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Abstract
Inaccuracy and information measures based on cumulative residual entropy are useful in
various fields and attracting attention in Statistics, Probability Theory and, particularly, in
Reliability Theory. Using a point process martingale approach and a compensator version of
Taneja and Kumar generalized inaccuracy measure of two nonnegative continuous random
variables we define an inaccuracy measure between two coherent systems whose components
are subject to failures according to a double stochastic Poisson processes.

Keywords: Joint signature point process; cumulative residual inaccuracy measure; non
homogeneous Poisson process; minimal repair; coherent system.
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1 Introduction

An alternate measure of entropy based on distribution function rather than the density
function of a random variable, called cumulative residual entropy (CRE), was proposed in
Rao et al. (2004) which has been extended to cumulative residual inaccuracy measure by
Taneja and Kumar (2012). Observing the common component lifetimes of two coherent
systems and using a point process martingale approach [8] extended the definition to a
symmetric inaccuracy measure. In this framework we define an inaccuracy measure between
two coherent systems whose components are subject to failures according to a double
stochastic Poisson processes.

The main inaccuracy measure for the uncertainty of two positive and absolutely continuous
random variables, S and T , defined in a complete probability space (Ω,=, P ) is the Kerridge
(1961) inaccuracy measure, given as

H(S, T ) = E[− log g(T )] = −
∫ ∞
0

log g(x)f(x)dx,

where f and g are probability density functions of T and S, respectively.
In the case when S and T are identically distributed, the Kerridge inaccuracy measure
gives the well-known Shanon (1948) entropy defined as

H(T ) = E[− log f(T )] = −
∫ ∞
0

log f(x)f(x)dx.

Rao et al. (2004) and Rao (2005) provided an extension by using survival functions of S
and T instead of probability density functions. By a similar way the Kerridge measure of
inaccuracy can be extended by using survival functions as in Kumar and Taneja (2015)
and Kundu et al. (2016).
The Taneja and Kumar cumulative residual inaccuracy measure between S and T is defined
as

ε(S, T ) = −
∫ ∞
0

F (t) logG(t)dt == E[

∫ T

0

∧
S

(s)ds].
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where F = 1 − F , G = 1 − G are the reliability functions of T and S, respectively, F ,
G their distribution functions and

∧
S(t) = − logG(t) is the lifetime S hazard function.

It is important to note that the expression makes sense in the set {t > S ∧ T} where
S ∧ T = min{S, T} and we set, by convention, 0 log 0 = 0.
Indeed, ε(S, T ) represents the information content when using G(t), the survival function
asserted by the experimenter, due to missing/incorrect information, instead of the true
survival function F (t). Some transformation of the measure can be seen at Psarrakos and
Di Crecenzo (2018).

Bueno (2019) observes two component lifetimes T and S, which are finite positive absolutely
continuous random variables defined in a complete probability space (Ω,=, P ), with P (S 6=
T ) = 1, through the family of sub σ-algebras (=t)t≥0 of =, where

=t = σ{1{S>s}, 1{T>s}, 0 ≤ s < t}

satisfies Dellacherie’s conditions of right continuity and completeness. Considers, through
the Doob Meyer decomposition, the unique predictable compensator processes (At)t≥0 and
(Bt)t≥0 such that 1{T≤t} − At and 1{S≤t} −Bt are 0 means =t-martingales.
The compensator process is expressed in terms of conditional probabilities given the avai-
lable information and generalizes the classical notion of hazard. Intuitively corresponds to
produce whether the failure is going to occur now, on the basis of all observations available
up to, but not including the present.
Follows, by the well-known equivalence results between distribution functions and com-
pensator processes, see Arjas and Yashin (1988), that At = − logF (t

∧
T ) and Bt =

− logG(t
∧
S). Identifying

∧
S(t) and Bt, in the set {S > t} Bueno proves that

ε(S, T ) = E[

∫ T

0

Bsds] = E[1{S≤T}|T − S|].

Also, using the same arguments as above we have

ε(T, S) = E[

∫ S

0

Asds] = E[1{T≤S}(S − T )] = E[1{T≤S}|S − T |].

Bueno considers the following definition which is a symmetric generalization of the Taneja
and Kumar inaccuracy measure:

Definition 1.1
If S and T are continuous positive random variables defined in a complete probability space
(Ω,=, P ), we define the cumulative residual inaccuracy measure as

CRIS,T = CRIT,S = ε(S, T ) + ε(T, S) = E[

∫ T

0

Bsds] + E[

∫ S

0

Asds] =

E[1{S≤T}|T − S|] + E[1{T≤S}|S − T |] = E[|T − S|].
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CRIT,S can be seen as a dispersion measure when using a lifetime S asserted by the ex-
perimenter information of the true lifetime T . Provide that we identify random variables
that are equal almost everywhere, CRIS,T is a metric in the L1 space of random variables.

