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Abstract
Multi-component devices such as flow machines, heat exchangers, and electric motors present parts with different physical 
properties and operating in different states. Optimisation algorithms may improve the performance of these devices, and the 
simultaneous optimisation of a set of parts may harness the interaction of these parts to generate improved designs. Particu-
larly, rotating flow devices such as pumps and turbines present rotating and stationary components. If a description of the 
fluid flow between the rotating and stationary parts is desired, it is necessary to model solid at different velocities. However, 
the standard topology optimisation formulation for fluid flow problems considers only a single stationary solid or a single 
rotating solid in a rotating reference frame. Thus, this work proposes a topology optimisation formulation capable of solving 
fluid flow problems with different solid velocities. The idea is to add mutually exclusive Darcy terms to the linear momentum 
equation. Each Darcy term models a different rotation and only one term may be active at each element. The method uses 
two discrete design variable fields. The moving limits of the optimisation algorithm are adjusted to handle the two discrete 
design variable fields, and extra constraints are added to ensure proper phase transitions. The algorithm is applied to two 
design problems: a Tesla pump and a labyrinth seal. The governing equations are solved by the Finite Element Method, and 
the optimisation is solved by an approach based on the Topology Optimisation of Binary Structures (TOBS) algorithm, with 
each linearized subproblem being solved through integer linear programming with a branch-and-bound algorithm.

Keywords  Topology optimisation · 2D swirl flow · Rotor-stator design · Discrete design variables · Integer linear 
programming · FEniCS

1  Introduction

Devices such as pumps, turbines, heat exchangers, and elec-
tric motors present components with different physical prop-
erties and operating in different states (e.g., velocity and 
temperature). One approach for improving the performance 
of these devices is to consider optimisation algorithms, 
which may be applied to individual parts of the device or to a 
set of parts simultaneously. The advantage of simultaneously 

optimising a set of parts is to harness the interaction between 
them to improve performance. In this case, the description of 
each component and the interaction between them must be 
included in the modelling to enable simultaneous optimisa-
tion. For example, if the optimisation algorithm is applied 
to the rotor and stator of a flow machine simultaneously, it 
is necessary to describe rotating and stationary parts. This 
work will focus on this application.

There are multiple approaches for optimising a device 
and this work is concerned with the topology optimisation 
method, which consists of dividing the design domain into 
elements and delegating to an optimisation algorithm the 
task of choosing the material of each element. Particularly, 
the application of topology optimisation to fluid flow prob-
lems started with Borrvall and Petersson (2003) and was 
extensively developed (Alexandersen and Andreasen 2020).

Regarding the design of flow machines by topology 
optimisation, Romero and Silva (2014) proposed a method 
to design rotors of bladed flow machines. They optimised 
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the channels between the blades of the rotor using a multi-
objective function based on energy dissipation, vorticity, and 
delivered (turbine) or consumed (pump) power. A rotating 
reference frame is used to solve the Navier–Stokes equations. 
Then, Sá et al. (2018) presented the complete development 
cycle of a bladed small-scale pump with a design approach 
based on the work of Romero and Silva (2014). The authors 
of Sá et al. (2018) designed, manufactured, and tested the 
pumps verifying the improved performance obtained by 
applying topology optimisation. Alonso et al. (2019) pro-
posed a topology optimisation formulation to design the 
rotor of a Tesla pump. The 2D swirl flow model was used in 
a rotating reference frame. The authors introduced an exten-
sion of the material model to treat the inverse permeability 
as a matrix which enables assigning different permeabilities 
for radial, tangential and axial velocity components. They 
also introduced a new term to vorticity objective function 
to reduce the grayscale level. Okubo et al. (2021) applied 
the continuous adjoint approach in topology optimisation to 
design the rotor flow paths in 3D. Cyclic boundary condi-
tions were used to represent the repeating patterns and the 
power dissipation is minimized. All these works optimised 
the rotor by considering a rotating domain, meaning that the 
influence of the stationary parts is not considered. Therefore 
they did not need to represent the differences in velocity 
between the rotor and stator. However, if a simultaneous 
optimisation of the rotor and the stator is desired, it is nec-
essary to use different velocities for the rotor and stator. To 
the best knowledge of the authors, the first work capable 
of considering different velocities for rotor and stator dur-
ing topology optimisation is presented by Sá et al. (2022), 
where a differential equation is used to propagate the rotat-
ing boundary condition to solid elements connected to the 
rotating wall.

The majority of works on fluid flow topology optimisa-
tion consider one fluid phase and one solid phase. Recently, 
some researchers also made contributions to multiphase fluid 
flow topology optimisation to address problems that are bet-
ter described by more than one fluid phase due to differences 
in physical properties. Tawk et al. (2019) proposed a topol-
ogy optimisation formulation to design heat exchangers with 
two different fluids separated by a solid phase. The authors 
used two design variable fields and a multi-material interpo-
lation scheme inspired by the work of Bendsøe and Sigmund 
(1999). Then, Høghøj et al. (2020) presented a topology 
optimisation approach to design two-fluid heat exchangers 
by considering only one design variable field and erosion-
dilatation techniques to guarantee the separation between 
the different fluid phases. Kobayashi et al. (2021) also pre-
sented a density-based topology optimisation method with 
one design variable field to design two-fluid heat exchangers. 
The idea of the authors was to define the phases in terms of 

the design variables in such a way that the solid phase is 
always present between different fluid phases.

In this work, fluid flow problems are also addressed with 
three material phases in topology optimisation. However, 
instead of considering two fluid phases, two solid phases 
at different rotations are studied. The idea is to consider 
the relative rotating motion between the rotor and the sta-
tor during the topology optimisation of flow machines and 
their components. The proposed method can distribute both 
solid phases freely in the design domain or can be restricted 
to place solid only at some locations. The effectiveness of 
the proposed method is demonstrated by solving two design 
problems: a Tesla pump and a labyrinth seal. The used topol-
ogy optimisation approach is a modified version of Topology 
Optimisation of Binary Structures (TOBS) introduced by 
Sivapuram and Picelli (2018) and extended to fluid flow by 
Souza et al. (2021). The modifications proposed in this work 
are the inclusion of two discrete design variable fields and 
extra constraints to control material phase changes. Also, 
a modification to the Navier–Stokes equation is made to 
include two mutually exclusive Darcy terms.

This paper is organized as follows. In Sect. 2, the physi-
cal problem is stated with the modifications necessary for 
considering fluid flow topology optimisation with two solid 
phases at different velocities. Also, the necessary modifica-
tions to describe three phases with two discrete design vari-
able fields are presented. In Sect. 3, the numerical methods 
and software tools used to implement the proposed algorithm 
are described. In Sect. 4, results obtained with the proposed 
formulation and different parameters are presented. Finally, 
Sect. 5 closes the study with conclusions and discussions.

