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Abstract

Random curves (produced by the Schramm-Loewner evolution SLE,) of the frac-
tal dimension d,_ = 1 + x/8, k < 8 given on a surface D C R? and the conformal
group (CG) that acts on D are considered. We study the action integral L[X(7)],
X(¢) € SLE,. (the fractal variation of length of a random curve (Kennedy in J Stat
Phys 128(6):1263-1277, 2006)) together with the conformal group extension CGE
of CG which invariant transforms SLE, and L[X(#)]. We calculate the second-order
universal differential invariant J, (or the multiscale representation of invariants) of
the GCE and show that L[X()] generates all second-order differential invariants of
CGE by the operators of invariant differentiation. The differential invariants look
like invariant quantities of different scales wherein L[X(#)] plays a role of "the frac-
tal length scale". The method of calculations of differential invariants is a kind of
modern multiscale analysis (Olver and Pohjanpelto in Adv Math 222(5):1746-1792,
2009) based on the theory of symmetry group. This investigation is also motivated
by Cartan’s point of view (in: Cartan, La Théoric des Groupes Finis et Continus et la
Géometrie Differentielle traittée par le Méthode du Repére Mobile, Gauthier-Villars,
Paris, 1937) that the local geometry properties are entirely governed by differential
invariants of the group admitted.
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1 Introduction

One-parametric family SLE, (Schram-Lowner evolution) presents random pro-
cess that produce random curves. This is a conformally invariant set arising as
scaling limits of various critical models from statistical physics in the plane,
see [20, 22] and the bibliography therein. In short, we mean the SLE, trace ran-
dom pathes in D C R? or C driven by the standard Brownian motion with the
diffusion coefficient k. We assume that a domain D is endowed with the confor-
mal structure of C. If an embedding of D into R? is compact of the genus g < 1,
then D is conformal equivalent to a (part of) Riemannian sphere or a (part of)
torus for the oriented case and a (part of) Klein bottle for the non-oriented case.
For a domain D of the genus > 2 we have that the conformal group given on D
is trivial [19]. Therefore, the substantial case consists in the consideration of D
with g < 1. For non-compact surfaces we have the following surfaces: an open
disk or all plane, open annulus or punctured plane (oriented) or an Mdobius strip
(non-oriented). Speaking about metric on a surface D, we always have in mind
a Riemannian metric compatible with the conformal structure. We can get a
compact surface from a noncompact one by the so-called Schottki construction
or Schottki double, see [10]. If D is a noncompact surface of finite topological
type, then there exists a unique oriented compact surface D% with an orienta-
tion-reversing conformal involution ¢ and an embedding 1: D ~ D guch that
¢[1(D)] N (D) = @, the complement D le \ (¢[1(D)] U 1(D)) is a disjoint union of
finitely many isolated points and closed loops. For a noncompact D we deal with
Schottki double D?uble With this, D is endowed with a Riemannian metric of the
conformal form [3] and the action integral L[X(#)], X(¢) € SLE,. can be defined.
The conformal transformations of D give rise to CG invariance of SLE, — SLE,
, [22].

The differential invariants associated with a transformation group acting on a
set are the fundamental quantities for understanding the geometry of this set [2].
Exemplarily, the curvature and torsion of a curve defines the shape of the curve.
These quantities are differential invariants of the Euclidean group SE(3).

Another topic that has much attention from the geometric multi-scale analysis
is the multiscale representation of invariants, see i.e. [18]. The obtained repre-
sentations allows to compute invariant quantities at different scales. In practise,
the length preserving is one of the typical viewing invariants in computer vision.
How many invariants can we use for a visualization of the object, in particular, in
geometric multi-resolution representations? This question can be identified with
generating the minimal set of invariants under transformations.

