RT-MAT 92-20

Torsion Units in Integral Group
Rings of Metabelian Groups
Orlando Stanley Juriaans

Novembro-1992

Torsion Units in Integral Group Rings of Metabelian Groups

Orlando Stanley Juriaans

October 29, 1992

Mathematics Departament, Institute of Mathematic and Statistic, University of São Paulo - IME-USP - São Paulo - Brazil

Abstract

We prove a special case of the Conjectures of Zassenhaus and Bovdi.

Introduction

Let V(ZG) be the group of units of augmentation one of the group ring ZG. Set $G(k) = \{g \in G : o(g) = k\}$, where o(g) denotes the order of g, and $K(g) = \langle [g, h \mid h \in G \rangle$. If

$$x = \sum \alpha(g)g \in ZG$$

we define

$$T^{(k)}(x) = \sum_{g \in G(k)} \alpha(g)$$

called the k-th generalized trace of x. Also denote by

$$\tilde{x}(g) = \sum_{h \sim g} \alpha(g)$$

Bovdi proved the fallowing [1, Lemma 1.1]:

Lemma 1: If p is a prime, $x \in V(ZG)$ and $o(x) = p^n$ then $T_{(x)}^{(p^n)} \equiv 1 \pmod{p}$ and $T_{(x)}^{(p^n)} \equiv 0 \pmod{p}$ for i < n.

and conjectured that actually:

$$T^{(p^n)}(x) = 1$$
 and $T^{(p^i)}(x) = 0$ for $i < n$

Due to a result of [2], which we shall state below, the Zassenhaus conjecture on cyclic subgroups of V(ZG) implies Bovdi's conjecture. In [1], the author worked on Bovdi's conjecture for nilpotent metabelian groups. Using a result of [1] we prove the conjecture when G is metabelian and K(g) = G' for every $g \in G - \zeta(G)$.

Results

Theorem A: Let G be a metabelian group such that for all $g \in G - \zeta(G)$, where $\zeta(G)$ denotes the center of G, we have that K(g) = G'. If $\alpha \in V(ZG)$, $n = o(\alpha)$, then

$$T^{(k)}(\alpha) = \delta_{nk}$$

Theorem B Let G be as in Theorem A. Furthermore, assume that, for all $g \in G - \zeta(G)$ gK(g) is precisely the conjugacy class of g. If $\alpha \in V(ZG)$, $n = o(\alpha)$. Then there exist $\beta \in Q(G)$ such that $\beta^{-1}\alpha\beta \in G$.

Corollary If |G'| = p, a prime and all nontrivial conjugacy classes have order p, then the Zassenhaus conjecture holds.

Proof of Theorem A

By hypoteses K(g) = G', for every $g \in G - \zeta(G)$.

Let $h \in gK(g) - \zeta(G)$ then K(h) = G' so hK(h) = gK(g). By [1, Lemma 2.2] we have o(g) = o(h). Let $\alpha = \sum \alpha(g)g \in V(ZG) - G$. Choose $g_1, \ldots, g_k \in supp(\alpha)$, such that $g_ig_j^{-1} \notin G'$, $i \neq j$ and

$$supp(\alpha) \subseteq \bigcup_{i=1}^k g_iG'$$

Then

$$\alpha = \sum_{i} \sum_{g \in G'} \alpha(gg_i)gg_i = \sum_{i} \sum_{t \in g_i K(g_i)} \alpha(t)t$$

By Berman's Theorem, $g_j \notin \zeta(G)$, for $1 \leq j \leq k$.

Since $G \setminus G'$ is abelian, looking at the image of α in $Z(G \setminus G')$ we see that there is a unique $g_0 \in supp(\alpha)$ such that

$$\sum_{t \in g_0 K(g_0)} \alpha(t) = 1 \tag{1}$$

and

$$\sum_{t \in g_i K(g_i)} \alpha(t) = 0, g_i \neq g_0$$
 (2)

Now $o(h) = o(g_i)$ for all $h \in g_i K(g_i)$, so if we denote by $n_0 = o(g_0)$ we have

$$T^i(\alpha) = \delta_{in_0}$$

If n is a prime power then $n=n_0$, by [1, Lemma 1.1]. If $|G|<\infty$ then by Whitcomb's Argument there exists $g\in G$ such that $\alpha-g\in\Delta G\Delta G'$. So, by [3, Theorem 1.3] $g\notin \zeta(G)$ and $o(g)=o(\alpha)$. Since $\Delta G\Delta G'\subset\Delta(G,G')$ and $\alpha-G_0\in\Delta(G,G')$, we conclude that $gg_0^{-1}\in G'$. So $gK(g)=gG'=g_0G'=g_0K(g_0)$. Hence $n=o(g)=o(g_0)=n_0$.

To prove the infinite case we procede as in [1], using induction on n.

We can assume that two distinct primes divide n. Let L(ZG) denote the Z-module generated by all $gh - hg(g, h \in G)$. It is easy to check that for an element $g \in L(ZG)$,

$$\tilde{y}(g) = 0 \tag{3}$$

for all $g \in G$.

If p is prime dividing n then

$$\alpha^p \equiv \sum_{t \in G} \alpha_t^p t^p mod(L(ZG) + pZG)$$

Since $o(\alpha^p) = \frac{n}{p}$, by induction we have $T^{(\frac{n}{p})}\alpha = 1$. Therefore, applying (3) we obtain from the last congruence

$$\sum_{t^p \in G(\frac{n}{p})} \alpha_t^p \equiv 1 (mod \mid p)$$

which implies

$$\sum_{t^p \in G(\frac{n}{p})} \alpha_t^p = 1. \tag{4}$$

Suppose that $p^2 \mid /n$. Then

$$t^p \in G(\frac{n}{p}) \Longrightarrow t \in G(n)$$

Hence

$$T^{(n)}(\alpha) = \sum_{t^p \in G(\frac{n}{p})} \alpha_t$$

and by (4) we get $T^{(n)}(\alpha) \equiv 1 \pmod{p}$. It follows from (1)-(2) that $n = k_0$.