In Section 2 of this article we define a joint signature point process of two coherent systems,
a subject important by it self, which will be useful to calculate the residual cumulative
inaccuracy measure between coherent systems. We also gives reasons to asymptotically
extend the inaccuracy measure for a double stochastic Poisson processes. In section 3 we
define the cumulative inaccuracy measure for coherent system for coherent systems under a
double stochastic Poisson processes and specialize in nonhomogeneous Poisson processes to
model a minimal repair coherent system and give some examples calculating the inaccuracy
measure between minimal repair point processes.

2. A joint signature point process and asymptotic reliability

2.1. A joint signature point process

In our general setup we consider coherent systems lifetimes T and S with component
lifetimes T1, ..., Tn and S1, ..., Sm, respectively, see Barlow and Proschan (1981), which are
finite and positive random variables defined in a complete probability space (Ω,=, P ). We
assume that P (Ti = Tj) = P (Si = Sj) = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and , also, that
relations between random variables and measurable sets, respectively, always hold with
probability one, which means that the term P -a.s., is suppressed. Therefore the lifetimes
can be dependent but simultaneous failures are ruled out.

The mathematical description of our observations, the complete information level, is given
by a family of sub σ-algebras of =, denoted by (=t)t≥0, where

=t = σ{1{T(i)>s}, 1{S(j)>s}, 1 ≤ i, j ≤ n, 0 < s < t},

satisfies the Dellacherie conditions of right continuity and completeness. Intuitively, at each
time t the observer knows if the event {T(i) ≤ t}, ({S(j) ≤ t}) have either occurred or not
and if it had, he knows exactly the value T(i)(S(j)).

For a mathematical basis of stochastic processes applied to reliability theory see the book
of Aven and Jensen (1999) and Bremaud (1981). In particular, an extended and positive
random variable τ is an =t-stopping time if, and only if, {τ ≤ t} ∈ =t, for all t ≥ 0; an
=t-stopping time τ is called predictable if an increasing sequence (τn)n≥0 of =t-stopping
time, τn < τ , exists such that limn→∞ τn = τ ; an =t-stopping time τ is totally inaccessible
if P (τ = σ <∞) = 0 for all predictable =t-stopping time σ.
Follows that components and system lifetimes are =t stopping times. We assume that
T1, ..Tn, S1, ..., Sm are totally inaccessible =t-stopping times. In a certain way, absolutely
continuous lifetimes are totally inaccessible =t-stopping time.

The evolution of components on time define point processes given through the failure
times: we denote by T(1) < T(2) < ... < T(n) (S(1) < S(2), ... < S(m)) the ordered lifetimes
T1, T2, ..., Tn (S1, S2, , ..., Sm) as they appear in time. As a convention we define T(n+1) =
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T(n+2) = ... = S(m+1) = S(m+2) = ... =∞ indicating that the sequences (T(n))n≥1 and as in
Bremaud, (S(m))m≥1 define non explosives point processes.

Under the above hypothesis, it is well-known that a coherent system fails at failure of one
of their components. This fact motivates the following Theorem:

Theorem 2.1.1
Under the above hypothesis and notation we have:

P (T ≤ t, S ≤ s|=t∨s) =
n∑
i=1

m∑
j=1

1{T=T(k),S=S(j)}1{T(k)≤t,S(j)≤s}.

Proof
As {T = T(k), S = S(j)} defines a partition of Ω follows from the total probability law that

P (T ≤ t, S ≤ s|=t∨s) =
n∑
i=1

m∑
j=1

P (T ≤ t, S ≤ s, T = T(k), S = S(j)|=t∨s) =

n∑
i=1

m∑
j=1

E[[1{T(k)≤t,S(j)≤s}1{T=T(k),S=S(j)}|=t∨s].

However, see Dellacherie (1972),

{T = T(k)} ∈ =T(k) = {A ∈ =∞{A ∩ {T(k) ≤ t}} ∈ =t,∀t > 0}

{S = S(j)} ∈ =S(j)
= {A ∈ =∞{A ∩ {S(j) ≤ s}} ∈ =s, ∀s > 0}

and we have
{T = T(k)} ∩ {T(k) ≤ t} ∈ =t ⊆ =t∨s

and
{S = S(j)} ∩ {S(j) ≤ s} ∈ =s ⊆ =t∨s.

Therefore
{T = T(k)} ∩ {T(k) ≤ t} ∩ {S = S(j)} ∩ {S(j) ≤ s} ∈ =t∨s

is =t∨s- measurable set implying

P (T ≤ t, S ≤ s|=t∨s) =
n∑
i=1

m∑
j=1

1{T(k)≤t,S(j)≤s}1{T=T(k),S(j)=S}.

The above decomposition allows us to define the joint signature point process as:

Definition 2.1.2
The vector (1{T=T(k),S=S(j)}, 1 ≤ j ≤ n, 1 ≤ k ≤ m) is defined as the joint signature

point process of the bivariate lifetime (T, S).
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Remark 2.1.3
As P (Ti = Tj) = P (Si = Sj) = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, the collection
{{T = T(i)}, 1 ≤ i ≤ n} is a partition of Ω and

∑n
k=1 1{T=T(k)} = 1. Also, the collection

{{S = S(j)}, 1 ≤ j ≤ m} is a partition of Ω with
∑m

j=1 1{S=S(j)} = 1. Therefore

m∑
j=1

1{T=T(k),S=S(j)} =
m∑
j=1

1{T=T(k)}1{S=S(j)} = 1{T=T(k)}.