The basic theory of differential invariants goes to Lie [14] and Tresse [21].
Lie states that all differential invariants can be generated from a finite number of
low-order invariants by repeated invariant differentiation. Lie’s results were gen-
eralized by Tresse and, much later and significantly, Ovsiannikov [17]. A well-
known example is that of the differential invariants of a space curve under the
action of the Euclidean group SE(3) are generated by two differential invariants,
namely its curvature and torsion. More examples can be founded in [7]. Complete
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classification of differential invariants for many of the fundamental transfor-
mation groups of physical and geometrical importance remains undeveloped.
The main difficulty in applying Lie’s method to complicated examples is that it
requires the integration of linear partial differential equations, which can prove
to be rather complicated. A rigorous version of the Lie—Tresse Theorem, based
on the machinery of Spencer cohomology, was established by Kumpera [12]; see
also [11] for a generalization to pseudo-group actions on differential equations
(submanifolds of jet space), and [16] for an approach based on Weil algebras.
None of these references provide constructive algorithms for solving a system
of generating differential invariants, nor methods for classifying the recurrence
and commutator formulae, nor do they investigate the finiteness of the generat-
ing differential syzygies. Nevertheless, we are in able to derive the minimal sys-
tem of differential invariants to generate the algebra of differential invariants of a
finite-order.

As it was mentioned above, our first aim is to extend CG up to the conformal
invariant transformations of the functional L[X(#)], X(¢) € SLE,. (called the confor-
mal group extension CGE). Then we calculate differential invariants of CGE up to
the second-order. With this we derive the so-called second-order universal differ-
ential invariant J, = {J,, ...,/ }. Finally, we demonstrate that L[X(#)] (equals J,)
is a differential invariant of CGE and generates all second-order invariants J; for
2<iLlLJ, =t

In Sect. 2, the action integral L[X(#)], X(¢) € SLE, is defined and the fractal vari-
ation of length, which is finite [9], will be considered. With the usual definition of
length, the length of X(¥) is infinite. We construct the conformal group extension
CGE of CG which invariant transforms SLE,. conserving the fractal variation of
length L[X(?)]. In Sect. 3, we calculate the second-order universal differential invari-
ant J, of the group CGE. We present the minimal set of generating differential invar-
iants of J, which consists of {J/,,J,} where J; = ¢t and J, = L[X(?)].

2 The length of a random curve from SLE, and symmetry
transformations

SLE, is a one parameter family of random processes that produce random curves. It
was proven in [1] that the Hausdorff (fractal) dimension d,; of the SLE,. curve equals
d.=1+«/8, k <8. For dy =2, this is the so-called quadratic variation studied
by Lévy for Brownian motion [13]. This is a non-random process and the length is
proportional to ¢ under suitable conditions on the convergence of the sequence of
partitions. With respect to the usual definition of the length of a curve, the length of
SLE, curves for k < 8 is infinite. Namely, the usual definition of the length or total
variation of the random curve X(#) given on R2 over the time interval [0, ] for each
fixed time ¢ would be the supremum over all partitions 0 < #; < #, < ---¢, =t of

2:, OESCIIE M
J=
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|X(7;) — X(z;_,)| (or infinitesimally |dX]) is of order (Atj)l/dﬁ, where d; is the Haus-
dorff dimension of a curve and d; > 1. With this, the total variation of X(¢) will be
infinite. Since the length of a segment is of order (Atj)l/ du, this suggests to consider
the quantity [9]

foar(X(1), Py =Y |X(t;) — X(t;_)| %, )
j=1

J

where P denotes the partition, (%, t,, ...,t,). The mesh of a partition is the length
of the largest subinterval. Then taking a sequence of partitions P, whose mesh con-
verges to zero, we consider the limit

lim frar(X(t), P,) = I;. 3)

This limit exists i.e. lf < oo and lf defines the fractal variation of a random curve [9].
This is a non-random constant. Sometimes it is called the p-variation in the stochas-
tic processes. The formula (3) can be written in the integral form

Iy = foar(X(0)) = / x|, 4

For X(t) € SLE, given on D supplied with a Riemannian metric d/?, the integral
in (4) reads

dy /2

I, = fvar(X(1)) = / X, X)) (drys, &)

where (-, ) e is the scalar product generated by the metric dl*> and (dt)% infinitesi-
mally closes to (4t,)% or (dt)% ~ (At,)% in the limit (4¢,)% — 0 as n — co. With
this, we define the length of X () or the action integral:

dy/2

LIX(1)] = / X, X)) (dry. (6)

First of all, we show that this functional is a scalar invariant of CGE. Refering to
CGE, we will mean the infinitesimal operator /-5 defined by the Formula (10).

