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Abstract
Random curves (produced by the Schramm–Loewner evolution SLE

�
 ) of the frac-

tal dimension d
�
= 1 + �∕8 , 𝜅 < 8 given on a surface D ⊂ ℝ

3 and the conformal 
group (CG) that acts on D are considered. We study the action integral L[�(t)] , 
�(t) ∈ SLE

�
 (the fractal variation of length of a random curve (Kennedy in J Stat 

Phys 128(6):1263–1277, 2006)) together with the conformal group extension CGE 
of CG which invariant transforms SLE

�
 and L[�(t)] . We calculate the second-order 

universal differential invariant �
2
 (or the multiscale representation of invariants) of 

the GCE and show that L[�(t)] generates all second-order differential invariants of 
CGE by the operators of invariant differentiation. The differential invariants look 
like invariant quantities of different scales wherein L[�(t)] plays a role of "the frac-
tal length scale". The method of calculations of differential invariants is a kind of 
modern multiscale analysis (Olver and Pohjanpelto in Adv Math 222(5):1746–1792, 
2009) based on the theory of symmetry group. This investigation is also motivated 
by Cartan’s point of view (in: Cartan, La Théoric des Groupes Finis et Continus et la 
Géometrie Differentielle traittée par le Méthode du Repére Mobile, Gauthier-Villars, 
Paris, 1937) that the local geometry properties are entirely governed by differential 
invariants of the group admitted.
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1  Introduction

One-parametric family SLE
�
 (Schram–Löwner evolution) presents random pro-

cess that produce random curves. This is a conformally invariant set arising as 
scaling limits of various critical models from statistical physics in the plane, 
see [20, 22] and the bibliography therein. In short, we mean the SLE

�
 trace ran-

dom pathes in D ⊂ ℝ
2 or ℂ driven by the standard Brownian motion with the 

diffusion coefficient � . We assume that a domain D is endowed with the confor-
mal structure of ℂ . If an embedding of D into ℝ2 is compact of the genus g ≤ 1 , 
then D is conformal equivalent to a (part of) Riemannian sphere or a (part of) 
torus for the oriented case and a (part of) Klein bottle for the non-oriented case. 
For a domain D of the genus ≥ 2 we have that the conformal group given on D 
is trivial  [19]. Therefore, the substantial case consists in the consideration of D 
with g ≤ 1 . For non-compact surfaces we have the following surfaces: an open 
disk or all plane, open annulus or punctured plane (oriented) or an Möbius strip 
(non-oriented). Speaking about metric on a surface D, we always have in mind 
a Riemannian metric compatible with the conformal structure. We can get a 
compact surface from a noncompact one by the so-called Schottki construction 
or Schottki double, see  [10]. If D is a noncompact surface of finite topological 
type, then there exists a unique oriented compact surface Ddouble with an orienta-
tion-reversing conformal involution � and an embedding � : D ↦ Ddouble such that 
�[�(D)] ∩ �(D) = � , the complement Ddouble ⧵ (�[�(D)] ∪ �(D)) is a disjoint union of 
finitely many isolated points and closed loops. For a noncompact D we deal with 
Schottki double Ddouble . With this, D is endowed with a Riemannian metric of the 
conformal form  [3] and the action integral L[�(t)] , �(t) ∈ SLE

�
 can be defined. 

The conformal transformations of D give rise to CG invariance of SLE
�
↦ SLE

�

, [22].
The differential invariants associated with a transformation group acting on a 

set are the fundamental quantities for understanding the geometry of this set [2]. 
Exemplarily, the curvature and torsion of a curve defines the shape of the curve. 
These quantities are differential invariants of the Euclidean group SE(3).

Another topic that has much attention from the geometric multi-scale analysis 
is the multiscale representation of invariants, see i.e.  [18]. The obtained repre-
sentations allows to compute invariant quantities at different scales. In practise, 
the length preserving is one of the typical viewing invariants in computer vision. 
How many invariants can we use for a visualization of the object, in particular, in 
geometric multi-resolution representations? This question can be identified with 
generating the minimal set of invariants under transformations.

