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Effect of parametric uncertainties on
vibration mitigation with periodically
distributed and interconnected
piezoelectric patches
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Abstract
This work presents an analysis of the effect of parametric uncertainties on the vibration control performance of a rod
with periodically distributed piezoelectric patches that can be either independently connected to electrical shunt circuits
or interconnected through an electrical line of inductors. In both cases, the capacitance of the piezoelectric patches is
considered as stochastic parameters following a known probability density function distribution. Then, Monte Carlo
simulations are performed to evaluate mean values and confidence intervals of the frequency response functions to
assess the robustness of each solution and to compare different solutions in terms of nominal and robust performances.
Results have shown that vibration amplitude reduction worsen significantly due to the mistuning between structural nat-
ural frequency and circuit resonance frequency. Yet, interconnected circuits are more robust to these uncertainties than
independent shunts because they ensure a mean response that is closer to the nominal one. It was then proposed to
assess the effect of modifying the circuits’ resistance. Results have shown that increased resistance decreases variability
when considering both environmental and manufacturing variabilities. This also favors the use of interconnected circuits
that require increased resistance for robust vibration mitigation.
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1. Introduction

Piezoelectric materials have been widely used as distrib-
uted sensors and actuators to control structural vibra-
tions of flexible structures. They are normally bonded
to a host structure and connected to an electrical cir-
cuit. Therefore, they provide an electromechanical cou-
pling to the host structure that, depending on electrical
connections, can be used for several purposes such as
passive, semi-passive, active, or active-passive vibration
control (Ahmadian and DeGuilio, 2001; Hagood and
von Flotow, 1991). When distributed periodically, it
was shown that they can also be used to provide stop
bands for wave propagation applications (Thorp et al.,
2001, 2005), to design acoustic metamaterials (Airoldi
and Ruzzene, 2011; Celli and Gonella, 2015), or to cre-
ate electromechanical phononic crystals (Bergamini
et al., 2015; Flores Parra et al., 2017).

In the case of passive vibration control applications,
most studies focused on shunt circuits that connect the
two electrodes of each piezoelectric patch. The most
common circuits are resistive and resonant (resistive-

inductive) ones, but several research works proposed
more sophisticated circuits using, for instance, switch
or negative capacitance circuits (Hollkamp, 1994; Reza
Moheimani, 2003). More recently, Maurini et al. (2004)
and Lossouarn et al. (2015) considered the interconnec-
tion of a network of piezoelectric patches through reso-
nant electrical circuits in a way that good multimodal
vibration attenuation performance can be obtained
with much smaller inductance values, compared to
resonant shunt circuits.
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However, as for the shunted case, the vibration con-
trol performance is dependent on the adequate tuning
between electrical circuit components and structure’s
mechanical properties (Valis et al., 1994). Thus, vari-
abilities and/or uncertainties on material properties,
boundary conditions, and environmental conditions
can have a major effect on reducing the expected or
predicted performance of such devices. Nevertheless,
few studies attempted to analyze the effect of para-
metric uncertainties on passive vibration control using
shunted piezoelectric patches (Andreaus and Porfiri,
2007; Berardengo et al., 2015; Santos and Trindade,
2011) and none considering interconnected networks.

This article begins with the description of the consid-
ered problem involving a rod covered with an array of
piezoelectric patches, whose electrodes are connected to
an electrical network made of inductors and resistors.
A second section describes the methodology used in
this study, where the objective is to evaluate the effect
of parametric uncertainties at local or global levels.
The results are then analyzed in the third section that
shows the variability induced in the frequency response
functions. A fourth section investigates the effect of the
circuits’ resistance on the robustness of vibration miti-
gation solutions. This leads to potential conclusions
regarding the choice of optimal independent shunts or
interconnected piezoelectric networks in the fifth sec-
tion. Finally, a last section is presented with some per-
spectives on the effect of uncertainties in multimodal
vibration mitigation using interconnected circuits.

2. Problem description

A free-free AU4G duraluminum rod in longitudinal
vibration with length ls = 1000 mm, width b= 20 mm,
and thickness hs = 20 mm is considered. The rod has
mass density rs = 2780 kg m�3 and Young modulus
Ys = 73:9 GPa. A loss factor of 0.5% is considered for
the rod. Twenty pairs of PIC151 piezoelectric patches
are bonded to the rod following the layout in Figure 1
which only shows 10 unit cells. Each patch has the
following dimensions: length lp = 30 mm, width
b= 20 mm, and thickness hp = 0:5 mm. The piezoelec-
tric patches are considered to be equal and all have
mass density rp = 7800 kg m�3, Young’s modulus at
zero electric field Y E

p = 66:7 GPa, piezoelectric charge
constant d31 =� 210 pC N�1, and dielectric permittiv-
ity es

33 = 21:2 nF m�1.
For the modeling of the rod with periodically

bonded piezoelectric patches, the transfer matrix
approach was used. For that, 20 electromechanical unit
cells that periodically repeat all along the structure
were considered, following the layout in Figure 1 which
only shows 10 unit cells. The unit cell is composed of a
portion of the rod with length a= 50 mm, two entire
piezoelectric patches bonded onto the upper and lower

surfaces of the rod, centered along the length and poled
in opposite through-thickness directions, one (indepen-
dent) shunt circuit that connects directly the electrodes
of these patches, and two circuits that connect the pair
of patches to left and right neighboring unit cells
circuits.