As in Bueno (2013), the vector (1{T=T(k)}, 1 ≤ k ≤ n) is defined as the marginal signature
point process of the coherent system with lifetime T . We also have

P (T ≤ t|=t) =
n∑
i=1

1{T=T(k)}1{T(k)≤t}.

The joint conditional reliability function of (S, T ) defined as P (T > t, S > s|=t∨s) is:

Theorem 2.1.4
Under the above hypothesis and notation we have:

P (T > t, S > s|=t∨s) =
m∑
i=1

n∑
j=1

1{T=T(k),S=S(j)}1{T(k)>t,S(j)>s}.

Proof
Observe the equality

1{T > t, S > s} = 1− 1{T ≤ t} − 1{S ≤ s}+ 1{T ≤ t, S ≤ s}.

Therefore
E[1{T > t, S > s}|=t∨s] = 1− E[1{T ≤ t}|=t∨s]−
E[1{S ≤ s}|=t∨s] + E[1{T ≤ t, S ≤ s}|=t∨s].

As {T = T(k)} ∈ =T(k) , {T = T(k)} ∩ {T(k) ≤ t} ∈ =t ⊆ =t∨s,∀t > 0 and we have

E[1{T ≤ t}|=t∨s] = E[
n∑
k=1

1{T=T(k)}1{T(k)≤t}] =

E[
n∑
k=1

1{T=T(k)}(
m∑
j=1

1{S=S(j)})1{T(k)≤t}] =

E[
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{T(k)≤t}].

With the same argument we get

E[1{S ≤ s}|=t∨s] = E[
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{S(j)≤s}].
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Using Theorem 2.1.1 we have

E[1{T > t, S > s}|=t∨s] = E[
n∑
k=1

n∑
j=1

1{T=T(k),S=S(j)}−

n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{T(k)≤t} −
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{S(j)≤s}+

n∑
i=1

m∑
j=1

1{T(k)≤t,S(j)≤s}1{T=T(k),S(j)=S}] =

E[
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}{1− 1{T(k)≤t} − 1{S(j)≤s} + 1{T(k)≤t,S(j)≤s}}] =

E[
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{T(k)>t,S(j)>s}].

Remark 2.1.5
Using Theorem 2.1.4 we can calculate the ”systems joint reliability”as

P (T > t, S > s) = E[P (T > t, S > s|=t∨s)] = E[
n∑
k=1

m∑
j=1

1{T=T(k),S=S(j)}1{T(k)>t,S(j)>s}] =

n∑
k=1

m∑
j=1

P ({T = T(k), S = S(j)} ∩ {T(k) > t, S(j) > s})

.
As in Randles and Wolfe (1979), if the components T1, T2, ..., Tn, S1, S2, ..., Sn are indepen-
dent and identically distributed with continuous distribution F , the events {T = T(k), S =
S(j)} and {T(k) ≤ t, S(j) ≤ s} are independent and we have

P (T > t, S > s) =
n∑
k=1

n∑
j=1

P (T = T(k), S = S(j))P (T(k) > t, S(j) > s).
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Remark 2.1.6
Navarro, et al.(2013), consider coherent systems with shared common independent and
identically distributed component lifetimes T1, ..., Tn with continuous distribution function
F to define the ”bivariate signature matrix”.
For the sake of clarity, one can think of the two system of interest as being on n1 and
n2 components and having n1,2 components in common, reaching over n = n1 + n2 − n1,2

components. If n1,2 = 0 the lifetimes of the two systems are independent and the joint
distribution of their lifetimes is simply the product of their marginal distributions. It is
also considered the case in which these systems are based just on some of these component
lifetimes and not on all of them. So these two system might share all, some, or none of
these components.

Navarro et al. define the the random vector I = (I1, I2) by

I = (k, j) whenever T = T(k) and S = T(j).

The bivariate probability function of I is denoted by pk,j = P (I = (k, j)), i, j = 1, ...n
with

pk,j =
|Ak,j|
n!

,

where |Ak,j| is the size of the set

Ak,j = {σ ∈ ℘n : T = T(k) and S = T(j) whenever Tσ(1) < .... < Tσ(n)}

and ℘n is the set of permutations of the set {1, ..., n}
The matrix P = (pk,j) is called the bivariate signature matrix (BSM) associated with (S, T ).
Also sSj =

∑n
k=1 pk,j define the univariate (marginal) coherent system signature correspon-

ding to lifetime S and sTk =
∑n

j=1 pk,j define the univariate (marginal) coherent system
signature corresponding to lifetime T .
If we consider the systems component lifetimes immersed in {T1, ..., Tn} we can write

G(t, s) = P (T ≤ t, S ≤ s) =
n∑
i=1

n∑
j=1

pk,jFk,j(t, s),

where pk,j = P (T = T(k)S = T(j)), Fk,j(t, s) = P (T(k) ≤ t, T(j) ≤ s) and G(t, s) is the joint
distribution function of the system lifetimes. G can have a singular part in the set {T = S}
, in which case we have

Fi,i = P (T(i) ≤ t, T(i) ≤ s) = F(i)(t ∧ s)

and we can continue to use the above decomposition.

