PHYSICAL REVIEW E 86, 046109 (2012)
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The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation
in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we
generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In
that work, we applied this modification to the Sznajd model and presented some preliminary results. The present
work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed
points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding
an interesting connection with graph theory problems. More precisely, we link the existence of fixed points
with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the
maximal independent sets of a graph. We state these results and present comparisons between the mean field
and simulations in Barabdsi-Albert networks, followed by the main mathematical ideas and appendices with the
rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there
is no qualitative difference in the mean-field results if we require that a group of size g > 2, instead of a pair, of
agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide

with the g-voter model).
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I. INTRODUCTION

In the last years, the interest in interdisciplinary problems
has increased among physicists, creating many research areas.
One of these areas is sociophysics that studies how assump-
tions about the behavior and social interactions of people
in a “microcospic level” creates emerging social behaviors,
like opinion propagation, consensus formation, properties
of elections, how wealth is distributed in society, among
other topics. Typical approaches include modeling using
deterministic cellular automata, Monte Carlo simulations of
models derived from ferromagnetic models (usually Ising and
Potts), mean-field approaches and diffusion-reaction processes
[1-8].

The Sznajd model is an opinion propagation model,
originally inspired by the Ising model in a linear chain, and is
typically used to model consensus formation. It has spawned
many variations, including the addition of noise, independent
behavior, contrarianlike agents and undecided voters, as well
as generalizations to more than two states (opinions) and to
arbitrary networks [2,9,10]. In all these variations, the most
defining aspect of the Sznajd model is that it gives a greater
convincing power to bigger groups of agreeing agents. Even
though the importance of this effect has been known by
psychologists since the 1950s [11], it is often overlooked in
other opinion propagation models, for the sake of simplicity
(this happens, for example, in the voter and in the Deffuant
models [1,3]).

In a recent work [12], we took the bounded confidence
rule (that roughly says that people are only allowed to
change opinions in a smooth way) that is common to many
opinion propagation models [3,4,13], including the Sznajd
model, and we generalized it to model biases and prejudices
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in discrete opinion models (these generalized rules will be
called by the umbrella term confidence rules). We applied
this generalization to the Sznajd model and studied mainly
the case with three opinions. In that work, we found a good
qualitative (and with the exception of the time scales in
which things happened, a quantitative) agreement between
the model simulated in Barabasi-Albert (BA) networks [14]
and the mean-field equations, being able to understand some
apparently contradictory results in literature [12]. However,
some of the results about the mean field were still rather
sketchy.

The present work can be regarded as a unifying effort.
In this paper, we recapitulate the Sznajd model with general
confidence rules and then write a mean-field equation for
a variant of the model that includes as different parameter
choices, the model with confidence rules as studied by us in
Ref. [12], the usual Sznajd model as defined in Ref. [10], and
the versions studied in Ref. [15]. We define a phase space
for these equations and state the mean-field results that were
found for this variant of the Sznajd model. We find which
are the fixed points of the model, how they are organized,
and what are their stability properties. This allows us, among
other things, to identify which are the static attractors of the
mean-field equations and to show that all the different versions
of the model have the same behavior. This shows that there
is some measure of universality in the qualitative behavior
of these models (this is important, as the obvious difficulties
in modeling human beings in a reliable and realistic way,
show that some degree of universality in human behavior is
essential, in order for social modeling to be feasible). We state
these results highlighting a connection that was found between
them and graph theory problems using a graph derived only
from qualitative properties of the confidence rule. The results
have some counterintuitive aspects and as such we provide both
numerical solutions for the mean-field equations and Monte
Carlo simulations for the Sznajd model (more precisely, the
version studied in our previous paper [12]) in a BA network.
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Finally, we give rigorous proofs of our claims, with the main
mathematical ideas in a separate section and the detailed proofs
in the appendices. The paper is structured in a way that a basic
understanding of the results is possible without reading the
most technical sections.

An Appendix with graph theory concepts and a glossary is
provided and we recommend strongly that those not familiar
with the specific language and notation used (especially in the
results section) read it first.

II. THE SZNAJD MODEL WITH CONFIDENCE RULES

The Sznajd model is an agent-based sociophysics model for
opinion propagation. In this model, a society is represented by
a network (that is, a collection of nodes linked together by
edges), where each node represents an agent (person), each
edge is a social connection (friendship, marriage, acquain-
tances, etc.), and each node i possesses an integer o;, between
1 and M, representing its opinion. In our generalization of the
Sznajd model, as defined in Ref. [12], we introduce a set of
parameters p,_., (that are fixed and completely independent
with the state of the network), and at each time step the
following update rule is used:

(1) A node i is chosen at random, and then a neighbor j of
i is chosen.

(2) If they disagree (0; # o;), nothing happens.

(3) If they agree, a neighbor k of j is chosen and is
convinced of opinion o; with probability ps,—.,.

We can interpret the first step as a conversation between
two people that know each other, where they discuss some
issue. If they disagree, none manages to convince the other.
But, if they agree, they may set to convince another person that
one of them knows and this person is convinced with a certain
probability that depends only of its current point of view and
of the opinion the pair is trying to impose.

In the original model the probability weights p,_,, are not
dependent on o and o”’. The reason why this probability should
depend on both opinions is that, usually an opinion includes
prejudices about differing points of view (this is strongly
related with the idea of cognitive dissonance in psychology
[16—18]). This generalization allows for complex interactions
among the opinions in an unified way and can be seen as a
generalization of the bounded confidence rules [3,4], as those
rules can be recovered as special cases. Some of the model
modifications found in the literature can also be obtained this
way, as different parameter choices:

(1) When p,_,,» = 1 V 0,0’ we have the usual model [10].

@) If lo—0'|<&= poso =1 and p,_o =0 other-
wise, we have bounded confidence with threshold ¢ [19].

(3) Undecided agents can be modeled by a special state
o, such that p,,, =0V ¢’ (undecided agents can only be
convinced).

(4) Cyclic interactions, like rock, paper, scissors (A con-
vinces only B, that convinces only C, that convinces only
A) [20].

This generalized version of the model has M(M — 1)
parameters, where M is the number of opinions (p,—o is
irrelevant and can always be taken as 0). These parameters can
be thought as the elements of the adjacency matrix of a directed
weighted graph, that will be referred to as the confidence rule
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FIG. 1. A confidence rule for four opinions. Here p;_,, = 0.8,
P13 =05, pi4 =06, poy; =025, pr3=1, p3,=0.17,
Pa—s2 = 0.4, and p,_., = 0 otherwise.

(as the set of parameters p,_,, and this graph are equivalent,
we will refer to both of them as the confidence rule). So the
confidence rule is a directed weighted graph, whose nodes are
the opinions in the model (so a model with M opinions would
have a confidence rule with M nodes) and the arrows represent
the ways that opinions are allowed to interact. This graph is
useful as a way of schematizing the opinion interactions and
as we show in the next sections, it can be used to find the
properties of the mean-field fixed points. An example of a
confidence rule with four opinions is given in Fig. 1.

We will use this model in our simulations (found in
Sec. IV), while for the mean field we will actually use a further
generalization of the Sznajd model (that includes the model
that was actually used in the simulations as a particular case).
In this generalization, at each iteration we choose g agents
at random and if they agree (meaning they are on the same
state), they attempt to convince r other agents (also chosen at
random). If the group of ¢ agents has opinion o, then each
of the targeted r agents is convinced with probability p, _,,
and retains its opinion with probability 1 — py/—,, where o’ is
the opinion the targeted agent had before the group attempted
to convince it (and hence in general it is different for each
of the r agents). Adding up the probabilities of all possible
processes we obtain the mean-field equation in the limit of
large networks:

Noe =7 Z 77(777(7/(77371[7”’40 - ngfilp(r—wr’)’ €))
p”

where 7, is the proportion of sites with opinion o (the
deduction of this equation from the underlying Markov chain
implies that 7 is actually the expected value of the proportion)
and a time unit corresponds to a Monte Carlo sweep (MCS),
that is, a number of iterations equal to the number of sites in
the network.

III. MEAN-FIELD RESULTS

We now present the mean-field results and some of its
consequences. In the following section we will provide sim-
ulation results showing that these results are indeed observed
in Barabasi-Albert networks.

For the analysis of the mean-field case, we built a phase
space representation, where the variables are the 7, . The phase
space of this flow is an (M — 1)-simplex denoted as simy,
(that is embedded in an M dimensional vector space, in order
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to make the equations more symmetrical), where the vertices
correspond to consensus states and the other states are convex
combinations of the vertices, with coefficients 1, :

P:ZPgna, 2

where P, is the coordinate of the vertex corresponding to
consensus of opinion o, and P is the coordinate in phase
space of the point representing the state (11, . ..,7,) (in other
words, we are using a barycentric coordinate system).