The basic theory of differential invariants goes to Lie  [14] and Tresse  [21]. 
Lie states that all differential invariants can be generated from a finite number of 
low-order invariants by repeated invariant differentiation. Lie’s results were gen-
eralized by Tresse and, much later and significantly, Ovsiannikov  [17]. A well-
known example is that of the differential invariants of a space curve under the 
action of the Euclidean group SE(3) are generated by two differential invariants, 
namely its curvature and torsion. More examples can be founded in [7]. Complete 
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classification of differential invariants for many of the fundamental transfor-
mation groups of physical and geometrical importance remains undeveloped. 
The main difficulty in applying Lie’s method to complicated examples is that it 
requires the integration of linear partial differential equations, which can prove 
to be rather complicated. A rigorous version of the Lie–Tresse Theorem, based 
on the machinery of Spencer cohomology, was established by Kumpera [12]; see 
also  [11] for a generalization to pseudo-group actions on differential equations 
(submanifolds of jet space), and  [16] for an approach based on Weil algebras. 
None of these references provide constructive algorithms for solving a system 
of generating differential invariants, nor methods for classifying the recurrence 
and commutator formulae, nor do they investigate the finiteness of the generat-
ing differential syzygies. Nevertheless, we are in able to derive the minimal sys-
tem of differential invariants to generate the algebra of differential invariants of a 
finite-order.

As it was mentioned above, our first aim is to extend CG up to the conformal 
invariant transformations of the functional L[�(t)] , �(t) ∈ SLE

�
 (called the confor-

mal group extension CGE). Then we calculate differential invariants of CGE up to 
the second-order. With this we derive the so-called second-order universal differ-
ential invariant �2 = {J1,… , J11} . Finally, we demonstrate that L[�(t)] (equals J2 ) 
is a differential invariant of CGE and generates all second-order invariants Ji for 
2 < i ≤ 11 , J1 = t.

In Sect. 2, the action integral L[�(t)] , �(t) ∈ SLE
�
 is defined and the fractal vari-

ation of length, which is finite [9], will be considered. With the usual definition of 
length, the length of �(t) is infinite. We construct the conformal group extension 
CGE of CG which invariant transforms SLE

�
 conserving the fractal variation of 

length L[�(t)] . In Sect. 3, we calculate the second-order universal differential invari-
ant �2 of the group CGE. We present the minimal set of generating differential invar-
iants of �2 which consists of {J1, J2} where J1 = t and J2 = L[�(t)].

2 � The length of a random curve from SLE
�

 and symmetry 
transformations

SLE
�
 is a one parameter family of random processes that produce random curves. It 

was proven in [1] that the Hausdorff (fractal) dimension dH of the SLE
�
 curve equals 

d
�
= 1 + �∕8 , � ≤ 8 . For dH = 2 , this is the so-called quadratic variation studied 

by Lévy for Brownian motion [13]. This is a non-random process and the length is 
proportional to t under suitable conditions on the convergence of the sequence of 
partitions. With respect to the usual definition of the length of a curve, the length of 
SLE

�
 curves for 𝜅 < 8 is infinite. Namely, the usual definition of the length or total 

variation of the random curve �(t) given on ℝ2 over the time interval [0, t] for each 
fixed time t would be the supremum over all partitions 0 < t1 < t2 < ⋯ tn = t of

(1)
n∑

j=1

|||X(tj) − X(tj−1)
|||.
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|X(tj) − X(tj−1)| (or infinitesimally |dX| ) is of order (�tj)1∕dH , where dH is the Haus-
dorff dimension of a curve and dH > 1 . With this, the total variation of X(t) will be 
infinite. Since the length of a segment is of order (�tj)1∕dH , this suggests to consider 
the quantity [9]

where P denotes the partition, (t0, t1,… , tn) . The mesh of a partition is the length 
of the largest subinterval. Then taking a sequence of partitions Pn whose mesh con-
verges to zero, we consider the limit