2 � Rotor‑stator formulation

The problems considered in this work present symmetry 
around an axis, so cylindrical coordinates and axisymme-
try are considered to reduce the computational cost of the 
numerical solution (2D swirl flow model). Figure 1 illus-
trates the relation between the coordinates of a Cartesian 
frame Oxyz and a cylindrical frame Or�z . The cylindrical ref-
erence frame may be fixed or rotating. If the cylindrical ref-
erence frame is rotating, it is a non-inertial reference frame 
and additional body forces appear in the momentum equa-
tions. In this work, one example is solved in a rotating refer-
ence frame whilst the other example is solved in a fixed ref-
erence frame. The objective is to show the proposed model 
and algorithm in both conditions of the reference frame.

This work considers steady-state, incompressible, New-
tonian, and low Reynolds fluid flow in the absence of gravi-
tational forces. The stress tensor for a Newtonian fluid is 
given by
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where v and p are the absolute velocity and the pressure, 
respectively, � is the fluid dynamic viscosity, and I is the 
identity tensor.

2.1 � Navier–Stokes equations in an inertial frame

The fluid flow on a domain �f  is governed by the 
Navier–Stokes equations, which on an inertial reference 
frame, are given by

where � is the fluid density. A fluid flow problem involves 
Eq. 2 and boundary conditions for velocity or pressure. 
Velocity boundary conditions are imposed as Dirichlet 
boundary conditions, whilst pressure boundary conditions 
are imposed as normal stress conditions at the boundary �P 
such as follows

where n is the normal vector, and pP is a prescribed pres-
sure at the boundaries. Equation 3 imposes a normal stress 
condition and a no-tangential-stress condition.

2.2 � Navier–Stokes equations in a rotating reference 
frame

When the reference frame is rotating at a constant angular 
velocity � , the observed velocity u is a relative velocity that 
can be related to the absolute velocity as follows

where s = (r, � , z) is the position vector. When consider-
ing axisymmetry, the Navier–Stokes equations in terms of 

(1)�(v, p) = −pI + �
(
∇v + ∇vT

)

(2)
�(v ⋅ ∇)v = −∇p + �∇2

v in �f

∇ ⋅ v = 0 in �f

(3)�n = −pP n in �P

(4)
v = u + � × s

relative velocities are obtained by the substitution of Eq. 4 in 
Eq. 2, and no coordinate transformation is required. The sub-
stitution gives rise to two extra terms in the Navier–Stokes 
equations: the Coriolis force and the centrifugal force. The 
resulting system of equations is given by

In this work, the rotation is around the z-axis, so � = (0, 
0, � ). Also, axisymmetry conditions are considered, so the 
analysis is performed on � = 0 and s = (r, 0, z).

2.3 � Material model

For topology optimisation, it is necessary to solve the equi-
librium equations in an extended domain � circumventing 
both the fluid ( �f  ) and solid ( �s ) domains: � = �s ∪�f  . In 
Borrvall and Petersson (2003), the authors proposed model-
ling solid regions as porous material with low permeability. 
The permeability is described by an additional term in the 
Navier–Stokes equations known as the Darcy term. By con-
sidering the design variable field � and a function � that 
models the permeability as a function of design variables, 
the Navier–Stokes equations in an inertial reference frame 
(Eq. 2) with a Darcy term are given by

where vpor is the absolute velocity of the porous material 
(Alonso et al. 2018). For a rotating reference frame and a rel-
ative velocity upor of the porous material, the Navier–Stokes 
equations with a Darcy term are

In Eqs. 6 and 7, only one velocity expression can be assigned 
to all solid elements of the design domain. However, when 
optimising flow machines, it may be interesting to distin-
guish rotating parts from fixed parts. Hence, this work pro-
poses a method that distinguishes solid at rest (stator) and 
rotating solid (rotor). The optimisation starts from an initial 
guess, the optimiser distributes stator and rotor elements in 
a 2D axisymmetric domain, and the 3D representation is 
obtained by rotating the 2D axisymmetric domain around the 

(5)

�(u ⋅ ∇)u = −∇p + �∇2
u − 2� (� × u)

⏟⏞⏞⏟⏞⏞⏟
Coriolis force

− �� × (� × s)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
centrifugal force

in �f

∇ ⋅ u = 0 in �f

(6)

�(v ⋅ ∇)v + ∇p − �∇2
v + �(�)(v − vpor)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Darcy term

= 0 in �

∇ ⋅ v = 0 in �

(7)

�(u ⋅ ∇)u + ∇p − �∇2
u + 2� (� × u) + �� × (� × s)

+ �(�)(u − upor)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Darcy term

= 0 in �

∇ ⋅ u = 0 in �

Fig. 1   Illustration of a Cartesian ( Oxyz ) and a cylindrical ( Or�z ) coor-
dinate systems
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shaft as illustrated by Fig. 2. The idea is to use two design 
variable fields � and � , and to map the design variables into 
element phases according to Table 1.

The combination of two binary design variables provides 
four possible phases, but this work is interested in only three 
phases. By considering the combination � = 1 and � = 1 as 
an undesired phase, the number of phases is reduced to three 
and the conditions � = 1 and � = 1 are mutually exclusive. 
These mutually exclusive conditions enable adding linear 
terms to the governing equations that are active in only one 
part of the domain.

For the inertial reference frame, the absolute velocity of 
the stator is zero and the absolute velocity of the rotor is 
� r e� in which e� is the unit vector in � direction. Therefore, 
this work proposes extending the Navier–Stokes equations 
to the stator and rotor phases as follows

For the rotating reference frame, the relative velocity of the 
rotor is zero and the relative velocity of the stator is −� r e� . 
Therefore, the proposed extension to the stator and rotor 
phases is given by

According to Table 1 and Eqs. 8 and 9, it is necessary that 
the interpolation function � maps an input of 1 to �max and 
a input of 0 to �min . By considering �min = 0 and recalling 
that it is possible to consider a linear material model with 

(8)

�(v ⋅ ∇)v + ∇p − �∇2
v + �(�)v + �(�)(v − � r e�) = 0 in �

∇ ⋅ v = 0 in �

(9)

�(u ⋅ ∇)u + ∇p − �∇2
u + 2� (� × u) + �� × (� × s)

+ �(�)(u + � r e�) + �(�)u = 0 in �

∇ ⋅ u = 0 in �

the discrete design variable approach to fluid flow problems 
(Souza et al. 2021), the selected function � is

The maximum inverse permeability may be calculated from 
the Darcy number (Da) and the dynamic viscosity. The 
Darcy number is defined as follows

where Lc is a characteristic length. In this work, the charac-
teristic length is considered to be the inlet size. The Reyn-
olds number is calculated based on the characteristic veloc-
ity Vc as follows

where the characteristic velocity may be, for example, the 
maximum velocity magnitude in the domain or the maxi-
mum inlet velocity in the axial direction.