The results for the mean-field fixed points allow us to find
what are the possible configurations of surviving opinions
(the attractors), as well as other qualitative properties of
the behavior, without us having to explicitly solve nor do
the numerical integration of the equations. They can be
expressed as problems regarding the existence of groups of
nodes satisfying certain conditions in the confidence rule and
these results are the same for all g > 2. We will give here
these results for a better understanding of the simulations in
Sec. 1V, leaving the mathematical details for later. Because
of the connection of these results with graph theory, a small
glossary with examples is provided in Appendix A. For the
same reason, we will interchange freely the notion of a set of
opinions with the notion of a set of nodes in some graph (like
the confidence rule).

In what follows, we will denote by M, the manifold with
the states where only opinions belonging to a set A survive:

Zn”=1}. 3)

geA

My = {7] € simy,

We will interpret this set of opinions as a set of nodes in the
confidence rule and we will denote by A_ its predecessor set
(the nodes that point to nodes in A), by A its successor set (the
nodes that are pointed by nodes in A), by A its complement
set (the nodes that are not in A), and by G 5 the graph induced
in G by A (the graph obtained by keeping only the parts of
G that are related to A). Finally, we will denote by R the
skeleton of the confidence rule, that is, the directed graph
obtained by keeping all the arrows with nonzero weight and
removing the weights after that. We will also use the concepts
of strongly connected graphs and of independent sets (the
detailed definitions, together with examples, can be found in
Appendix A). The results for the mean-field fixed points are
as follows:

(1) Given a fixed point, its stability properties depend only
on which opinions survive in it and on the skeleton of the
confidence rule.

(2) There exists a fixed point, where all opinions survive,
if and only if R is a union of strongly connected graphs.
Moreover, if R itself is strongly connected, this point is unique
and an unstable node (the only exception is the case with one
opinion, when the fixed point is the only point in the phase
space).

(3) The results concerning only opinions in a set A (the
fixed points and the stabilities inside M 4) can be found using
the model defined by the confidence rule R x (in other words,
removing opinions from the model leaves us with a model with
a different confidence rule that is valid inside of M ).
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(4) If R is a union of different components Ay, ..., Ay,
and 7; is a fixed point of the model in M 4., we have that the
convex hull H of the 7; is constituted entirely of fixed points
of the model. The number of stable and unstable directions for
these fixed points can be obtained by summing these numbers
for each of the 7; (taking into account only directions parallel
to M ,,). For the number of neutral directions, we must take
into account that all the directions parallel to H will be neutral
with no movement along them.

(5) A fixed point where only opinions in A survive is
attractive if and only if A_ = A. This also implies that A
is a maximal independent set (see Appendix B1) and hence
that M 4 is an attractor (because of the last two items).

(6) If A is the set of opinions that survive in a given
fixed point and R x has k components, the trajectories in a
neighborhood of the fixed point are such that

(a) There are |A|+ |(A — A_)N A, | — k unstable di-
rections.

(b) There are |A N A_| stable directions.

(c) There are k — 1 directions along which there is no
movement.

(d) There are [(A — A_) N (A — A,)| directions that are
neither attractive nor repulsive, but along which there
is movement.

These results have some interesting consequences and
interpretations that should be kept in mind when analyzing
the simulation results.

(1) The mean field has no stable situations where two
interacting opinions coexist. This means that all possible
(static) attractors are of the form M, where A is a maximal
independent set.

(2) The requirement that A be maximal for M, to be
an attractor allows the existence of attractors with surviving
opinions that do not convince any opinions at all.

(3) The condition A_ = A implies that it is possible to
build confidence rules that have no such attractors. These rules
display heteroclinic cycles (see Appendix B2), which cause
oscillations with diverging period and are heavily affected by
finite size effects during simulations. In some cases, these
cycles have basins of attraction, even if static attractors are
present.

(4) If every opinion can convince any other (that is,
Do # 0 for all o # ¢’), then the consensus states are the
only attractors.

IV. SIMULATION RESULTS AND EXAMPLES

For our simulations, we used Barabasi-Albert networks
with 107 sites and minimal connectivity equal to 5 (we used
different networks, but always with these same parameters).

In order to compare trajectories obtained by simulations
with trajectories obtained by integrating Eq. (1) we recall that
1, is the expected value of the proportion of sites with opinion
o. Because of this and in order to reduce noise, we take
averages over many simulations (one can also reduce noise
by choosing a larger network size). More importantly, if the
initial condition for the mean-field equations is (11, ... ,nu),
then this means that for the corresponding simulations, each
site must have its opinion chosen at random with probability
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FIG. 2. The skeleton R, of a confidence rule where two of the four
maximal independent sets generate attractors. These static attractors
can all be obtained by solving A_ = A in the rule, as pointed out in
Sec. III, and are M, 5y and My, 5.

1, for opinion o. We also recall that the model being simulated
corresponds to the parameter choice ¢ =2 and r = 1.

The simulations we will do will be aimed at giving
examples of the mean-field results from Sec. III, some of their
counterintuitive aspects and some divergences between the
simulations and the mean field.

A. Attractors and stability

To illustrate the results about the stability properties of the
fixed points, consider the rule R, depicted in Fig. 2 (actually, a
family of confidence rules). The maximal independent sets are

0.0 - :

0 20 40 60 80 100
time (MCS)
@ m +mn2+mns
0-25 T T T T T
0.20 1 .
- 0.15 1
o
= 0.10 :
0.05 f 1
0'000 50 100 150 200 250 300
time (MCS)
(b) n2.m5

FIG. 3. Time series for the rule in Fig. 2 with weights either 0
or 1, depicting the attractors. Note that in Fig. 3(a) the ending value
is 1 (meaning that opinions 3 and 4 do not survive). In Fig. 3(b) the
ending value is 0, showing that opinion 2 and 5 do not survive at the
same time.
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TABLE 1. The fixed points of the rule in Fig. 2 that are not in
attractors, denoted by the opinions that survive in them (A). The line
of fixed points connecting the edge P, Ps to the vertex P is denoted
by 1 x 2,5. For each fixed point, we list the number of unstable, stable,
and neutral directions (u, s, and n, respectively). The relation of these
numbers with the sets A, A_, A, and the number of components
induced by A is given in Sec. III.

A A A AL u ) n
3 1,2,4,5 4 1,2,4,5 3 1 0
4 1,2,3.5 3 1,2,3.5 3 1 0
3.4 1,2,5 3.4 1,2,3,4,5 4 0 0
1x25 3.4 2,3,4,5 2,5 1 2 1

A = {1,2},{1,5},{3}, and {4}, but only {1,2} and {1,5} obey
A_ = A, meaning that the only stationary attractors are My
and M, s5). After a transient we see one of two situations, the
only surviving opinions will be 1 and 2 or they will be 1 and 5.
We can see this from the time series of n; 4+ 1, + 15 (it tends
to 1) and ;.75 (it tends to 0, although with a longer transient)
[Figs. 3(a) and 3(b)].

The other fixed points can be found by looking at the
other induced graphs that are unions of strongly connected
graphs. They are Rz}, R, Ry3,4), and R 5. Note that
Ri1,2,51 = Ry U Ry2,5) and that both components are strongly
connected. This means that we will actually have a line of fixed
points connecting some point in the edge P, Ps to the vertex
P;. The stability properties of these points are in Table L.
A projection of the phase space (where the weights in the
confidence rule were taken as O or 1), showing the attractors
and the features described in this table can be found in Fig. 4.

FIG. 4. (Color online) Phase space projection, depicting the
structures described in Table I and the attractors. On the top right we
see a reordering of the skeleton of the rule making the independent
sets more evident. The cyan dashed line shows the location of the
saddle points (1 x 2,5; in Table I), the blue shaded trajectories are
passing near the point (4), the red ones near the point (3), and the
green ones near the point (3,4). For all these trajectories and the gray
ones, lighter shades indicate the beginning of the trajectories and
darker shades indicate their ending. We can see then the trajectories
going to the attractors My 5 and M, 5, with some being at first
attracted by the saddles in (1 x 2,5) before being repelled. We can
also see the predicted stable direction for the fixed points (3) and (4)
and the fact that (3,4) is an unstable node.
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@

(@) R1

(b) Ro

FIG. 5. The skeleton of two confidence rules R, and R,, such
that inert opinions are able to survive in the stationary state.

