equation is obtained solving the system [11]

di + d j − 2

dn
ηilη jk∂l∂mF = gi j .

Up to inessential linear terms the solution is

F = 1

2
u1(u2)2 + 64

15
(u1)5.
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3.3 Almost dual structure andVeselov’s∨-system

In the case of Coxeter groups the almost dual structure has a special form, whose
structure is independent of the choice of the group. It is defined by the data

(
∇∗, ∗ = 1

N

∑

H∈H

dαH

αH
⊗ πH , E =

∑
pk

∂

∂ pk

)

where

• ∇∗ is the Levi-Civita connection of the Euclidean metric,
• H is the collection of the reflecting hyperplanes H ,
• αH is a linear form defining the reflecting hyperplane H ,
• πH is the orthogonal projection onto the orthogonal complement of H ,
• N is a normalization factor.

Products of this form appear in the work of Veselov on ∨-systems [36] (see [2, 17] for
an interpretation of Veselov’s conditions in terms of flatness of a Dunkl-Kohno type
connection).

3.4 Flat structures associated with complex reflection groups

Dubrovin–Saito flat structure and Veselov’s dual structure can be generalized to com-
plex reflection groups.

Theorem 3.2 [20] The orbit space of a well-generated complex reflection group is
equipped with a flat F-structure (∇, ◦, e, E) with linear Euler vector field where

(1) The flat coordinates for ∇ are basic invariants (u1, . . . , un) of the group (gener-
alized Saito coordinates).

(2) In the Saito flat coordinates

e = ∂

∂un
, E =

n∑

i=1

(
di
dn

)
ui

∂

∂ui
.

Remark 3.3 The linearity of E (i.e. the condition∇∇E = 0) turns out to be equivalent
to the existence of the dual flat structure. This was proved in the semisimple case in
[3] and later in the non-semisimple case (under some regularity assumptions) in [22].

The dual flat structures are described by the following theorem

Theorem 3.4 Let G be an irreducible complex reflection group acting on C
n. Then

the data
(

∇∗ = ∇0 −
∑

H∈H

dαH

αH
⊗ τHπH , ∗ =

∑

H∈H

dαH

αH
⊗ σHπH , E =

∑
pk

∂

∂ pk

)

where
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• H is the collection of the reflecting hyperplanes H,
• αH is a linear form defining the reflecting hyperplane H,
• πH is the unitary projection onto the unitary complement of H,
• the collections of weights σH and τH are G-invariant and satisfy

∑

H∈H
σHπH =

∑

H∈H
τHπH = I d, (3.1)

• ∇0 is the standard flat connection on Cn,

define a flat F-structure on C
n that descends on the orbit space of the group.

The proof of this theorem can be found in [4] (Theorem 4.7) and it is a straightforward
consequence of a result of Looijenga [24] (see also Example 2.5 in [8]). In the case
of well generated complex reflection groups of rank 2,3,4 it was proved in [3, 4]
that, for a suitable choice of the weights σH and τH and of the basic invariants, there
exists a bi-flat F-manifold structure whose natural structure has the form described
in Theorem 3.2 and whose dual structure has the form described in Theorem 3.4. In
all the examples choosing σH and τH , proportional to the order of the corresponding
pseudo-reflection the natural structure coincides with the flat structures obtained in
[20]. In general the choice of the weights τH is not unique as we are going to illustrate
in the case of B2.

Remark 3.5 In the previous theorem, the unitary projections πH are constructed using
the unique (up to a scalar multiple) G-invariant Hermitian metric on C

n .

3.5 A simple example: B2

3.5.1 Step 1: The dual product ∗

We start from the product

∗ =
∑

H∈H

dαH

αH
⊗ σHπH

where

α1 = p1, α2 = p2, α3 = p1 − p2 α4 = p1 + p2

Let us call Orbit 1 the orbit containing the straight lines α1 = 0 and α2 = 0 and Orbit
2 the orbit containing the straight lines α3 = 0 and α4 = 0. According to the general
rule the weights must be the same for lines in the same orbit:

σ1 = σ2 = x

x + y
, σ3 = σ4 = y

x + y
.
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We get

c∗1
11 = (x + y)(p1)2 − x(p2)2

(x + y)p1
(
(p1)2 − (p2)2

) , c∗2
11 = −yp2

(x + y)
(
(p1)2 − (p2)2

) = c∗1
21 = c∗1

12

c∗2
12 = yp1

(x + y)
(
(p1)2 − (p2)2

) = c∗2
21 = c∗1

22, c∗2
22 = x(p1)2 − (x + y)(p2)2

(x + y)p2
(
(p1)2 − (p2)2

) .

3.5.2 Step 2: The connection∇

We assume that the flat coordinates of ∇ are basic invariants. For B2 up to a constant
factor they depend on a single parameter c:

u1 = (p1)2 + (p2)2, u2 = (p1)2(p2)2 + c(u1)2.

Writing the connection ∇ in the coordinates p1, p2 we get

�1
11 = − (4c − 1)(p1)2 + (p2)2

p1
(
(p1)2 − (p2)2

) , �2
11 = 4c(p1)2

p2
(
(p1)2 − (p2)2

) , �1
12 = − 2(2c + 1)p2(

(p1)2 − (p2)2
) = �1

21

�2
12 = 2(2c + 1)p1(

(p1)2 − (p2)2
) = �2

21, �1
22 = − 4c(p2)2

p1
(
(p1)2 − (p2)2

) , �2
22 = (4c − 1)(p2)2 + (p1)2

p2
(
(p1)2 − (p2)2

) .

3.5.3 Step 3: The unit vector field e

We assume that in the basic invariants e = ∂
∂u2

.

3.5.4 Step 4: The product ◦

From ∗ and e we can define ◦ in the usual way as

X ◦ Y = (e∗)−1X ∗ Y , ∀X ,Y .

We get

c111 = −2x(p1)3

(x + y)
+ 2p1(p2)2, c211 = 2y(p1)2 p2

x + y
= c112 = c121

c212 = 2y(p2)2 p1

x + y
= c221 = c122, c222 = 2p2(p1)2 − 2x(p2)3

x + y
.

3.5.5 Step 5: The constraint on the weights

Imposing the compatibility between ∇ and ◦:

∇kc
i
jl = ∇ j c

i
lk

we get the constraint x = y, that is σ1 = σ2 = σ3 = σ4 = 1
2 .
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3.5.6 Step 6: The dual connection∇∗

Imposing the condition ∇∗E = 0 and the condition (2.8) we obtain the Christoffel
symbols of ∇∗:

b111 = (4c + 1)(p2)2 − (p1)2

p1
(
(p1)2 − (p2)2

) , b211 = − 4cp2

(p1)2 − (p2)2
, b112 = − −4cp2

(p1)2 − (p2)2
= b121

b212 = 4cp1

(p1)2 − (p2)2
= b221, b122 = 4cp1

(p1)2 − (p2)2
, b222 = − (4c + 1)(p1)2 − (p2)2

p2
(
(p1)2 − (p2)2

) .

In particular for c = − 1
8 we have bijk = −c∗i

jk .

3.5.7 Step 7: The vector potential

The above data and the Euler vector field E = ∑
n pn ∂

∂ pn define a a bi-flat F-manifold
structure (∇, ◦, e,∇∗, ∗, E) for any choice of c. Solving the system

cijk = ∂ j∂k F
i
B2 ,

we get the vector potential

F1
B2 = u1u2 − 1

12
(u1)3(8c + 1), F2

B2 = − c

12
(4c + 1)(u1)4 + 1

2
(u2)2.

(3.2)

For c = − 1
8 the vector potential comes from a Dubrovin-Frobenius prepotential.

Summarizing, assuming e = ∂
∂u2

the choice of the weights σH is unique (they
coincide up to a normalization factor with the order of the corresponding reflection)
while the choice of theweights τH depends on a parameter c. In [3, 4] itwas conjectured
that this additional freedom appears every time that all the mirrors do not belong to
the same orbit.

4 Amodified construction

4.1 The case of B2

In flat coordinates the components of the unit vector field should be constant. Following
Dubrovin–Saito and Kato–Mano–Sekiguchi we have assumed that the flat coordinates
are basic invariants and that e = ∂

∂u2
, where u2 is the highest degree invariant polyno-

mial. The last assumption is very natural since (up to a constant factor) the vector field
∂

∂u2
is not affected by a change in the choice of the basic invariants. In this Section,

restricting ourselves to the case of B2, we will study what happens if we remove this
hypothesis.
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Defining ◦ in the usual way and imposing the condition

∇kc
i
jl = ∇ j c

i
lk,

after some computations (performed with the help of Maple) we get the following
solutions

(1) y = x , e1 = 0,
(2) c = 0, x = 0 and e2 = 0,
(3) c = − 1

4 , y = 0 and e2 = 0.

The first solution corresponds to the one-parameter family of bi-flat F-manifold struc-
tures related to the vector potentials (3.2). Following the same steps outlined above,
the second and the third solution lead to the following solutions of WDVV equations

F = 1

2
(u1)2u2 ± 1

2
(u2)2

(
ln u2 − 3

2

)
.

These are the prepotentials of theDubrovin-Frobeniusmanifolds associatedwith defo-
cusing/focusing NLS equation. Indeed, let us consider the chain of commuting flows
of the principal hierarchy (see for instance [11]), obtained starting from

uit0 = uix , i = 1, 2.

These flows have the form

uit(α)
= cijk X

j
(α)u

k
x = ηil∂l∂ j∂k F X j

(α)u
k
x , i = 1, 2, α = 0, 1, 2, . . . ,

where X j
(0) = e j = δ

j
1 and the vector fields X(α) are obtained solving the recursion

relations

∂ j X
i
(α) = cijk X

k
(α−1).