2.4 � Optimisation algorithm

The use of Eqs. 8 and 9 for topology optimisation require 
that the undesired phase � = 1 and � = 1 (Table 1) is not 
reached by any element. In this work, we propose a modi-
fication to the TOBS algorithm that avoids the undesired 
phase. Before presenting this modification, it is useful to 
present the TOBS algorithm as proposed by Sivapuram and 
Picelli (2018) to emphasize where the modification is made. 
The general topology optimisation problem can be expressed 
mathematically as

where F is the objective function, w is the vector of state var-
iables, � is the design variable field, Gi are the constraints, 

(10)
�(�) = �max �

�(�) = �max �

(11)Da =
�

�max L
2
c

(12)Re =
�Vc Lc

�

(13)

min
�

F(w(�), �) = F(�)

s.t. Gi(w(�), �) ≤ Gi, i = 1,… ,M

�(x) ∈ {0, 1}, ∀x ∈ �

Table 1   Proposed mapping 
between design variables and 
element phases

� � Element phase

1 0 Stator (solid)
0 0 Fluid
0 1 Rotor (solid)
1 1 Undesired phase

Fig. 2   Illustration of the 
proposed method to design a 
rotor-stator device



Topology optimisation for rotor‑stator fluid flow devices﻿	

1 3

Page 5 of 23  142

and Gi are the maximum values for the constraints. The inte-
ger optimisation problem of Eq. 13 can be costly to solve 
because the objective function and the constraints may be 
nonlinear. In the work of Sivapuram and Picelli (2018), the 
authors proposed solving a sequence of linearizations of 
Eq. 13 in place of solving it directly. The idea of TOBS is to 
linearize the optimisation problem about the current design 
�k and to obtain an increment ��k through Integer Linear 
Programming (ILP). The next design is then obtained by

By considering the expansion of the objective function by 
the Taylor series as follows

and noticing that, as F(�k) is constant (because �k is already 
known), the minimization of F(� + ��) is approximately the 
minimization of �F

��
�� . By also considering the linearization 

of the constraints Gi , the linearized optimisation problem 
may be written as

where � is a small parameter to limit the number of design 
variable changes and to keep the linearization error small. 
Also, it is necessary to relax the constraints to limit �Gi and 
to avoid infeasible integer sub-problems. The constraints are 
relaxed by small parameters �i according to the following 
equation

In the TOBS approach, the original design variable field � 
is kept discrete by controlling the step ��j of each design 
variable �j with the bound constraints as shown in Eq. 16. In 
this work, a similar approach is used to avoid the undesired 
state �j = 1 and �j = 1. First, the bound constraints are com-
puted from the proper selection of the sets S�j and S�j . Then, 
extra constraints Hj(��j, ��j) are added for each element to 
avoid transitions to the undesired state. The resulting opti-
misation problem is presented in Eq. 18 and the values of 
S�j , S�j , Hj are presented in Table 2.

(14)�k+1 = �k + ��k

(15)F(� + ��) = F(�) +
�F

��
�� +O(��2)

(16)

min
��

�F

��j
��j

s.t.
�Gi

��j
��j ≤ Gi − Gi(�

k) = �Gi, i = 1,… ,M

||��||1 ≤ � N

��j ∈ {0, +1} if �j = 0, j = 1,… ,N

��j ∈ {−1, 0} if �j = 1, j = 1,… ,N

(17)

𝛥Gi =

⎧⎪⎨⎪⎩

− 𝜖i Gi(𝛼
k), Gi < (1 − 𝜖i)Gi(𝛼

k)

Gi − Gi(𝛼
k), Gi ∈

�
(1 − 𝜖i)Gi(𝛼

k), (1 + 𝜖i)Gi(𝛼
k)
�

𝜖i Gi(𝛼
k), Gi > (1 + 𝜖i)Gi(𝛼

k)

The addition of linear constraints Hj increases the com-
putational cost of each call to the integer linear optimisation 
algorithm. However, the additional cost is not prohibitive as 
it is shown in Sect. 4.1.2.

2.5 � Case problems

2.5.1 � Tesla pump

The selected problem to show the proposed algorithm in 
a rotating reference frame is the design of a Tesla pump: a 
centrifugal bladeless pump in which the pumping effect is 
obtained by the boundary layer and Coandǎ effects. The nov-
elty of the results presented in this work is the simultaneous 
design of the rotor and the stator. The approach considered 
here is different from other works that focused the optimisa-
tion on the rotor (Alonso et al. 2019).

In this work, the Tesla pump optimisation considers the 
pump efficiency � and the pressure head H. The pump effi-
ciency � is the ratio of the power added to the fluid ( Pf  ) by 
the power used to drive the pump (Okubo et al. 2021). The 
pump efficiency can be calculated as follows

where

(18)

min
��,��

�F

��j
��j +

�F

��j
��j

s.t.
�Gi

��j
��j +

�Gi

��j
��j ≤ �Gi, i = 1,… ,M

Hj(��j, ��j) ≤ 0, j = 1,… ,N

||��||1 ≤ � N

||��||1 ≤ � N

��j ∈ S�j , j = 1,… ,N

��j ∈ S�j , j = 1,… ,N

(19)� =
Pf

T ⋅ �

(20)Pf =
∫�

(
p + �

v ⋅ v

2

)
(v ⋅ n) 2�r d�

Table 2   Bound constraints ( S�j and S�j ) and extra constraints ( Hj ) for 
the proposed optimisation problem

�j �j Element phase S�j S�j Hj

1 0 Stator (solid) {− 1, 0} {0, 1} Δ�j + Δ�j

0 0 Fluid {0, 1} {0, 1} Δ�j + Δ�j − 1

0 1 Rotor (solid) {0, 1} {− 1, 0} Δ�j + Δ�j

1 1 Undesired phase – – –
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The maximization of the pump efficiency is related to the 
minimization of the pump power dissipation. According to 
Okubo et al. (2021), the minimization of the pump power 
dissipation is equivalent to the minimization of the follow-
ing functional

and by applying the divergence theorem it is possible to 
obtain a definition of the same functional over the domain 
instead of the boundary as follows

The pressure head is the energy supplied to the fluid in 
length units. The pressure head can be calculated as follows

where V̇ is the flow rate across the pump and g is the gravita-
tional acceleration. The maximization of the pressure head is 
related to the minimization of the relative energy dissipation 
�R (Alonso et al. 2019). The relative energy dissipation is 
calculated by the following equation

where EdR(u) is the relative viscous energy dissipation func-
tional, PoA(u) is the porosity functional, and InR(u) is the 
inertial forces functional. They are calculated as follows

Then, the Tesla pump design is performed by the minimiza-
tion of the following objective function, taking both effects 
into account

(21)T =
∫�

�(s × v)(v ⋅ n) 2�r d�

(22)J(u, p) = −
∫�

(
p

�
+

u ⋅ u

2

)
(u ⋅ n) 2�r d�

(23)J(u, p) = −
∫�

u ⋅

(
∇p

�
+ (u ⋅ ∇)u

)
2�r d�

(24)H =
1

V̇ ∫𝛤

(
p

𝜌 g
+

v ⋅ v

2 g

)
(v ⋅ n) 2𝜋r d𝛤

(25)�R(u) = EdR(u) + PoR(u) + InR(u)

(26)EdR(u) =
�

2 ∫�

(∇u + ∇uT ) ∶ (∇u + ∇uT ) 2�r d�

(27)
PoR(u) =

∫�

�(�)(u + �re�) ⋅ (u + �re�) 2�rd�

+
∫�

�(�)u ⋅ u 2�r d�

(28)
InR(u) =

∫�

2� (� × u) ⋅ u 2�rd�

+
∫�

[�� × (� × s)] ⋅ u 2�r d�

where J0 and �0
R
 are the functional J and relative energy 

dissipation calculated for the initial guess.