The geometry of D is linked with a group of transformations acting on D i.e. here
with CG. Indeed, let us assume that D is a compact surface of the genus > 2. Con-
sider the infinitesimal operator of the conformal group CG

d d
ICG=§1a+§2a—y, @)

where the functions &' and & satisfy the Cauchy-Riemann conditions, &! = §y2 and
13 yl = —5}3. CG acts on D as a tangent transformation i.e. there exists no any transfor-
mations along the normal vector. Therefore, CG looks like sliding transformations
of D and the following result holds [19]: Let an embedded compact surface in R3
of a topology genus g admit a sliding transformation. Then g < land the surface is
conformal equivalent to a (part of) sphere or a (part of) torus for the oriented case
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and a (part of) Klein bootle (non-oriented). For g > 2the group of transformations
is trivial.
Notice that any metric on D can be written in the conformal form [3]

dP = 22(x,y)(dx* + dy?). (8)

Further, A%(x, y) is transformed under the conformal transformations F(z) : D ~ D,
z = x + iy as follows (see [19])

A= 2y)|F | )
With this, the infinitesimal operator

19

0
Iegp=¢ Ep +E= -

ay

1 0

2% —
&30 (10)

invariant transforms the metric (8). To prove it, we use the ansatz for &' and £ sug-
gested in [5]:

g =c@)x + cPx)y + d' (x), (11)
& =1 (0)x + P (x)y + &> (x). (12)
Here
d;(x) =2c!(x) - c)'rl(x)x - c)'rz(x)y, (13)
dy(x) = = ¢} (0x = c 2@y, (14)
df(x) =c)1(2(x)x - C)lcl (x)y, (15)
20 _n 11 12 2
dy x) =2c"'(x) + ¢y (x)x — cy (x)y, (16)
and c!!, ¢!? are the harmonic functions of x, that follow from the compatibility con-
ditions d;x =d!, dix = dgy, see for details [5]. Further, we get ¢!! = ¢?2, ¢1? = —c*!
and o
1 _ g2 | _ g2
& ==, & =& (17)
Moreover, it follows from (11), (12) and (13-16) that
g =3l g=c" (18)

Therefore, we see that the ansatz for &' and &% indeed generates the conformal trans-
formations. Thus, CGE group action reads

¥ =Uxy a), y =Vya), (19)
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1

= (U4 V)T (20)

Here U(x, y, a), V(x, y, a) are the global forms of the infinitesimals (11), (12), which
also depend on an arbitrary group parameter a. Moreover, U(x, y, a) and V(x, y, a)
are conjugate harmonic functions, for details see [5]. Exemplarily, we prove the for-
mula (20). The derivative of equation (20) with respect to the parameter a gives

Blimo = =22+ VI 7| (UUilmg + ViVialmo) 2 1)

ala=0 —

where U,, U, (V,,V,,) denote the partial derivatives of U (or V) with respect to x
and a variables. Then, calculating the derivatives of the right hand side of (21), we
get

Ux|a=0 =x, =1, Uxa|a=0 = 5}:, (22)

Vilamo =0 =00 Violumg = &1 (23)

Hence equation (21) gives exactly the coordinate —2&!4? of the infinitesimal
operator (10).
In the complex variable frame, the infinitesimal operator /- has the form

d _d ., _\ 0
Iy = w— = _ o P
cor =V T~ v+ ) 37 (24)

where y = &' +i&2, @ = &' —i&2. Using the notation F = U + iV, the formu-
las (19, (20) in the complex variables frame are written as follows [6]:

" =F(z,q), (25)

2= (26)
where z* = x* + iy*. The symbol |F,| denotes the modulo of F i.e.
|F.I> = (U2 +V2) =[1+6c"a+ O] 27)

The last equality follows from the formula (18). The metric (8) in the complex vari-
ables frame reads

dI* = A(z,7)dzdz, (28)
wherein the differential complex dzdz is transformed as
(dzd2)* = F.F.dzdz = |F,|*dzdz = [1 + 6¢''a + O(a*)]dzdz, (29)
where F, = F/dz Collecting the terms transformed in (28), we get that
dP" = Xz, 2)|F,|2dzdz|F,|* = dP (30)

that proves the invariance of d/.
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To show the invariance of the functional (6), we write this functional in the
coordinate frame

dy /2
uxol= [ (Ronee ) Fant,. x=xn. e
In the transformed form and neglecting terms of order 0(d?) the functional reads
. o 5 2 \W/2
L*[X*(1)] =/ (/1 X", V)X + Y*,)) (dry