This limit exists i.e. lf < ∞ and lf  defines the fractal variation of a random curve [9]. 
This is a non-random constant. Sometimes it is called the p-variation in the stochas-
tic processes. The formula (3) can be written in the integral form

For X(t) ∈ SLE
�
 given on D supplied with a Riemannian metric dl2 , the integral 

in (4) reads

where (⋅, ⋅)dl2 is the scalar product generated by the metric dl2 and (dt)dH infinitesi-
mally closes to (�tn)dH or (dt)dH ∼ (�tn)

dH in the limit (�tn)dH → 0 as n → ∞ . With 
this, we define the length of X(t) or the action integral:

First of all, we show that this functional is a scalar invariant of CGE. Refering to 
CGE, we will mean the infinitesimal operator ICGE defined by the Formula (10).

The geometry of D is linked with a group of transformations acting on D i.e. here 
with CG. Indeed, let us assume that D is a compact surface of the genus ≥ 2 . Con-
sider the infinitesimal operator of the conformal group CG

where the functions �1 and �2 satisfy the Cauchy-Riemann conditions, �1
x
= �

2
y
 and 

�
1
y
= −�2

x
 . CG acts on D as a tangent transformation i.e. there exists no any transfor-

mations along the normal vector. Therefore, CG looks like sliding transformations 
of D and the following result holds  [19]: Let an embedded compact surface in ℝ3

of a topology genus g admit a sliding transformation. Then g ≤ 1and the surface is 
conformal equivalent to a (part of) sphere or a (part of) torus for the oriented case 

(2)fvar(X(t),P) =

n∑

j=1

|X(tj) − X(tj−1)|dH ,

(3)lim
n→∞

fvar(X(t),Pn) = lf .

(4)lf = fvar(X(t)) = ∫ |dX|dH .

(5)lf = fvar(X(t)) = ∫ (Xt,Xt)
dH∕2

dl2
(dt)dH ,

(6)L[X(t)] = ∫ (Xt,Xt)
dH∕2

dl2
(dt)dH .

(7)ICG = �
1 �

�x
+ �

2 �

�y
,
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and a (part of) Klein bootle (non-oriented). For g ≥ 2the group of transformations 
is trivial.

Notice that any metric on D can be written in the conformal form [3]

Further, �2(x, y) is transformed under the conformal transformations F(z) ∶ D ↦ D , 
z = x + iy as follows (see [19])

With this, the infinitesimal operator

invariant transforms the metric (8). To prove it, we use the ansatz for �1 and �2 sug-
gested in [5]:

Here

and c11 , c12 are the harmonic functions of x , that follow from the compatibility con-
ditions d1

yx
= d1

xy
 , d2

yx
= d2

xy
 , see for details  [5]. Further, we get c11 = c22 , c12 = −c21 

and

Moreover, it follows from (11), (12) and (13–16) that

Therefore, we see that the ansatz for �1 and �2 indeed generates the conformal trans-
formations. Thus, CGE group action reads

(8)dl2 = �
2(x, y)

(
dx2 + dy2

)
.

(9)�
2∗ = �

2(x, y)|Fz|−2.

(10)ICGE = �
1 �

�x
+ �

2 �

�y
− 2�2�1

x

�

��2

(11)�
1 =c11(x)x + c12(x)y + d1(x),

(12)�
2 =c21(x)x + c22(x)y + d2(x).

(13)d1
x
(x) =2c11(x) − c11

x
(x)x − c12

x
(x)y,

(14)d1
y
(x) = − c11

y
(x)x − c12

y
(x)y,

(15)d2
x
(x) =c12

x
(x)x − c11

x
(x)y,

(16)d2
y
(x) =2c11(x) + c12

y
(x)x − c22

y
(x)y,

(17)�
1

y
= −�2

x
, �

1

x
= �

2

y
.

(18)�
1

x
= 3c11, �

1

y
= c12.