2.5.2 � Labyrinth seal

The selected problem to present the proposed algorithm in 
a fixed reference frame is the design of a labyrinth seal. 
Labyrinth seals are non-contacting seals that reduce leak-
age by offering a tortuous path to the fluid flow. They are 
mounted between the rotor and stator of flow machines, so 
it is necessary to include the velocity differences between 
the rotor and stator for modelling the flow inside a labyrinth 
seal. Therefore, from this context, the topology optimisation 
algorithm proposed in this work may design the rotating and 
stationary parts of the labyrinth seals simultaneously.

The objective function to be minimized for the labyrinth 
seal case is the leakage through the outlet surface �out , which 
is given by

However, the minimization of the leakage in a channel is 
achieved by constricting the fluid flow path, so it is neces-
sary to guarantee a minimum gap between the rotor and the 
stator to avoid closing the flow passage when minimizing 
the leakage.

2.6 � Minimum gap between rotor and stator

The minimization of leakage is used for the topology opti-
misation of a labyrinth seal. However, the optimised design 
that may be obtained for minimum leakage is a closed fluid 
channel, which is not feasible for the labyrinth seal because 
the stator and rotor have different velocities. Therefore, it 
is necessary to modify the problem formulation to avoid 
closing the channel. The solution adopted in this work is 
to impose a minimum distance (gap) between the rotor and 
the stator. The problem of maintaining a gap between two 
phases has been solved in literature by works based on con-
tinuous design variables. For example, in the context of heat 
exchangers design, Kobayashi et al. (2021) define the ele-
ments with intermediate values of the design variable as 
solid and the elements with minimum and maximum values 
as two different fluids. Høghøj et al. (2020) use filtering and 
projection for maintaining a solid gap between two differ-
ent fluids. These approaches may also work for maintaining 
a fluid gap between solid at different velocities. However, 
in this work, discrete design variables are used, so there 
are no intermediate values and filtering the design variables 

(29)C(u, p) =
1

|J0|J(u, p) +
1

|�0
R
|�R(u)

(30)Q(v) =
∫�out

�(v ⋅ n) 2�r d�
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would reintroduce greyscale. Therefore, a new approach is 
proposed.

Another feature that may be undesired in labyrinth seal 
design is the possible formation of floating islands of solid 
material during topology optimisation (Fig. 3) because they 
may be hard to manufacture and assemble. Also, the manu-
facturing process would require introducing additional struc-
tures, such as some circumferentially spaced arms. There-
fore, in this work, the formation of floating islands in the 
topology optimisation of the labyrinth seal is disallowed.

The method used to impose a minimum gap between rotor 
and stator and to avoid the arising of floating solid islands 
is to control the allowed changes of the design variables. 
This is done by defining neighbourhoods VR of each element 
where R is the �1 distance between the element and the ele-
ments in VR. Figure 4 presents a graphical representation of 
the neighbourhoods VR.

The solid islands are avoided by allowing only the fol-
lowing phase changes: (1) fluid elements close to rotor can 
change to rotor; (2) fluid elements close to stator can change 
to stator; (3) stator elements close to fluid can change to 
fluid; (4) rotor elements close to fluid can change to fluid. An 
illustration of the allowed changes for labyrinth seal design 
is presented in Fig. 5 where the elements that are allowed to 
change are marked with numbers.

The allowed changes described in Fig. 5 require the defi-
nition of the phases in the boundary. This can be done by 
extending the domain on all sides by one element and by 
defining the phases of the introduced elements. Figure 6 

presents an example of initialization for the boundaries. It 
is important to notice that the extended boundary elements 
are not part of the analysis and optimisation. They are only 
used to complete the V1 neighbourhood of elements at the 
border of the domain.

However, it is still possible to obtain solid islands if all 
elements of the design domain are allowed to change in each 
call to the integer linear optimisation routine because adja-
cent elements can change simultaneously as Fig. 7 shows. 
As the logic to determine the allowed changes is based on 
the current state (i.e., there is no information about the next 
state), it is necessary to break the iteration into two steps 
to avoid adjacent elements of different phases changing at 
the same time. Therefore, each iteration of the labyrinth 
seal design is divided into two steps: stator expansion/rotor 
contraction and stator contraction/rotor expansion. During 
stator expansion/rotor contraction, fluid elements close to 
stator and rotor elements close to fluid elements are allowed 
to change. This corresponds to the black numbers in Fig. 5. 
During stator contraction/rotor expansion, fluid elements 
close to rotor elements are allowed to change to rotor and 
stator elements close to fluid elements are allowed to change 
to fluid. This corresponds to red numbers in Fig. 5.

It is possible to impose a minimum gap (distance) 
between the rotor and stator gmin by considering the neigh-
bourhood VR with R given by

Fig. 3   Illustration of floating islands of solid material (highlighted 
with yellow frames) during the topology optimisation of rotor-stator 
devices. (colour figure online)

Fig. 4   Schematic representation of the neighbourhoods VR of element 
E for R = 1, 2, 3

Fig. 5   Illustration of active elements during the optimisation of a lab-
yrinth seal. (1) Fluid elements that can change to rotor; (2) fluid ele-
ments that can change to stator; (3) stator elements that can change to 
fluid; (4) rotor elements that can change to fluid. Elements with black 
numbers are active during stator expansion/rotor contraction and ele-
ments with red numbers are active during rotor expansion/stator con-
traction. (colour figure online)

Fig. 6   Example of a possible boundary initialization for the labyrinth 
seal problem
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where h is the element size and the ceil function returns the 
least integer that is greater than the argument. Then, the 
neighbourhoods V1 and VR are used to define the allowed 
changes of each element. If an element E is in stator phase, 
it is allowed to change to fluid phase if there is a fluid ele-
ment in V1(E). Otherwise, the element E must remain in 
stator phase. Similarly, if an element E is in rotor phase, it 

(31)R = ceil

(gmin

h

) is allowed to change to fluid phase if there is a fluid element 
in V1(E). Otherwise, the element E must remain in rotor 
phase. For a fluid element E there are two possibilities for 
change. If there is a stator element in V1(E) and there is no 
rotor element in VR(E), the element is allowed to change to 
stator. Else, if there is a rotor element in V1(E) and there is 
no stator element in VR(E), the element is allowed to change 
to rotor. Otherwise, the element must remain in fluid phase. 
This algorithm is described in pseudocode by Algorithm 1.