The obtained model using the transfer matrix
approach is presented in detail in Lossouarn et al.
(2015) and is not repeated here for the sake of brevity.
The model is based on a homogenized electromechani-
cal unit cell with mechanical and electrical degrees of
freedom that is able to account for both shunted and
interconnected circuits cases. It is assumed that the rod
is excited by a point longitudinal force applied at its left
end and that the longitudinal velocity at the right end
of the rod is measured. Then, the vibration control per-
formance is assessed using the mobility frequency
response function around the first vibration mode of
the rod.

3. Methodology

In order to evaluate the effect of parametric uncertain-
ties in the performance of independent resonant shunt
circuits and interconnected circuits for vibration mitiga-
tion, the two cases were analyzed separately. To obtain
only the first case (shunted patches), the resistance of
the interconnected circuits (Rs) is set to a very large
value to represent opening these interconnection cir-
cuits. Contrarily, to obtain the second case (intercon-
nected patches), the resistance of the shunt circuits (Rsh)
is set to a very large value to represent opening the
shunt circuits. The use of both independent and inter-
connected circuits simultaneously was not considered.

Then, the vibration mitigation performance, focus-
ing mainly on the first vibration mode, using the two
solutions was evaluated and compared. First, the nom-
inal case was defined using the optimal values for the
circuit components. Then, the parameters to be consid-
ered uncertain were defined. For these, stochastic mod-
els were constructed and used for Monte Carlo
simulations. Finally, the results are used to assess the
robustness of the two solutions.

3.1. Nominal case

Initial values for the resistance and inductance of the
independent and interconnected circuits were taken
from Lossouarn et al. (2015) and, then, fine-tuned
using a Nelder-Mead simplex algorithm (fminsearch)
to minimize the H‘ norm of the frequency response
function (FRF) (Table 1). Notice that for experimental
implementation, inductance and resistance values can
only approximate the optimal ones. As proposed by
Lossouarn et al. (2015), whenever measured inductance
of actual inductors is smaller than expected, the tuning
can be corrected by adding capacitors in parallel to the
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piezoelectric patches. In the case of the resistance, the
optimal values also account for the internal resistance
of the inductors. Whenever the optimal resistance is
larger than the internal resistance of the inductors,
resistors can be added to the circuit.

The nominal mobility frequency responses of the rod
with independent and interconnected circuits, com-
pared to the open-circuit case (all circuits opened), are
shown in Figure 2. It is noticeable that the independent
circuits are only effective in reducing the vibration
amplitude around the first resonance frequency, since
all circuits (for all patches) were tuned to that fre-
quency. On the contrary, the interconnected circuits are
able to reduce the vibration amplitude over the entire
frequency range considered, although they seem to be
more effective around the first resonance frequency.
This is because their nominal resistance was tuned aim-
ing preferentially at the first mode. An increase in resis-
tance could better reduce the peaks clearly observed for
the second to fourth resonances, but at the cost of wor-
sening the performance for the first mode. When con-
sidering only the response around the first mode, both
independent and interconnected circuits lead to the
same performance, with around 20 dB amplitude reduc-
tion when compared to the open-circuit case. In this
work, the focus will be first put on the response around
the first mode to allow a fair comparison between inde-
pendent and interconnected circuits.

The predicted vibration amplitude reduction perfor-
mance is very much dependent on a proper tuning

between structure’s targeted natural frequency, piezo-
electric coupling, piezoelectric effective capacitance,
and circuit’s inductance and resistance. Thus, if any of
these parameters are different from the nominal ones,
one should expect to observe different actual perfor-
mances. Figure 3(a) first investigates the effect of capa-
citance variations on the H‘ norm of the mobility
function. Once the inductance is fixed, capacitance var-
iations have a strong influence as a 10% variation can
increase by more than 150% the maximum value of the
FRF. Moreover, inductance variations lead to similar
observations. This confirms that classical results,
obtained with a 1-degree-of-freedom mechanical system
(Thomas et al., 2012; Preumont, 2018), apply to both
the interconnected and independent multi-shunt rods.
The numerical analysis gives similar results for both
circuits, which shows that they are equivalent around
the first mode of the rod. Resistance variations are also
investigated to confirm that they have a weaker influ-
ence on the results: around 30% increase of the H‘

norm for a 50% variation of the resistance, as seen in
Figure 3(b).