(19)x∗ = U(x, y, a), y∗ = V(x, y, a),
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Here U(x, y, a), V(x, y, a) are the global forms of the infinitesimals (11), (12), which 
also depend on an arbitrary group parameter a. Moreover, U(x, y, a) and V(x, y, a) 
are conjugate harmonic functions, for details see [5]. Exemplarily, we prove the for-
mula (20). The derivative of equation (20) with respect to the parameter a gives

where Ux , Uxa ( Vx,Vxa ) denote the partial derivatives of U (or V) with respect to x 
and a variables. Then, calculating the derivatives of the right hand side of (21), we 
get

Hence equation (21) gives exactly the coordinate −2�1
x
�
2 of the infinitesimal 

operator (10).
In the complex variable frame, the infinitesimal operator ICGE has the form

where � = �
1 + i�2 , 𝜓̄ = 𝜉

1 − i𝜉2 . Using the notation F = U + iV  , the formu-
las (19, (20) in the complex variables frame are written as follows  [6]:

where z∗ = x∗ + iy∗ . The symbol |Fz| denotes the modulo of Fz i.e. 

The last equality follows from the formula (18). The metric (8) in the complex vari-
ables frame reads

wherein the differential complex dzdz̄ is transformed as

where F̄z = dF∕dz . Collecting the terms transformed in (28), we get that

that proves the invariance of dl2.

(20)�
2∗ =

(
U2

x
+ V2

x

)−1
�
2.

(21)�
∗
a
||a=0 = −2

(
U2

x
+ V2

x

)−2|||a=0
(
UxUxa

||a=0 + VxVxa
||a=0

)
�
2,

(22)Ux
||a=0 =xx = 1, Uxa

||a=0 = �
1

x
,

(23)Vx
||a=0 =yx = 0, Vxa

||a=0 = �
2

x
.

(24)ICGE = 𝜓
d

dz
+ 𝜓̄

d

dz̄
− 𝜆

2
(
𝜓z + 𝜓̄z̄

) 𝜕

𝜕𝜆2

(25)z∗ =F(z, a),

(26)�
2∗ =|Fz|−2�2,

(27)|Fz|2 =
(
U2

x
+ V2

x

)
= [1 + 6c11a + O(a2)].

(28)dl2 = 𝜆
2(z, z̄)dzdz̄,

(29)(dzdz̄)∗ = FzF̄zdzdz̄ = |Fz|2dzdz̄ = [1 + 6c11a + O(a2)]dzdz̄,

(30)dl2
∗

= 𝜆
2(z, z̄)|Fz|−2dzdz̄|Fz|2 = dl2
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To show the invariance of the functional  (6), we write this functional in the 
coordinate frame

In the transformed form and neglecting terms of order O(a2) the functional reads

Cancelling terms of the order O(a2) , the last equality follows. Therefore, L[X(t)] is 
CGE invariant functional. Other words, the fractal length of X(t) is conserved under 
the transformations (25), (26).

We prove that CGE is more widest group of symmetry transformations of 
L[X(t)] . We take l = lf  as a parametrization (the fractal arch-length parametriza-
tion) of X(t) i.e. l = lf  is the fractal length of the curve X(t) , that is,

Hence, we can write

We consider the co-vector (lX , lY ) instead of the tangent vector Xl = (Xl, Yl) . Here 
(lX , lY ) is defined by the equations

where lX , lY denote the derivative of l with respect to the variable X, Y. Then (33) is 
transformed as

To find symmetries of the functional L[X(l)] , we can consider symmetries of  (36) 
such that l (the fractal length of the curve X(l) ) is not transformed. This is an exten-
sion of the notion of variational symmetry [8]. To proceed, we perform the corre-
sponding symmetry analysis for the functional L[X(l)] . We do it by the equivalence 
transformations i.e. with such transformations of differential equations which map 
the equation to another equation of the same form [8]. Equivalence transformation 
admitted by (36) is a Lie point transformation of (X, Y , l, �2) variables. We look for 
an infinitesimal operator in the following form 

(31)L[X(t)] = ∫
(
�
2(X, Y)(X2

t
+ Y2

t
)
)dH∕2(dt)dH , X = (X, Y).