For instance (independently of the choice of the sign in F) we obtain

X1
(1) = u1, X2

(1) = u2.

Taking into account that the non-zero structure constants are

c122 = ± 1

u2
, c111 = c212 = c221 = 1,

the corresponding evolutionary PDEs are given by

u1t(1) = c1jk X
j
(1)u

k
x = c111X

1
(1)u

1
x + c122X

2
(1)u

2
x = u1u1x ± u2x ,

u2t(1) = c2jk X
j
(1)u

k
x = c212X

1
(1)u

2
x + c221X

2
(1)u

1
x = (u1u2)x .
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They coincide with the dispersionless limit of the evolutionary system of PDEs asso-
ciated with defocusing/focusing NLS equation (compare with Example 2.12 in [13]
where u1 = −v and u2 = u).

It is worth mentioning that the genus expansion of the first Dubrovin-Frobenius
manifold structure is related to higher genera generalization of the Catalan numbers
[7].

4.2 The cases B3 and B4

The previous computations becomes very cumbersome for n > 2 and it seems very
difficult to carry out all the steps without some additional assumptions.

Motivated by the previous example we investigate bi-flat F-manifold structures
associated with following two choices of the weights {σH }H∈H:

(1) σH = 0 if H is one of the (hyper)planes pi = 0 (otherwise σH = 1). All these
(hyper)planes belong to the same orbit (Orbit I).

(2) σH = 0 if H is one of the (hyper)planes of Orbit II (otherwise σH = 1).

It turns out that the first choice leads to a Dubrovin-Frobenius manifold with prepo-
tentials

FB3 = 1

6
(u2)3 + u1u2u3 + 1

12
(u1)3u3 − 3

2
(u3)2 + (u3)2 ln u3,

FB4 = 1

108
(u1)4u4 + 1

6
(u1)2u2u4 − 1

72
(u2)4 + u1u3u4 + 1

2
(u2)2u4 + 1

2
u2(u3)2

−9

4
(u4)2 + 3

2
(u4)2 ln u4,

while the second choice does not produce any bi-flat structure.

Remark 4.1 The above solutions of WDVV can be obtained also from solutions of
WDDV equations associated with extended affine Weyl groups of type An by a Leg-
endre transformation. For instance, the details of the Legendre transformation between
FB2 and the prepotential associated with A(1)

1 can be found in [28] while for details of

the Legendre transformation between FB3 and the prepotential associated with A(1)
2

we refer to [11] and [35].
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In order to prove the existence of a Dubrovin-Frobenius manifold structure for any
n, associated with the first choice, we will use a different strategy. The key observation
is that in all the above examples (n = 2, 3, 4) the intersection form has always the
same expression

gB2 =
⎡

⎣
0 1

p1 p2

1
p1 p2

0

⎤

⎦ , gB3 =

⎡

⎢⎢⎢⎣

0 1
p1 p2

1
p1 p3

1
p1 p2

0 1
p2 p3

1
p1 p3

1
p2 p3

0

⎤

⎥⎥⎥⎦ , gB4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1
p2 p1

1
p1 p3

1
p1 p4

1
p1 p2

0 1
p2 p3

1
p2 p4

1
p1 p3

1
p2 p3

0 1
p3 p4

1
p1 p4

1
p2 p4

1
p3 p4

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

In the next Section, starting from the intersection form defined by

gi j (p) = (1 − δi j )

pi p j
, i, j = 1, . . . , n (4.1)

we will prove the existence of a flat pencil of metrics which yields a Dubrovin-
Frobenius structure for any n. Our approach relies on a suitable generalization of
Dubrovin–Saito construction. The proof of the existence of the Saito metric closely
follows the ideas of the paper by Saito, Yano and Sekiguchi [30], while the recon-
struction of the Dubrovin-Frobenius manifold structure requires to overcome some
additional technical difficulties with respect to the standard procedure of [9] due to
the non regularity of the associated flat pencil.

5 A flat pencil of metrics associated with Bn

The goal of this Section and of the next Section is to construct a Dubrovin-Frobenius
structure on the orbit space of Bn , generalizing the ones previously computed for
B2, B3 and B4, that lead to prepotentials containing logarithmic terms. The starting
point is the intersection form (4.1); taking the Lie derivative of gi j with respect to
the second highest degree invariant polynomial un−1 we build a new bilinear form η

and we prove that the pair (g, η) forms a flat pencil of metrics, which is also exact,
homogenous and satisfies the Egorov property. ByDubrovin’s general correspondence
between such pencils and Dubrovin-Frobenius structures, this will allow us to equip
the (open subset of the)n orbit space Cn/Bn (where the logarithm does not degerate)
with the latter structure.

First we will prove a few preliminary results concerning g, which, in this set up,
plays the role played by the Euclidean cometric in the standard one. To this end, we
will start observing that, as in the Euclidean case, g is Bn invariant and flat.

5.1 Invariance of gwith respect to the action of Bn

First we observe that
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Lemma 5.1 The metric defined by gi j =
(

1
n−1 − δi j

)
pi p j and the cometric defined

by gi j = (1−δi j )

pi p j are inverse to each other.

Proof First we consider gki gik (sum over i , k fixed) and we get:

gki gik =
n∑

i=1

(
1

n − 1
− δki

)
(1 − δik)

pi pk

pi pk
=

n∑

i=1

(
1

n − 1
− δki

)
(1 − δik)

=
∑

i,i �=k

(
1

n − 1
− δki

)
= 1.

Next we consider gki gil (sum over i , while k and l are fixed, k �= l) and we get:

gki gil =
n∑

i=1

(
1

n − 1
− δki

)
pl

pk
(1 − δil) =

∑

i,i �=l

(
1

n − 1
− δki

)
pl

pk

=
⎛

⎝
∑

i,i �=l,k

1

n − 1

pl

pk

⎞

⎠ +
(

1

n − 1
− 1

)
pl

pk
=

(
n − 2

n − 1
− n − 2

n − 1

)
pl

pk
= 0.

�

The next proposition shows that the metric defined by the gi j (p)s introduced in the

previous lemma is invariant under the action of Bn . Of course, from this the invariance
of the corresponding cometric follows.

Proposition 5.2 The metric g := gi j (p)dpi ⊗ dp j =
(

1
n−1 − δi j

)
pi p j dpi ⊗ dp j is

invariant under the action of Bn on V = R
n.

Proof The action of Bn on V is generated by reflectionswith respect to the hyperplanes
{p j = 0}, j = 1, . . . , n and {pi ± p j = 0}, i, j = 1, . . . , n, i < j . We denote by
Ap j the Jacobian of the transformation associated to the reflection with respect to the
hyperplane {p j = 0}, and analogously for Api±p j .

The matrix Ap j is a constant diagonal matrix with 1s on the main diagonal except
in position ( j, j) where there is −1. Under the action of the reflection with respect
to the hyperplane {p j = 0}, the metric transforms as (Ap j )T gAp j (p = p̃) where g
is the matrix associated to the metric, T denotes transposition and p = p̃ means that
after the matrix operations have been completed, the metric is rewritten in terms of
the new coordinates pi = p̃i for i �= j and p j = − p̃ j . Now it is immediate to see
that the action of Ap j on g is to change the sign of all terms that contain p j except the

diagonal term ( 1
n−1 − 1)(p j )2. Then once it is rewritten in terms of the coordinates

p̃, the metric coincides with the original one.
As for the reflections with respect to the hyperplanes {pi − p j = 0} we argue as

follows. The matrix Api−p j is a constant matrix with 1s on the main diagonal, except
in position (i, i) and ( j, j)where there is zero and it has 1 in position (i, j) and ( j, i),
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while all the other entries are zero. Notice that AT
pi−p j = Api−p j and that Api−p j

is the matrix representation of a transposition. Therefore, when Api−p j acts on the
left on a column vector, it exchanges the positions of i-th and j-th components of the
column vector but it leaves the other unchanged. Similarly, when Api−p j acts on the
right on a row vector, it exchanges the positions of i-th and j-th components of the row
vector but it leaves the other unchanged. Thus, AT

pi−p j gApi−p j = Api−p j gApi−p j

is obtained from g first exchanging the i-th and j-th rows and then exchanging the
i-th and j-th columns (or first working with the columns and then with the rows) and
leaving the rest unchanged. By the form of the columns and rows of g, after performing
the change of variables pk = p̃k k �= i, j , pi = p̃ j and p j = p̃i , AT

pi−p j gApi−p j

coincides with g.
Reflections with respect to the hyperplane {pi + p j = 0} are obtained as com-

position of reflections with respect to the hyperplanes {pi = 0}, {p j = 0} and
{pi − p j = 0}. To see this, just observe that the matrix Api+p j is a constant matrix
with 1s on the main diagonal except in positions ( j, j) and (i, i) where there is 0,
and it has−1 in positions (i, j) and ( j, i). Therefore Api+p j = Api Ap j Api−p j . Now
invariance follows from the previous paragraphs. The proposition is proved. �


Recall that the elementary symmetric polynomials f1, . . . , fn , in the variables
y1, . . . , yn , are defined by

fk =
∑

1≤i1<···<ik≤n

yi1 · · · yik , k = 1, . . . , n.