2.2. Compensator process and asymptotic reliability.

The point process Nt((i)) = 1{T(i)≤t} is an =t-sub-martingale, that is, T(i) is =t-measurable
and E[Nt((i))|=s] ≥ Ns((i)) for all 0 ≤ s ≤ t.

7



From Doob-Meyer decomposition, there exists an unique =t-predictable process, denoted
(At((i))t≥0, called the =t-compensator of Nt((i)), with A0((i)) = 0 and such that Mt((i)) =
Nt((i))−At((i)) is a zero mean uniformly integrable =t-martingale. We assume that Ti, 1 ≤
i ≤ n are totally inaccessible =t-stopping time and, under this assumption, At((i)) is
continuous.
As Nt((i)) can only count on the time interval (T(i−1), T(i)], the corresponding compensator
differential dAt((i)) must vanish outside this interval.

The =t-compensator of P (T ≤ t|=t), where T is the system lifetime is set in the following
Theorem:

Theorem 2.2.1
Let T1, T2, ..., Tn, be the components lifetimes of a coherent system with lifetime T . Under
the hypothesis and notation of Section 2.1, the =t-submartingale P (T ≤ t|=t), t < u, has
the =t-compensator

n∑
k=1

∫ t

0

1{T=T(k)}dAs((k)).

Proof
We consider the deterministic process

1{T=T(k)}(w, s) = 1{T=T(k)}(w).

It is left continuous and, therefore, =t-predictable, implying that, see Bremaud (1981),∫ t

0

1{T=T(k)}(s)dMs((k))

is an =t-martingale.
As a finite sum of =t-martingales is an =t-martingale, we have

n∑
k=1

∫ t

0

1{T=T(k)}dMs((k)) =

n∑
k=1

∫ t

0

1{T=T(k)}d1{T(k)≤s} −
n∑
k=1

∫ t

0

1{T=T(k)}dAs((k)).

is an =t-martingale. As the compensator is unique we finish the proof.

We consider the definition of a =t-doubly stochastic Poisson process.

Definition 2.2.2
A point process Nt, adapted to a history (=t)t≥0, is called a =t-doubly stochastic Poisson
process, directed by At if, for all t ≥ s ≥ 0 and all u ∈ <,

E{exp[iu(Nt −Ns)|=s} = exp[(eiu − 1)(At − As)],
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where (At)t≥0 is a finite, non negative =0-measurable process. Also, the above expression
yields, for all t ≥ s ≥ 0 and all k ≥ 0,

P (Nt −Ns = k|=s) = exp[−(At − As)]
[At − As]k

k!

and Nt is called a =t-doubly stochastic Poisson process or a =t-conditional Poisson process.

If we have At =
∫ t
0
λsds, where λt is a nonnegative =0-measurable process with

∫ t
0
λsds <∞,

λt is called intensity process.

If At = A where A is some nonnegative random =0-measurable random variable , Nt is
called a homogeneous doubly stochastic Poisson process.

If At = A(t) where A(t) is a deterministic function of time, Nt = N(t) is called a non
homogeneous Poisson process

To continue we apply Brown Theorem in the signature point process representation of a
coherent system

Theorem 2.2.3
Brown, (1982). Let (=nt )n≥1 be a sequence of histories defined on a common probability

space (Ω,=, P ), (Nn
t )n≥1 be a sequence of a simple point processes =nt -adapted, for each

n, and (Ant )n≥1 the sequence of =nt -compensator of (Nn
t )n≥1. Let (At)t≥0 be a cumulative

process defined on (Ω,=, P ), with continuous trajectories and such that for each t > 0
i) At is =n0 -measurable for every n = 1, 2, 3, ...
ii) Ant → At, in probability when n→∞.

Then Nn
t converges weakly to a doubly stochastic Poisson process directed by At.

In the following we apply Theorem 2.2.3 to calculate the asymptotic reliability of a coherent
system.

Corollary 2.2.4
Let T1, T2, ..., Tn, .... be component lifetimes of a coherent system with lifetime T . Consider
a component level filtration given by

=nt = σ{1{T(i)>s}, 1 ≤ i ≤ n, 0 < s < t},

and the point process

Nn
t = P (T ≤ t|=nt ) =

n∑
k=1

1{T=T(k)}1{T(k)≤t}

with =nt -compensator

Ant =
n∑
k=1

1{T=T(k)}At((k)).

If, for all t ≥ 0, Ant → At, in probability when n → ∞, where At has continuous sample
path and is =n0 -measurable, for each n, then Nn

t converges weakly to a doubly stochastic
Poisson processdirected by At.
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Proof
As, for k ≤ n {T(k) = T} ∈ =nT(k) , {T(k) = T} ∩ {T(k) ≤ t} ∈ =nt ,∀t ≥ 0, Nn

t is =nt -adapted

and the proof follows from Brown theorem. We denote this limit by

ATt =
∞∑
k=1

1{T=T(k)}At((k)).