B. Surviving inert opinions

Next, we consider two examples in which we have opinions
that survive in an attractor, but do not convince any other
opinion (we will call them inert). Consider the rules R and
R, given in Fig. 5. In R, My 3; is an attractor, even though
opinion 1 is inert (cannot convince any of the others). In R,
M sy, Myi1,2), and M, 3y are attractors, even though opinion
2 is inert.

We now check that this effect is present in the simulations.
Time series for the models with confidence rules R and R,
(once again, the weights are taken as O or 1) are given in
Figs. 6(a)-6(d).!

C. Rules without static attractors

Consider a rule in which all opinions interact (that is, for
all pair of distinct opinions o and o’ either p,_., # 0 or
Po—o # 0), but such that every opinion o has at least one
different opinion o’ that it cannot convince. The independent
sets of such rule are all unitary, but we have imposed that
o' ¢ {o}_ and o # ¢, so there are no solutions to A_ = A
for this rule and hence it has no stationary attractors (it is

'In one of the trajectories depicted in Fig. 6(a) the stationary state
is not the one predicted by the mean-field theory. In this case, the
initial condition had only 17 sites out of 10° holding opinion 3, and
they were not neighbors. If we remove opinion 3 from the confidence
rule R, the mean-field attractor becomes M, 4;, Which was the one
actually reached by this trajectory.

PHYSICAL REVIEW E 86, 046109 (2012)

40 50 60
time (MCS)
(@ (R1)m +n3
1.0 T T T T
0.8F 1

20 30 40 60
time (MCS)
®) (R1)m

0'00 10 20 30 40 50 60

time (MCS)
(¢) (R2)n1 +mn2 +n3

T T T T

~20 30 40 50 60
time (MCS)
(@) (R2) 12

FIG. 6. Time series for the rules R, and R, in Fig. 5 with weights
either O or 1. Graphs 6(a) and 6(c) depict time series containing the full
attractor (the ending value is either 0 or 1 depending on the attractor
reached), while graphs 6(b) and 6(d) focus in the surviving inert
opinion (which always decays, but can reach a nonzero stationary
value).
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3

FIG. 7. A rule that has no attractors.

possible to build other types of examples as well). An example
for four opinions is given in Fig. 7.

In Appendix B2 we prove that if there are no static attractors
(A_ is always different from A), then there exists a directed
cycle, where no edges are doubly connected. These cycles in
the confidence rule represent heteroclinic cycles in the phase
space and the typical behavior in this case is that as time goes
by, the trajectories get closer to one of the cycles, causing
oscillations with a diverging period (as they pass each time
closer to the consensus states, which are fixed points). In
simulations, eventually a random fluctuation puts the system
in a state where one of the opinions in the cycle gets extinct,
leading the system to a stationary state.

We measured the time v needed to reach consensus for
the confidence rule in Fig. 7. As this seems to be a finite size
effect, we made simulations for various network sizes (ranging
from 10° to 10°) and compared them with each other. The
initial condition that we used was a small perturbation of the
one where all opinions are drawn uniformly. The cumulative
distribution for 7 as a function of the network size N is in
Fig. 8, while the average time to reach consensus is presented
in Fig. 9. We note that the average time (when measured as
Monte Carlo sweeps) seems to scale as () =~ log N, indicating
that the consensus attractors are finite size effects.

D. Long transients and stationary states

In many simulations, there are situations in which the
trajectories get stuck for long times in states that are not
attractors. In some of these cases, the simulation got to a
stationary state where there are no active connections between

1.0 w r

0.8

)

o

o
T

0.0

0 20 40 60 80 100 120 140 160 180
T

FIG. 8. (Color online) The cumulative distribution of the time
to reach consensus, measured in Monte Carlo sweeps, for the rule
in Fig. 7, using network sizes 1000 (black stars), 3160 (red circles),
10000 (blue X’s), 31 600 (continuous black line), and 100 000 (black
circles). For each network size, 500 simulations were done.
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110

100

90

(

70

6 7 8 9 10 11 12
log N

50 :

FIG. 9. The average time to reach consensus measured in Monte
Carlo sweeps, for the rule in Fig. 7, using network sizes 1000, 3160,
10 000, 31 600, and 100 000. For each network size, 500 simulations
were done. (the logarithm base is e).

the agents (that is, a connection between a pair of agreeing
sites and a neighbor that they can convince, according to the
confidence rule). In other cases there are active connections,
but some opinions appear in negligible amounts and the set A
of opinions that are not negligible forms an independent set, but
not a solution to A_ = A. In the latter cases, the fixed points
in M4 are saddle points meaning that (recalling the number of
unstable directions of a fixed point, as stated in Sec. III) A =
(A — A_)N A, # @ and usually, one (or more) of the negligi-
ble opinions will be able to rise again, causing long transients.

Considering the mean-field equations, if 0 € A (meaning
that o is negligible), then it evolves according to (see Sec. VB
for further explanations)

Noo
1- ncrot ZU/EA No'oPo’—o ’

o (1) = “)
as long as the opinions in A are negligible. This implies that
the time the trajectories spend close to these saddle points
can be estimjlted, considering the time it takes for some of the
opinions in A to duplicate its proportion of sites in the network
(all the other opinions in A will remain negligible for much
longer times; see Appendix D). Solving (4) we get

1
T ~ min . (®)]
oeA (27]00 ZU’EA No'oPo'—o )

We now verify this relation for the integration of the mean-
field equations and compare these results with the simulations.
We will use the rule in Fig. 10, with A = {3,5}.

T
Yd

FIG. 10. A rule particularly prone to display long transients.
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(a) mean-field

60— T .

50F & 1

1000 2000 3000 4000
11
T i

(b) Simulations in Barabasi-Albert networks

FIG. 11. (Color online) Trapping times measured in Monte Carlo
sweeps for A = {3,5} (more precisely the time the trajectory took
since it crossed the surface nz 4+ ns > 1 — &, until it crossed the
surface 4 > 2¢, with & = 0.025). We can see that simulations behave
very differently than the mean field. Particularly, trapping times are
smaller than predicted by Eq. (6) and the relationship between the two
variables is not linear. The blue points correspond to the measured
values and the black line corresponds to the prediction of Eq. (6) (that
holds only for the integration of the mean-field equations).

N For this choice of confidence rule and opinion set, we have
A = {4} and we can approximate Eq. (4) with

1 1
— — — 1. (6)

N4o N4
The graphs for the mean field and the simulations can be
found in Figs. 11(a) and 11(b) and show that if a simulation
does not go to a stationary state, then it undergoes a transient
much faster than what is expected from the mean-field equa-
tions. On the other hand, there is the possibility of a simulation
reaching a stationary state, where the simulation is no longer

in a transient, but has not reached, a mean-field attractor.

V. ANALYTICAL RESULTS

Our goal in this section is to study the mean-field equation
[Eq. (1)], in order to find the fixed points and their stability
properties. We will derive here the results that were given
earlier in Sec. III, showing the main mathematical ideas. Some
of the most technical bits are in separate appendices, in order to
keep the focus in the reasonings that we deem more important.

We recall that the mean-field equation is

Ne =1 Z No na/(ngilpa’—nr - ng/ilpa—ﬂr’)’ (7N

a
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with ¢ > 2 and r > 1, where 7, is the proportion of sites
holding opinion . We will denote the number of opinions by
M and the confidence rule that is being used by R. The phase
space of this equation is the simplex defined by

Zna =1 and n, > 0Vo. ®)

It is easy to show that the trajectories never leave the phase
space. To see that, we first note that the sum of the variables
does not change with time:

d :
=Y
o o
- -1
=7 Nt (02 Porso = N Posar) =0,
o0’
because the term being summed is antisymmetric by a change
between o and o’. Then, we look at the derivative of log(n,):
e
No
- -1
< Z 770’(773 lpa’—>a + nZ/ pa—ﬂr/)
-

<r Z 20y = 2r.
o

This means that if we start in the interior of the phase space,
|log(ns)| does not diverge in a finite amount of time an so
ns does not become 0 in a finite amount of time, keeping the
trajectories inside the phase space.

le( )
di 2N

A. The fixed point equations

In order to find the fixed points we must solve the equations
e = 0. In other words, defining the vector field F = 7, we
must find the roots of F that are inside the phase space. This
means that a fixed point must obey

ne =0 or

Z (nzilna’pa’—nr - nz;p(,_,(,r) =0

’

(©))

[

for each opinion o. Given the form of Eq. (9), it is natural
to separate the solutions according to which opinions survive
(meaning they are held by a proportion of agents different from
0) and which opinions do not (we will call them extinct). We
will denote the set of surviving opinions by A and the set of
extinct opinions by €2, that is, the fixed points of the model are
the solutions (such that , # OVo € A) of