(32)

L∗[X∗(t)] =∫
(
�
2∗ (X∗, Y∗)(X∗2

t
+ Y∗2

t
)
)dH∕2

(dt)dH

=∫
(
�
2(1 − 6c11a + O(a2))(1 + 6c11a + O(a2))(X2

t
+ Y2

t
)
)dH∕2(dt)dH

=L[X(t)].

(33)�
2(X2

l
+ Y2

l
) = 1.

(34)L[X(l)] = ∫ 1 ⋅ (dl)dH = lf .

(35)Xl =
lX

�2
, Yl =

lY

�2
,

(36)l2
X
+ l2

Y
= �

2.



	 São Paulo Journal of Mathematical Sciences

1 3

The functions �1 , �2 and � i , i = 1, 2 are defined due to the equation

where Q1 is the first prolongation of Q . The infinitesimal operator Q reads (the cal-
culations are performed in the Appendix):

Here �1(X,Y) and �2(X,Y) are arbitrary conjugate harmonic functions and �(l) is an 
arbitrary function of the fractal parametrization l. With this, we can take �(l) ≡ 0 
and the following infinite dimensional Lie subalgebra appears

which does not transform l or  L(X(l)) is an (scalar) invariant of P . Comparing now 
P and ICGE , we see that these infinitesimal operators coincide. Therefore, CGE is the 
maximal group of symmetry transformations of L(X(l)) . The following quantities

are invariant of the group CGE. Here J2 is a scalar invariant and J4 is the first-order 
differential invariant. These invariants are solutions of the equation

where P1 is the first prolongation of P , that is,

(37)
Q = �

1(X,X, l, �2)
�

�X
+ �

2(X, Y , l, �2)
�

�Y

+ �
1(X, Y , l, �2)

�

�l
+ �

2(X, Y , l, �2)
�

��2
.

(38)Q1
||(36) = 0,

(39)
Q = �

1(X, Y)
�

�X
+ �

2(X, Y)
�

�X
+ �(l)

�

�l

+ 2

(
d�

dl
− �

1

X
(X, Y)

)
�
2 �

��2
.

(40)P = �
1(X, Y)

�

�X
+ �

2(X, Y)
�

�Y
− 2�1

X
(X, Y)�2

�

��2
,

(41)J2 = l(X), J4 = �
−2(l2

X
+ l2

Y
)

(42)P1J = 0,

(43)

P1 = �
1 �

�X
+ �

2 �

�Y

− 2�1
X

(
�
2 �

��2
+ lX

�

�lx
+ lY

�

�lY
+ 3�2

X

�

��
2

X

+ 3�2
Y

�

��
2

Y

)

− �
2

X

(
2lY

�

�Y
− lX

�

�lY
+ �

2

Y

�

��
2

X

− �
2

X

�

��
2

Y

)
− 2�1

XX
�
2 �

��
2

X

− 2�1
XY
�
2 �

��
2

Y

.
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3 � Differential invariants of CGE

The differential invariant of an order n with respect to CGE, which is admitted by SLE
�
 , 

is a real-valued function J defined on the curves X ∈ SLE
�
 which is invariant under the 

prolonged group action CGE on the variables (X, Y , l, �2,… , lt, lX , lY , �
2

X
, �2

Y
,…) up to 

the n-th order of partial derivatives of the dependent variables (X, Y , l, �2).
The first-order differential invariants of CGE are calculated directly by solving 

the equation

Equation (44) is solved by splitting with respect to the variables

As a result, we get

This system has the following third independent solutions

and the set

denotes the first-order universal invariant of the group GY.
The second-order invariants are calculated similar by solving the determining 

equation

where P2 denotes the second prolongation of P , that is

(44)

P1J =
[
�
1 �

�X
+ �

2 �

�Y

− 2�1
X

(
�
2 �

��2
+ lX

�

�lx
+ lY

�

�lY
+ 3�2

X

�

��
2

X

+ 3�2
Y

�

��
2

Y

)

−�2
X

(
2lY

�

�Y
− lX

�

�lY
+ �

2

Y

�

��
2

X

− �
2

X

�

��
2

Y

)
− 2�1

XX
�
2 �

��
2

X

− 2�1
XY
�
2 �

��
2

Y

]
J = 0

(X, Y , l, �2, lX , lY , �
2

X
, �2

Y
).