(ATt )t≥0 is the =t-compensator of (NT
t )t≥0, where

NT
t = lim

n→∞
Nn
t =

∞∑
k=1

1{T=T(k)}1{T(k)≤t},

also denoted by (Tn)n≥1.

Remark 2.2.5
To give means and consistency to system signature of ”infinite order”we report to the
following result from the paper Navarro et al. (2008): Given an arbitrary coherent system
with lifetime T and distribution function FT (t), in n i.i.d. components, there exists, for
any integer m > n, an equivalent (equal in law) coherent system in m i.i.d. components
with the same distribution function FT (t). Formally proves:

Theorem 2.2.6 (Navarro et al.( 2008))
Let s = (s1, ..., sk) be the signature of an arbitrary coherent system of order k. Then, for
any integer n > k, the system with signature s is equivalent to the n component system
with signature s∗ = (s∗1, ..., s

∗
n) given by

s∗ =
k∑
i=1

si

n+i−k∑
j=i

(
j−1
i−1

)(
n−j
k−i

)(
n
k

) sj:n,

where sj:n = (0, ..., 0, 1, 0, ..., 0) is the signature vector of a j-out-of-n:F system. It is impor-

tant to note that
n+i−k∑
j=i

(
j−1
i−1

)(
n−j
k−i

)(
n
k

) = 1

and

lim
n→∞

(
j−1
i−1

)(
n−j
k−i

)(
n
k

) = 0.
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Example 2.2.7
As in Navarro et al. (2013), let T1, T2, T3, and T4 be independent and identically distri-

buted component lifetimes with distribution function F . Le Sand T be the lifetimes of the
following coherent systems with a single shared component: S = ∧{T1∨T2, T1∨T2, T2∨T3}
and T = T3 ∧ T4. [15] calculate the probability distribution of the random pair (I1, I2) by
using the definition in Remark 2.1.7. The matrix P is given by

0 0 0 0
1
6

1
6

1
6

0
1
3

1
6

0 0
0 0 0 0

As a two component system,the system signature corresponding to the lifetime T is (1, 0).
As a three component system, its signature is (2

3
, 1
3
, 0) and as a four component system

have it signature identified by P, equal to (1
2
, 1
3
, 1
6
, 0) .

As a two component system,the system signature corresponding to the lifetime T is (0, 1, 0).
As a four component system have it signature determined by P, equal to (0, 1

2
, 1
2
, 0) .

Example 2.2.8
To exemplify the asyntotic procedure we consider the well-known Cesaro Summability
Condition:

(I) If 0 < p(n, k) < 1, for all n and 1 ≤ k ≤ n, then the sum
∑n

k=1 p(n, k) and the product
πnk=1(1− p(n, k), either converges or diverges.

(II) If 0 < p(n, k) < 1, for all n, 1 ≤ k ≤ n and

Σ∞j=1

1

j

n∑
k=1

p(n, k) = λt,

for fixed t and some λ > 0, as n→∞, then

πnk=1(1− p(n, k) = exp[−λt],

for fixed t and some λ > 0, as n→∞.

We assume that the coherent systems components are subject to failures according to a well
known nonhomogeneous Poisson processes (NHPP). This property characterizes a minimal
repair process which means that, at each failure in the set {T = T(k)} the system is repaired
and continues to work with the same failure rate as it had immediately before failure. In
these context we characterize the coherent system through its compensator process

Ant =
n∑
k=1

1{T=T(k)}At((k))
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It is well known that, see Arjas and Yashin (1988), in the absolutely continuous case,
At((k)) = − ln(1− F(k)(t|=t−)). Therefore At((k)) =

∑∞
j=1

1
j
P (T(k) ≤ t|=t−)j and

Ant =
n∑
k=1

∞∑
j=1

1

j
P (T(k) ≤ t|=t−)j.

Therefore we can state conditions under which we apply the Cesaro Summability Condition
to coherent system, by example:

If F(k)(t|=t−) are absolutely continuous and

Ant =
n∑
k=1

∞∑
j=1

1

j
P (T(k) ≤ t|=t−)j → λt,

for fixed t and some λ > 0, as n → ∞, then the coherent system converges to a Poisson
process.
Under the above hypothesis and the second part of Cesaro Summability Condition we
conclude that the asymptotic reliability is equal to

π∞k=1P (T(k) > t|=t−) = exp[−λt].

We consider a coherent system of identically distributed component where, for fixed t and
some λ, the failure probability of an ordered component depend on the size n of the system
and its position, k, and tends to zero with the rate λt

n
1
k
. Follows that

P (T(k) ≤ t|=t−) = [
λt

n
1
k

+ o(
1

n
1
k

)]k.

Therefore

−
n∑
k=1

∞∑
j=1

1

j
[
λt

n
1
k

+ o(
1

n
1
k

)]k
n

→ (λt)k

as n→∞. Then the coherent system converges to a Weibull process. The above result are

the reasons and motivation to asymptotically extend the inaccuracy measure for a double
stochastic Poisson processes.