Let u0 := 1, uk := 0, ∀k ≥ n + 1 and

ui := fi (p
2
1, . . . , p

2
n), i = 1, . . . , n. (5.1)

The previous result implies the following

Lemma 5.3 The cometric gi j (u) := gkl(p) ∂ui

∂ pk
∂u j

∂ pl
can be written in terms of the

invariant polynomials and it is well-defined on the quotient. Moreover, for each i and
j , gi j (u) is a homogeneous polynomial in the p-variables of degree 2i+2 j−4, which
depends at most linearly on un−1. In particular,

g11(u) = 4(n2 − n). (5.2)

Proof The homogeneity of the gi j (u)s, as functions of the p-variables, is clear. Since
all invariant polynomials are really polynomials in (p1)2, . . . , (pn)2 no matter which

ones we choose, then ∂ui

∂ pk
contains a factor pk that cancels the factor pk in the denom-

inator of gkl(p) and similarly for ∂u j

∂ pl
. Thus gi j (u) has entries that are polynomials in

the p-variables, and since it is invariant by Proposition 5.2, it can be written in terms
of the invariant polynomials, and thus it is well-defined on the quotient.



    2 Page 18 of 48 A.Arsie et al.

As ui is a homogeneous polynomial in the p-variables of degree deg(ui ) = 2i and,
for k �= l, deg(gkl(p)) = −2, see (5.1), then

deg(gi j (u)) = 2i − 1 + 2 j − 1 − 2 = 2(i + j) − 4, (5.3)

as function of the p-variables.
For the gi j (u)s above the anti-diagonal, i.e. for i + j < n + 1, therefore we have

deg(gi j (u)) = 2(i+ j)−4 < 2(n+1)−4 = 2(n−1), so those entries can not depend
on un−1. All the entries with (i, j) such that n + 1 ≤ i + j < 2n depend at most
linearly on un−1, since in this range we have 2n−2 ≤ deg(gi j (u)) < 4n−4. Finally,
since un = (p1 · · · pn)2, it is immediate to see that each term in the sum (over k and l)
gnn(u) = gkl(p) ∂un

∂ pl
∂un

∂ pk
contains un . Since deg(un) = 2n and deg(gnn(u)) = 4n−4,

we can write gnn(u) = un f , where f is polynomial in p of degree 2n − 4, so f can
not contain un−1. This proves the claim.

Now

g11(u) = gkl(p)
∂u1

∂ pk
∂u1

∂ pl
=

∑

k,l=1,...,n

(1 − δkl)

pk pl
2pk2pl

= 4
∑

k,l=1,...,n

(1 − δkl) = 4(n2 − n),

thus proving (5.2). �


5.2 Flatness of g

Recall that the Christoffel symbols of the Levi-Civita connection ∇ defined by the
metric g are the (locally defined) functions

�k
i j = 1

2

n∑

m=1

gmk
(

∂gim
∂ p j

+ ∂g jm

∂ pi
− ∂gi j

∂ pm

)
, (5.4)

and that the contravariant components of ∇ are

�
i j
k (p) := −

n∑

s=1

gis(p)� j
sk(p), i, j, k = 1, . . . , n. (5.5)

Let g be defined as in (4.1). Then

Lemma 5.4 One has that

�i
i i (p) = 1

pi
and �k

i j (p) = 0 otherwise. (5.6)
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Proof In the following proof all the metric coefficients and all Christoffel symbols
depend only on the p-variables. To prove (5.6), first one computes

∂gim
∂ p j

Lemma 5.1= ∂

∂ p j

[(
1

n − 1
− δim

)
pi pm

]

=
(

1

n − 1
− δim

)
(δ j i p

m + δ jm pi )

= gim

(
δi j

pi
+ δmj

pm

)
.

This yields

gmk
(

∂gim
∂ p j

+ ∂g jm

∂ pi
− ∂gi j

∂ pm

)

= gmk
[
gim

(
δi j

pi
+ δmj

pm

)
+ g jm

(
δi j

p j
+ δmi

pm

)
− gi j

(
δim

pi
+ δmj

p j

)]
,

which inserted in (5.4) gives

�k
i j = δi j

2

[
1

pi

n∑

m=1

gmkgim + 1

p j

n∑

m=1

gmkg jm

]

+ 1

2

[
n∑

m=1

gmkgim
δmj

pm
+

n∑

m=1

gmkg jm
δmi

pm

]

− gi j
2

[
1

pi

n∑

m=1

gmkδim + 1

p j

n∑

k=1

gmkδmj

]

= δi j

2

(
δik

pi
+ δk j

p j

)
+ 1

2

(
g jkgi j
p j

+ gikgi j
pi

)
− gi j

2

(
gik

pi
+ g jk

p j

)

i.e.

�k
i j = δi j

2

(
δik

pi
+ δ jk

p j

)
,

which entails the thesis. �

Proposition 5.5 The metric gi j is flat.

Proof This can be proved by direct computation of the Riemann tensor using the
Christoffel symbols (5.6). A quicker way to do this is to introduce the connection 1-
form ωi

j := �i
jkdp

k and the corresponding curvature 2-forms �i
j := dωi

j + ωi
k ∧ ωk

j .

Due to (5.6) we have that ωi
j = 0 if i �= j and ωi

i = dpi

pi
= d(log(pi )), which imply

�i
j = 0, if i �= j and �i

i = ωi
i ∧ ωi

i = dpi∧dpi
(pi )2

= 0 (no sum over i) otherwise. So the
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curvature two-form is identically vanishing, which implies that the Riemann tensor
vanishes too. A third way to prove the flatness of g is to observe that the connection
defined by (5.6) is a logarithmic connection with weights that are invariant under the
action of Bn (see Example 2.5 in [8]). �


Remark 5.6 In the flat local coordinates yi = (pi )2

2 the cometric g has the form

gi j = 1 − δi j (5.7)

that is invariant under the action of An on the space of coordinates (y1, . . . , yn).

5.3 Definition of�

In this subsection we introduce η as a Lie derivative with respect to the second highest
degree invariant polynomial of the cometric gi j (u), see Lemma 5.3. From this, some
essential properties of the bilinear form η will follow.

Proposition 5.7 The Lie derivative with respect to the vector field ∂
∂un−1 of the inter-

section form gi j (u) is given by the formula

ηi j (u) = ∂gi j

∂un−1 (u) = 4(2n − i − j)ui+ j−n−1. (5.8)

Hence, ηi j (u) is a non-degenerate Hankel matrix with all vanishing entries above the
anti-diagonal. In particular, the entries of the anti-diagonal i + j = n + 1 are

ηi,n−i+1(u) = 4(n − 1).

Proof If

h(x) =
n∑

k=0

ukxn−k =
n∏

l=1

(x + (pl)2) (5.9)

and

gi j (u) =
n∑

s,k=1

(1 − δsk)

ps pk
∂ui

∂ ps
∂u j

∂ pk
,
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one has

1

4

n∑

i, j=1

gi j (u)xn−i yn− j = 1

4

n∑

i, j=1

n∑

s,k=1

(1 − δsk)

ps pk
∂ui

∂ ps
∂u j

∂ pk
xn−i yn− j

= 1

4

n∑

s,k=1

(1 − δsk)

ps pk
∂

∂ ps

( n∑

i=1

ui xn−i
)

∂

∂ pk

( n∑

j=1

u j yn− j
)

u0=1= 1

4

n∑

s,k=1

(1 − δsk)

ps pk
∂

∂ ps

( n∑

i=0

ui xn−i
)

∂

∂ pk

( n∑

j=0

u j yn− j
)

(5.9)= 1

4

n∑

s,k=1

(1 − δsk)

ps pk
∂h(x)

∂ ps
∂h(y)

∂ pk
.

Since

∂h(x)

∂ ps
= ∂

∂ ps

n∏

l=1

(x + (pl)2) = 2ps

n∏

l �=s

(x + (pl)2),

1

4

n∑

s,k=1

1

ps pk
∂h(x)

∂ ps
∂h(y)

∂ pk
=

n∑

s,k=1

n∏

l �=s

(x + (pl)2)
n∏

q �=k

(y + (pq)2)

=
n∑

s=1

n∏

l �=s

(x + (pl)2)

( n∑

k=1

n∏

q �=k

(y + (pq)2)

)

= h′(x)h′(y)

and

−1

4

n∑

s,k=1

δsk

ps pk
∂h(x)

∂ ps
∂h(y)

∂ pk
= −1

4

n∑

k=1

1

(pk)2
∂h(x)

∂ pk
∂h(y)

∂ pk

= −
n∑

k=1

n∏

l �=k

(x + (pl)2)
n∏

q �=k

(x + (pq )2)

= −
n∑

k=1

h(x)h(y)

(x + (pk)2)(y + (pk)2)

= −
n∑

k=1

[ −h(x)h(y)

(x − y)(x + (pk)2)
+ h(x)h(y)

(x − y)(y + (pk)2)

]

= 1

x − y

(( n∑

k=1

h(x)

x + (pk)2

)
h(y) −

( n∑

k=1

h(y)

y + (pk)2

)
h(x)

)

= −h′(y)h(x) − h′(x)h(y)

x − y
,



    2 Page 22 of 48 A.Arsie et al.

we obtain

1

4

n∑

i, j=1

gi j (u)xn−i yn− j = h′(x)h′(y) − h′(y)h(x) − h′(x)h(y)

x − y
.

Since h′(x) = ∑n−1
k=0(n − k)ukxn−k−1, see (5.9), deriving both sides of the previous

identity with respect to un−1 we obtain

1

4

n∑

i, j=1

∂gi j

∂un−1 (u)xn−i yn− j = ∂

∂un−1

(
h′(x)h′(y) − h′(y)h(x) − h′(x)h(y)

x − y

)

= h′(y) + h′(x) − 1

x − y

(
− h(y) − yh′(x) + h(x) + xh′(y)

)

= h(y) − h(x) + xh′(x) − yh′(y)
x − y

.

Now we have to identify the entries of the matrix ηi j (u) = ∂gi j

∂un−1 (u) in the above
expression. Deriving k times with respect x we have

1

4

n∑

i, j=1

ηi j (u)
∂k xn−i

∂xk
yn− j = 1

4

n−k∑

i=1

n∑

j=1

(n − i)!
(n − i − k)!η

i j (u)xn−i−k yn− j .