The considered nominal resistance is the one that
minimizes the H‘ norm after optimal tuning of the
capacitance and inductance values. Yet, it is possible to
focus on another optimization method based on maxi-
mum damping. This corresponds to maximizing the
minimum damping ratio of the considered electrome-
chanical system that is equivalent to a 2-degree-of-free-
dom system over the frequency range of interest. To do
so, one can extract the modal parameters of the FRF
subjected to variation of the capacitance or resistance
values. The two close modes of the tuned-mass-dam-
per-type system are associated with two eigenfrequen-
cies and two damping ratios. Figure 4(a) shows that the
optimum in terms of maximum damping is obtained
with a capacitance value close to the one considered
during the previous optimization. However, Figure 4(b)
leads to an optimal resistance about

ffiffiffiffiffiffiffiffi
8=3

p
’1:63 times

Figure 1. Example of a rod with 10 pairs of periodically bonded piezoelectric patches connected to independent (Lsh and Rsh) and
interconnected (Ls and Rs) circuits with detailed unit cell.

Table 1. Inductance and resistance values for the independent
and interconnected circuits used for the nominal model.

Independent circuit Interconnected circuit

Inductance (mH) 113.5 2.795
Resistance (O) 142.3 3.503

Trindade et al. 973



the previous nominal value. This is fully consistent with
results obtained with classical resonant shunts when the
two loops of the root locus plot crosses at a single point
of maximum damping (Preumont, 2018).

3.2. Uncertain parameters

There are a number of factors that lead to variability of
theoretical performance prediction. Here, it is assumed
that the model used is accurate enough for the present
analysis. However, the model parameters can be sub-
jected to variability (uncertainty). The parameters that
most affect the resonance frequency tuning are the
piezoelectric effective capacitance and the circuits’
inductance. Also, experimental tests have shown that
even homemade inductances can have very small toler-
ances and can be adapted if needed (Darleux et al.,
2018). On the contrary, the capacitance of piezoelectric
patches is more difficult to control and could present
significant variability when subjected, for instance, to
temperature variations. They also present variability
due to manufacturing tolerances (in both material
properties, such as the dielectric coefficient, and geome-
trical properties, electrode area and patch thickness).

For these reasons, in this work, the piezoelectric
patches’ capacitances will be considered as subjected to
variability.

In a tentative to separate two potential sources of
uncertainty of capacitance values, one related to the
variability of the patches themselves (e.g. material and
geometrical properties) and one related to environmen-
tal conditions that could affect all the patches (e.g. tem-
perature), two multiplicative stochastic parameters
were defined, fi and fg. One (fg) that varies the capaci-
tance of all patches simultaneously and another (fi) that
varies the capacitance of each patch relative to the glo-
bal value. Their effects can be combined to generate
the overall capacitance of each patch, such that the
capacitance of the ith patch would be

Ĉpi = �Cpf̂gf̂i ð1Þ

where �Cp is the nominal (expected) value for the patch
capacitance, f̂g is a stochastic variable related to the
environmental (global) variability, and f̂i is a stochastic
variable related to the manufacturing (individual) varia-
bility. Notice that only f̂i may be different from one
patch to another.

Figure 2. Nominal frequency response of the rod: open circuit (dot), independent circuits (solid), and interconnected circuits
(dash).
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3.3. Stochastic modeling

The probability density function (p.d.f.) for the sto-
chastic variables are not known a priori, although it is
expected that a mean (or nominal) value could be
known and, also, that the variables should be positive.
The Maximum Entropy Principle (Jaynes, 1957; Soize,
2001) states that one should consider a probability dis-
tribution that maximizes the uncertainties using only
the available information on the random variable. It
also guarantees that mathematical and statistical prop-
erties of the random variable are respected.

In the present case, the capacitance has to be a
positive-valued random variable, which is a mathemati-
cal property that defines the support for the p.d.f. as
�0, +‘½. It has to be also a second-order random vari-
able, such that the expectation of the squared variable
is finite, EfX 2g\+‘. This translates into a p.d.f. for
which the probability diminishes as the variable tends
to infinity. The inverse of the capacitance is also used
for the problem solution and, thus, it has to be also a
second-order random variable, such that the expecta-
tion of the inverse squared variable is also finite,
EfX�2g\+‘. This translates into a p.d.f. for which
the probability diminishes as the variable tends to zero.
Finally, the mean value EfXg= �X is considered to be
known and equal to be the nominal value.