Z (nz—_lna’pa’»o - nZ/paea’) =0Vo € A, (10)

o’

for each of the possible sets of surviving opinions A, setting
n, = 0 for all opinions ¢ in the corresponding €2. Note that,
a priori, we must solve the system (10) for all the 2 — 1
possibilities for A that are different from an empty set.
However, if we substitute n, = OVo € Q in Eq. (10), we get

S (8 e P — HPo) =¥ € A, (1)
o’'eA
which is the system (10) for the model with confidence rule
Ra and in the case where all opinions survive. This means
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that we can reduce the understanding of the general case to
the understanding of the case 2 = @& (as far as finding the
fixed points is concerned). Moreover, if R o has k components
Ay, ..., A, thismeans that p,_,,» = O whenevero € A;,0’ €
Aj,andi # j. We can then rewrite the system of Eq. (11) as

SN (0 e Poma = 1 Pomor) = OV € A,

Jj o'€A;

but we already have

Z (ngilna’p(ﬂ—)(r - U(q,rpg_mf) =(0Vo € Ai

J’GAJ‘

whenever i # j, no matter the values of the n,, because all of
the p’s in this case are equal to 0. So we arrive at the system
of equations,

Z (ng_lnd’pa’ea - nz/pgﬁar) =0Vo € A;, (12)

o'eA;

that is, the equation for the fixed points of the model with rule
R a,, meaning that we have a fixed point where all opinions
survive if and only if the variables corresponding to opinions
in Ay, ...,A; are themselves fixed points (after we adjust
their normalization) where all opinions survive, but for the
models with confidence rules R, , ..., Ra,, respectively.

More precisely, recalling that we are looking for solutions
for F = 6, where

Fa(ﬁ) =r Z nono’(nz_lpn’—nr - nZ'_lpn—ny’),
P

then if we define #; and F; as the vectors containing only the
coordinates of 7j and F that are in A;, that is,

=0 ... 0 and F=[FF ... FEl (13)

then for every i, 17", is a homogeneous function of 7; only. So
Ij“i being 0 depends exclusively on 7; being a fixed point of
the model with rule R 5, (after changing the normalization, so
that the sum of all variables is 1). Moreover, if all the 7; are
fixed points where all opinions survive (which is equivalent to
saying that 7 is a fixed point where all opinions survive), then
defining

na, = Y _ N, and

oEAN;
zlz[ia...a}, zzz[aﬂa...a],...,
’7A1 ’7A2
Zkz[()...ﬂ}, (14)
Na

it follows that all the points given by

k k
> g suchthat » ;=1 and o; >0V (1)
i=1 i=1

are fixed points of the model. The set of points defined by

Eq. (15) is the convex hull of the points defined by the ¢; and

as these vectors are linearly independent, it means the convex

hull must have k — 1 dimensions. We will denote this set of

points by H(¢1, - .., &x).

PHYSICAL REVIEW E 86, 046109 (2012)

These arguments lead us to the conclusion that the most
important is to understand which are the fixed points in the
case where all opinions survive and the model has only one
component. Unfortunately, in this case we are still left with
a gth degree system, with M variables and M equations
(actually, only M — 1 of the equations are independent and
the last variable is determined by the constraint ZU Ny = 1).
It is clear then that, in the general case, trying to find the fixed
points exactly is a hopeless task. Because of this we will aim
to get a qualitative understanding of the solutions.

Instead of trying to find directly which are the possible
solutions, we will suppose at first that we have a hypothetical
solution 77 * where only opinions in A survive. We will make
the stability analysis of this hypothetical solution and then
using the stability results, together with continuity arguments,
we will be able to determine when there actually is a fixed
point where all opinions survive, as well as how many of these
points exist. Finally, using the reasonings from this subsection
we arrive at the full qualitative picture of the structure and
stability of the fixed points.

B. Stability of the fixed points

Let 7 * be the hypothetical solution we are studying and

suppose that our confidence rule R has one component. We

will start with a linear stability analysis, so we will first need
to find the Jacobian J of F':

oF,

3770/

+r86,0’ Z (61773_1770”170'9(: - ng'/paﬁa”)- (16)

o

-1
Toor = = r(ﬁgpa'—m - qr/trr/Z' pa—>o’)

We then need to substitute our hypothetical solution and find
the signs of the real parts of the eigenvalues of the resulting
matrix. We will denote the Jacobian evaluated at 7 * by J*.
We first note that n, = 0 for all o in Q and that if R has
k components, Ay, ...,A, then p,_, =0 whenever o €
Aj, 0’ € Aj, and i # j. Substituting in Eq. (16) and using a
reasoning similar to the one used to find Eq. (12) we get

‘,7;0, = —1ds0 nq,,pgﬁa,, ,
5 o
o’eA

* .
ja,g/ = rn(q;p(r’—nra if

if oeQ,

occAo €,
-1
‘-7:,0’ = V(’?gpa’»a _qncnz/ pa%a’)
+r80,a/ Z (qnz_lna”pﬂ”*a — nz,/pa_)nu), if

PN
0,0/ € A;, and
Jre =0, ifoeAjo’ € Aj,andi # j. 17

This means that 7* can be permutated to

T 0 0 N
A 0 A
j* ~ : : s (18)
0 0 T Ni
0 0 ... 0 T2
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by writing first the lines and columns corresponding to
opinions in A, followed by the ones corresponding to the
opinions in A, and so on, until the opinions in A; and, in the
end, writing the lines and columns corresponding to opinions in
2. It follows that the elements in the block 73 are described by
the first case in Eq. (17) (o € ), the blocks A; are described
by the second case (0 € A;,0" € Q) and the blocks J* are
described by the third case (0,0’ € A;). The permutation of
the matrix J* in Eq. (18) is block triangular, so we can find
the eigenvalues of J* by putting together the eigenvalues of
J, . .JF and JG, meaning the matrices N; are not relevant
in our analysis.

Comparing Egs. (17) and (16), together with the description
of the fixed points in this case (confidence rule with k
components), given by Eq. (15), we can verify that J*/ nin
is the Jacobian, for the case in which the model has R4, as its
confidence rule, evaluated in a fixed point where all opinions
survive. This means that we need only study the fixed points
where all opinions survive for a rule with one component, in
order to understand the eigenvalues of the blocks [J*. The
analysis of this case is rather technical and is left, together
with a partial analysis of the eigenvectors, to Appendix C,
but the result is quite simple. If we have a rule R’, with
only one component, then the Jacobian of F, evaluated in a
fixed point where all opinions survive has M — 1 eigenvalues
with positive real part and 1 eigenvalue that is always equal
to 0. Moreover, the coordinates of the fixed point form the
eigenvector with null eigenvalue. Going back to the general
case, this means that the blocks J*, . .., J,* are responsible for
|A| — k eigenvalues with positive real part and k eigenvalues
equal to 0. However, the result for the eigenvectors means
that these null eigenvalues are not relevant to the stability
analysis, as there is no movement along these directions in a
neighborhood of the fixed point. The reason for this is that
one of the corresponding eigenvectors is 7 * itself, that points
outwards of the phase space (it can be regarded as an artifact
of having embedded an M — 1 phase space in M dimensions),
while the other k — 1 eigenvectors are ¢; — n (as each of the
;, will be an eigenvector). The vectors {, — 1} * generate the
hyperplane where H({l, .. ;k) defined in Eq. (15) is located,
which means that if we start in the fixed point 77 * and go along
any of the directions corresponding to one of these k — 1 null
eigenvalues, we will only find other fixed points.

The remaining eigenvalues of J* are the eigenvalues of
Jg. Because of Eq. (17), this is a diagonal matrix and the
eigenvalues are trivial:

ho =—1 Y M Paer <O, (19)
o’eA

for each o € Q. The dual eigenvector (that is, the eigenvector
of J*T) corresponding to A, is also trivial, and is given by
the vector with all coordinates equal to 0, except for the one
corresponding to o. This indicates that A, is responsible for
telling us if the trajectories near the fixed point are attracted or

repelled to the manifold n, = 0.
As # 0if and only if there exists o’ € A such that p,_,, #
0, which can be translatedtoo € A_. As Q = A by definition,
then this means that 7 contributes with A N A_|eigenvalues
that have negative real part. All the others are null eigenvalues
and in this case we must go beyond a linear stability analysis.