Evaluating at x = 0 we obtain the term that does not depend on x , namely the term
i = n − k

1

4
k!

n∑

j=1

ηn−k, j (u)yn− j = ∂k

∂xk

(
h(y) − h(x) + xh′(x) − yh′(y)

x − y

)∣∣∣∣
x=0

.

Similarly, deriving s times with respect y we have

1

4
k!

n−s∑

j=1

(n − j)!
(n − j − s)!η

n−k, j (u)yn− j−s .

Evaluating at y = 0 we obtain the term j = n − s, hence

1

4
k!s! ηn−k,n−s(u) = ∂k+s

∂xk∂ ys

(
h(x) − h(y) + xh′(x) − yh′(y)

x − y

)∣∣∣∣
x=y=0

.

Now, we can find each entries of the matrix ηi j (u). The lemma is proved. �

Remark 5.8 From now on, since we want ηi,n−i+1(u) = 1 for all i , we normalize the
cometric gi j dividing it by 4(n − 1). Thus, using (5.2) we have that g11(u) = n.
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A matrix like ηi j as determined in formula (5.8) is called lower anti-triangular.
Since the form η defined in (5.8) depends polynomially on the us and its determinant
is a constant different from zero, we have that

Lemma 5.9 The metric η−1 depends polynomially on the u′s as well. Moreover, ηi j is
also lower anti-triangular.

Proof Let pη(λ) be the characteristic polynomial of the matrix associated to the inter-
section form. It is a polynomial in λwith coefficients that are polynomials in the entries
of the intersection form and thus they are polynomials in the u’s. By Cayley–Hamilton
theorem, pη(η) = 0 identically, where by ηwemean thematrix associated to the inter-
section form. But pη(η) = ηn+cn−1η

n−1+· · ·+c1η+c01, where c0 = (−1)n det(η)

and 1 denotes the identity matrix. From this we get immediately

η−1 = (−1)n−1

det(η)
(ηn−1 + cn−1η

n−2 + · · · + c11),

from which it is clear that the entries of η−1 are polynomials in the us, since det(η)

is a constant and all the other terms depend on the us as polynomials. To show that
it is also lower anti-triangular, it is enough to observe that every lower anti-triangular
matrix can be obtained as a product L A of two matrices, where L is lower triangular
and A is the matrix with all ones on the anti-diagonal and zero in the other entries.
Furthermore, it is well-known that the inverse of a lower triangular matrix is lower
triangular while the inverse of A coincides with A. This immediately shows that η−1

is also lower anti-triangular. �


5.4 The pair (g,�) is a flat pencil of metrics

Recall that

Definition 5.10 A pair of metrics (g1, g2) forms a flat pencil if

• g = g1 + λg2 is a flat metric for all λ;
• The Christoffel symbols �

i j
k of the metric g are of the form

�
i j
k = �

i j
1 k + λ�

i j
2 k, ∀i, j, k = 1, . . . n, ∀λ.

In this subsection we will show that the pair (g, η), where g and η are defined in (4.1)
and, respectively, in (5.8), gives rise to a flat pencil of metrics on Cn/Bn . Our proof is
based on the following result.

Proposition 5.11 (Lemma 1.2. in [12]) If for a flat metric g on some coordinate system
x = (x1, . . . , xn) both the components gi j (x) of the metric g and the contravariant
components �

i j
k (x) of the associated Levi-Civita connection depend at most linearly

on the variable x1, then g1 := g and g2 defined by

gi j2 (x) := ∂x1g
i j (x), ∀i, j,
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form a flat pencil if det(gi j2 (x)) �= 0. The contravariant components of the correspond-
ing Levi-Civita connections are

�
i j
1 k(x) := �

i j
k (x) and �

i j
2 k(x) = ∂x1�

i j
k (x), ∀i, j, k.

As a system of coordinates on C
n/Bn we choose the set of basic invariants

(u1, . . . , un), see (5.1). Lemma 5.3 entails that the metric defined in (4.1) descends to
a metric on the quotient space having the properties required in the Proposition 5.11,
where the role of x1 is played by un−1. To conclude the proof, we are left to prove
that the contravariant components �

i j
k (u) of the Levi-Civita connection defined by g

satisfy the conditions stated in Proposition 5.11. More precisely we will prove that

Proposition 5.12 The contravariant components of the Levi-Civita connection defined
by g are polynomial functions of (u1, . . . , un) which depend at most linearly on un−1.

We split the proof of this proposition in two lemmata.

Lemma 5.13 In the coordinates (u1, . . . , un) the contravariant components of the
Levi-Civita connections defined by g are polynomial functions of (u1, . . . , un).

Proof In the following, unless differently stated, we will sum over repeated indexes.
If �i

jk(p) are the Christoffel symbols in the p-variables and �i
jk(u) those in the u-

variables, one has

�l
i j (p) = ∂ pl

∂uc
∂2uc

∂ pi∂ p j
+ ∂ pl

∂uc
∂ua

∂ pi
∂ub

∂ p j
�c
ab(u). (5.10)

Multiplying both sides of (5.10) by gki (p) ∂u f

∂ pk
∂ud

∂ pl
dp j , we obtain

gki (p)
∂u f

∂ pk
∂ud

∂ pl
�l
i j (p)dp

j = gki (p)
∂u f

∂ pk
∂ud

∂ pl
∂ pl

∂uc
∂2uc

∂ pi∂ p j
dp j

+ gki (p)
∂u f

∂ pk
∂ud

∂ pl
∂ pl

∂uc
∂ua

∂ pi
∂ub

∂ p j
�c
ab(u)dp j .

Now observe that in the two terms of the right-hand side of the above expression
∂ud

∂ pl
∂ pl

∂uc = δdc , so it simplifies to:

gki (p)
∂u f

∂ pk
∂ud

∂ pl
�l
i j (p)dp

j = gki (p)
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j + gki (p)

∂u f

∂ pk
∂ua

∂ pi
�d
ab(u)dub.

Using the definition of Christoffel symbols with two upper indices we get:

−∂u f

∂ pk
∂ud

∂ pl
�kl

j (p)dp j = gki (p)
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j − �

f d
b (u)dub,
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where we have used the fact that gki (p) ∂u f

∂ pk
∂ua

∂ pi
is the cometric written in the u-

variables. We thus obtain

�
f d
b (u)dub = gki (p)

∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j + ∂u f

∂ pk
∂ud

∂ pl
�kl

j (p)dp j . (5.11)

Introducing the contravariant Christoffel symbols �ik
l (p) = −gim(p)�k

ml(p), from
(5.6) one obtains

�ik
l (p)

(5.5)= − (1 − δim)

pi pk pm
δkmδkl = (δki − 1)δkl

pi (pk)2
,

which, inserted in (5.11), yields

�
f d
b (u)dub = (1 − δki )

pi pk
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j + ∂u f

∂ pk
∂ud

∂ pl
(δkl − 1)δl j
pk(pl)2

dp j . (5.12)

Expanding and analyzing the right-hand side of (5.12), we obtain:

∑

k,i, j,k �=i

1

pi pk
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j −

∑

k,l, j,k �=l

∂u f

∂ pk
∂ud

∂ pl
δl j

pk(pl)2
dp j

=
∑

k, j,k �= j

1

p j pk
∂u f

∂ pk
∂2ud

(∂ p j )2
dp j +

∑

k,i, j,k �=i, j �=i

1

pi pk
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j +

−
∑

k, j,k �= j

∂u f

∂ pk
∂ud

∂ p j

1

pk(p j )2
dp j ,

which can be written as:

∑

k, j,k �= j

1

p j pk
∂u f

∂ pk

[
∂2ud

(∂ p j )2
− ∂ud

∂ p j

1

p j

]
dp j +

∑

k,i, j,k �=i, j �=i

1

pi pk
∂u f

∂ pk
∂2ud

∂ pi∂ p j
dp j .

Taking into account that

uk =
∑

1≤i1<···<ik≤n

(pi1 · · · pik )2,

it is immediate to check that first term above vanishes identically, since u1, . . . , un

are polynomials of degree 1 in each of the (pi )2 (i.e. each monomial has degree 1
or 0 in (pi )2), and the second term does not contain any denominator, since they
are simplified (unless d = 1 in which case the second term is identically zero). The
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previous (long) discussion is summarized in the following formula

�rs
b (u)dub =

∑

k,i, j,k �=i, j �=i

1

pi pk
∂ur

∂ pk
∂2us

∂ pi∂ p j
dp j , ∀r , s = 1, . . . , n, (5.13)

whose right-hand side is a 1-form with polynomial coefficients in the p-variables.
To conclude we can argue as follows. Since the left-hand side of (5.13) is Bn-

invariant, the right-hand side is so. Since the latter is a 1-form with polynomial
coefficients, the coefficients of the left-hand side are necessarily polynomial func-
tions in (u1, . . . , un), see [34, Theorem page 3]. �

Remark 5.14 The previous argument is the same used in the proof Lemma 2.1 in [12].
However, while it is evident that the left-hand side of Formula (2.8) in [12] is a 1-form
with polynomial coefficients, the polynomiality of the coefficients of the right-hand
side of (5.13) was not so and it needed to be shown.

To complete the proof of Proposition 5.12, we are left to show that the contravariant
components of the Levi-Civita connection of g depend at most linearly on un−1. This
result follows from the following

Lemma 5.15 For every choice of s, i, k = 1, . . . , n,

deg(�si
k (u)) < 4n − 4. (5.14)

Proof First we will show that for every choice of the indices

deg(�c
ab(u)) = deg(uc) − deg(ua) − deg(ub). (5.15)

To this end, we start noticing that if not all the indices in the left-hand side of (5.10)
are equal, (5.6) implies

∂ pl

∂uc
∂2uc

∂ pi∂ p j
+ ∂ pl

∂uc
∂ua

∂ pi
∂ub

∂ p j
�c
ab(u) = 0,

which yields

∂2uc

∂ pi∂ p j
+ ∂ua

∂ pi
∂ub

∂ p j
�c
ab(u) = 0.