Using this information, the Maximum Entropy
Principle leads to a Gamma probability density func-
tion, such that

pX ðX Þ= I�0;+‘½
1

d2
X

�X

 !d�2
X

X d�2
X �1

Gðd�2
X Þ

exp � X

d2
X

�X

 !
ð2Þ

in which dX =sX=�X is the relative dispersion of the
stochastic parameter and sX is its standard deviation.
The Gamma function is defined as G(x)=

R ‘

0
tx�1e�tdt.

In the present case, X assumes the multiplicative para-
meters fi and fg. The deterministic optimal value for the
capacitance is assumed as its nominal and mean values.
Thus, the nominal values for both f̂g and f̂i are consid-
ered to be unitary. The relative dispersion for both
manufacturing and environmental causes is actually
unknown a priori. Previous observation (Darleux et al.,
2018) has shown that capacitance values can vary up to
12% for a 38�C temperature variation. However, since
there might be several different sources for both manu-
facturing and environmental uncertainties, the actual
relative dispersions should be estimated for a given
application condition. Therefore, in the present case, a
parametric analysis will be carried out considering two
arbitrary, but representative, values for the relative dis-
persion, 5% and 10%, to better understand their effect
on the vibration mitigation performance.

Figures 5 and 6 show histograms for the relative
capacitances (relative to the nominal value). In Figure
5, a 5% relative dispersion is considered only for envi-
ronmental uncertainties (i.e. fg has 5% relative

(a)

(b)

Figure 3. (a) Effect of circuits’ capacitance on the H’ norm of
the mobility function: independent circuits (solid) and
interconnected circuits (dash), (b) effects of circuits’ resistance
on the H‘ norm of the mobility function: independent circuits
(solid) and interconnected circuits (dash).

(a)

(b)

Figure 4. (a) Effect of circuits’ capacitance on the damping
ratios: independent circuits (solid) and interconnected circuits
(dash), (b) effects of circuits’ resistance on the damping ratios:
independent circuits (solid) and interconnected circuits (dash).
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dispersion and fi is unitary and constant). On the con-
trary, in Figure 6, a 5% relative dispersion is consid-
ered for both manufacturing and environmental
uncertainties (i.e. both fi and fg have 5% relative disper-
sions). In both figures, the histograms of the capaci-
tances of the two first patches are also shown. Notice
that, in the second case (Figure 6), the capacitance val-
ues of first and second patches may be different,
although following the same probability density func-
tion. This does not happen for the first case (Figure 5),
which involves no individual variability.

3.4. Monte Carlo simulations

Considering the stochastic model presented previously
for the two parameters affecting the piezoelectric patch
capacitance, fi and fg, random realizations of the corre-
sponding stochastic variables, f̂i and f̂g, were then gener-
ated using MATLAB function gamrnd. In all cases, two
values for the relative dispersions were considered, 5%
and 10%. Some combinations of parametric uncertain-
ties were performed for the two parameters considered.

Then, Monte Carlo simulations were performed for
the studied cases by varying the relative dispersions and
sample size. The procedure is schematically shown in
Figure 7. The first step is to generate N realizations
(samples), uj, of the stochastic variables, f̂i(uj) and f̂g(uj),
using the Gamma probability density function presented
previously. The mobility frequency response function,
G(uj,vk) with j= 1, . . . ,N , is evaluated for each set of
parameters, which include the realizations of the sto-
chastic variables, f̂i(uj) and f̂g(uj), using the same model
and procedure considered for the nominal case. All
other material and geometrical properties of the rod

and patches as well as the circuits’ resistance and induc-
tance are kept unchanged. Thus, only the patches’ capa-
citances are varied from one analysis to another.

Next, in order to quantify the uncertainty of the fre-
quency response due to the uncertainty of the patches’
capacitances (or how the parametric uncertainty propa-
gates to the frequency response), the N realizations of
the frequency response, G(uj,vk) with j= 1, . . . ,N , at
any given frequency point vk , were used to evaluate
their mean values GM (vk) and their 2.5% and 97.5%
percentiles, Ginf (vk) and Gsup(vk), respectively.

The maximum, Gsup(vk), and minimum, Ginf (vk),
values for all frequency points define curves that repre-
sent, respectively, the upper and lower bounds of the
95% confidence interval. This means that, provided the
assumed stochastic model is satisfactory, the actual fre-
quency response curve, for a given value of the capaci-
tance, must be inside the confidence interval. Notice
that the mean FRF curve does not necessarily represent
an attainable actual response but, assuming a
Gaussian-like posterior probability distribution, most
actual FRF curves should be closer to the mean FRF
curve than to the lower or upper bounds. The nominal
FRF, GN (vk), is obtained considering the nominal val-
ues for the stochastic variables (capacitance).