= / (22(1 = 6ca + O@))(1 + 6¢a + O@))(X2 + ¥2)) " (dryn

=L[X(D)].
(32)
Cancelling terms of the order O(a?), the last equality follows. Therefore, L[X(¢)] is
CGE invariant functional. Other words, the fractal length of X(7) is conserved under
the transformations (25), (26).
We prove that CGE is more widest group of symmetry transformations of
L[X(n)]. We take | = [, as a parametrization (the fractal arch-length parametriza-
tion) of X(7) i.e. [ = I, is the fractal length of the curve X(7), that is,

PX+Y) =1 (33)

Hence, we can write
LIX(D)] = / L (@ =1. (34)

We consider the co-vector (ly,/y) instead of the tangent vector X; = (X}, Y,). Here
(ly, ly) is defined by the equations

Ix ly
= =g (35
where Iy, [, denote the derivative of / with respect to the variable X, Y. Then (33) is
transformed as

B+ =2% (36)

To find symmetries of the functional L[X(/)], we can consider symmetries of (36)
such that [ (the fractal length of the curve X(/)) is not transformed. This is an exten-
sion of the notion of variational symmetry [8]. To proceed, we perform the corre-
sponding symmetry analysis for the functional L[X(/)]. We do it by the equivalence
transformations i.e. with such transformations of differential equations which map
the equation to another equation of the same form [8]. Equivalence transformation
admitted by (36) is a Lie point transformation of (X, Y, I, A%) variables. We look for
an infinitesimal operator in the following form
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Q=a'(X,X,1, /12)i +a*(X, Y, 1, /12)i
oxX a7
+ XY1,12—+ X,Y,1, %)=
r'( )= + 1 ) FYe
The functions a!, a and ', i = 1,2 are defined due to the equation
Q|6 =0, (38)

where Q, is the first prolongation of Q. The infinitesimal operator Q reads (the cal-
culations are performed in the Appendix):

0=¢'(x, Y)—a +EX, Y)—d +o2
ol

za (39)

+2<— —ELX, Y))A =5

Here £'(X, Y) and (X, Y) are arbitrary conjugate harmonic functions and @(/) is an
arbitrary function of the fractal parametrization /. With this, we can take ©(/) =0
and the following infinite dimensional Lie subalgebra appears

P =X, Y)% + EX(X, Y)% - 286X, V)4? iz, (40)

which does not transform [ or L(X(J)) is an (scalar) invariant of P. Comparing now
P and I, we see that these infinitesimal operators coincide. Therefore, CGE is the
maximal group of symmetry transformations of L(X(7)). The following quantities

L=1X), J,=170G+DB) (41)

are invariant of the group CGE. Here J, is a scalar invariant and J, is the first-order
differential invariant. These invariants are solutions of the equation

PJ =0, (42)

where P, is the first prolongation of P, that is,
_ 10 | 20
Pr=¢ ax ¢ oY

9 9 9 9 9
—2e 2= +1 +1 +34— +34—
‘§X< 022 " Kol " ol T X2 Yoa2

0 d 0 0 0 0
&2y — - ly—+ AP — - 22— | -2 22— —2&l 22 .
éx( Yoy ~ X, Yaﬂ)z( X()/lf/ éxx 0/1X éxy ‘M%/

(43)
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3 Differential invariants of CGE

The differential invariant of an order n with respect to CGE, which is admitted by SLE,,
is a real-valued function J defined on the curves X € SLE, which is invariant under the
prolonged group action CGE on the variables (X, Y, [, A2, 1y, ly, s Y, ...)upto
the n-th order of partial derivatives of the dependent Variables X,7,1, /1}2(

The first-order differential invariants of CGE are calculated directly by solving
the equation