Fig. 7   Arise of floating islands 
of solid material when running 
the optimisation of labyrinth 
seal with just one call to the 
integer linear optimisation 
algorithm by iteration
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The Algorithm 1 may still produce solid floating islands 
if solid elements (rotor or stator) that connect other solid 
elements to the walls are removed as illustrated by Fig. 8. 
Similarly, a fluid hole may be created when two solid parts 
are merged. Although fluid holes are not problematic for 
labyrinth seal operation, they may facilitate the arisal of 
solid floating islands. Also, there is no fluid flow inside fluid 
holes, so filling the hole does not affect the objective func-
tion. Therefore, an adjustment is performed after each call to 
the optimisation routine to remove solid floating islands and 
fluid holes of the design as described by Fig. 8.

The Algorithm 1 guarantees proper changes in design 
variables, i.e., the undesired state �E = 1 and �E = 1 is 
avoided. Therefore, the constraints Hj presented in Table 2 
are not necessary when using the minimum gap modifica-
tion. This reduces the cost of each call to the integer linear 
programming optimisation algorithm. However, the modifi-
cation for guaranteeing the minimum gap reduces the opti-
miser freedom in changing the design topology and it may 
be not interesting for some problems, such as the Tesla pump 
problem. So, the minimum gap modification is used just for 
the labyrinth seal problem in this work.

3 � Numerical implementation

The proposed algorithm follows the common steps taken by 
topology optimisation methods such as the TOBS approach 
(Sivapuram and Picelli 2018): to start from an initial guess 
and to iterate the solution of the forward problem (govern-
ing equations), the sensitivity analysis, and the mathemati-
cal programming problem until convergence is reached. A 
flowchart illustrating the proposed topology optimisation 
algorithm is presented in Fig. 9.

The governing equations are solved using the Finite Ele-
ment Method (FEM) through the FEniCS platform Alnæs 
et al. (2015). The Navier–Stokes equations are solved fully 
coupled using an implementation of the Newton–Raphson 
method from PETSc (Balay et al. 2021a, b). The sensitivity 

analysis is performed by following the discrete adjoint 
approach and automatic differentiation from the dolfin-
adjoint library (Farrell et al. 2013; Mitusch et al. 2019). 
The optimisation algorithm is solved with the default integer 
linear optimisation routine of CPLEXⓇ from IBM®, which 
implements a branch-and-bound algorithm. The considered 
optimisation stop criteria are a maximum number of itera-
tions nmax and a verification for loops in the design variable. 
At each iteration, the design variables are compared to the 
design variables of the last nloop iterations. If the current 
iteration has the same design variables of any of the last 
nloop iterations, the optimisation has entered a loop and the 
optimisation can be stopped.

The Tesla pump optimisation results are post-processed 
by filling fluid regions that do not contribute to the objective 
function with the surrounding solid phase (rotor or stator). 
The post-processing algorithm consists of selecting thresh-
olds J and �R for J and �R , respectively, and by replacing 
the fluid elements that present specific values of |J| and |�R| 
lower than J and �R with rotor or stator elements if there is 
a rotor or stator element in the neighbourhood V1 of the fluid 
element. This replacement process is successively repeated 
until there are no more changes of phase. The thresholds are 
selected as follows

where k is an arbitrary parameter calibrated to avoid chang-
ing the objective function values (C, J, and �R ). The same 
procedure is used to obtain �R . In this work, the parameter 
k = 6 is used.

4 � Results

This section presents results obtained by applying the pro-
posed method to two design problems: a Tesla pump and a 
labyrinth seal.

4.1 � Tesla pump

The Tesla pump considered in this work has a central rotat-
ing shaft, the fluid enters parallel to the shaft, and leaves the 
pump radially according to Fig. 10. As the pump is axisym-
metric, it can be modelled in a 2D mesh using cylindrical 
coordinates and axisymmetry in the off-plane direction � . 
Also, the selected reference frame is rotating with the shaft.

(32)kJ =

⎧
⎪⎨⎪⎩

log10 (1 + �J�) �J� ≥ 1

log10

�
1 +

1

�J�
�

�J� < 1

(33)J = 10kJ−k

Fig. 8   Example of solid floating islands and fluid holes arisal and 
removal during optimisation
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The fluid properties used for simulation are � = 0.0146 
Pa.s and � = 835.2 kg/m3 which correspond to oil SAE 15W-
40. The diameter of the shaft is D = 5.2 mm, the height and 
width of the design domain are L = 10 mm and H = 12.4 
mm, respectively, the inlet size eH is 2.4 mm, and the angular 
velocity � is 400 rpm (unless otherwise noted). The inlet 
velocity has a parabolic profile in the axial and tangential 
directions, and is zero in the radial direction. The maximum 
axial velocity in inlet is Vc = 0.36 m/s (Re = 50) at the centre 
of the inlet. The inlet velocity profile in the tangential direc-
tion is half of a parabola with the maximum value of − �
(D/2 + eH ) close to the stator wall. The Darcy number is Da 
= 10−6. The optimisation parameters are a truncation error 
parameter of � = 0.1%, a maximum number of iterations 

nmax = 1000, and loop convergence criteria nloop = 50. The 
element size is 0.1 mm, resulting in a structured mesh of 
124×100 quadrilateral elements for simulation and optimi-
sation. The velocity, pressure, and design variable fields are 
discretized by quadratic, linear, and piece-wise polynomials, 
respectively.

The results presented in Fig. 11 are obtained by starting 
the optimisation from different initial guesses. The first ini-
tial guess contains only fluid elements (Fig. 11a). The other 
initial guesses are inspired by Tesla pump rotors composed 
of parallel rotor disks (Fig. 11d, g). Each row of Fig. 11 
presents a different optimisation case with the initial guess 
in the first column, the result in the second column, and the 
post-processed result in the third column. The convergence 
graphs for the results of Fig. 11 are presented in Fig. 12.

The initial guess composed of only fluid elements has 
a negative pressure head, i.e., it does not work as a pump 
(Table 3). Therefore, the pump efficiency is not defined for 
Fig. 11a and the optimisation problem is not capable of 
designing a Tesla pump as observed in Fig. 11b and c. The 
same behaviour is observed when starting with one rotor 
disk, so the result is not presented. When starting with two 
disks (Fig. 11d), the initial configuration has a positive pres-
sure head and the optimisation is successful in optimising 
the pump efficiency as observed in Table 3. In Table 3, the 
parameters with the “0” superscript indicate the value at the 
initial guess and the parameters with the “*” superscript 
indicate the post-processed parameter. For the optimisation 
starting with only fluid elements (first row of Table 3), it is 
possible to observe that the pump efficiency has no physical 
sense (values greater than 100%).