This identity, together with the definition of the invariants u1, . . . , un , implies that
�c
ab(u) is a homogeneous polynomial of degree

deg(�c
ab(u)) = deg(uc) − deg(ua) − deg(ub).

On the other hand, if in (5.10) i = j = l, (5.6) entails

∂uc

∂ pi
1

pi
= ∂2uc

∂2 pi
+ ∂ua

∂ pi
∂ub

∂ pi
�c
ab(u),
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which implies that

deg(uc) − 2 = deg(�c
ab(u)) + deg(ua) + deg(ub) − 2,

or, equivalently, that

deg(�c
ab(u)) = deg(uc) − deg(ua) − deg(ub),

proving (5.15). To conclude the proof of the Lemma, it suffices to note since �si
k (u) =

−gs j (u)�i
jk(u) and deg(ui ) = 2i , for all i = 1, . . . , n,

deg
(
�si
k (u)

) = deg
(
gs j (u)

) + deg
(
�i

jk(u)
)

(5.3)= deg(us) + deg(u j ) − 4 + deg(�i
jk(u))

(5.13)= deg(us) − 4 + deg(ui ) − deg(uk)

= 2s + 2i − 2k − 4 ≤ 4n − 6 < 4n − 4.

�

Corollary 5.16 Since deg(un−1) = 2n − 2, it follows from Lemma 5.15 that �si

k (u),
for all s, k, i = 1, . . . , n, depends at most linearly on un−1.

Summarizing, we have

Theorem 5.17 The pair (g, η) gives rise to a flat pencil of metrics.

Proof The metric gi j (u) is well-defined on the quotient, it depends at most linearly
on un−1 by Lemma 5.3 and it is flat by Proposition 5.5. Furthermore, its contravariant
Christoffel symbols are also polynomial functions that depend at most linearly on

un−1 by Proposition 5.12. Therefore, since ηi j (u) := ∂gi j

∂un−1 (u) has non-zero constant
determinant by Proposition 5.7, (g, η) forms a flat pencil of metrics by Proposition
5.11. �


We close this subsection with a result which will play a crucial role to prove the
existence of a Dubrovin-Frobenius structure on the orbit space Cn/Bn .

Proposition 5.18 (Corollary 2.4 in [12]) There exists a set of Bn-invariant, homoge-
neous polynomials t1(p), . . . , tn(p), deg (tk(p)) = 2k for all k = 1, . . . , n, such that
ηi j is constant in the coordinates (t1, . . . , tn).

Proof We will make only a few comments about the proof of this statement, referring
the reader, for more details, to [12]. In this reference the existence of this set of coordi-
nates was proven for (all Coxeter groups and) g equal to the standard Euclidean metric
ofRn . The proof was based on the following hypothesis, all of them verified also in our
case: the flatness of η and the polynomiality of both η−1 and of the Christoffel sym-
bols of η, when written in the coordinates defined by any set of invariants (u1, . . . , un)
with deg(ui )= di . Under these assumptions it is immediate to check that the Pfaffian
system defining the flat coordinates has polynomial coefficients. The statement of the
theorem then follows from
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• the analiticity of the solutions of a compatible Pfaffian systems with polynomial
coefficients (see for instance [18]).

• the invariance of the space of solutions with respect to scaling transformations
ui → cdi ui .

�

Lemma 5.19 In our case, the flat coordinates of Proposition 5.18 can be further chosen
so that:

ηi j (t) = δi,n+1− j . (5.16)

The coordinates so defined are called Dubrovin–Saito flat coordinates.

Proof By Proposition 5.18 flat coordinates for ηi j are homogenous invariant polyno-
mials with distinct degrees. Therefore, in order to prove the claim of the Lemma, by
Corollary 1.1 in [11] it is enough to show that there exists a system of flat coordinates
t1, . . . , tn such that ηnn(t) = 0. Consider the contravariant metric η written in the
u-variables, see (5.8). Observe that ηnn(u) = 0. Recall that ηnn(u) = 1

det(η)
adj()nn,

where adj() = CT and where C is the cofactor matrix of η, whose entry (i, j) is
(−1)i+ j times the (i, j) minor of η. Since η is lower anti-triangular, its (n, n) minor
is zero, therefore ηnn(u) = 0. Rewriting η−1 in a flat coordinate system (t1, . . . , tn)

we have ηi j (u(t)) ∂ui

∂tk
∂u j

∂tl
dtk ⊗ dtl . Now

ηnn(t) = ηi j (u(t))
∂ui

∂tn
∂u j

∂tn
.

But since ∂ui
∂tn = 0 for degree reasons unless i = n, and analogously for the other

partial derivatives, we have

ηnn(t) = ηnn(u(t))

(
∂un

∂tn

)2

= 0,

(no sum over n) since ηnn(u) = 0. �

Remark 5.20 It is easy to check that non-vanishing contravariant Christoffel symbols
aijk of the Saito flat metric in the coordinates (u1, . . . , un) are given by

ai ji+ j−n−1 = 4(n − j).

Using the above formula one can verify that the invariants u1, un and τ , see Formula
(6.3) in Section 6 below, are flat coordinates.

Remark 5.21 It is also immediate to verify that, in the Dubrovin–Saito flat coordinates,
g11(t) = n, up to a possible rescaling by a constant, see Remark 5.8.
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Remark 5.22 The same results of this section can be obtained writing the An-invariant
metric (5.7) in a suitable set of An-invariant polynomials of degrees 1, 2, . . . , n
obtained combining the elementary symmetric polynomials

fk =
∑

1≤i1<···<ik≤n

yi1 · · · yik , k = 1, . . . , n.

in a suitable way (like in the case of Bn with (pi )2 replaced by 2yi ). The drawback
of this “interpretation" is that the dual product does not seem to admit a natural
explanation in this context.

6 Dubrovin-Frobenius structure of NLS type onC
n/Bn

6.1 From flat pencils of metrics to Dubrovin-Frobenius manifolds

Flat pencils of contravariant metrics are a key component in the theory of Dubrovin-
Frobenius manifolds. More precisely, one can prove that any Dubrovin-Frobenius
structure defines a flat pencil of contravariant metrics (see [11]), and, conversely, that
a Dubrovin-Frobenius structure can be defined starting from a flat pencil of metrics
satisfying the following three additional properties, see [9] (see also [11] and [5]):

• Exactness: there exists a vector field e such that

Leg = η, Leη = 0, (6.1)

whereLe denotes Lie derivative with respect to e. This condition play an important
role in the theory of evolutionary bihamiltonian PDEs both in the dispersionless
and in the dispersive cases (see for instance [16]).

• Homogeneity:

LEg = (d − 1)g, (6.2)

where Ei := gilηl j e j .
• Egorov property: locally there exists a function τ such that

ei = ηis∂sτ, Ei = gis∂sτ. (6.3)

Exactness implies that [e, E] = e and combining this with the homogeneity condition
one obtains

LEη = LELeg = LeLEg − L[E,e]g = (d − 2)η. (6.4)

Moreover, for Dubrovin-Frobenius manifolds the vector fields e and E coincide with
the unit vector field and the Euler vector field, respectively.
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To prove that the flat pencil (g, η) induces a Dubrovin-Frobenius structure on
C
n/Bn , we will start to show that the (g, η) is exact, homogeneous and that it satisfies

the Egorov property or, using Dubrovin’s terminology, that it is quasihomogeneous.

Lemma 6.1 The pair (g, η) form an exact pencil.

Proof The first of (6.1) is true by definition and the second follows from the fact that
η does not depend on un−1 as it can be inferred from formula (5.8). �


Let e = ∂
∂un−1 . Write ∂k := ∂

∂uk
for all k. Recall that

ηi j = 4(2n − i − j)ui+ j−n−1. (6.5)

Then

Lemma 6.2 If τ is given by

τ := 1

4(n − 1)

(
u2 − (n − 2)

2(n − 1)
(u1)2

)
(6.6)

then

ei = ηi j∂ jτ, (6.7)

so the first of (6.3) is fulfilled.

Proof The proof is by a direct computation. Using (6.6) and (6.5), one obtains

ei = 1

4(n − 1)

n∑

j=1

(
ηi jδ j2 − (n − 2)

(n − 1)
ηi jδ j1u

1
)

= 1

4(n − 1)
ηi2 − (n − 2)

4(n − 1)2
ηi1u1

= (2n − i − 2)

(n − 1)
ui+1−n − (n − 2)(2n − i − 1)

(n − 1)2
ui−nu1. (6.8)

Since uk = 0 for all k < 0, if i < n − 1 both summands in (6.8) are zero. If i = n,
(6.8) becomes

(2n − n − 2)

(n − 1)
un+1−n− (n − 2)(2n − n − 1)

(n − 1)2
un−nu1= (n − 2)

(n − 1)
u1 − (n − 2)

(n − 1)
u0u1=0,

since u0 = 1. Finally, if i = n − 1, one obtains

(2n − (n − 1) − 2)

(n − 1)
un−1+1−n − (n − 2)(2n − (n − 1) − 1)

(n − 1)2
u(n−1)−nu1 = 1,

which proves our statement. �
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Lemma 6.3 Defining

Ei := gi j∂ jτ (6.9)

one has that

Ei = gilηl j e
j , (6.10)

so that the second of (6.3) is fulfilled.