(45)
�J

�X
= 0,

�J

�Y
= 0,

�J

��
2

X

= 0,
�J

��
2

Y

= 0,

(46)2�2
�J

��2
+ lX

�J

�lX
+ lY

�J

�lY
= 0,

(47)− lX
�J

�lY
+ lY

�J

�lX
= 0.

(48)J1 = t, J2 = l, J3 = lt, J4 =
l2
X
+ l2

Y

�2
,

(49)�1 = {J1, J2, J3, J4}.

(50)P2J = 0,
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For solving Eq. (50), we apply the operators of invariant differentiation [17]. Con-
sider the algebra of differential invariants � . The invariant differential operator Di 
is defined as a differential operator which maps � ↦ � such that every differential 
invariant from � is locally presented as a function of the generating invariants and 
their invariant derivatives. More exactly, the operators of invariant differentiation are 
determined by the formula [17]

First of all, we find functional independent solutions Ij , j = 1, 2, 3 of the equation

where � = (b1, b2, b3) = (�1, �2, 0) and

Equation (53) has the following functionally independent solutions

With this, the vector �i is calculated from the equations

(51)

P2 = �
1 �

�X
+ �

2 �

�Y

− �
1

X

(
2�2

�

��2
+ lX

�

�lX
+ lY

�

�lY
+ 3�2

X

�

��
2

X

+ 3�2
Y

�

��
2

Y

+ 2lXX
�

�lXX
+ 2lXY

�

�lXY
+ 2lYY

�

�lYY
+ 4�2

XX

�

��
2

XX

+ 4�2
YY

�

��
2

YY

)

− �
2

X

(
lY

�

�lY
− lX

�

�lY
+ �

2

Y

�

��
2

X

− �
2

X

�

��
2

Y

+ �
2

XY

�

��
2

XX

−(lXX − lYY )
�

��
2

XY

− lXY
�

��
2

YY

+ +2�2
XY

�

��
2

XX

+ 2�2
XY

�

��
2

YY

)

− �
1

XX

(
2�2

�

��
2

X

+ lX
�

�lXX
+ lY

�

�lXY
− lX

�

�lYY
+ 5�2

X

�

��
2

XX

− �
2

X

�

��
2

YY

)

− �
1

XY

(
2�2

�

��
2

Y

− lY
�

�lXX
+ lX

�

�lXY
+ lY

�

�lYY
− �

2 �

��
2

XX

+ 5�2
Y

�

��
2

YY
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(52)D
i = �

i
⋅

(
Dx,Dy,Dt

)
, � = (DX ,DY ,Dt), i = 1, 2, 3.

(53)
[
P1 + (� ⋅ �)� ⋅ �

�

]
I = 0,

(54)�
�
= a1�∕�a1 + a2�∕�a2 + a3�∕�a3.

I1 = a3, I2 = �
2(a2

1
+ a2

2
), I3 = a1lY − a2lX

(55)Ii(�
i) = �

i, �
i ∈ ℝ
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Here the vectors �i are chosen equal �1 = (0, 0, 1) , �2 = (0, 1, 0) , �3 = (0, 1, 1) . Then 
the vectors �i are of the form

For the verification of these formulas, we consider nontrivial solutions of the 
equation

Then substituting the vector �2 into (57), we get

Hence, Eq. (57) is fulfilled identically. Let us consider I3 and the vector �3 then we 
get again the equation of the this form.