3. Cumulative residual inaccuracy measure

3.1. Cumulative residual inaccuracy measure for coherent systems under double
stochastic Poisson processes

As in Bueno (2019) we define cumulative residual inaccuracy measure between coherent
system modeled by double stochastic Poisson processes:

12



Definition 3.1.1
Let (NT

t )t≥0, defined by the sequence (Tn)n≥1, be a double stochastic Poisson processes
modeling a coherent system with lifetime T and =t-compensator processes (ATt )t≥0 and
(NS

t )t≥0, defined by the sequence (Sn)n≥1, be a double stochastic Poisson processes modeling
a coherent system lifetime with S and =t-compensator processes (BS

t )t≥0. The cumulative
residual inaccuracy measure between NT

t and NS
t is

CRIS,T = E[

∫ T

0

BS
s ds] + E[

∫ S

0

ATs ds].

Theorem 3.1.2
Let T1, T2, ..., Tn, ..., be the components lifetime of a coherent system with lifetime T and
let S be the lifetime of a coherent system with component lifetimes S1, S2, ..., Sm, ... under
the above conditions and notations. Then the cumulative residual inaccuracy measure of
NT
t and NS

t on the component level, that is, observing T(i), i ≥ 1 and S(i), i ≥ 1 is

CRIS,T = E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|S(k) − T(j)|].

Proof.
As in Bueno (2019),

CRIS,T = E[

∫ T

0

BS
s ds] + E[

∫ S

0

ATs ds].

Now, using results of Section 2 we have

E[

∫ T

0

BS
s ds] = E[

∫ T

0

(

∫ s

0

dBS
t )ds] = E[[

∫ T

0

(

∫ T

t

ds)dBS
t ] = E[

∫ T

0

(T − t)dBS
t ].

As BS
t =

∑∞
k=1 1{S=S(k)}dBt((k)) we have

E[

∫ T

0

BS
s ds] = E[

∫ T

0

(T − t)
∞∑
k=1

1{S=S(k)}dBt((k))] =

E[
∞∑
k=1

∫ T

0

(T − t)1{S=S(k)}dBt((k))] = E[
∞∑
k=1

∫ T

0

(T − t)1{S=S(k)}dN
S
t ((k))] =

E[
∞∑
k=1

1{S=S(k)}(T − S(k))1{S(k)≤T}].

Using the same argument

E[

∫ S

0

ATs ds] = E[
∞∑
k=1

1{T=T(k)}(S − T(k))1{T(k)≤S}].

13



Therefore

CRIS,T = E[
∞∑
k=1

1{S=S(k)}(T − S(k))1{S(k)≤T} +
∞∑
k=1

1{T=T(k)}(S − T(k))1{T(k)≤S}] =

E[
∞∑
k=1

1{S=S(k)}(
∞∑
j=1

1{T=T(j)})(T − S(k))1{S(k)≤T}+

∞∑
k=1

1{T=T(k)}(
∞∑
j=1

1{S=S(j)})(S − T(k))1{T(k)≤S}] =

E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|(T(j) − S(k)|1{S(k)≤T(j)}+

∞∑
k=1

∞∑
j=1

1{T=T(k),S=S(j)}|S(j) − T(k)|1{T(k)≤S(j)}] =

E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|S(k) − T(j)|].

Remark 3.1.3
The interpretation of the cumulative residual inaccuracy measure betweens double stochas-
tic Poisson process is retained. We note that

CRIS,T = E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|S(k) − T(j)|] =

E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|S − T |] =

E[|S − T |
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}] = E[|S − T |].

Therefore, CRIT,S can be seen as a dispersion measure when using a coherent system
lifetime S asserted by the experimenter information of the true coherent system lifetime T .

Remark 3.1.4
A nonhomogeneous Poisson process generated by record values: Let T1, T2, ..., Tn, the com-
ponent lifetimes of a coherent system subjet to minimal repairs. This process is modulated
by a non homogeneous Poisson process (NHPP), (Nt)t≥0, with deterministic compensator
A(t). If T(k) is the k-th occurrence time of the NHPP its survival function is given by

Gk(t) = P (Tk > t) = P (N(t) < k) =
k−1∑
j=0

(A(t))j

j!
e−A(t), k = 0, 1, 2, ...

14



where A(t) = E[Nt] = − lnG(t) and G(t) is the reliability function of the first occurrence
time.
By its turn, a non homogeneous Poisson process (NHPP) is generated by record values of
random variables independent and identically distributed.
The reliability function Gk(t) arises naturally as the reliability function of upper record
values in a sequence of independent non-negative random variables T1, T2, ... generated
from G(t), the time distribution function of the first occurrence time. The observation Tj
is an upper record value if it exceeds all previous observations, see Arnold et al. (1992).
In other words, an NHPP is essentially a record non-explosive counting process subject
that its mean value function A(t) is continuous and goes to ∞ as t → ∞. Therefore the
sequence of occurrence times in a non-homogeneous Poisson process can be considered as
the record values of a sequence of independent and identically distributed random variables
each having distribution function G, in which case the events {T = T(k)}, 1 ≤ k ≤ n and
the occurrence times are independents, see Randles and Wolfe (1979).