Suppose now that $n = p_1 p_2 \dots p_r$, where p_i are pairwise distinct primes $(i = 1, \dots, r), r \geq 2$. It is easy to see that $t \in G(\frac{n}{p_i})$ implies $t^{p_i} \in G(\frac{n}{p})$ and hence

$$\sum_{t^{p_i} \in G(\frac{n}{p_i})} \alpha_t = T^{(n)}(\alpha) + T^{(\frac{n}{p_i})}(\alpha) \quad (i = 1, 2).$$

Applying (4) for p_1 and p_2 we have $T^{(n)}(\alpha) + T^{(\frac{n}{p_i})}(\alpha) \equiv 1 \pmod{|p_i|}$ (i = 1, 2)

Thus in view of (1)-(2) we conclude that $n = n_0$.

q.e.d.

Proof of Theorem B

By the proof of theorem A there exist a unique $g_0 \in G$ such that

$$1 = \sum_{t \in g_0 K(g_0)} \alpha(t) = \sum_{t \sim g_0} \alpha(t) = \tilde{\alpha}(g_0)$$

We recall from [2, Theorem 2.5] that in this case there exists $\beta \in Q(Z)$ such that $\beta^{-1}\alpha\beta \in G$.

The result follows.

q.e.d

References

- [1] M.A. Dokuchaev, Torsion Units in Integral Group Rings of Nilpotent Metabelian Groups. Comm. in Alg., 20(2), 1992.
- [2] Z. Marciniak, J. Ritter, S.K. Sehgal and A. Weiss, Torsion Units in Integral Group Rings of Some Metabelian Groups, II, Journal of Number Theory, 25, 340-352, 1987.
- [3] G.H. Cliff, S.K. Sehgal and A.R. Weiss, Units of Integral Group Rings of Metabelian Groups, J.Algebra 73 (1981), 167-185.

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TITULOS PUBLICADOS

91-01	COELHO, S.P. & POLCINO MILIES, C. Derivations of Upper Triangular Matrix Rings, 7p.
91-02	JESPERS E., LEAL G. & POLCINO MILIES, C. Idempotents
91-03	in Rational Abelian Groups Algebras. 10p. FALBEL, E. Non-embeddable CR-structures and dila
91-04	tions. 7p. JESPERS E., LEAL G. & POLCINO MILIES, C. Indecompo-
	sable R.A. Loops. 36p.
91-05	COELHO F., HAPPEL D. & UNGER L. Complements to partial tilting modules. 21p.
91-04	FALSEL, E. The topology of envelopes of ablomorphy

92-01 COELHO, S.P. The automorphism group of a structural matrix algebra. 33p.

and Hartogs Theorem. 9p.

- 92-02 COELHO, S.P. & POLCINO MILIES , C. Group rings whose torsion units form a subgroup. 7p.
- 92-03 ARAGONA, J. Some results for the operator on generalized differential forms. 9p.
- 92-04 JESPERS, E. & POLCINO MILIES, F.C. Group rings of some p-groups. 17p.
- 92-05 JESPERS, E., LEAL G. & POLCINO MILIES, C.
 Units of Integral Group Rings of Some Metacyclic Groups. 11p.
- 92-06 COELHI, S.P., Automorphism Groups of Certain Algebras of Triangular Matrices. 9p.
- 92-07 SCHUCHMAN, V., Abnormal solutions of the Evolution Equations, I. 16p.
- 92-08 SCHUCHMAN, V., Abnormal solutions of the Evolution Equations, II. 13p.
- 92-09 COELHO, S.P., Automorphism Groups of Certain Structural Matrix Rings. 23p.
- 92-10 BAUTISTA, R. & COELHO, F.U. On the existence of modules which are neither preprojective nor pre injectives. 14p.
- 92-11 MERKLEN, H.A., Equivalence modulo preprojectives for algebras which are a quotient of a hereditary. 11p.
- 92-12 BARROS, L.G.X. de, Isomorphisms of Rational Loop Algebras. 18p.
- 92-13 BARROS, L.C.X. de, On semisimple Alternative Loop Algebras. 21p.
- 92-14 MERKLEN, H.A., Equivalências Estáveis e Aplicações 17 p.

- 92-15 LINTZ, R.G., The theory of -generators and some questions in analysis. 26p.
- 92-16 CARRARA ZANETIC, V.L. Submersions Maps of Constant Rank Submersions with Folds and immersions.
- 92-17 BRITO, F.G.B. & EARP, R.S. On the Structure of certain Weingarten Surfaces with Boundary a Circle. 8p.
- 92-18 COSTA, R. & GUZZO JR., H. Indecomposable baric algebras, II. 10p.
- 92-19 GUZZO JR., H. A generalization of Abraham's example
- 92-20 JURIAANS, O.S. Torsion Units in Integral Group
 Rings of Metabelian Groups. 6p.

NOTA: Os títulos publicados dos Relatórios Técnicos dos anos de 1980 a 1990 estão à disposição no Departamento de Matemática do IME-USP. Cidade Universitária "Armando de Salles Oliveira" Rua do Matão, 1010 - Butantã

Caixa Postal - 20.570 (Ag. Iguatemi) CEP: 01498 - São Paulo - Brasil