PHYSICAL REVIEW E 86, 046109 (2012)

Suppose that A, = 0. The lower order term for 7, that is
different from 0O in a neighborhood of the fixed point is

o 0% Y Nk Poa (20)
o'eA

meaning that the trajectories are repelled from the manifold
Ne = 0, unless p, ., = 0 for all o’ in A. This translates to
o ¢ A, when looking at the confidence rule and hence we
have |(A — A_) N A, | of these unstable directions (opinions
in €2 that satisfy o € A4, but not o € A_). In particular, for

q = 2 and r = 1, the solution of Eq. (20) reads

Noo

1 - Nool Zg’ r):’pa’—ﬂr

as stated in Sec. IV D [Eq. (4)].
All that s leftis to study the stabilities of the manifolds n, =
0, when p, o' = ps'—s = 0 forall ¢’ in A. These are related
to opinions that are extinct in the fixed point and only interact
with other opinions that get extinct in this point. This causes
the dynamics to be extremely slow along these directions and
so if we have a repulsive direction (A — A_) N A # @) this
part of the dynamics is irrelevant (these directions have neutral
stability), as the trajectory would be repelled away from the
fixed point, before the slower dynamics could play any role.
Let w be the set of opinions such that A, = 0 and suppose that
we are in a situation where either A, < 0 or o ¢ A, for all
opinions in 2. In this case, w # €2, because otherwise there
would be no connections among A and €2, contradicting our
assumption that R has only one component. We can then define

No(t) = , 21

A= e <0 and ny, =3 0. 2
max A, <0 and n ;TI (22)

We show in Appendix D that starting in a sufficiently close
neighborhood of 7, = 0 the following inequality holds:

Nwoe 4N Ly < poe ™7 (23)

and so trajectories are neither attracted to nor repelled from
M, meaning that the opinions that get extinct and only
interact with other opinions that get extinct are responsible
for neutral directions (but along which there is movement).

We can now put all these results together. If 7 * is a fixed
point, such that R o has k components, then the trajectories in a
neighborhood of 7 * are such that (remembering that Q = A):

(1) There are |A| + |(A — A_) N A,| — k unstable direc-
tions.

(2) There are |A N A_| stable directions.

(3) There are k — 1 directions along which there is no
movement.

(4) There are [(A — A_)N (A — A,)| directions that are
neither attractive nor repulsive, but along which there is
movement.

Finally, we can use this result to find the static attractors of
the model. For a fixed point to be attractive, all of its directions
must be either stable, or neutral, without movement, which
means

IA|+ (A=A )NAL|—k=0, and
I(A—AD)NA—-AY|=0. (24)

As |A]| > k, then the first of these equations means that we
must have [A] =k and [(A — A_)NA,| =0.|A| = k is the
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same as saying that A is an independent set (that is, R A has no
arrows), which implies A_, A, C A.The remaining equations
read

(A-—A)H)NAL =2 and (A-—A)NA—-A,)=2.
(25)
This implies that
(A=AD)NADUA-ADINA-A ) =0
S(A-—A)N(ALUA - AY)=02. (26)

As A is independent, Ay € Aandso AL U(A — A ) =A,
implying

A-ADNA=gcA-A_=@&ACA_. 27

Again, A is independent, meaning that we have A_ C A=
A = A_. This means that if A is an independent set and a
solution to Eq. (25) then it must obey A = A_. On the other
hand, if A’ is some solution to A= A, then A — AN =g
and we can substitute this in Eq. (25) to verify that A’ is a
solution. Moreover, we show in Appendix B1 that A = A
alone implies that A’ is a maximal independent set. Putting it
all together, we have that the equation,

A=A, (28)

is equivalent to Eq. (24). A being independent also means
that all points in M, are fixed points, leading us to the
conclusion that the static attractors of this model are all of
the form M, where A = A_ and that to find the solutions
of this equation, it suffices to check the maximal independent
sets of the confidence rule being used. Finally, all the stability
properties depend only on A and on what are the connections
in the confidence rule R and are therefore completely defined
by the skeleton of R and by the opinions that survive in the
point being analyzed.

C. Existence of the fixed points

In the last section we made the stability analysis of a
hypothetical fixed point, showing the relation between the
stability properties, the skeleton of the confidence rule, and the
opinions that survive in the fixed point. We will now use those
results to determine which are the fixed points that actually
exist. Our discussion in Sec. V A shows that it is enough to
study when a fixed point where all opinions survive exists, for
a model where the confidence rule has only one component.

In this case, a fixed point where all opinions survive
must be an unstable node (in case it exists) and so, if we
had embedded our phase space in M — 1 instead of M
dimensions, (substituting 7, by 1 — Za M Nos for example),

the Jacobian 7 of the corresponding flux would be a real
matrix that is positive definite when evaluated in such a fixed
point, implying that det([7) > 0. In Appendix E, we use this
information, together with the implicit function theorem and
the Poincaré-Hopf theorem, to show that if all the parameters
DPo—o are different from O (which is the same as saying that the
skeleton of the confidence rule is a complete directed graph),
then there is exactly one fixed point where all opinions survive,
which we will call the coexistence fixed point.

The general case can be obtained using a continuity
argument. Suppose that we have a confidence rule R that

PHYSICAL REVIEW E 86, 046109 (2012)

has no fixed points where all opinions survive. Because of the
result from Appendix E, this means that some of the p’s must
be equal to 0. On the other hand, R can be regarded as a point
in a parameter space (where the p,_.,  are the coordinates)
and the implicit function theorem tells us that in the region
where all the p’s are different from 0, both the coexistence
fixed point and the eigenvalues of J change continuously
with a continuous change of the parameters. It is also possible
to make an infinitesimal perturbation of the parameters in
R, to get a confidence rule where all of the parameters are
different from 0. This means that we can build a continuous
path in the parameter space, that only goes through R and
confidence rules such that all the p’s are different from O (with
the exception of R). If we follow the coexistence fixed point
in the phase space, as the parameters are changed (that is, as
we walk along the path we have built in the parameter space),
we see that the fixed point must collide in the border, as the
parameters approach the rule R, becoming a fixed point 7 *,
where not all opinions survive. Following the eigenvalues of
J we get to the conclusion that all of their real parts are bigger
than or equal to 0. But 2 # & for the fixed point 7 * and all
the eigenvalues originating from 73 (that are also eigenvalues
of J ) have real parts smaller than or equal to 0. This can
be reconciled only if A, =0V o € Q for the fixed point 7 *,
which translates to A_ N A = &.

This means that it is a necessary condition for a rule that
does not display a coexistence fixed point to possess a set
A # @,V (V is the set of all opinions) such that A_ N A = @.
On the other hand, suppose that we have a rule with one
component that has a set A # &,V such that A_ N A=g.
As we have only one component, we must have A, N'A # &
(otherwise there would be no connections between A and A),
and so if we define ny = )", 7o, then

ﬁA = —-r Z Z nanf;/paﬂa’v (29)

0EA G/eANA_

meaning 7a < 0 in the whole region of the phase space where
all opinions coexist. This implies that there exists a fixed
point where all opinions survive if and only if there is no
set of opinions A # @,V, obeying A_ N A = &. We show
in Appendix B3, that this is equivalent to saying the graph of
the confidence rule is strongly connected (that is, we can start
in any node and get to any other node. For a rule with one
component, this is also equivalent to saying that any node is
part of some cycle). Finally, when the coexistence fixed point
is present, it must always be unique (this happens because
all rules are a perturbation of rules where all the p’s are
different from 0, and such confidence rules always have unique
coexistence fixed points).

Going back to our results from Sec. V A, it follows that
there exists a fixed point where only the opinions in A survive
if and only if A induces an union of strongly connected graphs
(as such a fixed point exists if and only if it exists for each of
the components separately).

D. Heteroclinic cycles and nonstatic attractors

We now consider a confidence rule R such that there exists
acyclein R, 0y - 0, — --- — 0, — o1, where none of the
edges is doubly connected (o; points to o; 41, but the opposite is
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FIG. 12. A rule with a static attractor and a heteroclinic cycle that
has a basin of attraction.

not true). In the phase space, these cycles manifest themselves
as heteroclinic cycles. These cycles will always be polygonal
curves connecting the vertices of the simplex that correspond
to the nodes the cycle in the graph goes through, that is,
Py, P,, ... P, Ps. Moreover if A is the set of nodes the cycle
goes through, it means that A induces in the confidence rule
a strongly connected graph with one component and as such,
there exists an unstable fixed point where all the opinions in
A coexist. Hence, the heteroclinic cycle is fully contained in
the border of M and there is a fixed point in the bulk of M A
that leads the trajectories to its border.

A consequence is that if there is a neighborhood of M,
where this manifold is attractive, then these trajectories will
eventually be attracted by the heteroclinic cycle, causing
oscillations with diverging period. In Appendix B2 we prove
that if a graph has no solutions to A_ = A, then it has at least
one directed cycle, where no edge is doubly connected, but it is
also possible to build a confidence rule, where there are static
attractors and a heteroclinic cycle that has a basin of attraction.
An example of such a rule is given by Fig. 12, where both Py
and the cycle P; P, P; Py have basins of attraction.