[0 | 20
PIJ_[f ax Ty

1 20 0 0 2 0 2 0
_2§X</1 YP +lXal HYalY +3/1Xa/12 +3/1Ya/12>

0 0 0 0
- 21 -1 M 2 )28l A2 2l 2 |J=0
§X< YaY Xal + Ya’g( X0/12> X" 5,2 XY 52

Y X Y
(44)
Equation (44) is solved by splitting with respect to the variables
(X, Y& l7 Aza lX9 lY3 /12 }'2)
As aresult, we get
aJ aJ oJ aJ
_=0? _=07 _=Oa _=05
oX oY 042 A2 (45)
X Y
oJ oJ oJ
2= +ly—+1,— =0,
022 " X, Tl (46)
—ly—+1ly,— =0.
X al, 3 Iy (47)
This system has the following third independent solutions
E+P
1 _ 2 _ 3 _ 4_xTly
J =t J=I J —l,, J —T, (48)
and the set
Jo= L2 P (49)

denotes the first-order universal invariant of the group G,
The second-order invariants are calculated similar by solving the determining
equation

Pyl =0, (50)

where P, denotes the second prolongation of P, that is
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1 0 2 0
= — + —_—
Pp=¢ X ¢ oY
0 9 0 0 9
—& 222 —= +1 +1 +34— +34—
€X< 02 Xor, " Vol Xa,12 "o2
9 d 0 2 2 0
+ 2y —— + 2y —— + 21 +42 +4A
XXalXX XYalXY YYal XX ()/12 YY ()/12 >

0 20 20 . 0
- A B = s A ——
‘fx( Yol, Mol T oz Yo T MMon
9 9

9
—(Ixx =1 — lyy—— + 4245, —— + 243
(hox ”)0/12 Yoz, Yor,  TXax )

9 9 9 9 9 9
el | 22— +1 +1 -1 + 512 - 22
éx"( 022 " Mol " Mol Xl T 7oR2 "Miy

1 2 0 ad 2 0 2
- 209 +1,-0 2% 5
§Xy< 022 Moly " Yol ol a2, Ycuz
d P , 0
- 25)1(XX’12<_ - _) — ALy A 5
02, 02, FYen
(51

For solving Eq. (50), we apply the operators of invariant differentiation [17]. Con-
sider the algebra of differential invariants A. The invariant differential operator D'
is defined as a differential operator which maps A — A such that every differential
invariant from A is locally presented as a function of the generating invariants and
their invariant derivatives. More exactly, the operators of invariant differentiation are
determined by the formula [17]

D'=a'- (D,.D,,D,), D=(Dy,Dy,D), i=1,223. (52)
First of all, we find functional independent solutions Ij, j=1,2,3 of the equation
[P, +@-D)b-0y|I =0, (53)
where b = (b, b,, b3) = (¢!, £%,0) and
0p = a,0/0a, + a,0/0a, + a;0/da;. (54)
Equation (53) has the following functionally independent solutions
I, =a;, I,= Az(a% + a%), L =aly —a)ly
With this, the vector a’ is calculated from the equations

I(a)=c, ceR’ (55)
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Here the vectors ¢’ are chosen equal ¢! = (0,0, 1), ¢ = (0,1,0), ¢ = (0,1, 1). Then
the vectors a’ are of the form

lX lY lY lX
al :(070, 1)5 32: <E, ﬁ,()), a3 = <ﬁ,—ﬁ,0 . (56)

For the verification of these formulas, we consider nontrivial solutions of the
equation

L@} =2@F +dd) = 1. (57)
Then substituting the vector a2 into (57), we get
B+ 1 =2% (58)

Hence, Eq. (57) is fulfilled identically. Let us consider I and the vector a* then we
get again the equation of the this form.
With this, the operators of invariant differentiations read

1

1
= (IyDy +1yDy), D’ = ﬁ(lYDX —IyDy). (59)

1 _ 2 _
D'=D, D=

By applying the operators 7', i = 1,2,3 to the invariants J/, j = 1,...,4, we get the
following functionally independent differential invariants of the second order