For the optimisation starting with only fluid elements 
(Fig. 11a), the optimisation result has no rotor elements 
(Fig. 11b). The optimiser places the contour of the stator 
in the regions that impose fewer obstacles to flow. As the 
fluid enters the design domain axially at the upper-left part 
of the domain and leaves at the right edge, the region that 
imposes less obstacle to flow is the upper-right part of the 
domain. The optimisation reduces the objective function, 
but it is not able to generate a pumping configuration. The 
minimisation of relative energy dissipation dominates the 
optimisation when starting with only fluid elements.

For the case starting with two rotor disks (Fig. 11d), 
the topology optimisation algorithm modifies the starting 
disks to reduce the obstacle to the entering flow. The algo-
rithm also introduces more disks to increase the efficiency 
(Fig. 11e). By the end of the optimisation, the pressure 
head and the viscous energy dissipation increase (Fig. 12b). 
The viscous effects are important for increasing the pres-
sure head, but the viscous effects may also increase the 
viscous energy dissipation. Also, the efficiency increased 
because the energy transferred to the fluid increased more 
than the dissipated energy. For the initial guess with three 

Fig. 9   Flowchart illustrating the topology optimisation procedure 
used in this work

Fig. 10   Tesla pump design domain and boundary conditions
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disks (Fig. 11g), the topology optimisation algorithm also 
introduces more rotor disks and the lower disk attached to 
the shaft is a single structure without floating solid islands 
(Fig. 11h). According to Table 3, the efficiency gain for the 
optimisation starting with two disks is greater.

The convergence graphs of Fig. 12 present the behaviour 
of the objective function (C), the pump power dissipation 
functional (J), the relative energy dissipation ( �R ), and 
the pressure head (H) during the optimisation. The objec-
tive function and the pump power dissipation functional 

decreased for all optimisation cases. The relative energy 
dissipation decreased for the optimisation starting with 
only fluid elements (Fig. 12a), because the minimization of 
energy dissipation dominated the optimisation as the pump 
efficiency is not well defined for negative pressure head. 
The relative energy dissipation increased in Fig. 12b and c 
because the viscous effects are important for pumping the 
fluid (i.e., for increasing the pressure head), but the viscous 
effects may also increase the viscous energy dissipation as 
discussed in the previous paragraph. During some iterations, 

Fig. 11   Tesla pump optimisation results by starting the optimisation from different initial guesses. Each row presents an optimisation case. The 
first column indicates the initial guesses, the second column shows the results, and the third column presents the post-processed results
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Fig. 12   Convergence graphs for the Tesla pump optimisation cases of 
Fig. 11. The objective function (C) is presented in black, the scaled 
pump power dissipation ( J ∕ |J0| ) is presented in yellow, the scaled 
energy dissipation ( �R ∕ |�0

R
| ) is presented in red, and the scaled 

pressure head ( H ∕ |H0| ) is presented in blue. a Convergence graph 
for the first row of Fig. 11, b Convergence graph for the second row 
of Fig. 11, and c Convergence graph for the third row of Fig. 11. (col-
our figure online)

Table 3   Tesla pump 
performance parameters for the 
results of Fig. 11

Initial guess J0 [W/(kg/m3)] J∗ [W/(kg/m3)] �0

R
 (mW) �∗

R
 (mW) �0 (%) �∗ (%) H0 (mm) H∗ (mm)

0 Disks − 2.02 − 2.18 − 1.5 − 1.7 495 336 − 5.0 − 3.8
2 Disks 1.06 − 0.85 2.0 2.3 35 63 14.5 21.0
3 Disks 0.62 − 0.84 2.3 3.0 46 65 19.8 23.2

Fig. 13   Tesla pump optimisation result and flow fields by starting the optimisation with three rotor disk (Fig. 11g)
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Fig. 14   Tesla pump velocity 
fields in rz plane for the result 
of Fig. 11h

Fig. 15   Analysis of the Tesla pump topology optimisation result in a 
pure fluid domain. a Pure fluid mesh, b Velocity magnitude for the 
pure fluid mesh, c Pressure for the pure fluid mesh, d Radial veloc-

ity difference, e Tangential velocity difference, f Axial velocity differ-
ence, and g Pressure difference

Table 4   Comparison of the Tesla pump parameters obtained with a pure fluid domain with the parameters obtained in an extended domain with 
Darcy term for modelling solid phases

Domain Equations Figures J [W/(kg/m3)] �R (mW) � (%) H (mm)

Extended Equation 9 Figure 13 0.8427 3.0189 64.789 23.174
Pure fluid Equation 5 Figure 15 0.8632 3.0130 64.842 22.947



	 E. Moscatelli et al.

1 3

142  Page 14 of 23

the objective function decreased instead of increasing due 
to linearization errors.

The velocity of rotor elements is zero in Fig. 13 because 
the reference frame is rotating with the shaft. Similarly, the 
velocity of stator elements increases with the r coordinate. 
The interaction between the rotor and stator at the upper and 
lower parts of the domain creates recirculation zones. These 
phenomena can also be observed by analysing the flow in the 
rz plane as presented by Fig. 14.

The topology optimisation results presented in Fig. 11 
consider Eq. 9 to model solid elements. To check the accu-
racy of considering Darcy terms for stationary and rotat-
ing solid elements simultaneously, the result of Fig. 11i is 

simulated in a pure fluid domain with Eq. 5 and the mesh 
from Fig. 15a. The velocity and pressure fields are presented 
in Fig. 15b and c, respectively. The fields of Fig. 13b and c 
are in accordance with Fig. 15b and c. Also, Table 4 shows 
that the pump power dissipation, the relative energy dissipa-
tion, the efficiency, and the pressure head present small dif-
ferences which may be the result of different discretizations 
approaches such as triangular versus quadrilateral meshes 
and structured versus unstructured meshes. The local dif-
ferences between the extended and the pure fluid fields are 
presented in Fig. 15d–g.

Fig. 16   Effect of the angular velocity in Tesla pump optimisation by starting from an initial guess with three rotor disks (Fig. 11g)

Table 5   Tesla pump 
optimisation parameters for the 
evaluation of angular velocity 
effect (Fig. 16)

� (rpm) J0 [W/(kg/m3)] J∗ [W/(kg/m3)] �0

R
 (mW) �∗

R
 (mW) �0 (%) �∗ (%) H0 (mm) H∗ (mm)

0 0.78 0.45 0.6 0.4 – – − 5.7 − 3.3
100 0.70 0.31 0.7 0.4 − 255% − 730% − 4.5 − 3.0
200 0.54 − 0.18 0.8 0.6 − 7% − 266% − 0.5 − 2.4
300 0.47 − 0.11 1.3 1.7 34% 48% 7.3 8.9
400 0.62 − 0.84 2.3 3.0 46% 65% 19.8 23.2
500 0.96 − 1.77 4.0 6.6 51% 68% 37.4 35.3
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4.1.1 � Angular velocity effect

This section analyzes the angular velocity effect on the Tesla 
pump optimisation result. The proposed topology optimisa-
tion algorithm is run from angular velocities ranging from 
� = 0 rpm to � = 500 rpm by starting the optimisation 
with three rotor disks (Fig. 11g). The results are presented 
in Fig. 16.