Corollary 3.1.5
Let (NT

t )t≥0, defined by the sequence (Tn)n≥1, be a deterministic non-homogeneous Poisson
process modeling a coherent system with lifetime T subject to minimal repairs and let
(NS

t )t≥0, defined by the sequence (Sn)n≥1, be a deterministic non-homogeneous Poisson
process modeling a coherent system with lifetime S subject to minimal repairs, independent
of T . Then the cumulative residual inaccuracy measure of NT

t and NS
t on the component

level is

CRIS,T =
∞∑
k=1

∫ ∞
0

sSkP (S(k) > t)dt+
∞∑
j=1

∫ ∞
0

sTj P (T(j) > t)dt−2
∞∑
k=1

∞∑
j=1

∫ ∞
0

pkjP (S(k) > t, T(j) > t)dt.

Proof.
As in Theorem 3.2 we have

CRIS,T = E[
∞∑
k=1

∞∑
j=1

1{S=S(k),T=T(j)}|S(k) − T(j)|] =

∞∑
k=1

∞∑
j=1

E{E[1{S=S(k),T=T(j)}|S(k) − T(j)||S = S(k), T = T(j)]} =

∞∑
k=1

∞∑
j=1

E{1{S=S(k),T=T(j)}E[|S(k) − T(j)||S = S(k), T = T(j)]} =

∞∑
k=1

∞∑
j=1

P (S = S(k), T = T(j))E[|S(k) − T(j)|] =

∞∑
k=1

∞∑
j=1

pk,jE[(S(k) ∨ T(j))− (S(k) ∧ T(j))] =

15



∞∑
k=1

∞∑
j=1

pk,j

∫ ∞
0

[P ((S(k) ∨ T(j)) > t)− P ((S(k) ∧ T(j)) > t)]t =

=
∞∑
k=1

∫ ∞
0

sSkP (S(k) > t)dt+
∞∑
j=1

∫ ∞
0

sTj P (T(j) > t)dt−2
∞∑
k=1

∞∑
j=1

∫ ∞
0

pkjP (S(k) > t, T(j) > t)dt.

Example 3.1.6
Let T1, T2, ..., Tn, ... be the component’s lifetimes of a coherent system with lifetime T
which are subject to failures according to a Weibull process with parameters β = 2 and
θ1. Let S1, S2, ..., Sm, .... be the component’s lifetimes of a coherent system with lifetime S,
asserted by the experimenter, which are subject to failures according to a Weibull process
with parameters β = 2 and θ2. S ∧ T follows a Weibull process with parameters β = 2

and
θ21θ

2
2

θ1‘2θ22
.In practical we consider the ordered lifetimes T1, T2, ..., Tn, .... with a conditional

reliability function given by

Fi(ti|t1, t2, ..., ti−1) = exp[−(
ti
θ

)β + (
ti−1
θ

)β]

for 0 ≤ ti−1 < ti where ti are the ordered observations.
Considering T1, T2, ..., Tn, ... , S1, S2, ..., Sm as record values of independent and identically
distributed random variables, we can apply Corollary 3.1.5:

CRIS,T =

∫ ∞
0

[
∞∑
k=1

sTk exp[−(
t

θ1
)β + (

tk−1
θ1

)β]+

∞∑
j=1

sSj exp[−(
t

θ2
)β + (

sj−1
θ2

)β]−

2
∞∑
i=1

sS∧Ti exp[−(
t

θ21θ
2
2

θ21+θ
2
2

)β + (
ui−1
θ21θ

2
2

θ21+θ
2
2

)β]]dt

where sTk ,sSj and sS∧Ti are the components vector of sT , sS and sS∧T of the ( ”infinity order”)
coherent systems signatures with lifetimes T , S and S ∧ T , respectively.

3.2. Dynamic cumulative residual inaccuracy measure for coherent system un-
der double stochastic Poisson processes

We can extend the concept to a timing varying form corresponding to residual processes
after a fixed time t. Note that there exists a k such that Sk−1 < t ≤ Sk and

E[

∫ T

t

BS
s ds] = E[

∫ T

t

(

∫ s

0

dBS
u )ds] = E[

∫ t

0

(

∫ T

t

ds)dBS
u +

∫ T

t

(

∫ T

u

ds)dBS
u ] =

E[

∫ t

0

(T − t)dBS
u +

∫ T

t

(T − u)dBS
u ].
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However

dBS
u =

∞∑
k=1

1{Sk−1<u≤Sk}1{S=Sk}dBu(k).

and therefore

E[

∫ T

t

BS
s ds] = E[

∞∑
k=1

{(T − t)1{S=Sk}

∫ t∧Sk

Sk−1

dBu(k) + 1{S=Sk}

∫ T∧Sk

t∨Sk−1

(T − u)dBu(k)} =

E[
∞∑
k=1

1{S=Sk}{(T − t)1{Sk≤t} + (T − Sk)1{t<Sk≤T}} =

E[
∞∑
k=1

1{S=Sk}|T − Sk|1{t<Sk≤T}.