Al
J3 =5 (60)
0 =y, (61)
7 _2[1)2(1XX + l)zfl;Y + 2 lylyy] — (lxﬂ)z( + lyﬂf/)(l)z( + lf/)(/lz)‘1 6)
= y ,
/8 _Z[ZXZY(ZXX —ly) + (l?/ - li)lxy] + (lxﬂ%/ - ly/li)(li + l%/)(/lz)_l 63)
= 7 ,
1] a2 AG+A
J9=_—l__x—3y (64)
2 22 A2
Here A is the Laplace operator. The set J, = {J!,...,J%} is the complete set of dif-
ferential invariants of order < 2 wherein J, denotes the second-order universal dif-
ferential invariant. It is easily to verify that the set {J I ...,J%) consists of all second-

order differential invariants. The number of functionally independent differential
invariants of order < 2 equals m, = dim JF - r,. Here J? denotes the jet bundle of
order 2 and r, is the maximal prolonged orbit dimension of the prolonged group
orbit of CGE. Simple calculations give that dim 2 = 18 and r, = 9. Therefore, we
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have m, = 9 and J, contains 9 scalar functional independent invariants. Hence, J,
forms the complete set of differential invariants of the order n < 2. The table for
commutators of the operators D' reads

(D'D?* - D*DY =0, (65)
(D'D? - DD =0, (66)

3.2 CHCRN LONCIE L 2
(D’°D —DD):FD —FD + PJAD (67)

We show how to obtain the differential invariants J¥ with 3 < k < 9 by applying the
operators D' to the single differential invariant J2. The first series of the representa-
tions reads

S =D, (68)
J* =D, (69)
Jo =D' )3, (70)
JT =D*J*, (71)
S8 =D (72)

The formulas above are obtained by direct calculations using the explicit forms of
the operators D'. Then, we get that

P = (DT D), 73)
9 1 2,7 3.8
= D)7 4+ D)
2(J4)2 ( o
732 812 7
— QDA 4 35)7 — 24 JP) — 2%)

Exemplarily, the formulas (73), (74) follow by applying (67) to the invariants J*. To
prove the formula (74), we use the following syzygies
A4 J? J

8
ot D+ =D - D (75)

312 213\ _ 74
(D’D? + D*D%) = J o o

which is verified by the direct substitution of the quantities into (75). Hence, the for-
mula (74) follows by the operator (75) which is applied to J*.

Notice that the invariant J° coincides with the curvature of the metric due to the
identity
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pota2 _AAN]_ 1amp
- E 12 12 = E 2 (76)

where the last term is the curvature of metric K.
To give more calculations, we consider the Beltrami parameters [4]

K2+K?

Bl 2%, )
Kyx + Kyy

) :T’ (78)

which are also differential invariants but of the third- and fourth-orders respectively
of the group CGE. Since K is a differential invariant of CGE, the invariance of S, is
obtained by the formula

312 213 7 8 5
ﬁz(DD+DD_JD2_J_D3_J_4D2>K (79)

2 74 J¥ J& 7
due to the formula (75). The invariance of B, follows from the action of CGE on the
variables X, Y, K, A2 that leads to the invariant (substituting K into J* instead of / in
the formula (48))

2 2
_KI+K}

B=— L (80)

Consider the relationships (68)—(72) and (73), (74). Together with the commuta-
tors (65)—(67) they completely describe the second-order universal differential
invariant J, or the algebra of differential invariants of orders < 2 with the identity
(D’D* +D*D’)J = PAL 2 Py )y 81
RNV ERC J4 @D
for arbitrary J € J,. Moreover, we established that the invariant J? generates the
invariants J" with n > 3 from J, by the operators D', i = 1,2, 3 and algebraic manip-
ulations. Thus {J', J?} is the basis of generating differential invariants of J,.