Some preliminary convergence tests were carried out
to determine a reasonable sample size for the Monte
Carlo simulations. For that, the Euclidean norm of the
mobility frequency response function, around the first
resonance frequency ([2000, 3000] Hz), was evaluated
for each realization of the stochastic parameters consid-
ering simultaneously 5% relative dispersion for fi and
10% relative dispersion for fg. Figure 8 shows the nor-
malized response versus the Monte Carlo simulations

(a)

(b) (c)

Figure 5. Histogram of capacitance with 5% global relative dispersion: (a) all patches, (b) first patch, and (c) second patch.
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performed. It indicates that N = 500 samples seem to
be enough even for a case with high dispersions.

4. Uncertainty quantification results

In this section, the effects of global (e.g. environmental)
and individual (e.g. manufacturing) uncertainties of the

piezoelectric patches’ capacitance values on the fre-
quency response of the rod, and ultimately on the
vibration amplitude, are analyzed. The analyses are
performed for both independent and interconnected
circuits.

First, the cases where capacitance variabilities are
mainly due to environmental conditions that could
affect the ensemble of patches (e.g. temperature) are
analyzed. For that, fi is assumed to be unitary and con-
stant (deterministic), while fg assumes different values
according to the stochastic model presented previously.
Thus, dfi = 0 and dfg 6¼ 0. Then, the frequency
responses of the rod with independent and intercon-
nected circuits were evaluated for two values of relative
dispersion dfg, 5% and 10%, and are shown in Figures
9 and 10.

In this case, it is possible to observe that the fre-
quency responses for both independent and intercon-
nected circuits are very close, from mean values and

(a)

(b) (c)

Figure 6. Histogram of capacitance with 5% individual and global relative dispersions: (a) all patches, (b) first patch, and (c) second
patch.

Figure 7. Schematic representation of Monte Carlo simulations.

Figure 8. Convergence of Monte Carlo simulation for the norm of the frequency response of a rod with independent circuits for
uncertain capacitance (5% individual plus 10% global dispersion).
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confidence intervals’ perspectives. In terms of the maxi-
mum responses, for the independent circuit, the differ-
ence between the maximum values of the nominal
frequency response and the superior of the 95% confi-
dence interval is 8.1 and 13.4 dB for dfg = 5% and
dfg = 10%, respectively. For the interconnected circuit,
these values are 8.7 and 13.0 dB for dfg = 5% and
dfg = 10%, respectively. Therefore, these results suggest
that, under global capacitance variabilities, the perfor-
mance of independent and interconnected circuits are
equivalent.

Next, only the capacitance variabilities due to
patches individual properties are considered. For that,
fg is assumed to be unitary and constant (deterministic),
while fi may assume different values according to the
stochastic model presented previously. Thus, dfi 6¼ 0

and dfg = 0. Then, the frequency responses of the rod
with independent and interconnected circuits were eval-
uated for the same values of relative dispersion dfi, 5%
and 10%. They are shown in Figures 11 and 12.

It is noticeable that, for the interconnected circuit,
the mean response and the superior of the confidence

interval follow the shape of the nominal response with
two peaks, while this is not the case for the independent
circuit. In terms of the maximum responses, for the
independent circuit, the difference between the maxi-
mum values of the nominal frequency response and the
superior of the 95% confidence interval is 2.2 and
5.4 dB for dfi = 5% and dfi = 10%, respectively. For
the interconnected circuit, these values are 2.5 and
4.5 dB for dfi = 5% and dfi = 10%, respectively. These
results suggest that, for the case of capacitance individ-
ual variabilities, the interconnected circuit is slightly
more robust for large individual dispersion. But the
main thing is that the nominal performance can be
achieved with the interconnected circuit, while it cannot
be achieved with the independent shunts (with a 95%
confidence interval). The independent circuit leads to a
mean FRF that is similar to the result of a resonant
shunt with a resistance above its nominal value. This
suggests that the circuits’ resistance have a significant
influence on the comparison between the robust
performance of the interconnected and independent
circuits.

Figure 9. Frequency response of rod with independent circuits
for uncertain patch capacitance (5% (left) and 10% (right) global
dispersion): open circuit (short dash), RL nominal (dash), RL
mean (solid), and 95% confidence interval (fill).

Figure 10. Frequency response of rod with interconnected
circuits for uncertain patch capacitance (5% (left) and 10%
(right) global dispersion): open circuit (short dash), RL nominal
(dash), RL mean (solid), and 95% confidence interval (fill).

Figure 11. Frequency response of rod with independent
circuits for uncertain patch capacitance (5% (left) and 10% (right)
individual dispersion): open circuit (short dash), RL nominal
(dash), RL mean (solid), and 95% confidence interval (fill).