For an angular velocity of � = 0 rpm, the optimiser 
removes the starting disks and place all the material in 
the centre and right parts of the upper region according to 
Fig. 16a. The material is placed in the region of the design 
domain which poses fewer obstacles to the entering fluid. 
There are stator elements side-by-side with rotor elements 
as the angular velocity is zero. For � = 100 rpm and 200 
rpm, the initial configuration with three disks has negative 

Fig. 17   Time breakdown for 
different element sizes when 
starting the optimisation with 
three rotor disks (Fig. 11g)
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pressure head (Table 5) and the optimiser is not capable of 
designing a pump because the pressure head is negative. For 
angular velocities greater or equal to 300 rpm, the initial 
guess has positive pressure head and the optimiser increases 
the efficiency in all cases (Table 5).

4.1.2 � Time breakdown of the proposed algorithm

The proposed algorithm involves the addition of linear con-
straints to avoid the transition to the undesired state �j = 1 
and �j = 1. One linear constraint is added per element, so 
the number of constraints is considerable and the optimisa-
tion time is increased in relation to the traditional TOBS 
approach. Therefore, an evaluation of the overall optimi-
sation time is necessary. As the time required for running 
the FEM analysis and the optimisation routine dominate the 
overall time, only these steps are considered. Figure 17 pre-
sents the time breakdown (i.e., the time taken by each step) 
for element sizes 0.2 mm, 0.1 mm, and 0.075 mm, which 
results in discretizations of 62×50, 124×100, and 165×133 
elements, respectively. The total time is 0.4 h for 62× 50 (127 
iterations), 29.8 h for 124×100 (1000 iterations), and 81.8 h 
for 165×133 (1000 iterations), which results in a mean itera-
tion time of 12, 107, and 294 s/iteration approximately. The 
increase in the mean iteration time is mainly caused by the 

increase in the number of linear constraints (3100, 12400, 
21975, respectively).

In Fig. 17, it is possible to observe that the integer lin-
ear optimisation procedure is the bottleneck of the overall 
optimisation for the proposed method. For an element size 
of 0.2 mm (Fig. 17a, b), the time for the FEM analysis and 
integer linear optimisation are similar. However, the duration 
of the optimisation routine is considerably higher for finer 
discretizations being ten times higher for an element size of 
0.075 mm (Fig. 17e, f). Nevertheless, the time increase is 
not prohibitive for sufficiently fine discretizations as shown.

4.2 � Labyrinth seal

In general, labyrinth seals are axisymmetric because they 
are applied to machines operating on high rotations in which 
balancing considerations are relevant. Therefore, most laby-
rinth seals can be modelled in 2D with cylindrical coordi-
nates and axisymmetry around the rotating axis as illustrated 
by Fig. 18. The inlet is assigned to the lower port to empha-
size that the upward flow (leakage) is undesired. Also, notice 
that for the labyrinth seal case the absolute reference frame 
is considered.

The oil SAE 15W-40 properties are also used in the lab-
yrinth seal optimisation: � = 0.0146 Pa.s and � = 835.2 
kg/m3. The default angular velocity used is � = 1000 rpm 
unless otherwise noted. The geometric parameters chosen 
are: shaft diameter of D = 4 mm; design domain height of H 
= 10 mm, and auxiliary inlet and outlet channels height of eH 
= 2 mm. The lengths of the design domain and of the auxil-
iary channels are determined by an aspect ratio parameter � 
= 1.6 such that L = �H and eL = � eH . The inlet pressure is 
pin = 1 kPa and the outlet pressure is pout = 0 Pa. The charac-
teristic length is taken as the inlet/outlet channel height. The 
Reynolds number (based on the maximum velocity magni-
tude) is between 80 and 120 during the optimisation cases 
that consider � = 1000 rpm. The Darcy number being used 
is 10−11. The optimisation problem is stated as the minimiza-
tion of leakage at the outlet, the truncation error parameter 
is � = 0.5%, the minimum gap between rotor and stator gmin 
is taken as the inlet height gmin = eH unless otherwise noted, 
the maximum number of iterations is nmax = 200, and the 
loop convergence criteria is nloop = 20.

The design process started with an initial guess composed 
of only fluid elements and the optimisation result is a chan-
nel constricted up to the minimum-allowed gap between 
rotor and stator (Fig. 19a). Most of the constriction is pro-
moted by projecting the rotor towards the stator. The bot-
tom part of the seal has a smooth profile, and the top part 
presents some indentations. The velocity and pressure fields 
of result are presented in Fig. 19 with the rotor and stator 
contours displayed over each field. The rotor contour is pre-
sented in red or white, and the stator contour is presented Fig. 18   Labyrinth seal design domain and boundary conditions
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in black. The velocity magnitude field (Fig. 19b) shows that 
the model is capable of assigning zero velocity to the stator 
phase and a purely tangential velocity to the rotor phase. 
Also, the rotor velocity increases with the r coordinate 
because the absolute reference frame is used. The pressure 
value (Fig. 19c) decreases from the inlet to the outlet, but 
most of the drop occurs in the upper part of the seal where 
the indentations are present.

In the labyrinth seal of Fig. 19a, the tangential velocity 
is orthogonal to the normal vectors of the inlet and outlet. 
Therefore, the leakage is the result of flow in the radial and 
axial directions. Figure 20 presents the flow in rz plane and 

the streamlines. It is possible to observe that recirculation 
zones constrict the flow passage of the streamlines connect-
ing the inlet to the outlet. Also, the fluid traverses the first 
half of the design domain attached to the rotor and the sec-
ond part of the design domain attached to the stator.

The convergence data for the topology optimisation of the 
labyrinth seal is presented in Table 6. The number of itera-
tions for reaching Fig. 19a is 105 and the objective function 
decreased to 31% of the initial value that considers a domain 
of only fluid elements.

The accuracy verification of the results from Fig. 19 is 
presented in Fig. 21 and Table 7. The velocity and pressure 

Fig. 19    Labyrinth seal result with velocity and pressure fields
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fields, the leakage, the pressure head and the energy dissi-
pation calculated in the extended domain with Darcy terms 
are in accordance with the results obtained for the pure 
fluid domain without Darcy terms. The small differences 
are related to the meshes used for simulation.