With this, the operators of invariant differentiations read

By applying the operators Di , i = 1, 2, 3 to the invariants Jj , j = 1,… , 4 , we get the 
following functionally independent differential invariants of the second order

Here � is the Laplace operator. The set �2 = {J1,… , J9} is the complete set of dif-
ferential invariants of order ≤ 2 wherein �2 denotes the second-order universal dif-
ferential invariant. It is easily to verify that the set {J1,… , J9} consists of all second-
order differential invariants. The number of functionally independent differential 
invariants of order ≤ 2 equals m2 = dimJ

2 − r2 . Here J2 denotes the jet bundle of 
order 2 and r2 is the maximal prolonged orbit dimension of the prolonged group 
orbit of CGE. Simple calculations give that dimJ

2 = 18 and r2 = 9 . Therefore, we 

(56)�
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2 =

(
lX

�2
,
lY

�2
, 0

)
, �

3 =

(
lY
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,−
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�2
, 0

)
.

(57)I2(�
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2(a2
2

1
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2

2
) = 1.

(58)l2
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Y
= �
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(59)D
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3 =
1
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(
lYDX − lXDY

)
.

(60)J5 =
�l
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(61)J6 =ltt,
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X
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X
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have m2 = 9 and �2 contains 9 scalar functional independent invariants. Hence, �2 
forms the complete set of differential invariants of the order n ≤ 2 . The table for 
commutators of the operators Di reads

We show how to obtain the differential invariants Jk with 3 ≤ k ≤ 9 by applying the 
operators Di to the single differential invariant J2 . The first series of the representa-
tions reads

The formulas above are obtained by direct calculations using the explicit forms of 
the operators Di . Then, we get that

Exemplarily, the formulas (73), (74) follow by applying (67) to the invariants J4 . To 
prove the formula (74), we use the following syzygies

which is verified by the direct substitution of the quantities into (75). Hence, the for-
mula (74) follows by the operator (75) which is applied to J4.

Notice that the invariant J9 coincides with the curvature of the metric due to the 
identity

(65)(D1
D

2 −D
2
D

1) = 0,

(66)(D1
D

3 −D
3
D

1) = 0,

(67)(D3
D

2 −D
2
D

3) =
J8

J4
D

2 −
J7

J4
D

3 + J5J4D2
.

(68)J3 =D1J2,

(69)J4 =D2J2,

(70)J6 =D1J3,

(71)J7 =D2J4,

(72)J8 =D3J4.

(73)J5 =
1

J8
(D3J7 −D

2J8),

(74)
J9 =

1

2(J4)2

(
D

2J7 +D
3J8

− 2J4D2J5 + 3J5J7 − 2J4(J5)2 − 2
(J7)2 + (J8)2

J4

)
.

(75)(D3
D

2 +D
2
D

3) = J4
�

�2
+

J7

J4
D

2 +
J8

J4
D

3 − J5D2
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where the last term is the curvature of metric K.
To give more calculations, we consider the Beltrami parameters [4]

which are also differential invariants but of the third- and fourth-orders respectively 
of the group CGE. Since K is a differential invariant of CGE, the invariance of S2 is 
obtained by the formula

due to the formula (75). The invariance of B1 follows from the action of CGE on the 
variables X,Y ,K, �2 that leads to the invariant (substituting K into J4 instead of l in 
the formula (48))

Consider the relationships  (68)–(72) and (73), (74). Together with the commuta-
tors  (65)–(67) they completely describe the second-order universal differential 
invariant �2 or the algebra of differential invariants of orders ≤ 2 with the identity

for arbitrary J ∈ �2 . Moreover, we established that the invariant J2 generates the 
invariants Jn with n ≥ 3 from �2 by the operators Di , i = 1, 2, 3 and algebraic manip-
ulations. Thus {J1, J2} is the basis of generating differential invariants of �2.