VI. CONCLUSIONS

In this work, we expanded our previous results about
the Sznajd model with general confidence rules (interpreted
here as biases and prejudices), giving analytical results about
the existence, structure, and stability properties of the fixed
points in the mean-field case, finding a very rich behavior. We
gave simulation results in Barabasi-Albert networks that show
examples of this mean-field behavior and showed some of the
discrepancies between the model simulated in these networks
and the integration of the mean-field equations.

Even though neither the equations for the fixed points can
be solved analytically, nor can the exact eigenvalues of the
Jacobian be all determined, our dynamical systems approach
was still able to determine the sign of the real parts of these
eigenvalues and the higher order behaviors, when these were
needed. Surprisingly, this analysis showed us that the various
properties of the fixed points depend only on a few qualitative
properties of the confidence rule (the directed skeleton). This,
in turn, allowed us to make a connection between the mean-
field results and graph theory problems and this connection
can even be used to study more complex behaviors, like the
heteroclinic cycles in the phase space that always appear in the
absence of attractors.

PHYSICAL REVIEW E 86, 046109 (2012)

In regard to the simulations, most of the discrepancies with
the mean field seem to come from the existence of frozen states
that do not correspond to mean-field attractors, but that can be
reached by the model in a network. It is not entirely clear if
these are purely finite size effects, but their origin suggests
that they should be more common as the number of opinions
increases and that the introduction of a random noise, in which
opinions change randomly with a given probability, should
destroy this effect. A curious finding in the confidence rule
studied in Sec. IV D is that when simulations got close to the
frozen states, but managed to get away from them, they took
much less time than would be expected from the mean-field
results. The same can be said about the confidence rule studied
in Sec. IVC.

These results seem to indicate that there is some measure of
universality in models that give a greater convincing power to
groups of agreeing people, like the variants of the Sznajd model
that were studied and in this sense this work can be seen as
a unifying effort. The present results can be put together with
a previous work [21], in which we made simulations of the
Sznajd model in a Watts-Strogatz network and obtained similar
results in the small-world regime, but completely different
results in the non-small-world regime. In our opinion, this
indicates that the most important aspects in these models are
the confidence rule and the network that are being used. In
particular, we believe that the conclusions from this paper
should hold for complex networks (not only Barabasi-Albert
networks), but this may not be the case in regular lattices.

Given the simple conclusions that were reached and the
generality of our model (we would like to stress that the
mean-field results are valid not only for the Sznajd model
but for the g-voter model with g > 2), we believe that similar
approaches might be fruitful in other models where asymmet-
rical interactions exist, way beyond opinion propagation and
sociophysics, like infection spreading and ecology models. It
would also be interesting to see if similar connections with
graph theory problems exist in other models and, if they do,
how rich they are.
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APPENDIX A: GRAPH THEORY CONCEPTS
AND GLOSSARY

If G is a weighted graph, with adjacency matrix G, ;
(that is, the matrix containing the weights of the graph) and
Gi_j = 0, one can define its directed skeleton Skg;;(G) as the
directed graph with adjacency matrix:

o 0, if
I, it

Gi-;=0,

Ginj#0. i

An example of skeleton is given in Fig. 13.

Let now A be a set of nodes in a directed graph S (typically
in our problems, A will be a set of opinions and S will be
the skeleton of the confidence rule). We define the following
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FIG. 13. An example. The graph to the right is the directed
skeleton of the weighted graph to the left.

terms (we will use in the examples S equal to the skeleton in
Fig. 13):

(1) The predecessor set of A, denoted by A_, is the set
of nodes in S that point to some node in A. For example,
{31 ={1,4}_ = {1,2} and {2}_ = {1,3,4}.

(2) Analogously, the successor of A, denoted by A, is the
set of nodes in S that are pointed by nodes in A. For example,
{2,3}4+ = {1,2,3}.

(3) The complement of A, A is the set of nodes in S that
are not in A. For example, {2,3} = {1,4}.

(4) A is an independent set if and only if S has no
connections among nodes in A. {1} and {3,4} are independent
sets. Note that if A isindependent, it follows that A_, A, C A.

(5) An independent set A is maximal if it contains all the
nodes in the graph or if the addition of any node not in A
destroys independence. {3,4} is a maximal independent set,
while {3} is independent but not maximal.

(6) If A is a set of nodes from S, then the graph induced
by A, Sa is the graph whose set of nodes is A and whose
connections are the connections between the elements of A
that existed in S. The graph Sy 3 4 can be found in Fig. 14.

(7) The union of two graphs G and H, denoted G U H isthe
graph with all the nodes of G and H, but only connections that
already existed between G and H (in short it means referring
to two unrelated graphs as parts of the same graph, without
changing anything else). The graph Sy 2,3; U Sy is shown in
Fig. 15. In addition, the more familiar concept of component
can be defined as a graph that is not the union of any smaller
parts and is also not part of a larger graph with the same
property.

(8) A graph is strongly connected if we can start at any
node and get to any other node, respecting the directions of
the arcs. S, Sy, and S(y oy are strongly connected, but Sy 3 is
not because there is no path from 3 to 1 in it.

®

FIG. 14. The graph induced in S by the set {2,3,4}.
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FIG. 15. An example of graph union. The graph Sy 5,33 U Syy.

APPENDIX B: GRAPH THEORY THEOREMS WITH
APPLICATIONS TO OUR MODEL

1. A = A_ implies maximal independence

Theorem 1. Let G be a graph and let A be a set of nodes
in it such that A = A_. This implies that A is a maximal
independent set.

Proof. To see this, suppose that A_ = A but A is
not independent, then it follows that there exists 0,0’ € A
such that 0 € {0’} © o' €fo}. =20’ e ANA_ £ 2T =
A N A # @, which is a contradiction.

So if A_ = A then A is independent. If A = & then it is
trivial that A is maximal. If A # @, take o € A. It follows
that

(AU{o})_ = A_U{o}_. =AU{o}_
= (AU{c)N(AU{o})_
= (AU{o)hN(AU({o}-)
= (AUfehNAU(AU{ohN{o})
D (AU{ohNA={o}# 02
= (AUfo)N(AU{oh- # 2, (BI)

which implies that A U {o} is not independent and hence, A
is maximal. ]

2. Relation between the absence of attractors and
heteroclinic cycles

Theorem 2. Let G be a directed graph such that no set of
nodes obeys A = A _, then there exists a directed cycle in G
that does not use any of the doubly linked edges.

Proof. Suppose that there is no such cycle in G and let G’
be the graph G after removing all the doubly linked edges. By
hypothesis, G’ is a directed acyclic graph and so a topological
ordering in G’ is possible. This means that we can define a
strict partial order in V(G):

i < j if and only if there is a path from j toi in G'.

We can also restrict this order to a subset €2 of V(G), such that
i,j € Q=1 <gq jif and only if i < j (note that this is not
the same thing as saying the path exists in G{,). Consider now
the set A built from the following algorithm:

(1) Attribute A < @, E < @, and Q < V(G).

(2) If Q equals & stop, else let i be a minimal element of
<Q-

(3) Remove i from 2 and add it to the set A.
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(4) Remove the elements from the predecessor of i with
respect to G that are in 2, (i_(G) N ), from 2 and add them
to E.

(5) Goto?2.

By construction the set Z obeys A = & C A_ (the prede-
cessor with respect to G). Moreover, the set A is independent.
To see this, suppose that at some time during the construction
of A, there are no connections in G between nodes in A and
nodes in 2 when we reach step 2 (this is trivially true for
the starting iteration) and let i be the minimal element of <q
chosen in this step. As i is minimal, there are no nodes in
2 such that j <q i and hence there are no paths from i to
any other element in 2 in the graph G’ and hence i, (G) N Q
contains only nodes that are connected to i through doubly
connected edges, implying i, (G) N Q Ci_(G)N Q2 and so
in step 4 we are transferring all the nodes in €2, that had any
connection with A after step 3, to the set E. So after an iteration
of the algorithm there are still no connections between nodes
in A and 2 when we reach step 2 again and so by induction,
it holds during the whole construction of A that there are no
connections between nodes that are in A and nodes that are
in Q. But as the nodes are added to A from €2 one at a time,
each node that is added does not add connections between
nodes in A, implying that A remains independent during its
whole construction. On the other hand, this implies A_ C A.
Recalling that by the construction of E we have ACA_it
follows that A_ = A. ]

The relevance of this theorem to our problem is that a
solution to A = A_ in the skeleton of the rule is equivalent to
a static attractor in the phase space and saying the cycle oy —
03 — -+ - — o inthis skeleton has no doubly connected edges
is equivalent to saying that the polygonal curve Py, Py, ... Py,
is a heteroclinic cycle, meaning that every rule that has no
static attractors must have at least one heteroclinic cycle.