Figure 12. Frequency response of rod with interconnected
circuits for uncertain patch capacitance (5% (left) and 10% (right)
individual dispersion): open circuit (short dash), RL nominal
(dash), RL mean (solid), and 95% confidence interval (fill).
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5. Effect of circuits’ resistance on FRF
variability

Since the vibration amplitude reduction performance
seems to be significantly affected by the patches’ capa-
citance uncertainties, it is worthwhile to seek for solu-
tions to mitigate the performance uncertainties.
Previous results have shown that most of the uncer-
tainty in the frequency response is due to the mistuning
between structural natural frequency and circuit reso-
nance frequency. That is because mistuning leads to the
increase of one peak accompanied by the reduction of
the other one (Santos and Trindade, 2011). Therefore,
it is expected that an increase of the circuits’ resistance
would reduce the increasing peak in mistuned cases
and, thus, increase overall robustness to the considered
parametric (capacitance) uncertainties.

Therefore, additional simulations were performed to
evaluate the effect of increasing and reducing the cir-
cuits’ resistance values. To assess the effect of circuit
resistance on the nominal and robust vibration control
performances of independent and interconnected cir-
cuits, the circuit resistance was varied from 250% to
+100%, with 10% steps, of its nominal value. The

frequency responses of the rod with independent and
interconnected circuits were then evaluated considering
either individual or global capacitance variabilities and
are shown in Figures 13 to 16.

It is noticeable that, in the case of individual varia-
bility in the capacitances and for decreased resistance
values, the independent circuit leads to a mean response
that is much smoother than the nominal one (Figure
13), whereas, for the interconnected circuit, the mean
and nominal responses are quite similar (Figure 14).

To quantify the effect of the resistance on the varia-
bility or robustness of the frequency response, it is pos-
sible to analyze the difference between the superior and
inferior curves of the confidence interval. Smaller dif-
ferences indicate smaller overall variability of the
response for a given stochastic parameter and vice
versa. Although different metrics could be considered
for such an analysis, here the mean differences between
the superior and inferior curves over the frequency
range of larger variability (2300–2700 Hz) are used.
For the smallest resistance considered, these reach up
to around 3.7 dB, for the independent circuit (Figure
13(a)), and around 4.0 dB (Figure 14(a)), for the inter-
connected circuit. On the contrary, these differences

(a) (b) (d) (e)(c)

Figure 13. Frequency response of rod with independent circuits for uncertain patch capacitance (5% individual dispersion) for ((a):
250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open circuit (short dash), RL
nominal (dash), RL mean (solid), and 95% confidence interval (fill).

(a) (b) (d) (e)(c)

Figure 14. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% individual dispersion) for
((a): 250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open circuit (short dash), RL
nominal (dash), RL mean (solid), and 95% confidence interval (fill).

Trindade et al. 979



can be reduced to around 0.8 dB (Figure 13(e)) and
0.9 dB (Figure 14(e)), respectively, for the largest resis-
tance considered.

As shown previously, global capacitance uncertain-
ties lead to much larger frequency response variability.
Hence, in these cases, the effect of increasing the resis-
tance is even more important since it reduces this differ-
ence. Also, the mean difference between the superior
and inferior values of the confidence interval can reach
up to 10.8 dB (Figures 15(a) and 16(a)) for both circuits
and the smallest resistance considered. This difference
is reduced to around 2.7 dB for the largest resistance
considered (Figures 15(e) and 16(e)).

These analyses can also be performed by combining
both individual and global variabilities. This was done
considering 5% relative dispersions for both fi and fg.
Figures 17 and 18 show the nominal, mean, and 95%
confidence intervals for the FRF when considering five
different values for the circuit resistance. It is noticeable
that the results combine the features observed due to
the separate dispersions. For the interconnected circuit
and smallest resistance, the difference between the max-
imum of 95% confidence interval and the maximum
nominal response is increased when considering both

individual and global dispersions, compared to the case
of global dispersion alone. On the contrary, for the
independent circuit, this difference is actually decreased.
However, for both circuits, the overall behavior indi-
cates that increasing the resistance diminishes the varia-
bility, although not necessarily improving the robust
performance. In the next section, two robust vibration
mitigation performance criteria are proposed to provide
a more direct way to quantify the effect of circuits’
resistance for analysis and design for robustness.