Proof This follows from (6.7) and from (6.9), recalling that ηi jη jl = δil . �

One can prove that

Lemma 6.4

E = 1

2(n − 1)

n∑

k=1

pk
∂

∂ pk
. (6.11)

Proof The proof follows at once from (5.1), (6.6) and (6.9). First one computes

∂(u1)2

∂ p j
= 4p ju1 and

∂u2

∂ p j
= 2p ju1 − 2(p j )3,

which yield

∂τ

∂ p j
= 1

2(n − 1)

[
p ju1

n − 1
− (p j )3

]
.

Then

Ei = gi j (p)
∂τ

∂ p j
= 1

2(n − 1)

n∑

j=1

(1 − δi j )

pi p j

[
p ju1

n − 1
− (p j )3

]

= 1

2pi (n − 1)

∑

j �=i

[
u1

n − 1
− (p j )2

]

= 1

2pi (n − 1)

[
(n − 1)u1

n − 1
− u1 + (pi )2

]

= pi

2(n − 1)
.

�

Recall that deg(uk) = 2k, and that glk is a homogeneous polynomial of degree 2k +
2l − 4 (in the us). From this it follows:
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Proposition 6.5 We have that

LEg = (d − 1)g, (6.12)

where d = 1 − 2
(n−1) , therefore condition (6.2) is fulfilled.

Proof First one observes that LE (duk) = k
(n−1)du

k . Then

(LEg)(du
l , duk) = LE (g(dul , duk)) − g(LEdu

l , duk) − g(dul ,LEdu
k)

= LEg
kl − l

(n − 1)
glk − k

(n − 1)
glk

= LEg
kl − l + k

(n − 1)
glk

= l + k − 2

(n − 1)
glk − l + k

(n + 1)
glk

= − 2

(n − 1)
glk

= − 2

(n − 1)
g(dul , duk).

�

Before moving on, we observe that

Remark 6.6 If ( f 1, . . . , f n) is any system of homogeneous coordinates in the p-
variables

E = 1

2(n − 1)

n∑

k=1

pk
∂

∂ pk
= 1

2(n − 1)

n∑

k=1

pk
n∑

j=1

∂ f j

∂ pk
∂

∂ f j

= 1

2(n − 1)

n∑

j=1

(
n∑

k=1

pk
∂ f j

∂ pk

)
∂

∂ f j

= 1

2(n − 1)

n∑

j=1

deg ( f j ) f j ∂

∂ f j
.

Our next step in the construction of the Dubrovin-Frobenius structure on C
n/Bn ,

will be the introduction of the structure constants defining the relevant product. To
this end, recall that a homogeneous flat pencil (g, η) on M is called regular if the
endomorphism of T M defined by

Ri
j = ∇η

j E
i − ∇g

j E
i , (6.13)

is invertible, where, in the previous formula, ∇η,∇g denote the (covariant derivative
operators of the) Levi-Civita connections of the metrics η and, respectively, g. Under
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the regularity assumption, the flat pencil defines a structure of a Dubrovin-Frobenius
manifold on M whose structure constants are defined by the following formulas

c jhk = Ls
h(�η

l
sk − �g

l
sk)(R

−1)
j
l (6.14)

where Ls
h = gsiηih , �η

l
sk and �g

l
sk are the Christoffel’s symbols of the metrics η and,

respectively g. From now on, unless explicitly stated, all the tensors will be written
in the flat Dubrovin–Saito coordinates, see Proposition 5.18 and Lemma 5.19 above.
Since in these coordinates �η

l
sk = 0 for all l, s, k, in order to keep the notation more

readable, we use directly the notation �i
jk for the Christoffel symbols associated to g

(as we did in Sect. 5.4). Under these assumptions, Formula (6.14) becomes

c jhk = −Ls
h�

l
sk(R

−1)
j
l = −gsiηih�

l
sk(R

−1)
j
l

(5.5)= ηhi�
il
k (R−1)

j
l , (6.15)

see [5] and references therein. On the other hand, one can prove that the flat pencil of
metrics (g, η) defined above is not regular. To this end it suffices to note that

Ri
j = d − 1

2
δij + ∇η

j E
i , (6.16)

see, for example, [5, Remark 5.7], which, in our case, entails

Ri
j = ( j − 1)

n − 1
δij . (6.17)

In fact, since d = 1 − 2
n−1 , using the Dubrovin–Saito flat coordinates

Ri
j = d − 1

2
δij + ∇η

j E
i = − 1

n − 1
δij + j

n − 1
δij = ( j − 1)

n − 1
,

see Remark 6.6. In spite our flat pencil of metrics is not regular, we will be able to
prove the following

Theorem 6.7 The flat pencil of metrics g − λη gives rise to a Dubrovin-Frobenius
structure on C

n/Bn generalizing those computed explicitly for the cases n = 2, 3, 4.

The proof of this result will consist of the following steps:

(i) Definition of the structure constants of the product.
(ii) Proof of the commutativity of the product.
(iii) Existence of a flat unit vector field.
(iv) Identification of the metric ηwith the invariant metric of the Dubrovin-Frobenius

manifold.
(v) Identification of the cometric g with the intersection form of the Dubrovin-

Frobenius manifold.
(vi) Symmetry of the tensor ∇c.
(vii) Associativity of the product.
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In all steps of the proof we will work in Saito flat coordinates. In order to prove the
last step we will preliminarily prove that the functions

bi jk = (
1 + d j − dF

2

)
ci jk , (6.18)

coincide with the contravariant Christoffel symbols of the cometric g. This will allow
us to obtain part of the associativity conditions as a consequence of the vanishing of
the curvature.

We start with a preliminary lemma:

Lemma 6.8 In Saito flat coordinates the contravariant symbols of the Levi-Civita of
the metric g satisfy

�n+1−h,k
m = �

n+1−m,k
h , (6.19)

gis� jk
s = g js�ik

s , (6.20)

�
i j
s �sk

l = �ik
s �

s j
l , (6.21)

�mh
k

Rh
h

= �hm
k

Rm
m

, (h,m) �= (1, 1). (6.22)

where �
jk
i are the contravariant Christoffel symbols of g in Saito flat coordinates.

Proof The following identities hold true (see [9] and [5]):

ηhs

sk
m = ηms


sk
h , (6.23)

gis
 jk
s = g js
ik

s , (6.24)



i j
s 
sk

l = 
ik
s 


s j
l , (6.25)


tl
k (R−1)sl = 
sl

k (R−1)tl . (6.26)

where the tensor 

jk
m is given in terms of the Levi-Civita connections ∇η and ∇g by

the formula



jk
m = ηlm

(
η js�lk

(g)s − gsl� jk
(η)s

)
= ηlm

(
ηls�

jk
(g)s − g js�lk

(η)s

)
.

In Saito flat coordinates �
jk
(g)i = �

jk
i , � jk

(η)i = 0, 
 jk
i = �

jk
i , ηi j = δi,n+1− j and the

above identities reduce to identities (6.19,6.20,6.21,6.22). �


6.2 Step 1: Definition of the cijks

As we have already mentioned, the definition of the Dubrovin-Frobenius structure on
C
n/Bn cannot completely hinge on (6.14) since the endomorphism R defined in (6.17)

in not invertible. On the other hand, the loss of information is restricted to the case
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Ri
j = 0, i.e. i = j = 1, see Formula (6.17). In this way, Formula (6.15) permits to fix

all the cijks, but the ones with i = 1. In other words, for all i �= 1

cijk := η jh�
hi
k

Ri
i

. (6.27)

Note that one has that

cijk = �
n+1− j,i
k

Ri
i

(6.19)= �
n+1−k,i
j

Ri
i

. (6.28)

Both equalities follow since we are working with the Dubrovin–Saito coordinates. In
particular, the first equality follows from the form of the metric η when written in
these coordinates, i.e. ηi j = δi,n+1− j , see Lemma 5.19. The remaining cijks will be
defined via the following:

c1i j := cn+1− j
ni , ∀(i, j) �= (n, n); (6.29)

c1nn := (n − 1)

tn
. (6.30)

The structure constants cki j s defined in (6.27) and (6.29), are homogeneous polynomials
of the p-variables of degree 2(n−1+ k − i − j), see (the end of the proof of) Lemma
5.15. In particular, note that, with the exception of c1nn ,

cki j = 0, (6.31)

for all i, j, k such that i + j > n + k − 1. Notice that due to (6.30) the corresponding
prepotential cannot bedefinedwhen tn = 0.As a consequence theDubrovin-Frobenius
manifold structure we are going to study is defined on the orbit space of Bn less the
image of the coordinate hyperplanes under the quotient map.

Remark 6.9 Hereafter we will normalize the degree of the p-homogeneous polyno-
mials by 1

2(n−1) accordingly with the expression of Euler vector field, see (6.11). In
other words, we will set

dk := deg ( fk) = k

n − 1
, (6.32)

where fk is any degree 2k, homogeneous polynomial in the p-variables. For example

dn−1+k−i− j := deg (cki j ) = n − 1 + k − i − j

n − 1
, (6.33)

and di+ j−2 := deg (gi j (u)) = i+ j−2
n−1 , see (5.3).
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6.3 Step 2: Commutativity of the product

We have to prove that for all i, j, k = 1, . . . , n,

cijk = cik j . (6.34)

For i �= 1 this follows automatically from (6.28). For i = 1, k = n, j �= n we have

c1jn
(6.29)= c1nj

(6.29)= cn+1− j
nn .

For i = 1, k �= n, j �= n we have

c1jn
(6.29)= c1nj

(6.29)= cn+1− j
nn .

For i = 1, k �= n, j �= n we have

c1jk = cn+1−k
nj = �

1,n+1−k
j

Rn+1−k
n+1−k

(6.19)= �
n+1− j,n+1−k
n

Rn+1−k
n+1−k

(6.22)= �
n+1−k,n+1− j
n

Rn+1− j
n+1− j

= c1k j .