3. Necessary and sufficient condition for a graph
to be strongly connected

Let G be a graph and A # & a set of nodes.

Definition I. A is a sink (source) if and only if it obeys A N
A =@ (A_NA = ). In both cases, A is called minimal if
there is no nonempty proper subset of it with the same property.

Definition 2. The span of a node i, ispan is the set of all
nodes j in G, such that j can be reached from i. The span of
a set of nodes A is defined as the union of the span of each of
its nodes. (For the purposes of this definition, a node always
reaches itself, and so i always belongs to ispan).

Corollary 1. Every span is a sink and if A is a sink, then
A= Aspan-

Corollary 2. As no arc leaves a sink, if X is a sink and
Y C X then Ypan = Yipan(Gx), the span of ¥ in G.

Theorem 3. A sink (source) is minimal if and only if it
induces a strongly connected graph.

Proof. Let A be a sink that induces a strongly connected
graph in G. Suppose by absurd that A in not minimal, then
there exists I' C A, such that I is also a sink and " # &. Let
w € A —T'. As G, is strongly connected, then foralli,j € A
we have i € jpan(Ga) and hence w € Tgpan(Ga). AsT C A
and A is a sink in G, it follows that I'span (G o) = T'gpan(G) and
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as " is also a sink in G we have I',,n(G) = I'. But this implies
w € I', which is a contradiction and so A must be minimal.

On the other hand, if A is a minimal sink in G and
we suppose by absurd that G, is not strongly connected,
there exists i,j € A such that i ¢ jpun(Ga). A is a sink,
so this means jpan(Ga) = Jjopan(G). In addition, jan(G) C
Agpan(G) = A.But then jg,an(G) € A — {i} and $0 jspan(G) is
a nonempty proper subset of A that is a sink, contradicting the
assumption that A was minimal. Hence, G » must be strongly
connected.

The proof for sources is obtained considering the graph
G’, obtained by switching the orientation of all the arcs of G
(which transforms sinks in sources and vice versa, but keeps
the same induced graphs strongly connected) ]

The relevance of this to our problem is that when the
confidence rule has only one component, the condition that
we found for the existence of a coexistence fixed point can be
rephrased as saying that the set of all nodes is a minimal source.
This theorem shows then that this is equivalent to saying the
confidence rule is strongly connected, which makes it more
easy to see what the result for many components is.

APPENDIX C: SPECTRUM OF THE JACOBIAN FOR A
COEXISTENCE POINT IN A RULE WITH ONLY
ONE COMPONENT

In this Appendix we introduce some matrix theory theorems
and apply them to find the signs of the real parts of the
eigenvalues of the Jacobian of the model, for a coexistence
fixed point of a rule with one component.

Theorem 4 (Gershgorin). Let M € M,,(C) be a square
matrix whose general term is m; ;. So if A is an eigenvalue
of M, then there exists an i such that

L= mii| <D lmy .
J#
Theorem 5 (Levy-Desplanques). Let M € M,(C) be an
irreducible square matrix whose general term is m; ;. If

migl =Y Imi gl Vi
J#i
and there exists an i such that

|m; ;| > Z |m; ;1,
J#
then det(M) # 0.

Theorem 6. Let M € M,,(C) be a symmetrical irreducible
square matrix whose general term is m; ;. If m; ; # 0 for some
i, then for all k such that 1 < k < n, there exists an irreducible
principal submatrix of M with order k.

Proof. The case n = 1 follows from our assumption that
some m; ; is different from 0. The irreducibility of a matrix
depends only on which of its terms are equal to 0 and which of
them are different from 0. So we only need to prove the case
where we have a binary matrix (all terms are either O or 1).

Let X be a set of indexes of the matrix M (integers between
1 and n). We will denote by My the principal submatrix whose
lines and columns are the ones corresponding to the indexes
in X. As M is symmetric, all of its principal submatrices and
all of their permutations are also symmetric. So suppose that
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My is a principal submatrix that is not irreducible. This means
that there exists a permutation that takes it not only to a block
triangular form, but to a block diagonal form, that is,

My 0
Mx [0 MZ}’

where X =Y U Z. Finally, M is the adjacency matrix of an
undirected graph G, while My is the adjacency matrix of the
induced subgraph G x. This implies that Eq. (C1) is the same as
the equation Gy = Gy U Gz, meaning that G x is connected
if and only if My is irreducible.

It suffices then to prove that given a connected graph with
n > 1 nodes, we can always remove one of its nodes to get a
new connected graph. Let i be any node in G. We will define
the sets i(,) by the following recursion:

(ChH

i) = gy U (w)+

with i(;y = {i}. As G is connected and has n nodes, it follows
that i(;) = V(G). Moreover, as we have more than one node in
G, there exists an m < n, such that

i(m) 75 V(G) and l'(m+1) = V(G)

So if we define 6 = i(,41) — i(m), then all the nodes in V(G) —
§ can be reached from i, without going through nodes in § and
if j € §, there exists a path between i and j, such that j is
the only node from § in this path. It follows that removing any
of the nodes in § gives a new connected graph, finishing the
proof. |

The next theorem is a strengthening of a theorem found in
Ref. [22].

Theorem 7. Let M € M,(C) be a square matrix and let
its Hermitian part be H = (M + MT)/2. If H is positive
semidefinite, with the multiplicity of O equal to u, then for
all T € M,(C), such that T is Hermitian positive definite,
then M T (and T M) is positive semidefinite and the sum of the
geometric multiplicities of its eigenvalues with null real part
is smaller than or equal to w.

Proof. By our hypothesis, the eigenvalues of H are non-
negative real numbers and its eigenvectors can be arranged as
an orthonormal basis. We can split this basis in two parts, {u;},
with the eigenvectors with eigenvalue 0 and {v; }, for the others.
Define A; > 0, the eigenvalue such that Hv; = X;v; and define
U, the linear span of {u;}. Let x be a column vector and x' its
conjugate transpose, so

x/=E o, x”:E Bjvj, and
i J

x=x+x"=xHx ="+ xHHK + x")

— (Hx/)]‘(x/ + X”) + x”T(Hx’) + x//THx// — x//THx//

=Y BB Hv; = BBirsi ;=Y IBIP k. (C2)

ij ij i
Hence,xTHx > 0 < x ¢ U.On the other hand 2Re(xTMx) =
XIMx +tMx)y* =xT(M + MHx =2xTHx. Let S be a
nonsingular matrix and w, a normalized eigenvector of S tMS,
with eigenvalue y. Taking x = Sw, it follows,
Re(y) = Re(yw'w) = Re(w'STM Sw)
= Re(x'Mx) = xTHx. (C3)
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Define W = S~'U ={y e W & Sy e U}, so Re(y) > 0 &
w ¢ W. As the dimension of U is pu, it follows that W also
has dimension . The sum o of the geometric multiplicities of
the eigenvalues of STM S with null real part is the dimension
of the linear span N of the corresponding eigenvectors. As all
these eigenvectors belong to W and W is a linear subspace,
then it follows that N is a subspace of W and hence o < u.
All the properties of the spectrum of a matrix (including
algebraic and geometric multiplicities) are encoded in its
Jordan canonical form, and this form is invariant by similarity
transformations, so STMS, MSST, and SSTM have the same
spectral properties. This proves the theorem, as any Hermitian
positive definite matrix T can be written as SST, with a
nonsingular § using a Cholesky decomposition. |
Theorem 8 (Euler). If F:R" — R™ is a differentiable
homogeneous function with order k and Jacobian 7 (X), then

J@).% = kF(X).

Proof. By hypothesis F(3.¥) = A*F(¥). Deriving with
respect to A yields J(AX).X = kA*"'F(X), so substituting
A = 1 gives the relation we want to prove. |

We now apply these theorems to the analysis of the Jacobian
that arose in Sec. V B. Let 7 * be a coexistence fixed point (that
is, all opinions survive) in a model with a rule that has only
one component and at least two opinions. We can apply Euler’s
theorem (theorem 8) together with the homogeneity of F [as
seeninEq. (1)]to get 717 = (¢ + l)ﬁ and so in the fixed point
we have J*n* = 0.