6. Effect of circuits’ resistance on vibration
mitigation performance

Based on previous Monte Carlo simulation results, it
was possible to conclude that, generally, increasing the
circuits’ resistance could lead to less variability in the
frequency responses, which is in agreement with
Andreaus and Porfiri (2007) and Berardengo et al.
(2015). However, it is also worthwhile to analyze the
effect of circuit resistance on the maximum response
and, thus, on the potential vibration amplitude reduc-
tion under capacitance uncertainties. For that, the H‘

(a) (b) (d) (e)(c)

Figure 15. Frequency response of rod with independent circuits for uncertain patch capacitance (5% global dispersion) for ((a):
250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open circuit (short dash), RL
nominal (dash), RL mean (solid), and 95% confidence interval (fill).

(a) (b) (d) (e)(c)

Figure 16. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% global dispersion) for ((a):
250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open circuit (short dash), RL
nominal (dash), RL mean (solid), and 95% confidence interval (fill).
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norms of each realization of the FRF responses were
evaluated. Their distributions, nominal values, and
95% confidence intervals were then assessed. The sta-
tistics of a second criterion, common to the design of
resonant shunt circuits, based on the minimum damp-
ing factor is also analyzed. This was done by fitting the
responses to a 2-degree-of-freedom transfer function to
extract the modal parameters from the FRFs.

From Figure 19(a), it is possible to observe that for
the independent circuit, from both FRF H‘ norm mean
and maximum perspectives, the best resistance value
(from those analyzed) is the one decreased by 30% from
the nominal value. On the contrary, for the intercon-
nected circuit, mean and maximum values of the FRF
H‘ norm follow the behavior of its nominal value, as
shown in Figure 20(a). Thus, for the interconnected cir-
cuit, the nominal resistance value is also the best from
both FRF norm mean and maximum perspectives. In
terms of the minimum damping factor criteria, a resis-
tance increased by around 60% is nominally the best
solution. When considering the uncertainties, however,
for the independent circuit, a resistance increased by
20% and 30% is the best choice from mean and mini-
mum perspectives, respectively, although the variability

diminishes for increasing resistance. For the intercon-
nect circuit, the resistance increased by 60% is the best
choice from nominal and mean perspectives, whereas
the one increased by 50% should be the choice to maxi-
mize the minimum damping (Figures 19(b) and 20(b)).

This result has a strong consequence on practical
design of physical inductors because, in order to satisfy
the previous optima, the quality factor of the indepen-
dent circuits has to be substantially larger than the
quality factor of the interconnected circuits. Yet, in
applications involving passive resonant shunts, the
quality factor of a circuit is usually limited by the qual-
ity factor of the inductor itself, which already includes
a non-negligible internal resistance (Lossouarn et al.,
2017). This does not promote the use of the indepen-
dent circuits because designing inductors with a larger
quality factor together with a larger inductance (see
Table 1) would require larger coils and thus heavier
electrical components.

However, in the case of capacitance global variabil-
ity, both independent and interconnected circuits pres-
ent the same overall behavior, in which larger resistance
values are beneficial from both mean and maximum
perspectives (Figures 21(a) and 22(a)). It is observed

(a) (b) (d) (e)(c)

Figure 17. Frequency response of rod with independent circuits for uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) for ((a): 250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open
circuit (short dash), RL nominal (dash), RL mean (solid), and 95% confidence interval (fill).

(a) (b) (d) (e)(c)

Figure 18. Frequency response of rod with interconnected circuits for uncertain patch capacitance (5% individual dispersion and
5% global dispersion) for ((a): 250%, (b): 230%) decreased, (c) nominal, and ((d): + 40%, (e): + 100%) increased resistances: open
circuit (short dash), RL nominal (dash), RL mean (solid), and 95% confidence interval (fill).
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that the optimum in terms of mean value is obtained
for a resistance increased by up to 40% from the nom-
inal value for the independent case and by 20% for the
interconnected case. In terms of minimum damping fac-
tor, the resistance increased by 60% is the best choice in

all cases but the one to maximize the minimum interval
for the independent circuit, in which case the perfor-
mance can be marginally improved by further increas-
ing the resistance (Figures 21(b) and 22(b)).

(a)

(b)

Figure 20. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with interconnected circuits
for uncertain patch capacitance (5% individual dispersion) with
modified resistance: nominal (dash), mean (solid), and 95%
confidence interval (fill).

(a)

(b)

Figure 19. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% individual dispersion) with
modified resistance: nominal (dash), mean (solid), and 95%
confidence interval (fill).

(a)

(b)

Figure 21. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% global dispersion) with modified
resistance: nominal (dash), mean (solid), and 95% confidence
interval (fill).

(a)

(b)

Figure 22. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with interconnected circuits
for uncertain patch capacitance (5% global dispersion) with
modified resistance: nominal (dash), mean (solid), and 95%
confidence interval (fill).
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These results are decisive because it is shown that
the only circuit for which resistance values larger than
the nominal one lead to better robust performances
considering both individual and global variabilities is
the interconnected one.