4.2.1 � Angular velocity effect

As the shaft angular velocity plays an important role in 
the fluid flow characteristics inside the labyrinth seal, it is 
important to analyze how the angular velocity of the rotor 
affects the optimisation results. Figure 22 presents the final 
topologies obtained for � = 0 rpm, 1000 rpm, and 2000 
rpm. The result for � = 0 rpm (Fig. 22a) presents significant 
differences from the results obtained for � = 1000 rpm and 
2000 rpm (Fig. 22b and c, respectively). In Fig. 22a, the 
rotor has a smaller diameter and a more irregular pattern. 
Figure 23 displays the behaviour of the convergence curves 
for the results presented in Fig. 22. The convergence curves 
obtained for the labyrinth seal optimisation are smooth and, 
in general, decrease monotonically.

It is also interesting to verify how a design obtained for 
an angular velocity performs when operating under the other 
angular velocities. Table 8 presents the objective function 
for the designs of Fig. 22 when operating under 0, 1000, 
and 2000 rpm. The idea is to run a cross-analysis and check 
if the obtained designs are really better under the condi-
tion they were optimised. Each line of Table 8 presents a 
bolded table cell that corresponds to the minimum objective 
function obtained for that angular velocity. It is possible to 
observe that all the obtained designs perform better under 
the operating condition of the optimisation.

4.2.2 � Initial guess effect

As the optimisation of the labyrinth seal through the mini-
mization of leakage presents local minima, it is important 
to evaluate the effect of the initial guess on the optimisa-
tion result. In this section, the optimisation is started from 
designs with obstacles to fluid flow which are known as teeth 
in labyrinth seal literature and practice Flitney (2014). The 
initial guesses are built by distributing teeth uniformly over 
the design domain and by alternating the kind of teeth as 
rotor or stator. The obtained results are presented in Fig. 24 
and Table 9.

One interesting feature of the results of Fig. 24 is the 
development of recirculation zones after each tooth. The 
recirculation zones can be observed in the streamlines of 
the velocity field (Fig. 25c). This feature is common to all 
the results from 24, and the recirculation zones are larger 
for Fig. 24a as the teeth had more space to grow. For the 
results in Fig. 24b and c, the recirculation zones have limited 

Fig. 20   Velocity field in plane 
rz for the labyrinth seal result 
presented in Fig. 19a

Table 6   Convergence data for the topology optimisation of the laby-
rinth seal from Fig. 19a

The “0” superscripts indicate the values at the initial iteration and the 
“*” superscripts indicate the optimised values

niter Q0 (g/s) Q∗ (g/s) Q∗∕Q0 (%)

105 21.2 6.5 31
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space to grow due to the next tooth. The optimiser is free to 
remove all initial teeth, but it does not remove them because 
it would create a path to flow with increased leakage.

In Table 9, it is possible to observe that the initial objec-
tive function Q0 decreases with the number of teeth. The 
final values Q∗ are also lower for more teeth, but the gain 
in Q∗∕Q0 is reduced. The reduction indicates that the initial 
guess is closer to a local minimum when starting from a 
higher number of teeth.

4.2.3 � Gap size effect

The minimum gap size between rotor and stator is an impor-
tant parameter in labyrinth seal design because the leakage 
decreases as the gap is reduced. However, there are practical 

Fig. 21   Analysis of the labyrinth seal topology optimisation result in 
a pure fluid domain. a Pure fluid mesh, b Velocity magnitude for the 
pure fluid mesh, c Pressure for the pure fluid mesh, d Radial veloc-

ity difference, e Tangential velocity difference, f Axial velocity differ-
ence, and g Pressure difference

Table 7   Comparison of the labyrinth seal parameters obtained with a 
pure fluid domain and with an extended domain with Darcy terms for 
modelling solid phases

Domain Equations Figures Q (g/s) H (mm) � (mW)

Extended Equation 8 Figure 19 6.5407 − 56.356 13.451
Pure fluid Equation 2 Figure 21 6.5337 − 56.358 13.453
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difficulties of operating labyrinth seals with small gap sizes 
because the rotor can brush the stator during transitory 
conditions such as when starting and stopping the rotat-
ing machine. Therefore, the gap size is an important design 

parameter and this work proposes an algorithm for control-
ling the gap size during optimisation. This section presents 
the effect of this algorithm by performing the optimisation 
with multiple gmin∕eH relations and the result is presented 
in Fig. 26. As expected, the leakage decreases as the gap 
decreases. Also, lower gaps induce more irregular surfaces 
on the rotor and stator.

Fig. 22   Angular velocity effect in labyrinth seal optimisation for Re = 100

Fig. 23   Convergence curves of the objective function for the optimisation of labyrinth seal with different angular velocities (Fig. 22) and Re = 
100

Table 8   Cross-analysis of the objective function (leakage) for the 
results of Fig. 22

Each line presents a bolded table cell corresponding to the minimum 
value of objective function for that angular velocity

Evaluation point Leakage (g/s)

Design point

� (rpm) 0 rpm 1000 rpm 2000 rpm

(Figure 23a) (Figure 23b) (Figure 23c)

0 9.6 10.1 10.4
1000 7.1 6.5 7.0
2000 2.8 3.3 2.7

Table 9   Objective function reduction for the initial guess analysis 
from Fig. 24

The “0” superscripts indicate the values at the initial iteration and the 
“*” superscripts indicate the optimised values

niter Q0 (g/s) Q∗ (g/s) Q∗∕Q0 (%)

Figure 24a 94 10.8 6.2 57
Figure 24b 37 8.8 5.3 60
Figure 24c 44 5.3 4.0 75
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5 � Conclusions

This work presents a fluid flow topology optimisation algo-
rithm capable of distributing solid material at different rota-
tions. The algorithm has been successfully applied to two 
design problems: for a Tesla pump and a labyrinth seal. The 
algorithm is flexible to allow modifications for meeting other 
design constraints such as no floating islands and minimum 

gap between rotor and stator. The effect of initial guess and 
rotor angular velocity is assessed for both problems.

For the Tesla pump problem, the objective function avoids 
the undesired contact between solid at different velocities 
without the introduction of additional constraints. However, 
for the labyrinth seal problem, it is necessary to modify the 
formulation to ensure minimum distance between solid ele-
ments at different velocities.

Fig. 24   Initial guess effect in labyrinth seal optimisation for � = 1000 rpm. The initial guess is presented at left and the result at right for each 
item. a Initial guess with one tooth and result; b Initial guess with two teeth and result; c Initial guess with three teeth and result

Fig. 25   Streamlines of the optimised results from Fig. 24
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For the labyrinth seal studied in this work, the gap reduc-
tion provides less leakage than creating a more tortuous path 
between rotor and stator. This can be associated with the low 
Reynolds number that has been considered.

As future research, the algorithm may be applied to fluid 
flow problems involving turbulent flow, compressible flow, 
non-Newtonian fluids, and other design problems such as 
compressors and fluidic diodes. Also, the proposed method 
may be explored for the design of heat exchangers and elec-
tric motors.
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