In additiog, Qecause the sum of all variables is a constant,
this leads to 1.F = 0, where 1 =£1, ey 1), so deriving with
respect to 7, gives the equation 1.7 = 0. Let then D be the
diagonal matrix whose diagonal terms are the coordinates of

71 * [in other words D = diag(j *)], then the symmetric matrix
A, defined as

A=J"D+(T*D), (C4
has off-diagonal terms given by
Aa,a’ - }"(1 - q)(ﬁ:;q n:/pa’—nr + n;n;l/]paeo’) < 07 (CS)

and each of the rows (columns) of A sum 0. Moreover, as
the confidence rule has only one component, A is irreducible,
implying that at least one off-diagonal term in each row is
different from 0 and hence all the diagonal terms are positive
(since each of the rows must have a sum equal to 0). Finally, we
use this information to apply Gershgorin’s theorem (theorem
4) and find that A is positive semidefinite.

We will now show that the O is an eigenvalue of A, with
multiplicity equal to 1. This is equivalent to saying that

det(A)=0 and Zdet(A(")) >0, (C6)

where X denotes the principal submatrix of X, obtained
by removing row and column o. First we note that as each
of the rows sums 0, this already implies that det(A) = 0.
Then we note that if o # o’ and A, # 0, then both A©)
and A" are such that one of the rows has a positive sum.
However, every row has an off-diagonal term different from
0, meaning that for all the A@ at least one of the rows has
a positive sum and no rows have negative sums. So if A
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is an irreducible matrix, we can apply the Levy-Desplanques
theorem (theorem 5) to show that det(A®)) = 0. The existence
of this submatrix is guaranteed by theorem 6, meaning that it
suffices to prove that det(A“’) > 0 for all . This can be done
applying Gershgorin’s theorem again, to find that all the A
are positive semidefinite.

We will now use theorem 7 to translate the results about the
matrix A to the Jacobian [J*. We first apply this theorem using
M =27*D, implying that H = A, and using T = D~!/2,
to find that J* is positive semidefinite and the sum of the
geometric multiplicities of the eigenvalues with null real part
isl.As J*n* = 0 it follows that 0 has a geometric multiplicity
equal to 1 and all the other eigenvalues of J* have positive
real part. Finally, we show that the algebraic multiplicity of 0
is 1. Once again, this is equivalent to showing that

Z det(J*) #£ 0.

We start noting that A = 75 D@ 4 (7% DENT (pe-
cause D is diagonal). We then apply theorem 7 once more,
but now using M =27°D@ so H=A“ and T =
(D)~1/2. As all the A are positive semidefinite and at
least one of them is positive definite, this implies that all
the J*©) are positive semidefinite, with at least one of them
being positive definite. When looking at their determinants
this means that det(7*() > 0 for all o and the determinant is
positive for at least one o, implying that )", det(J*®)) > 0,
completing the proof that the algebraic multiplicity of O is 1.

Finally, we show the eigenvector corresponding to the
eigenvalue 0 is the only one that is not parallel to the phase
space. Suppose that J*9 = Av, where v 76() and A #£0, it
follows that A1.3 = 1J*% = 0.3 = 1.3 = 0, implying that
is parallel to the phase space, while on the other hand Iﬁ *=1.

Putting these results together, all the eigenvalues have pos-
itive real part and the corresponding eigenvectors are parallel
to the phase space, with the exception of the eigenvector 7 *,
that is not parallel and has eigenvalue 0 (with multiplicity 1).

APPENDIX D: HIGH ORDER STABILITY ANALYSIS FOR
FIXED POINTS IN WHICH OPINIONS GET EXTINCT

In this section we do the detailed higher order analysis that
lead us to the inequalities (23). Suppose that we have a fixed
point of Eq. (1) in which only opinions in A survive and let
Q = A. Foreach o € Q, we define A, as

Ao = —F Z r’::[/]pa—nr’ <0.

o'eA

(D1)

Suppose that either A, < 0 or o ¢ A for all opinions in
2 and let w be the set of opinions such that 1, = 0 (we will
assume that Q # w). We define

A= max A, <0 and nwEan.

ceQ—w

(D2)

gEew

It follows from the first order analysis we did in Sec. V B, that
if 0 € Q — w and the initial value of n,, 1y, is sufficiently
close to 0, then 5, evolves as

Ne(t) = naoe}wty (D3)
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as long as all opinions in 2 remain negligible. It follows from
the mean-field equations that

ﬁw =r Z Z T)a’)a/(ﬂ?;lpa/ea - ngfilp(r—nr/)-

gEwo'eR—w

(D4)

So if the opinions in 2 appear in a sufficiently small amount,
we have

Ne = Npol™'Vo € Q —w =
and substituting in Eq. (D4),

s~ Aot q Agrt
Nw =T § E (na’oe ngpzr’ﬁa - Ua/oeq ' napoea’)a

oEwo'eR—w

(D5)

yielding the following inequalities:

q Ayt
—-r E E na’oeq “"No Do—o

TEWo'eER—w

<N <r Y Y Neo ' 0 oo

gEWo'eER—w

=—ry Y e < <ry. Y e,

gEw o' eEQR—w gEwo'eR—w

=—ry Y M <n,<ry. Y M,

gEwo'eER—w TEWo'eEQR—w

= —r|Q — wle!"n, < e < |2 — wle 1,
d
= —r|Q — w|e? < o In(n,) < |2 — wle®.  (D6)

Integrating in time and taking the limit + — oo gives the
inequalities (23):

|Q—wl|r/qgA —|Q—-w|r/A
b

Nwo€ < No < Nwo€ (D7)

and so trajectories are neither attracted to nor repelled from
M. This ensures that the whole reasoning is consistent, as it
is always possible to make 7, sufficiently small, so that the
hypothesis that the opinions in €2 appear in a suficiently small
amount, always holds.

APPENDIX E: APPLYING THE POINCARE-HOPF
THEOREM TO THE CASE OF A CONFIDENCE RULE
WITH COMPLETE DIRECTED SKELETON

In this Appendix we use the following theorem,

Theorem 9 (Poincaré-Hopf). Let M be a compact, ori-
entable, and differentiable manifold and let F be a vector field
defined in M, such that it has only isolated zeros (every zero
has an open neighborhogd in which it is unique). If either
M has no border or if F points outwards (according to the
orientation of M) along all points of the border, then the sum
of the indices ? of all the zeros of F in the interior of M equals
the Euler characteristic of M.

to show that a rule with complete directed skeleton always
has exactly one fixed point where all opinions coexist. In the

>The index in the case when the Jacobian is not singular equals
the sign of its determinant. More information about indices and their
meaning can be found in most textbooks about differential geometry.
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case that is going to be used, the theorem is the same as saying
that if a vector field is defined in a sphere, in a way that it points
outwards along the surface and only sources are possible inside
the sphere, then there exists exactly one source in the inside
(generalized for a hypersphere).

Consider a rule with a skeleton corresponding to a complete
directed graph and define

DPmin = Min{p,_ o}, and pmax = max{ps_o}. (ED)
o#o’' o#o'

In order to apply the Poincaré-Hopf theorem, we build a
family of manifolds that includes the phase space:

Ve = {ﬁ € SimMM(f > eVol. (E2)

These manifolds all satisfy the hypothesis of the theorem and
the borders of V. are given by the facets n, = € (that is, we
are using M dimensions to define our manifolds, but we are
embedding them in M — 1 dimensions). The fixed points we
obtain for the flow in the mean-field equation are not isolated
when we look at the problem in M dimensions (because
of the homogeneity of the equations), but our results about
the Jacobian show that embedding the phase space in M — 1
dimensions instead of M is enough to isolate the zeros (this
follows from applying the implicit function theorem. Another
way of isolating the zeros would be to add a term in the
equation that is O inside the phase space, but is different from
0 outside, but this has the downside of making the hypothesis
to be checked more complicated). It also follows from the
spectrum of this Jacobian that the indices of any fixed points
in the interior of any of the manifolds V., would be 1 (for a
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nonsingular Jacobian, the index of the fixed point equals the
sign of the determinant of the Jacobian).

The last hypothesis to be checked is then that the vector
field F points outside along the border. If , = € then

q
Fy =ref E No' Po’'—»o — ¥E E Ng'Po—o’
o’ o’

: q
< qul’max E No’ — V€Pmin [nl‘? { E YIU/] .
; nEVe ;
o (o2

1
min 8= —,
nev. {; o Ma-1

it follows that

¥ € Pmin

Ma—1°

Fagreqpmax_

So it suffices to take

1 P 1/(g—=1)
€ < — ( mm) (E3)
M \ pmax

in order to get F, < O for all o, implying that we can apply
the theorem in the manifold V..

The Euler characteristic of all of the V, is 1, meaning that if
we can apply the theorem, there exists exactly one fixed point
in its interior. Together with Eq. (E3), this means that there
exists exactly one coexistence fixed point and it obeys

1 ; 1/(g—1)
"> (pm“> Yo (E4)
Pmax
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