6.4 Step 3: Existence of a flat unit vector field

We now prove that the unit of the product defined above is the vector field e = ∂
∂un−1 ,

that is

cijke
k = δij , ∀i, j = 1, . . . , n.

For i �= 1 this follows from the results for regular quasihomogeneous pencil [9]. For
i = 1 we have

c1jke
k = c1j,n−1, ∀ j = 1, . . . , n.

This means that we have to prove the identities

c11,n−1 = 1,

c1j,n−1 = 0, ∀ j = 2, . . . , n.

We observe that the functions c1j,n−1 are homogeneous polynomials of the p-variables
of degree 2(1 − j). Thus for j �= 1 they vanish. For j = 1 we have

c11,n−1
(6.29)= cnn,n−1 = cnnke

k = δnn ,

where the last equality follows from the fact that cijke
k = δij for i �= 1. It is immediate

to check that ∇ηe = 0. Indeed, since un is flat, the passage from the coordinates
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(u1, . . . , un) to the flat basic invariants does not affect the form of e that remains
constant in the new coordinates.

6.5 Step 4: Identification of themetric�with the invariant metric

We need a preliminary lemma.

Lemma 6.10 For all i, j, k = 1, . . . , n

cijk = cn+1−k
n+1−i, j = cn+1− j

n+1−i,k . (6.35)

Proof The case i = 1, and ( j, k) = (n, n) is trivial. If i = 1 and ( j, k) �= (n, n), then

c1jk
(6.29)= cn+1−k

nj ,

which coincides with the first of the (6.35). The second one holds true because of the
symmetry of the lower indices of the cijks, Formula (6.34). If i �= 1 and k �= n then

cijk
(6.28)= �

n+1− j,i
k

Ri
i

,

and

cn+1−k
n+1−i, j

(6.28)= �
i,n+1−k
j

Rn+1−k
n+1−k

(6.22)= �
n+1−k,i
j

Ri
i

(6.19)= �
n+1− j,i
k

Ri
i

(6.28)= cijk .

On the other hand, if i �= 1, k = n and j �= n

cn+1−k
n+1−i, j = c1n+1−i, j

(6.29)= cn+1− j
n,n+1−i

(6.28)= �
i,n+1− j
n

Rn+1− j
n+1− j

(6.22)= �
n+1− j,i
n

Ri
i

(6.28)= cijn .

Finally if i �= 1 and ( j, k) = (n, n), then the three terms of the identity are zero, see
(6.31). �


We have now all the ingredients to prove that

ηisc
s
jk = η jsc

s
ik . (6.36)

This follows at once from (6.35) and from ηi j = δi,n+1− j . In fact

ηisc
s
jk = cn+1−i

jk = cn+1− j
ik = η jsc

s
ik .
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6.6 Step 5: Identification of the cometric gwith the intersection form.

We will now prove the identity

cijk E
k = gilηl j ; (6.37)

which amounts to say that the operator of multiplication by the Euler vector field E ,
defined via the (6.29), (6.30) is the affinor, i.e. a tensor field of type (1, 1), defined
composing (the covariant metric) η with (the contravariant metric) g. To prove (6.37),
we write E = Ei∂i and first we observe that (6.13) entails

Ri
j = (∇η

j E
i − ∇g

j E
i ) = −�i

jl E
l , (6.38)

which, for i �= 1, yields

cijl E
l (6.27)= 1

Ri
i

η jl�
li
k E

k (6.16)= − 1

Ri
i

η jl g
ls�i

sk E
k (6.38)= 1

Ri
i

η jl g
ls Ri

s
(6.17)= η jl g

li .

On the other hand, the case i = 1 and j �= n can be reduced to the previous one. In
fact

c1jl E
l (6.29)= cn+1− j

nl El = gn+1− j,lηln = gn+1− j,1 = g1lηl j ,

where the other equalities follow from the case i �= 1 and from the explicit form of η.
Finally, if i = 1 and j = n:

c1nl E
l (6.31)= c1nn E

n Remark 6.6= c1nndnt
n (6.30)= n − 1

tn
n

n − 1
tn = n = g11 = g1lηln .

Note that in the first equality we used the explicit form of the Euler vector field, in the
fifth the normalization of g (see Remark 5.21) and in the last the explicit form of η.

The identity (6.37) implies

gih = cijk E
kη jh = chjk E

kη j i . (6.39)

In other words the cometric g can be identified with the intersection form.
We prove now an useful identity that we will use later.

Lemma 6.11

gisclsm = glscism, (6.40)

for all s,m, l = 1, . . . , n.
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Proof If m �= n and l �= 1 (any i)

gisclsm
(6.28)= gis

�
n+1−m,l
s

Rl
l

(6.22)= gis
�
l,n+1−m
s

Rn+1−m
n+1−m

(6.20)= gls
�
i,n+1−m
s

Rn+1−m
n+1−m

(6.28)= glscn+1−m
n+1−i,s

(6.35)= glscims .

If m �= n, l = 1 and i �= 1 (note that if i = 1 the identity is trivially verified)

gisc1sm
(6.29)= giscn+1−m

ns
(6.28)= gis

�
1,n+1−m
s

Rn+1−m
n+1−m

(6.20)= g1s
�
i,n+1−m
s

Rn+1−m
n+1−m

(6.28)= g1scn+1−m
n+1−i,s

(6.35)= g1scism .

If m = n, l = 1 and i = 1 (6.40) is trivally true. On the other hand, if m = n, l = 1
and i �= 1 we have

(g1scisn − gisc1sn)E
n = (g1scisk − gisc1sk)E

k

= g1sgirηrs − gisg1rηrs
= 0,

and this implies g1scisn − gisc1sn = 0 since En = dnun . The first equality follows
from (6.37) and from the fact that (6.40) holds true if m �= n, l = 1 and i �= 1, see the
previous computation. On the other hand, the last equality is obtained trading r with
s in (for example) the second summand. Finally, since i and l appear symmetrically
in (6.40), the case m = n, i = 1 and i �= 1 follows from the previous computation
simply exchanging the role of i and l. �


6.7 Step 6: Symmetry of∇c

In Saito flat coordinates the vanishing of the curvature of the pencil implies

∂s�
jk
l = ∂l�

jk
s , (6.41)

for all s, j, k, l = 1, . . . , n, where �
i j
k denote the contravariant Christoffel symbols

of the metric g, see [9]. This observation entails that

Proposition 6.12

∂sc
k
jl = ∂l c

k
js, ∀s, j, k, l = 1, . . . , n. (6.42)
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Proof If k �= 1, then (6.42) follows from the definition of the structure constants. In

fact in this case ckjl = η jr�
rk
l

Rk
k

, where
η jr

Rk
k
are constants. If k = 1 and ( j, l) = (n, n),

the right-hand side of (6.42) is zero unless s = n when this identity is trivially true. If
s �= n, then also the left-hand side of (6.42) is zero since n + s > n. Finally, if k = 1
and ( j, n) �= (n, n), then

∂sc
1
jl = ∂sc

1
l j = ∂sc

n+1− j
nl = ∂l c

n+1− j
ns = ∂l c

1
s j = ∂l c

1
js .

�


6.8 Interlude: structure constants of the product and Christoffel symbols

Let dF = 3 − d = 2 + 2
n−1 and let

ci jk := ηisc jsk (6.43)

for all i, j, k, where the c jsks were defined in (6.27), (6.29) and (6.30). Let

bi jk := (
1 + d j − dF

2

)
ci jk , ∀i, j, k = 1, . . . , n. (6.44)

Remark 6.13 Note that for all j = 1, . . . , n,

1 + d j − dF
2

= j − 1

n − 1
.

We will prove that

Theorem 6.14 The bi jk s defined in (6.44) satisfy the following equations

∂kg
i j = bi jk + b ji

k (6.45)

gisb jk
s = g jsbiks , (6.46)

for all i, j, k = 1, . . . , n.

To prove this statement we need a couple of preliminary results which we enclose in
the following lemmata.

Lemma 6.15 Let c the (1, 2)-tensor field defined by (6.27), (6.29) and (6.30). Then

LEc = c. (6.47)
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Proof If c = cijk∂i ⊗ dt j ⊗ dtk , since

LEdt
i = i

n − 1
dti , LE∂i = − i

n − 1
∂i and deg (cijk) = n − 1 + i − j − k

n − 1
,

(6.48)

see (6.33) above, one has

LEc = (LEc
i
jk)∂i ⊗ dt j ⊗ dtk + cijk(LE∂i ) ⊗ dt j ⊗ dtk

+ cijk∂i ⊗ (LEdt
j ) ⊗ dtk + cijk∂i ⊗ dt j ⊗ (LEdt

k)

(6.48)= c.

For later use, we observe that from the very last equality, solving for (LEcijk)∂i ⊗
dt j ⊗ dtk one obtains:

Em∂mc
j
lk = c jlk + d j c

j
lk − dlc

j
lk − dkc

j
lk, (6.49)

where the d j s were defined in (6.32). �

Once these preliminary results are settled, one can prove Theorem 6.14.

Proof First note that (6.37) implies

ghk = ηki chis E
s . (6.50)

Then we compute

∂k(g
i j ) = ∂k(η

il c jlm Em) = ηil (∂kc
j
lm)Em + ηil c jlm∂k E

m (6.42)= ηil (Em∂mc
j
lk) + dkη

il c jlk .