4 Conclusions and outlook

The invariants of admitted groups of invariant transformations is an important part of
physics. In particular, they are presented in practically all acts of measurement pro-
cedure for random vectors in thermodynamics [15]. The main geometric image that
stands behind any measurement procedure is the Lagrangian manifold with Lagrangi-
ans in the corresponding variation problems with an action integral and the group of
affine invariant transformations has a sense in thermodynamics. Therefore, the meas-
urement quantities have much more and very special invariants. Central moments or
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kth degree differential forms on the Lagrangian manifold define invariants which are
specific i.e. look like differential invariants, see for details [15]. More formally, the
measurement process of velocity requires to use the images of probability measures as
measures on the vector space and with this, an admissible Legendrian manifold has to
be considered. If we consider now the parallels between the above picture of measure-
ment velocity vector with the measurement process of length of a random curve from
SLE, we have to consider the SLE-measures which describe probability distributions
on phase-separating curves. Then the Malliavin measures can be used which are con-
formally covariant too [10]. The fine properties discovered for SLE,. process, that is,
the Hausdorff dimension of the SLE equals d,, = 1 + x /8, k < 8 leads to the existence
of fractal variation along the curves of SLE,, k < 8 that was supported also in LERW,
SAW, Ising and percolation lattice models, see [9]. With this, we define the action inte-
gral L[X(#)] using the notion of the fractal variation of random curves X(¢) € SLE,..
In fact, L[X(#)] looks like the (fractal) length scale defined on SLE, curves. Further,
having it in mind and calculating the differential invariants up to the second-order, we
gave the multiscale representation of invariants. Namely, for the second-order differ-
ential invariants, we proved that the differential invariants of orders < 2 are presented
by the universal invariant J, (the multiscale representation of invariants). We used the
machinery of operators of invariant differentiation T, i=1,2,3to calculate all invari-
ants J", 2 < n < 11 from J, by applying D' to the generating invariant J2. Further we
can prove that {J', J?} is also the minimal set of generating invariants for arbitrary uni-
versal differential invariant J, of order k > 2. It is based on a recurrence relation which
expresses invariantly differential invariants of the algebra A in terms of a function of
the differential invariants and their invariant derivatives by the operators D' of the uni-
versal differential invariant J,_, of a low order. The proof of this general result will be
given in another paper.

Appendix: Lie group analysis of Eq. (36)

For convenience of the calculations, we denote x! = X, x2 = Y and u! = [ and u? = A2
The infinitesimal operator (37) we write in the form

, P)
Q=d ("o ut, uP)— + et Pt u?)

o Frs (82)

where i, k = 1,2. The operator of the first prolongation of Q has the form

0
— k_ Y
Q=9+ auf' (83)
Here
ayk ayk J J

C,»k =2y u uka—a - u%u’.‘ai (84)

oxt Loul 7 oxi 5T out’
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where [ =k = 1,2 and uf (u;.‘) denotes the partial derivative of u! (u¥) with respect to
the variable x’ (/). The invariance of Eq. (36) under the action of Q means

oy! 9y (o | 0d 50
= + N—Fu — +u —
Qi) =t; { oxi Vg T\ o TG T2 (85)

—-y2=0.

Splitting with respect to the monomials ] u? and u! uzu' gives

ay! ool

— =0, — =0, 86

ou? ou? (86)
ie. y' =y'(x!, %%, ub), o = a(x!,x%, u'). Grouping the terms and doing simple alge-
braic manipulations in (85), we obtain

ol da?
da_ _da” _ 87
ox!  ox? @7
dal  da?
—+ —=0, 88
ox2  ox! (88)
1 i
I _ 20 o i, (89)
oxi ou!
ay'  9al
2 2 _
2u <M‘w>‘y =0 (90)

Splitting (89) with respect to u> we obtain due to (89) the following equalities

oyl ay!

L ==, 91

ox!  ox? On
ie.y! =y'(u')and

oal  0a?

—_—— = O. 2

Ju!  oJu! ©2)

It means that o' = a’(x!,x?), i = 1, 2. Thus, we have o/ = o/(x!,x?) for j = 1,2 and
7% = y2(x', %, u?). It follows from (90) and (92) that

de ch) 93)

1 _ 1
r=ea). =255 )

where O is an arbitrary function. Equations (87), (88) are the Cauchy-Riemann con-

ditions that leads to a! = &!(x!, x?) and a? = &2(x!, %) where &' (x!, x?) and £2(x', x?)
are arbitrary conjugate harmonic functions. Therefore, we get
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el J 2 9 9
0= nS +Ex T rens +2( T -a) A o

A Lie algebra generated by the infinitesimal operator Q contains an infinite
dimensional Lie subalgebra with the infinitesimal operator

2 1,121

9 9
=X, Y)— + EX,Y)— — )
P é(,)ax+§(,)ay x4

(95)
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