4 � Conclusions and outlook

The invariants of admitted groups of invariant transformations is an important part of 
physics. In particular, they are presented in practically all acts of measurement pro-
cedure for random vectors in thermodynamics  [15]. The main geometric image that 
stands behind any measurement procedure is the Lagrangian manifold with Lagrangi-
ans in the corresponding variation problems with an action integral and the group of 
affine invariant transformations has a sense in thermodynamics. Therefore, the meas-
urement quantities have much more and very special invariants. Central moments or 
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J
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kth degree differential forms on the Lagrangian manifold define invariants which are 
specific i.e. look like differential invariants, see for details  [15]. More formally, the 
measurement process of velocity requires to use the images of probability measures as 
measures on the vector space and with this, an admissible Legendrian manifold has to 
be considered. If we consider now the parallels between the above picture of measure-
ment velocity vector with the measurement process of length of a random curve from 
SLE

�
 we have to consider the SLE–measures which describe probability distributions 

on phase-separating curves. Then the Malliavin measures can be used which are con-
formally covariant too [10]. The fine properties discovered for SLE

�
 process, that is, 

the Hausdorff dimension of the SLE equals d
�
= 1 + �∕8 , 𝜅 < 8 leads to the existence 

of fractal variation along the curves of SLE
�
 , k < 8 that was supported also in LERW, 

SAW, Ising and percolation lattice models, see [9]. With this, we define the action inte-
gral L[X(t)] using the notion of the fractal variation of random curves X(t) ∈ SLE

�
 . 

In fact, L[X(t)] looks like the (fractal) length scale defined on SLE
�
 curves. Further, 

having it in mind and calculating the differential invariants up to the second-order, we 
gave the multiscale representation of invariants. Namely, for the second-order differ-
ential invariants, we proved that the differential invariants of orders ≤ 2 are presented 
by the universal invariant �2 (the multiscale representation of invariants). We used the 
machinery of operators of invariant differentiation Di , i = 1, 2, 3 to calculate all invari-
ants Jn , 2 < n ≤ 11 from �2 by applying Di to the generating invariant J2 . Further we 
can prove that {J1, J2} is also the minimal set of generating invariants for arbitrary uni-
versal differential invariant �k of order k > 2 . It is based on a recurrence relation which 
expresses invariantly differential invariants of the algebra � in terms of a function of 
the differential invariants and their invariant derivatives by the operators Di of the uni-
versal differential invariant �k−1 of a low order. The proof of this general result will be 
given in another paper.

Appendix: Lie group analysis of Eq. (36)

For convenience of the calculations, we denote x1 = X , x2 = Y and u1 = l and u2 = �
2 . 

The infinitesimal operator (37) we write in the form

where i, k = 1, 2 . The operator of the first prolongation of Q has the form

Here

(82)Q = �
i(x1, x2, u1, u2)

�

�xi
+ �

k(x1, x2, u1, u2)
�

�uk
,

(83)Q1 = Q + �
k
i

�

�uk
i

.

(84)�
k
i
=

��
k

�xi
+ ul

i

��
k

�ul
− uk

j

��
j

�xi
− ul

i
uk
j

��
j

�ul
,
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where l = k = 1, 2 and ul
i
 ( uk

j
 ) denotes the partial derivative of ul ( uk ) with respect to 

the variable xi ( xj ). The invariance of Eq. (36) under the action of Q means

Splitting with respect to the monomials u1
i
u2
i
 and u1

i
u2
i
u1
j
 gives

i.e. �1 = �
1(x1, x2, u1) , �j = �(x1, x2, u1) . Grouping the terms and doing simple alge-

braic manipulations in (85), we obtain

Splitting (89) with respect to u2 we obtain due to (89) the following equalities

i.e. �1 = �
1(u1) and

It means that �i = �
i(x1, x2) , i = 1, 2 . Thus, we have �j = �

j(x1, x2) for j = 1, 2 and 
�
2 = �

2(x1, x2, u2) . It follows from (90) and (92) that

where � is an arbitrary function. Equations (87), (88) are the Cauchy-Riemann con-
ditions that leads to �1 = �

1(x1, x2) and �2 = �
2(x1, x2) where �1(x1, x2) and �2(x1, x2) 

are arbitrary conjugate harmonic functions. Therefore, we get
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A Lie algebra generated by the infinitesimal operator Q contains an infinite 
dimensional Lie subalgebra with the infinitesimal operator
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