As
∑∞

n=1 1{T=Tn} = 1 we have

E[

∫ T

t

BS
s ds] = E[

∞∑
k=1

1{S=Sk}(
∞∑
n=1

1{T=Tn})|T − Sk|1{t<Sk≤T} =

E[
∞∑
k=1

∞∑
n=1

1{S=Sk,T=Tn}|T − Sk|1{t<Sk≤T} =

E[
∞∑
k=1

∞∑
n=1

1{S=Sk,T=Tn}|Tn − Sk|1{t<Sk≤Tn}.

With the same argument we have

E[

∫ S

0

ATs ds] = E[
∞∑
k=1

∞∑
n=1

1{S=Sk,T=Tn}|Tn − Sk|1{t<Tn≤Sk}.

and therefore

E[

∫ T

t

BS
s ds+

∫ S

t

ATs ds] = E[
∞∑
k=1

∞∑
n=1

1{S=Sk,T=Tn}|Tn − Sk|1{t<Tn∧Sk}.

We can define

Definition 3.2.1
Let (NT

t )t≥0, defined by the sequence (Tn)n≥1, be a double stochastic Poisson processes
with =t-compensator processes (ATt )t≥0 and (NS

t )t≥0, defined by the sequence (Sn)n≥1, be a
double stochastic Poisson processes with =t-compensator processes (BS

t )t≥0. The dynamic
cumulative residual inaccuracy measure between NT

t and NS
t is

DCRI tS,T = E[

∫ T

t

BS
s ds] + E[

∫ S

t

ATs ds] =

17



E[
∞∑
k=1

∞∑
n=1

1{S=Sk,T=Tn}|Tn − Sk|1{t<Tn∧Sk}.

Remark 3.2.2
Let (NT

t )t≥0 and (NS
t )t≥0 be double stochastic Poisson processes with =t-compensator pro-

cesses (ATt )t≥0 and (BS
t )t≥0 respectively. We say that NT

t and NS
t satisfies the proportional

risk hazard process if BS
t = αATt , ∀t ≥ 0 for some α, 0 < α < 1.

Theorem 3.2.2 The characterization Problem
If NT

t and NS
t satisfies the proportional risk hazard process, then the dynamic cumulative

residual inaccuracy measure DRCI tS,T < ∞ uniquely determines the double stochastic
Poisson process.
Proof.
We let (NT 1

t )t≥0 and (NS1

t )t≥0 be two double stochastic Poisson processes with =t-compensator
processes (AT

1

t )t≥0 and (BS1

t )t≥0 respectively, with BS1

t = α1AT
1

t , ∀t ≥ 0 for some α1, 0 <
α1 < 1. Also, let (NT 2

t )t≥0 and (NS2

t )t≥0 be two double stochastic Poisson processes with
=t-compensator processes (AT

2

t )t≥0 and (BS2

t )t≥0 respectively, with BS2

t = α2AT
1

t , ∀t ≥ 0
for some α2 0 < α2 < 1. Then we have :

DRCI tS1,T 1 = DRCI tS2,T 2 ↔

E[

∫ S1

t

AT
1

t dt+

∫ T 1

t

α1AT
1

t dt] = E[

∫ S2

t

AT
2

t dt+

∫ T 2

t

α2AT
2

t dt].

However, for i = 1, 2 we have

E[αi
∫ T i

t

AT
i

s ds] = αiE[

∫ t

0

(T i − t)dAT i

s ] + αiE[

∫ T i

t

(T i − s)dAT i

s ] = 0.

Without loss of generality, using the Optimal Sampling Theorem , for any =t-stopping time
S we have,

DRCISS1,T 1 = DRCISS2,T 2 ↔ E[

∫ S

0

AT
1

t dt] = E[

∫ S

0

AT
2

t dt]↔

E[

∫ ∞
0

1{t<S}A
T 1

t 1{AT1
t >AT2

t }
dt] + E[

∫ ∞
0

1{t<S}A
T 1

t 1{AT1
t ≤AT2

t }
dt] =

E[

∫ ∞
0

1{t<S}A
T 2

t 1{AT1
t >AT2

t }
dt] + E[

∫ ∞
0

1{t<S}A
T 2

t 1{AT1
t ≤AT2

t }
dt]↔

E[

∫ ∞
0

1{t<S}(A
T 1

t − AT
2

t )1{AT1
t >AT2

t }
dt] = E[

∫ ∞
0

1{t<S}(A
T 2

t − AT
1

t )1{AT1
t ≤AT2

t }
dt]↔∫ ∞

0

E[1{t<S}|AT
1

t − A2
t |1{AT1

t >AT2
t }

]dt =

∫ ∞
0

E[1{t<S}|AT
1

t − AT
2

t |1{AT1
t ≤AT2

t }
]dt↔∫ ∞

0

E[1{t<S}|AT
1

t − AT
2

t |(1{AT1
t >AT2

t }
− 1{AT1

t ≤AT2
t }

)]dt = 0.
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As {AT 1

t > AT
2

t } ∩ {AT
1

t ≤ AT
2

t } = ∅ and the integrand is positive we have AT
1

t = AT
2

t . As
the compensator is unique we have NT 1

t = NT 2

t
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