These analyses were also performed for combined
individual and global variability. As shown in Figure
23(a), since the robustness behaviors for individual and
global variabilities are somewhat contradictory, the
mean FRF norm is almost constant for the resistance
values considered while the maximum FRF norm
improves for larger resistance values. However, for the
interconnected circuit, 10% and 40% increased resis-
tance values improve robustness using mean and maxi-
mum criteria, respectively (Figure 24(a)). In terms of
minimum damping factor, for the independent circuit,
resistance values closer to the nominal one provide
higher minimum damping from the mean perspective,
although higher resistances marginally improve the
minimum interval (Figure 23(b)). For the intercon-
nected circuit, from nominal, mean, and maximum per-
spectives, resistances increased by 60%, 50%, and
100% are the best choices, respectively (Figure 24(b)).

7. Effect of uncertainties on multimodal
vibration mitigation

While the interest of interconnected circuits has been
proven for single-mode vibration mitigation, one can
remember that the main advantage of those circuits is to
provide damping on several modes simultaneously. A

perspective of this work is thus to investigate the effect
of uncertainties on multimodal vibration mitigation.

Preliminary results, as shown in Figure 25, indicate
that the vibration mitigation performance for all modes
is affected by the capacitance uncertainties. It is first
noticed the increasing detuning on the nominal and
mean FRF curves where the pairs of local maxima do
not have the exact same amplitude. This effect is actu-
ally not related to uncertainties but to the number of
unit cells in the electrical network (Lossouarn et al.,
2015). Increasing the number of components would
better tune simultaneously both mean and nominal
responses.

Yet, the difference between the nominal response
and the mean or maximum responses strongly increases
for the highest modes. This is mainly due to the lower
damping of the highest modes. Indeed, damping is
introduced with a resistance in series with the induc-
tance, as seen in Figure 1. Impedance calculation shows
that the resulting quality factor Lsv=Rs increases with
the frequency leading to underdamped highest mode
when the first mode is correctly tuned. Lower damping
then amplifies the effect of capacitance variabilities, as
seen from Figure 18(c) to (a).

While broadband tuning of damping coefficients is
out of the scope of this article, those results highlight
the need of an optimized damping thanks to adequate
resistors placed at different positions of the electrical
network. This makes a direct perspective of this work
in order to propose an interconnected network for both
multimodal and robust vibration mitigation.

(a)

(b)

Figure 23. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with independent circuits for
uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) with modified resistance: nominal (dash),
mean (solid), and 95% confidence interval (fill).

(a)

(b)

Figure 24. Statistics of the (a) norm of frequency response
and (b) minimum damping of rod with interconnected circuits
for uncertain patch capacitance (5% individual dispersion and 5%
global dispersion) with modified resistance: nominal (dash),
mean (solid), and 95% confidence interval (fill).
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8. Conclusion

This work has presented an analysis of the effect of
parametric uncertainties on the vibration control per-
formance of a rod with periodically distributed piezo-
electric patches that are either independently connected
to electrical shunt circuits or interconnected through an
electrical line of inductors. In both cases, the capaci-
tances of piezoelectric patches were considered as sto-
chastic parameters following a known probability
density function distribution. Then, Monte Carlo simu-
lations were performed to evaluate mean values and
confidence intervals of the frequency response functions
to assess the robustness of each solution and to com-
pare different solutions in terms of nominal and robust
performances. Results have shown that vibration
amplitude reduction worsen significantly (with loss in
reduction of up to 13 dB in the proposed example) due
to the mistuning between structural natural frequency
and circuit resonance frequency. Yet, interconnected
circuits are more robust to individual capacitance vari-
abilities than independent shunt ones because they are
able to maintain a mean response that is very close to
the nominal one.

Considering the clearly different responses between
independent and interconnected circuits subjected to
individual variabilities, it was proposed to assess the
effect of modifying the circuits’ resistance on the vibra-
tion reduction performance robustness. Results have
shown that, for the interconnected case, the optimal
resistance for robust performance is the same as the
nominal one. However, for independent shunt circuits
and individual variabilities, decreasing the resistance
has shown to be a better compromise solution. This
induces a practical limitation for those independent
shunts because they require both larger inductance and
quality factors that could lead to bulky physical com-
ponent when considering a passive realization.

Another issue concerns the robust optimum when
considering global variation of the circuits’ capacitance.
In this case, the resistance always has to be larger than
its deterministic optimal one, which is in contradiction
with the previous results. In the end, even without

considering its broadband capabilities, all of this make
the interconnected circuit the best candidate for a
robust design of a resonant piezoelectric array intended
for vibration mitigation. Future works will be directed
to the extension of this approach to assess the effect of
parametric uncertainties on multimodal vibration
mitigation.
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