(6.51)

Using (6.49) to substitute Em∂mc
j
lk in (6.51), we obtain

∂k(g
i j ) = ηil(c jlk + d j c

j
lk − dlc

j
lk). (6.52)

Since the pencil (g, η) is homogeneous and exact,

LEη = (d − 2)η = (1 − dF )η,

see (6.4) (here η denotes the contravariant metric). On the other hand, since η is
constant when written in the Saito flat coordinates, working with the covariant metric,
one has
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0 = LE
(
η(∂i , ∂l)

) = (LEη)(∂i , ∂l) + η(LE∂i , ∂l) + η(∂i ,LE∂l)

= (dF − 1)η(∂i , ∂l) − ∂i E
mη(∂m, ∂l) − ∂l E

mη(∂i , ∂m)

= (dF − 1)ηil − diη
il − dlη

il ,

which entails

−ηildl = ηil(−dF + 1 + di ).

Inserting this identity in (6.52), one gets

∂k(g
i j ) = ηil(2 + di + d j − dF )c jlk .

This should be compared with

bi jk + b ji
k =

(
1 + d j − dF

2

)
ci jk +

(
1 + di − dF

2

)
c jik .

To this end, first one observes that the invariance of the metric η w.r.t. the product
implies

cmh
k = chmk , ∀h,m, k = 1, . . . , n. (6.53)

In fact

cmh
k = ηhiηmjηil c

l
jk = ηhiηmjη jl c

l
ik = chmk .

From this one concludes that

bi jk + b ji
k = (

2 + di + d j − dF
)
ci jk .

To prove (6.46) we use (6.43), (6.44), (6.50) and we compute

gisb jk
s

(6.44)= ηimcsmh E
h
(
1 + dk − dF

2

)
η jl ckls

(6.37)= ηimgshηhm

(
1 + dk − dF

2

)
η jl ckls

(6.40)= ηimgskηhm

(
1 + dk − dF

2

)
η jl chls

(6.36)= ηimgskηhl

(
1 + dk − dF

2

)
η jl chms

(6.40)= ηimgshηhl

(
1 + dk − dF

2

)
η jl ckms

(6.37)= η jl cslh E
h
(
1 + dk − dF

2

)
ηimckms

(6.44)= g jsbiks .

�
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Theorem 6.14 implies that

Proposition 6.16 The bi jk s defined in (6.44) are the contravariant Christoffel symbols
of the metric g in the Saito flat coordinates, i.e.

bi jk = �
i j
k , ∀i, j, k = 1, . . . , n. (6.54)

To conclude the proof of Theorem 6.7 we are left to show that the product defined
by the cijks is associative.

6.9 Step 7: Associativity of the product

We start noticing that since (g, η) is a flat pencil, expressing the conditions of zero-
curvature for the Levi-Civita connection defined by gλ := g − λη in the Saito flat
coordinates, one obtains the following set of equations

∂sb
jk
l − ∂lb

jk
s = 0, (6.55)

bi js b
sk
l − biks bs jl = 0. (6.56)

The first set of conditions (6.55) does not provide additional information since it follow
from the symmetry (in the lower indices) of ∇ηc. Indeed

(
1 + dk − dF

2

) (
∂sc

jk
l − ∂l c

jk
s

)
= Rk

kη
jh

(
∂sc

k
hl − ∂l c

k
hs

)
= 0. (6.57)

Let us consider the second set of conditions (6.56). First we note that using the (6.44)
and recalling that Rk

k = (1 + dk − dF
2 ) for all k, these conditions can be rewritten as

follows

Rk
k R

j
j (c

i j
s c

sk
l − ciks cs jl )

(6.53)= Rk
k R

j
j (c

ji
s cksl − ckis c jsl ) = Rk

k R
j
j η

jhηkm(cihsc
s
ml − cimsc

s
hl ) = 0.

(6.58)

The quadratic conditions (6.58) entail the associativity of the product defined by the
cijks, that is

cihsc
s
ml = cimsc

s
hl ,

but when one of the index m, h is equal to n (of course, if both indices are equal to n
the statement is trivially true).

For this reason, to conclude the proof we are left to show that

cinlc
l
km = ciklc

l
nm, (6.59)
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for all possible values of i, k,m. It is worth noticing that if k = n the previous identity
is trivially satisfied. We start checking that

cinlc
l
km − ciklc

l
nm = 0, (m, k, i) �= (n, n, 1). (6.60)

First recall that, since bi jk = �
i j
k , we have c

i
jk = bn+1− j,i

k

Ri
i

= bn+1−k,i
j

Ri
i

by (6.28). By a

direct computation

cinl c
l
km − cikl c

l
nm = cin1c

1
km − cik1c

1
nm +

∑

l �=1

(
cinl c

l
km − cikl c

l
nm

)

(6.29),(6.28)= cin1c
n+1−m
nk − cik1c

n+1−m
nn +

∑

l �=1

(
b1il
Ri
i

bn+1−m,l
k

Rl
l

− bn+1−k,i
l

Ri
i

bn+1−m,l
n

Rl
l

)

(6.28),(6.22)= b1i1
Ri
i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri
i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑

l �=1

(
b1il
Ri
i

bl,n+1−m
k

Rn+1−m
n+1−m

− bn+1−k,i
l

Ri
i

bl,n+1−m
n

Rn+1−m
n+1−m

)

= b1i1
Ri
i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri
i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑

l �=1

(
b1il
Ri
i

bl,n+1−m
k

Rn+1−m
n+1−m

− bn+1−l,i
k

Ri
i

b1,n+1−m
n+1−l

Rn+1−m
n+1−m

)

= b1i1
Ri
i

b1,n+1−m
k

Rn+1−m
n+1−m

− bnik
Ri
i

b1,n+1−m
n

Rn+1−m
n+1−m

+
∑

l �=1

b1il
Ri
i

bl,n+1−m
k

Rn+1−m
n+1−m

−
∑

l �=n

blik
Ri
i

b1,n+1−m
l

Rn+1−m
n+1−m

= b1il
Ri
i

bl,n+1−m
k

Rn+1−m
n+1−m

− blik
Ri
i

b1,n+1−m
l

Rn+1−m
n+1−m

= 0.

Remark 6.17 In the previous computation, the fourth line follows from the third one,
applying (6.19) to both bn+1−k,i

l and bl,n+1−m
n . In the fifth line, the second summation

stems after declaring s = n + 1 − l (and then s = l) in the second summand of the
summation of the fourth line.

If (m, k) �= (n, n) and i = 1, (6.59) becomes

c1nlc
l
km = c1klc

l
nm . (6.61)

By (6.58), we know that

c1il c
l
km = c1klc

l
im, i = 1, . . . n − 1 (6.62)

since we are also assuming k �= n, m �= n. Therefore, (6.61) can be rewritten in the
following equivalent form

(c1il c
l
km − c1klc

l
im)Ei = 0,

since, for what already proven, the only non-zero contribution in this sum is the one
with i = n.
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Using (6.37), one gets

(c1il c
l
km − c1klc

l
im)Ei = c1il E

i clkm − c1klc
l
im E

i

= g1sηsl c
l
km − c1kl g

lsηsm

(6.40)= g1sηmlc
l
ks − cskl g

l1ηsm

= 0, (6.63)

whose last equality is obtained changing s with l in the second summand of (6.63).
Therefore (6.61) holds.

As already observed above, if m = k = n (any i) (6.59) becomes

cinlc
l
nn − cinlc

l
nn = 0.

We are left to consider the case m = n and k �= n (any i), that is we need to prove

cinlc
l
kn − ciklc

l
nn = 0, k �= n, any i . (6.64)

We first observe that cinlc
l
ks − ciklc

l
ns = 0 for s = 1, . . . , n − 1, for any i since for

i �= 1 this is (6.60), while for i = 1 this is (6.61). Therefore we can rewrite (6.64) in
the equivalent form,

cinlc
l
ks E

s − ciklc
l
ns E

s = 0,

which, together with (6.37), yields

cinl g
lsηsk − cikl g

lsηsn
(6.40)= csnl g

liηsk − cskl g
liηsn

(6.36)= (csnlηsk − csklηsn)g
li = 0.

This concludes the proof of Theorem 6.7. �


7 Conclusions and open problems

In this paper, combining the procedure presented in [3] for complex reflection groups
with a generalization of the classical Dubrovin–Saito procedure, we have obtained a
non-standard Dubrovin-Frobenius structure on the orbit space of Bn , more precisely
on the orbit space less the image of coordinate hyperplanes under the quotient map.
The procedure of [3] allowed us to get explicit formulas in the cases n = 2, 3, 4 while
the generalized Dubrovin–Saito procedure allowed us to prove the existence of this
structure for arbitrary n. Two main questions are still open:

– For n = 2, 3, 4 the dual product is defined by

∗ = 1

N

∑

H∈H

dαH

αH
⊗ σHπH
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with σH = 0 for all the mirrors in the Orbit I and σH = 1 for all the mirrors in the
Orbit II. Is it true for arbitrary n?

– For n = 2, 3, 4 the Dubrovin-Frobenius prepotentials

FB2 = 1

2
(t1)2t2 ± 1

2
(t2)2

(
ln t2 − 3

2

)
.

FB3 = 1

6
(t2)3 + t1t2t3 + 1

12
(t1)3t3 − 3

2
(t3)2 + (t3)2 ln t3,

FB4 = 1

108
(t1)4t4 + 1

6
(t1)2t2t4 − 1

72
(t2)4 + t1t3t4 + 1

2
(t2)2t4 + 1

2
t2(t3)2

−9

4
(t4)2 + 3

2
(t4)2 ln t4,

coincide with the solutions ofWDVV equations associated with constrained KP equa-
tion (see [23]) and enumeration of hypermaps (see [15]), in particular the case n = 2
is related to the defocusing NLS equation and higher genera Catalan numbers. Is it
true for arbitrary n?

In both cases we expect that the answer is positive.
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